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ABSTRACT
Food 3D printing enables the creation of customized food
structures based on a person’s individual needs. In this paper,
we explore the use of food 3D printing to create perceptual
illusions for controlling the level of perceived satiety given a
defined amount of calories. We present FoodFab, a system that
allows users to control their food intake through modifying a
food’s internal structure via two 3D printing parameters: infill
pattern and infill density. In two experiments with a total of
30 participants, we studied the effect of these parameters on
users’ chewing time that is known to affect people’s feeling
of satiety. Our results show that we can indeed modify the
chewing time by varying infill pattern and density, and thus
control perceived satiety. Based on the results, we propose two
computational models and integrate them into a user interface
that simplifies the creation of personalized food structures.

Author Keywords
personal fabrication; food perception; food-interaction design;
food 3D printer; fabrication techniques.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Interaction design;

INTRODUCTION
Over the last decades, 3D printers have started to move out of
the realm of printing with plastic filament, resins, and metal
powders [15, 31] and are now also being used for fabricating
objects from edible materials [1, 21]. Today, 3D food print-
ers are already in use in a variety of contexts from high-end
restaurants that create new types of recipes (FoodInk [35, 44])
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Figure 1. FoodFab is a system that modifies a person’s perceived satiety
given a defined amount of calorie intake. It accomplishes this by creating
food structures of different chewing times, which can be accomplished
by varying 3D printing parameters, such as infill pattern and infill den-
sity. (a) Users input the type of food and level of hungriness, (b) FoodFab
retrieves the required chewing time and matching infill parameters, and
(c) 3D prints the food. (d) All cookies have the same calorie amount, but
different chewing times caused by variations in infill.

to elderly care homes that use food 3D printing to reshape un-
appealing mashed food into more appealing shapes [52]. 3D
food printers are thus quickly becoming part of the ongoing
revolution of the future of computing and food [23, 28, 29],
and can make a difference in the way we eat, which is gaining
more and more attention in light of global challenges around
obesity and other eating related disorders [2, 51, 50, 48].

Recently, food perception researches have started to investi-
gate how to change peoples’ perception of satiety by modify-

https://doi.org/10.1145/3313831.3376421


ing different perceptual cues. Visual cues, for instance, play an
important role: When a piece of food is cut into strips rather
than cubes, people perceive it as more filling since it takes up
more volume on the plate [46]. Similarly, haptic cues, such as
an increased biting force and the resulting longer chewing time
affect people’s feeling of satiety. For instance, people consume
less food when eating hard food compared to soft food [53].
Other features of food and food presentation, such as plate
size and lighting, have been studied in cross-modal correspon-
dence research [36], further extending our understanding of
perceptual cues and illusions related to food intake.

Within HCI, we see a growing effort to implement such per-
ceptual cues digitally by overlaying content onto the food
using augmented reality (AR) and actuated devices. Narumi
et al. [25] showed that by visually overlaying a scaled image
of food, seen through AR glasses, users perceive the food
differently, i.e., believe the actual food changed in size. Sim-
ilarly, haptic cues induced by vibration motors on the user’s
teeth [14] and electrodes attached to the user’s tongue allow to
simulate different food textures and flavors [33]. While these
approaches deliver effective illusions, they require users to
wear extra hardware and are less practical when used at home
since users see the plain food before it is augmented. With the
proliferation of food 3D printing technology, the creation of
computationally-controlled food perceptions cues is no longer
limited to the digital realm but can be tied back to the phys-
ical modification of food, which was originally used in food
perception research. To investigate a first set of computation-
ally controllable food 3D printing parameters, we hypothesize
that changing the infill of a piece of food affects the chewing
time, which has been shown to correlate with human satiety
perception [11].

To evaluate the effect of infill, we setup a food 3D printer
and fabricated pieces of food with varying infill patterns and
infill densities. We tested our assumptions in two independent
experiments with a total of 30 participants, in which we mea-
sured participant’s chewing time using an electromyography
sensor (EMS) and the perceived level of satiety using a self-
report questionnaire. The results from both experiments show
that changes in infill have a significant effect on chewing time
and resulting perceived satiety.

Building on the data from the experiments, we develop two
computational models, one for each 3D printing parameter
(i.e., infill pattern and infill density). The models output the
value of the printing parameter based on a person’s desired
increase in satiety. We then use these computational models to
build an end-to-end system, called FoodFab, which simplifies
the process of creating customized food structures (Figure 1).

In summary, our contribution is threefold: First, we use food
3D printing techniques to physically modify food, extending
prior work on digital augmentation for creating perceptual
illusions. Second, we run two experiments with food of vary-
ing infill patterns and infill densities to evaluate the effect of
these printing parameters on the user’s chewing time and per-
ceived satiety. Third, we propose two computational models
embedded in an end-to-end system that generate 3D printing
parameters based on a desired increase in satiety.

RELATED WORK
In this section we review relevant related work with a particu-
larly focus on existing insights from food perception research,
prior attempts to digitally augment food to create perceptual
illusions, and opportunities for food fabrication.

