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Abstract

We propose a new method to estimate
Wasserstein distances and optimal transport
plans between two probability distributions
from samples in high dimension. Unlike plug-
in rules that simply replace the true distri-
butions by their empirical counterparts, our
method promotes couplings with low trans-
port rank, a new structural assumption that
is similar to the nonnegative rank of a ma-
trix. Regularizing based on this assump-
tion leads to drastic improvements on high-
dimensional data for various tasks, includ-
ing domain adaptation in single-cell RNA
sequencing data. These findings are sup-
ported by a theoretical analysis that indicates
that the transport rank is key in overcoming
the curse of dimensionality inherent to data-
driven optimal transport.

1 INTRODUCTION

Optimal transport (OT) was born from a simple ques-
tion phrased by Gaspard Monge in the eighteenth
century [Monge, 1781] and has since flourished into
a rich mathematical theory two centuries later [Vil-
lani, 2003, 2009]. Recently, OT and more specif-
ically Wasserstein distances, which include the so-
called earth mover’s distance [Rubner et al., 2000]
as a special example, have proven valuable for varied
tasks in machine learning [Bassetti et al., 2006, Cu-
turi, 2013, Cuturi and Doucet, 2014b, Frogner et al.,
2015, Gao and Kleywegt, 2016, Genevay et al., 2016,
2017, Rigollet and Weed, 2018a,b, Rolet et al., 2016,
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Solomon et al., 2014b, Srivastava et al., 2015], com-
puter graphics [Bonneel et al., 2011, 2016, de Goes
et al., 2012, Solomon et al., 2014a, 2015], geometric
processing [de Goes et al., 2011, Solomon et al., 2013],
image processing [Gramfort et al., 2015, Rabin and Pa-
padakis, 2015], and document retrieval [Kusner et al.,
2015, Ma et al., 2014]. These recent developments have
been supported by breakneck advances in computa-
tional optimal transport in the last few years that al-
low the approximation of these distances in near linear
time [Altschuler et al., 2017, Cuturi, 2013].

In these examples, Wasserstein distances and trans-
port plans are estimated from data. Yet the under-
standing of statistical aspects of OT is still in its in-
fancy. In particular, current methodological advances
focus on computational benefits but often overlook sta-
tistical regularization to address stability in the pres-
ence of sampling noise. Known theoretical results show
that vanilla optimal transport applied to sampled data
suffers from the curse of dimensionality [Dobrić and
Yukich, 1995, Dudley, 1969, Weed and Bach, 2017]
and there is an acute need for principled regulariza-
tion techniques in order to scale optimal transport to
high-dimensional problems, such as those arising in ge-
nomics.

At the heart of OT is the computation of Wasserstein
distances, which consists of an optimization problem
over the infinite dimensional set of couplings between
probability distributions. (See (1) for a formal defi-
nition.) Estimation in this context is therefore non-
parametric in nature and this is precisely the source of
the curse of dimensionality. To overcome this limita-
tion, and following a major trend in high-dimensional
statistics [Candès and Plan, 2010, Liu et al., 2010,
Markovsky and Usevich, 2012], we propose to im-
pose low “rank” structure on the couplings. Inter-
estingly, this technique can be implemented efficiently
via Wasserstein barycenters [Agueh and Carlier, 2011,
Cuturi and Doucet, 2014a] with finite support.
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We illustrate the performance of this new procedure
for a truly high-dimensional problem arising in single-
cell RNA sequencing data, where ad-hoc methods for
domain adaptation have recently been proposed to
couple datasets collected in different labs and with
different protocols [Haghverdi et al., 2017], and even
across species [Butler et al., 2018]. Despite a rela-
tively successful application of OT-based methods in
this context [Schiebinger et al., 2017], the very high-
dimensional and noisy nature of this data calls for ro-
bust statistical methods. We show in this paper that
our proposed method does lead to improved results for
this application.

This paper is organized as follows. We begin by re-
viewing optimal transport in §2, and we provide an
overview of our results in §3. Next, we introduce
our estimator in §4. This is a new estimator for the
Wasserstein distance between two probability mea-
sures that is statistically more stable than the naive
plug-in estimator that has traditionally been used.
This stability guarantee is not only backed by the the-
oretical results of §5, but also observed in numerical
experiments in practice in §6.

Notation. We denote by ‖·‖ the Euclidean norm over
IRd. For any x ∈ IRd, let δx denote the Dirac measure
centered at x. For any two real numbers a and b, we
denote their minimum by a∧b. For any two sequences
un, vn, we write un . vn when there exists a constant
C > 0 such that un ≤ Cvn for all n. If un . vn and
vn . un, we write un � vn. We denote by 1n the all-
ones vector of IRn, and by ei the ith standard vector
in IRn. Moreover, we denote by � and � element-wise
multiplication and division of vectors, respectively.

For any map f : IRd → IRd and measure µ on IRd, let
f#µ denote the pushforward measure of µ through f
defined for any Borel set A by f#µ(A) = µ

(
f−1(A)

)
,

where f−1(A) = {x ∈ IRd : f(x) ∈ A}. Given a
measure µ, we denote its support by supp(µ).

2 BACKGROUND ON OPTIMAL
TRANSPORT

In this section, we gather the necessary background
on optimal transport. We refer the reader to recent
books [Santambrogio, 2015, Villani, 2003, 2009] for
more details.

Wasserstein distance Given two probability mea-
sures P0 and P1 on IRd, let Γ(P0, P1) denote the set of
couplings between P0 and P1, that is, the set of joint
distributions with marginals P0 and P1 respectively
so that γ ∈ Γ(P0, P1) iff γ(U × IRd) = P0(U) and
γ(IRd × V ) = P1(V ) for all measurable U, V ∈ IRd.

The 2-Wasserstein distance1 between two probability
measures P0 and P1 is defined as

W2(P0, P1) := inf
γ∈Γ(P0,P1)

√∫
IRd×IRd

‖x− y‖2 dγ(x, y) . (1)

Under regularity conditions, for example if both P0

and P1 are absolutely continuous with respect to the
Lebesgue measure, it can be shown the infimum in (1)
is attained at a unique coupling γ∗. Moreover γ∗ is a
deterministic coupling: it is supported on a set of the
form {(x, T (x)) : x ∈ supp(P0)}. In this case, we call
T a transport map. In general, however, γ∗ is unique
but for any x0 ∈ supp(P0), the support of γ∗(x0, ·)
may not reduce to a single point, in which case, the
map x 7→ γ∗(x, ·) is called a transport plan.

Wasserstein space The space of probability mea-
sures with finite 2nd moment equipped with the metric
W2 is called Wasserstein space and denoted by W2. It
can be shown that W2 is a geodesic space: given two
probability measures P0, P1 ∈ W2, the constant speed
geodesic connecting P0 and P1 is the curve {Pt}t∈[0,1]

defined as follows. Let γ∗ be the optimal coupling
defined as the solution of (1), and for t ∈ [0, 1] let
πt : IRd×IRd → IR be defined as πt(x, y) = (1−t)x+ty,
then Pt = (πt)#γ

∗. We then call P1/2 the geodesic
midpoint of P0 and P1. It plays the role of an aver-
age in Wasserstein space, which, unlike the mixture
(P0 + P1)/2, takes the geometry of IRd into account.

k-Wasserstein barycenters The now-popular no-
tion of Wasserstein barycenters (WB) was introduced
by Agueh and Carlier [2011] as a generalization of the
geodesic midpoint P1/2 to more than two measures. In
its original form, a WB can be any probability measure