Food Perception and Perceptual Illusions
Research in psychology and sensory science have identified
many cues that can change a user’s perception of food. For
instance, increasing the chroma of a cake increases its per-
ceived sweetness [18, 27], white wine that is colored red
causes an illusion of red wine, and when regular tuna is over-
laid with white stripes it is perceived as the more satisfying
fatty tuna [30]. Besides color and texture changes, perceptual
illusions can also be caused by the shape of the food [6], its
arrangement on the plates [46], the shape of bowls and glasses
[32], and the environment lighting (e.g., candles can increase
the duration of a meal and consequently the food intake [22]).

Besides appearance cues, chewing patterns (i.e., jaw move-
ment, chewing force, and chewing time) are identified as
an important feature influencing eating behavior. Horio et
al. [12] found that the texture of food influences chewing
and ultimately influences the perceived fullness. Similarly,
Hogenkamp et al. [11] found that eating slowly and thus
chewing more affects the perceived fullness since the chew-
ing time increases. In addition, Zijlstra et al. [53] showed
that smaller biting sizes can cause a longer chewing time and
more satiation. Taken together, those works suggest a rich
design space for HCI, exploiting emerging technologies in cre-
ating perceptual cues to guide the mind into healthier eating
behaviors.

Digitally Augmenting Food Perception Cues
In recent years, there is an increased interest in implementing
perceptual illusions into computer-controlled systems. HCI
researchers, for instance, used AR to digitally enhance food:
MetaCookie [26] changes the perceived taste of a plain cookie
by overlaying colors that represent different flavors. In other
words, the user believes in eating a chocolate cookie although
in reality it is a plain cookie. In another case, Augmented Per-
ception of Satiety [25] increased the apparent size of cookies
by overlaying a scaled image of the cookie together with an
adjusted rendering of the user’s hand.

To adjust users’ fluid intake, Illusion Cup [40] and Chang-
ing Drinking Behavior [41] visually overlay modified sizes
of drinking containers. Similarly, Sakurai et al. [34] resize
virtual dishes to make the amount of food appear larger. Fi-
nally, Fujimoto et al. [7] digitally modify the color appearance
of food using projection-based AR to make the food appear
more appealing. Rather than augmenting the food visually,
researchers have also investigated how to augment the user’s
mouth via haptic sensations: Iwata et al. [14], for instance, use
vibration motors on the user’s teeth and electrodes attached
to the user’s tongue to simulate different food textures. Pre-
vious work also used sensors to detect chewing sounds and
then amplified the sound during the eating process to create
the illusion of a stronger biting force [19, 38]. In addition,
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Figure 2. FoodFab takes as input (a) daily calorie consumption, the type of food for the meal (ingredient, food 3D model), and the user’s hungriness
level. It then (b) computes the allowable calorie intake for the meal, and based on this (c) the allowable amount of ingredient, and then scales the model
accordingly. (d) Based on the user’s desired increase in satiety, FoodFab looks up the correlated chewing time, and retrieves the 3D printing parameter
that produces that amount of chewing (either infill pattern type or specific infill density). It then (e) applies the 3D printing parameter to the model, (f)
scales the model if needed, and then fabricates it using a food 3D printer.

previous work showed how to modify the user’s satiety level
through virtual weight sensation [10].

While the above efforts provide promising examples for digi-
tally augmented food perceptions, the main drawback is the
requirement of attachments which makes them less applicable
for day-to-day eating scenarios.

Advances in Food Fabrication
Early research in food 3D printing focused on the unique
aspects of using computer-controlled fabrication to prepare
meals. For instance, Laser Cooking [8] used a laser cutter to
locally roast food in specific locations, which is not feasible
using a regular pan. Similarly, Liu et al. [20] used a 3D printer
to create internal food structures that are hard to create by
hand. Digital Gastronomy [24] and Digital Konditorei [55]
investigate how to create new taste sensation by 3D printing,
milling, laser cutting, or molding ingredients into custom food
structures. Since the field is growing quickly, Sun et al. [39]
and Godoi et al. [9] provide a review of benefits and drawbacks
for various food fabrication devices.

Recently, researchers have also started to use food 3D printers
to motivate behavior change. For instance, TastyBeats [17]
translates physical activity data into food treats to encourage
reflection about the activity. We build on this work but take a
different angle, motivated by the need to support people with
their food intake. Prior research has shown that thoughts about
restrained eating make food cues even more appealing [37].
Hence, we aim to influence users’ food intake in a less obtru-
sive and more implicit way through modifying the structure of
the food that is being 3D printed.

FOODFAB OVERVIEW
We introduce FoodFab, a food 3D printing system that sup-
ports users in controlling their food intake. FoodFab induces
varying levels of satiety by creating food structures of different

chewing times but with the same amount of calories. To ac-
complish this, FoodFab modifies two 3D printing parameters:
the infill pattern and the infill density. In the following sec-
tions, we present a detailed overview of the system structure
and discuss the underlying fabrication techniques.

FoodFab System Structure
As can be seen in Figure 2a, FoodFab takes as input: (1) the
type of food the user would like to consume (e.g. cookies) and
(2) a rating of the user’s current hungriness level (e.g., 35/100).
It also queries (3) the user’s average daily calorie use from a fit-
ness tracker (e.g., 2000 calories)-alternatively, this information
can also be added manually to the user’s profile).

Compute Allowable Calorie Intake for the Meal: FoodFab
splits the amount of daily calories the user is allowed to con-
sume over a set of daily meals (e.g., 30% for each main course:
breakfast, lunch, dinner, and 5% for a morning and afternoon
snack; values customizable in the UI). Based on the time of the
day, FoodFab then retrieves the meal type and corresponding
calorie percentage, and computes the allowable calorie for the
meal for the particular user (Figure 2b). For our user, who is
having a cookie as an afternoon snack and wants to reduce
daily calorie intake by 200 calories, the allowable calories are
(2000cal - 200cal) × 5% = 90 cal.

Compute Amount of Ingredient Given Allowable Calories:
Next, FoodFab computes the amount of ingredient that can be
used to stay within the allowable calories. Since cookie dough
comes at 10cal/g and the user has 90cal available, the user can
consume 9g (Figure 2c).

Scale the Food 3D Model to Match Ingredient Amount: Food-
Fab next scales the 3D model of the food to a size at which
it requires only the allowed amount of ingredient (assuming
solid infill in this processing step). In our case, in which
the original cookie 3D model required 11g to print but the



user can only consume 9g, FoodFab scales the model to 82%
(Figure 2c).

Compute Necessary Increase in Satiety: Based on the user’s
hungriness level, FoodFab next computes the required increase
in satiety. Assuming the user is currently slightly hungry
(35% hungry) and would like to be full (0% hungry), the
required increase in satiety is 35%.

Compute Chewing Time Required for Satiety Increase: Next,
FoodFab takes the desired increase in satiety and retrieves the
correlated chewing time from our computational models that
we created based on the data from our experiments (Figure 2d).
In our case, an increase in satiety of 35% correlates with a
chewing time of 32 seconds.

Retrieve 3D Print Parameters for Required Chewing Time:
Since a specific chewing time is achieved by a specific value of
3D printing parameter, FoodFab next uses our computational
models to retrieve either an infill pattern or an infill density that
causes the required amount of chewing for the given 3D model.
In our case, a chewing time of 32 seconds corresponds to an
infill density of 61% (Figure 2e).

Apply 3D Printing Parameters to Food 3D Model: FoodFab
next applies the 3D printing parameters to the 3D model that
was previously scaled to match the allowable calorie intake and
corresponding amount of ingredient. When decreasing infill
density, the increased sparsity of the food’s interior allows the
model to be scaled up and to appear larger for the same amount
of calories. As shown in Figure 2f, a 61% infill density, for
instance, causes FoodFab to scale the 3D model by 3mm in
x/y.

Slice and 3D Print: FoodFab then slices the 3D model and
sends the resulting ’.gcode’ file to the 3D printer. The final
food structure has a chewing time that leads to the desired
increase in satiety while not exceeding the calorie amount
previously specified.

Note that there are limits to how much we can modify satiety.
As we will detail later in the experiments section, for a food
of similar shape and cal/g, we can modify a user’s perception
of satiety within a range of 17− 21% for infill pattern and
32− 44% for infill density. Thus, taking infill density as an
example and a hungriness level of 100%, users would have to
eat 3.1 cookie with the least satiety inducing infill density but
only 2.3 cookies for the most satiety inducing infill density
(100% satiety = 3.1 cookies x 32% satiety increase vs. 2.3
cookies x 44% satiety increase). Given that one cookie in
our experiments has 150 calories, this is a calorie saving of
70.4cal or 25.8% while resulting in the same user reported
satiety level (70.4cal calorie saving = 272.80cal (3.1 cookies x
88cal) - 202.40cal (2.3 cookies x 88cal)). However, it is not
possible to induce the same satiety level by consuming less
calories than this given the user’s choice of food.

The above five-step process illustrates the main principles
underlying the FoodFab system and how it translates desired
input and output parameters into the fabrication of food. Next,
we describe our choice of 3D printing parameters in detail.

Figure 3. Varying infill patterns: (a) Honeycomb infill, (b) Hilbert infill,
and (c) Rectilinear infill.

Figure 4. Varying infill density, which also varies size: (a) 70% infill
(25x25mm), (b) 55% infill (35x35x5mm) and (c) 39% infill (40x40mm).
All cookies are printed with 5mm height.

3D Printing Parameters: Infill Pattern & Infill Density
We chose to modify infill for two reasons: (1) variations in in-
fill vary the mechanical strength of the printed food structures,
which likely causes changes in chewing pattern and time, and
(2) variations in infill are not visible from the outside.

Mechanical Strength: It is well known that infill affects the
mechanical properties of 3D printed objects and thus in the
case of 3D printed food structures may lead to different chew-
ing patterns and chewing times and consequently different
levels of perceived satiety. For instance, it has been shown that
for the infill pattern parameter the ‘honeycomb’ infill allows
objects to withstand strong forces from all directions whereas
the ‘rectilinear’ infill pattern can only withstand forces from
specific directions [13, 42]. Similarly, it has been shown
that higher infill percentages correspond to higher mechanical
strength of 3D printed objects [5].

Not Visible from the Outside: In addition, since varying infill
parameters only affects the internal structure of the food, these
structural variations are not visible when the food is viewed
on the plate. Since the infill volume is enclosed by solid top
and bottom layers, users cannot tell by looking at the food that
the food differs inside.

Based on the desired properties of infill, we chose two different
infill parameters for our studies.

Infill Pattern: Infill patterns, such as honeycomb, rectilinear,
and Hilbert, change how the infill path is laid out (Figure 3).
Since the path of each infill pattern requires approximately
the same amount of ingredient, varying infill pattern does not
affect the size of the input 3D model.

Infill Density: Infill density determines how sparse the model
is on its interior (Figure 4). Since lower infill densities require
less ingredient, the model can be enlarged to use the remaining
ingredient for the rest of the geometry. This is especially
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Figure 6. Different ingredients for 3D printing food structures: (a)
cookie dough, (b) avocado puree, (c) pork puree and (d) ganache.

desirable, since large food sizes have been shown to lead to an
increase in perceived satiety.

We will next report on two experiments with 30 participants
total to investigate the effect of infill parameters on chewing
time and perceived satiety.

USER STUDY
We conducted two independent experiments to investigate the
influence of the two 3D printing parameters–infill pattern and
infill density–on the chewing time and the user’s perceived
satiety. We first describe the 3D printing hardware and food
ingredients used for the experiments, and then detail the ex-
periment procedure and outcomes.

3D Printing Hardware
All food structures printed for the experiments were fabricated
on the food 3D printer called 3DbyFlow that is shown in
Figure 5. The 3DbyFlow printer allows accurate printing and
fabrication of food with different internal structures, necessary
to deploy different infill patterns and densities. Based on our
experience with the 3D printer, food structures printed from
the same 3D model (i.e., printed from the same ingredient
amount) have an error rate of ±0.10g, which we determined
by weighting the 3D printed food structure using a standard
weight scale (SHIMADZU ELB300).

Ingredient Choice for 3D Printed Food
Using the 3DbyFlow printer, we tested different ingredients for
creating 3D printed food structures. We focused on ingredients
that have been previously used in food 3D printing research
[4, 16, 17, 49] including cookie dough, avocado, pork puree,
and ganache (see Figure 6).

Since our experiments rely on internal structures of a specific
pattern and density, we found that ingredients with the follow-
ing properties work best for our approach: (1) form a sturdy
structure at room temperature, (2) if post-processing (cooking,

Ingredients Nozzle Size
(per 30 cc) (diameter)

Cookie salt-free butter 4g 1.2mm
Dough liquid egg 10 12g

cake flour 24g
sugar 10g

Avocado avocado 50g 1.6mm
lemon juice 1.5g

Pork salt-free butter 4g 1.2mm
Puree (removed fat and fiber)

salt pepper 1.5g

Ganache liquid cream (40%) 15g 1.2mm
dark chocolate (40%) 30g

Table 1. Food ingredients for 1 syringe (30 cc) and required nozzle
diameter for food 3D printing.

baking) is required, the food keeps the same shape, size, and
internal structure.

Table 1 shows how we prepared each ingredient to create a
printable paste. The ratios were determined experimentally by
repeatedly printing the ingredient and observing the resulting
stability of the food structure.

Sturdy Structure at Room Temperature: We found that cookie
dough, avocado, and pork puree result in a sturdy food struc-
ture at room temperature even when sparse infill is used.
Ganache, however, was too liquid to maintain its structure
even when prepared at room temperature (25◦C).

Post-Processing to maintain Shape, Size, and Internal Struc-
ture: We found that from all ingredients, 3D models printed
from cookie dough best kept their shape, size, and internal
structure after baking (average error from 3D model ±0.5mm).
This was especially the case when the proportion of flour
was raised. Pork puree had a larger variation after cooking.
Although avocado did not require any post-processing, the
phenols contained in avocado caused it to oxidize quickly,
which reduced its visually appeal. Since reduced visual appeal
may affect the experiment results, we removed it from the
selection.

Overall, we found that cookie dough performed best from all
ingredients. Using it as the experimental ingredient is also in
line with prior work that used cookies as an experimental food
item (in AR: MetaCookie [26] and Augmented Perception of
Satiety [25], and in food perception: Turner et al. [43]).

Preparation and Printing Process
To prepare the cookie dough for 3D printing, we blended all
ingredients as shown in Table 1 until the cookie dough was
evenly-mixed. We then filled the dough into a syringe (NORD-
SON EFD 7012134, 30cc Syringe Barrels) and removed air
bubbles resulting from the transfer process by placing the
dough inside a vacuum chamber (BACOENG 3 Gallon Vac-
uum Chamber Kit) for 5 minutes. Our 3D printing nozzle for
printing the cookie dough has a diameter of 1.2mm (NORD-
SON 7018100 Tips; 16GA TT .047" Grey). We had previously
experimented with different nozzle sizes 0.8 to 1.6mm and
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found that nozzles larger than 1.2mm created large printing
error while smaller nozzles did not properly extrude the dough.

Before printing, we attached baking paper to the top of the
printer glass plate (see Figure 5), which we use later to move
the printed cookie from the printer to the oven.

For the experiments, we printed square shaped cookies with ei-
ther different infill patterns (experiment 1) or densities (exper-
iment 2). All cookies were baked in the oven at 150◦C-180◦C,
with top and bottom heat, for 15-30 minutes, depending on the
size of cookie.

We measured the size and weight of each cookie after baking
using a standard weight scale (SHIMADZU ELB300) to verify
that cookies had the expected weight and size (within an error
of ±0.10g and ±1.00mm). Baked cookies with larger error
were removed prior to the experiment.

Data Collection
In both experiments users ate different types of cookies that
varied along the parameter space of the 3D printing parameter.
We measured users’ chewing time and perceived satiety using
a combination of EMG and questionnaires.

Measuring Chewing Time (EMG): To measure chewing time,
we used an electromyography (EMG) sensor (Tokyo Devices
IWS940-DEV) attached to the masticatory muscle of the user’s
jaw (Figure 7). EMG allows for more accurate measurements
than having participants manually start/stop a timer and also
has the added benefit that it keeps users’ hands free for eat-
ing [19]. We later use the data points from the chewing time
as input for the computational models that compute the 3D
printing parameters.

Measuring Perceived Satiety (Questionnaire): To measure
user’s perceived satiety, we adapted the questionnaire used in
prior work [25] and used the questions: “How hungry are you
now?” and “How full are you now?”. We used the magnitude
estimation method [3] in which participants rate their hunger
and fullness between 0% (‘not hungry at all’ or ‘not full at all’)
to 100% (‘extremely hungry’ or ‘extremely full’). Participants’
ratings were recorded using an on-screen questionnaire to in-

Cookie #1 Cookie #2 Cookie #3

Infill density 25% 25% 25%

Infill pattern Honeycomb Hilbert Rectilinear

Weight (g) 15.09 15.05 15.01

Size (mm) 30×30 30×30 30×30

Pattern diagram

Table 2. Fabrication parameters of the three types cookies in Experi-
ment 1. The height was fixed at 5mm (7 printed layers).

vestigate the correlation between chewing time and perceived
satiety (combining objective and subjective measures). The
questionnaire was completed before and after eating cookie.

Room Setup
The experiments were conducted in a quiet, private room at a
set light illumination of 500 lux. In the middle of the room, we
setup a table on which we placed the cookies, a cup of water,
and a computer for answering the questionnaire. Participants
were asked to sit comfortable on a chair at the table.

In the following section, we provide details for each of the two
experiments. For both experiments, ethics approval from the
Local University Ethics committee was obtained, and written
consent collected from participants.

EXPERIMENT 1: Effect of Infill Pattern on Chewing Time
and Perceived Satiety
In the first experiment, we fabricated cookies with different
types of infill patterns to investigate their effect on users’ chew-
ing time and perceived satiety.

Experimental Design
The experiment followed a within-subjects design with three
experimental conditions, i.e., three cookie types with varying
infill patterns and with the same physical weight (15g, ±0.10g
error) and thus the same calories (1g cookie dough = 10cal,
150cal ±1cal). Figure 3 shows an overview of all three cookies
and Table 2 summarizes their respective measurements and
parameters. Cookie #1 was printed with the honeycomb infill
pattern, cookie #2 with the Hilbert infill pattern, and cookie #3
with the rectilinear infill pattern, all at 25% infill. Each cookie
across all types had a fixed height of 5mm, which it equal to 7
printed layers in our setup. In addition, we gave participants
a solid reference cookie as one would obtain from traditional
cooking to provide a normal reference representing common
experience. The reference cookie was of the same size but had
a solid infill (100%) and thus a different weight (22.45g) and
calorie amount (224.50cal). The data for the reference cookies
is included in the supplementary material.

Based on the mechanical properties of cookie #1-#3, we hy-
pothesized that the honeycomb infill pattern creates the longest
chewing time and highest perceived satiety because honey-
comb creates the most robust structure, followed by the Hilbert
pattern and rectilinear pattern last. The reference cookie can-
not be included in the comparison since it is made from a
larger ingredient amount and thus contains more calories.
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Figure 8. Infill Pattern: Average chewing time for eating one cookie
(averaged signal across all participants).

Procedure
Participants took part in a total of four sessions, each lasting an
average of 10 minutes from pre- to post-questionnaire. Each
session took place on a different day to reduce effects from
overly long chewing time. In each session participants were
presented with one of the four types of cookies (one of the
infill patterns or the solid reference cookie). We randomized
the order of the cookie types between participants using the
Latin Square design [47] to avoid order bias.

Before each session, participants were asked to fill out the
questionnaire to measure their perceived satiety. Then, partici-
pants were presented with 10 cookies of the specific type they
were assigned to for the session. Participants were asked to eat
as many of the 10 cookies as they wanted. After eating each
cookie, we asked them to rate their perceived satiety again
using the same questionnaire.

Participants
We recruited ten unpaid volunteers (7 males and 3 females,
µ = 24 years, σ = 2.18 years) from a local university to par-
ticipate in the experiment. Before signing up as participants,
they had to confirm that they had no food allergies or restric-
tions. Participants were instructed not to eat for at least four
hours before taking part in the experiment in order to ensure
that they had enough appetite. Participants were allowed to
drink water after each cookie but not while eating the cookie
to prevent any effect the water intake may cause.

Results
Chewing Time: Figure 9a shows the average chewing time
for eating one cookie in each of the three different conditions.
All participants finished 10 cookies without leftovers. We
found that the longest chewing time was elicited by cookie #1
(Honeycomb, 84.2s), followed by cookie #2 (Hilbert, 72.2s)
and cookie #3 (Rectilinear, 61.6s). We applied a one-way
analysis of variance (ANOVA) and found a significant effect of
infill pattern (F(4,29) = 4.75, p < 0.05). The post-hoc analy-
sis using Bonferroni showed a significant difference between
cookie #1 and cookie #2, cookie #2 and cookie #3 (p < 0.05),
and cookie #1 and cookie #3 (p < 0.01). Figure 8 shows the
measured chewing time in each condition.
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Figure 9. Infill Pattern: (a) Average chewing time, and (b) average
increase in perceived satiety (computed from the questionnaire results
before and after experiment) for one cookie.

Perceived Satiety: Figure 9b shows the average increase in
perceived satiety, i.e. the difference in how hungry participants
rated themselves via the pre- and post-questionnaires before
and after eating each cookie in each condition. The question-
naire results indicate that participants felt less hungry after
eating cookie #1 (21.30% average increase in satiety), com-
pared to cookie #2 (19.51% average increase in satiety) and
cookie #3 (17.13% average increase in satiety). We applied
a one-way ANOVA to the questionnaire results (i.e., average
score between pre- and post-questionnaire). However, we did
not find any significant effect of perceived satiety among the
conditions (F(4,29) = 7.35, p = 0.79).

Based on the results, we conclude that we can indeed control
chewing time and perceived satiety by varying the infill pattern.
While we cannot find a significant difference of perceived
satiety among the infill patterns, the results indicate a different
average among all conditions.

EXPERIMENT 2: Effect of Infill Density on Chewing Time
and Perceived Satiety
Following the same procedure as in experiment 1, we de-
signed a second experiment to investigate the effect of different
infill densities on chewing time and perceived satiety. Since
we had to choose one infill pattern to be able to control this
variable, we selected ‘honeycomb’. For future work additional
experiments are needed to complement the information of the
other infill patterns with their respective infill densities as well.

Experimental Design
The experiment followed the same design with three experi-
mental conditions, however, this time the three cookie types
had varying infill densities.

As mentioned earlier, printing cookies using the same amount
of ingredient (to keep the calories the same) but varying the
infill density results in a change of cookie sizes. Figure 4
shows the three printed cookie types and Table 3 shows their
respective measurements and parameters.

Cookie #1 was printed with 39% infill (40x40mm), cookie #2
with the 55% infill (35x35mm) and cookie #3 with 70% infill



Cookie #1 Cookie #2 Cookie #3

Infill density 39% 55% 70%

Infill pattern Honeycomb Honeycomb Honeycomb

Weight (g) 10.31 10.31 10.33

Size (mm) 40×40 35×35 25×25

Table 3. Fabrication details of the three types cookies in Experiment 2.
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Figure 10. Infill Densities: (a) Average chewing time, and (b) average
increase in perceived satiety (computed from the questionnaire results
before and after experiment) for one cookie.

(25x25mm). Each cookie had a fixed height of 5mm, which is
equal to 7 printed layers in our setup. In addition, participants
were given the solid reference cookie again in one of the four
sessions.

Participants
We recruited twenty unpaid volunteers (14 males and 6 fe-
males, µ = 24 years, σ = 2.41 years). Out of the twenty
participants, ten had participated in experiment 1 but we did
not observe any difference in their data when compared to the
other participants.

Results
Chewing Time: Figure 10a shows the average chewing time
for eating one cookie in each of the three conditions. All
participants finished 10 cookies without leftovers. We found
the longest chewing time was elicited by cookie #1 (lowest
infill / largest size, 45.30s), followed by cookie #2 (medium
infill / medium size, 36.35s), and cookie #3 (largest infill
/ smallest size, 26.0s). We applied a one-way ANOVA and
found a significant effect of infill density (F(4,29) = 22.10,
p < 0.01). The post-hoc analysis using Bonferroni showed a
significant difference among different infill densities (p < 0.05)
except between cookie #1 and cookie #2.

Perceived Satiety: Figure 10b shows the average increase in
perceived satiety, i.e. the difference in how hungry partici-
pants rated themselves via the pre- and post-questionnaires
before and after eating each cookie in each condition. The
questionnaire results indicate that participants felt least hungry
after eating cookie #1 (lowest infill / largest size, 43.8% aver-
age increase in satiety), followed by cookie #2 (medium infill

/ medium size, 38% average increase in satiety) and cookie
#3 (largest infill / smallest size, 31.75% average increase in
satiety). We applied a one-way ANOVA to the questionnaire re-
sults (i.e., average score between pre- and post-questionnaire)
and found a significant effect of infill density on perceived
satiety (F(4,29) = 17.086, p < 0.01). The post-hoc analysis
using Bonferroni showed a significant difference among each
pair of different infill densities (p < 0.05).

Thus, given these results, we conclude that we can indeed
modify chewing time and perceived satiety by varying the
infill density.

COMPUTATIONAL MODEL
Based on the results from the two experiments, we conclude
that we can modify the chewing time by modifying a food’s
internal structure via 3D printing parameters, such as infill pat-
tern and infill density, and that the chewing time is correlated
with the perceived satiety.

To make our experimental results applicable in the context of
creating food structures of a desired chewing time, we create
two computational models, one for each of the 3D printing
parameters infill pattern and infill density.

Each model consists of two parts: (1) a mapping of perceived
satiety to chewing time, and (2) a mapping of chewing time to
3D printing parameter, i.e. a specific infill pattern type or infill
density percentage. Note that these computational models
are meant as an illustration of the potential applications that
FoodFab will enable, i.e. they only work for a food 3D model
of the same initial dimensions as used in the experiment.

Infill Pattern: Discrete Selection
Mapping Perceived Satiety to Chewing Time: Prior work [11]
has shown that chewing time has a correlation with perceived
satiety, which was also confirmed by our experiments (i.e.,
the longer participants chewed, the higher they rated their
perceived satiety afterwards, with significant effects for infill
density and correlated increased averages for infill pattern).
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Figure 11. Infill Pattern Lookup Chart (created from results from Ex-
periment 1): (a) for a desired satiety level, look up the chewing time. (b)
For a required chewing time, find the matching infill pattern parameter.

To show this effect in one graph, we summarize the data
on chewing time and perceived satiety in Figure 11a with
perceived satiety on one axis and chewing time on the other.
We then fit a linear graph resulting in the following formula:



chewing time t = 0.18 * perceived satiety increase + 5.96.
Thus, once users indicated their hungriness level (i.e., current
perceived satiety level), we can determine the required increase
in satiety, and then compute the necessary chewing time. For
example, an increase in satiety of 20% requires a chewing
time of 76s when infill pattern variation is used (76s = 0.18 *
20% + 5.96).

Chewing Time to Infill Pattern Type: Next, we can use the
required chewing time to select an infill pattern that creates
this chewing time from Figure 11b. Since infill pattern is
a discrete value, we discretize the continuous space while
minimizing error. Continuing the previous example, if the
user needs to chew 76s, the hilbert infill pattern matches the
chewing time most closely.

Maximum Increase in Satiety and Chewing Time: As can be
seen in Figure 11a/b, using infill pattern we can modify a
user’s perception of satiety within a range of 17− 22% and
the chewing time from 61 seconds to 84 seconds.

Infill Density: Continuous Interpolation
Perceived Satiety to Chewing Time: Similarly, we can sum-
marize the data for infill density as shown in Figure 12a with
perceived satiety on one axis and chewing time on the other.
We then fit a linear graph resulting in the following formula:
chewing time t = 0.62 * perceived satiety increase + 15.47.
Thus, once users indicated their hungriness level (current per-
ceived satiety), we can calculate the required increase in satiety
and then compute the required chewing time. For instance, as
mentioned in Figure 2d, a desired increase in satiety of 35%
requires a chewing time of 37.17s when infill density variation
is used (37.17s = 0.62 × 35 + 15.47).
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Figure 12. Infill Density Lookup Chart (created from results from Ex-
periment 2): (a) for a desired satiety level, look up the chewing time. (b)
For a required chewing time, find the matching infill density parameter.

Chewing Time to Infill Density Percentage: Next, we retrieve
the infill density that creates the required chewing time (Fig-
ure 12b). To create a formula that computes the matching
infill density, we applied regression estimation using a linear
function (R2 = 0.793, p < 0.01) that interpolates between
the different densities. As result, we obtain the following
equation:

Tchew =−0.62 × Din f ill +69.88

where Tchew represents the chewing time and Din f ill represents
the infill density. Entering 32s for chewing time into this
equation, results in an infill density of 61% (Figure2e).

Scaling the Model: After determining the desired infill den-
sity, we can scale up the model to enlarge the surface area.
Given our predefined shapes (square cookies), we obtain the
following formula:

Area = (−0.39 × Din f ill +55.27)2

Thus, given the infill density of 61%, our model will be scaled
by a factor of 0.95 (area for infill density 100% = 30mm2,
area for infill density 61% = 31.48mm2, 30mm2/31.48mm2 =
0.95). This is also shown in Figure 2f.

Maximum Increase in Satiety and Chewing Time: As can be
seen in Figure 12a/b, using infill density we can modify a
user’s perception of satiety within a range of 31− 45% and
the chewing time from 26 seconds to 46 seconds.

USER INTERFACE
Our computational models allow us to create the user inter-
face that is conceptually shown in Figure 2 and implemented
as a plugin to the 3D editor Rhino as shown in Figure 13.

As explained at the beginning of the paper, it takes as input
a user’s selection from a list of foods, a level of hunger, and
the daily calorie use. Note that, the daily calories use is either
automatically retrieved from a user’s fitness tracker or prede-
fined in the user’s profile. The system then outputs a set of
3D printing parameters and “.gcode” file for 3D printing that
create the required chewing time.

Figure 13. User Interface implemented in the 3D editor Rhino 3D that
automatically selects 3D printing parameters.

DISCUSSION
Throughout this paper, we contributed a first exploration of
how food 3D printing can be used to physically modify food.
Thus, we extend prior work that digitally augmented food and,
most notably, remove the need for wearing attachments by
using 3D printers to computationally-control different param-
eters concerning the food structure. In the next section, we
discuss extensions of our work for food perception research,
detail current limitations of our approach, and outline opportu-
nities for future work.

Extensions for Food Perception Research
In this paper, we focused on two specific 3D printing parame-
ters, i.e., infill patterns and infill density, and showed that food
3D printing cannot only be used to create novel types of taste
structures as was the focus of prior work, but also has impor-
tant implications for modifying food intake. As mentioned



previously, food 3D printing modifies the food structures phys-
ically, which is closer to the process originally used in food
perception research. Thus, by building onto our work that
explored a first set of printing parameters and demonstrated
how to embed the results into an end-to-end food fabrication
pipeline, food perception researcher can add to the space of
available perceptual illusions, further enhancing the parameter
space for computer-controlled food fabrication. In addition, by
automating the generation of computationally modified food,
our work facilitates follow up research on cross-modal cues,
such as effects that are caused by grasping or seeing the food.
Further research is needed to integrate different cues into one
such coherent model.

Limitations
In our work, the experiments were run on one specific type of
food and thus the resulting data points result in computational
models that can only be used for food structures of the same
characteristics. Further work across additional ingredients and
food shapes is needed before the results can be generalized
for larger classes of food types. In addition, our work only
investigated two printing parameters, i.e., infill patterns and
infill density, but other parameters, such as the number of
shells and number of top and bottom layers may also influence
the chewing time. Furthermore, while the food structures in
this paper were chosen to maintain their shape during printing
even when infill is varied, it is more difficult to vary infill when
printing structures have steep overhangs or are large in size.
Finally, while we hope that our work may help in reducing
overeating, additional experiments are needed to evaluate if
people who overeat can reliably rate their own satiety levels.

Opportunities of FoodFab
While food 3D printing is still a new research topic, the ex-
tended interest in food computing [28] and a first deployment
and use of food 3D printers in restaurants [44] point towards
a future in which people will make use of such personalized
automated meals. Below, we describe three usage scenarios
where our approach can be useful.

Integration with Daily Meal Preparation: Food 3D printers
that emerge on the consumer market tend to offer a list of
recipes linked on the manufacturer website where a user can
buy the ingredients as prefilled food capsules in supermar-
kets. FoodFab can be integrated into this emerging ecosystem
around food 3D printers by using computational models to per-
sonalize the recipes offered to consumers to help them manage
their food intake.

Decreasing Food Size Over Time: People who overeat tend
to have an attraction to large portion sizes to which they get
accustomed over time [34]. Thus, to a person who overeats, a
regularly sized meal may seem small in comparison. A future
avenue for FoodFab would be to investigate if small changes
in meal size over time can get users accustomed to regularly
sized portions. As we have previously shown, we can modify
the size of a piece of food by changing the infill density while
keeping calories constant.

Culinary chefs: We envision that in restaurants, Chefs will not
only customize a user’s meal based on allergies and other food

restrictions, but will take calorie constraints into account as
well. By being able to modify the food’s size without adding
calories, Chefs will be able to prepare meals of equal sized
portions for people that are sharing a dinner experience in a
group. Note that we see our work in line with the Digital
Gastronomy paradigm [54], in which the chef and the fabri-
cation device work hand-in-hand in the creative process of
preparing a meal, i.e. the chef is not replaced by a machine
but the manual practice of the chef is enhanced with digital
capabilities.

50 cal

Figure 14. Extension to other fabrication methods, such as laser cutting:
Both cups have the same amount of ham cut into different shapes to
achieve different apparent sizes.
Extending to other Fabrication Methods: Finally, our idea of
realizing food perception tricks goes beyond 3D printing and
can also be applied to other fabrication processes. Figure 14
shows how we use laser cutting to chop food to increase the
apparent size. Compared to 3D printing, laser cutting has the
benefit that it works with ingredients other than pastes. For
instance, laser cutters are able to process materials, such as
crackers and ham. However, on the flip side, laser cutting is
limited in that it cannot cut through thick shapes and due to
the heat employed can burn or melt a piece of food.

CONCLUSION
In this paper, we demonstrated how to use personal fabrica-
tion devices to create food perception illusions. Rather than
digitally augmenting food, we showed how to use food 3D
printing to physically integrate perceptual cues.

We investigated how by changing infill parameters of a piece
of food, we were able to modify the chewing time and cor-
related perceived satiety while maintaining the same amount
of ingredient and thus calories. We incorporate the results
from our experiments into two computational models, which
estimate the 3D printing parameters for a required chewing
time and desired satiety level. For future work, we plan to
collaborate with food perception researchers to evaluate the
effectiveness of structural and composition changes and to
study long-term habituation effects, such as those outlined by
Velasco et al. [45].
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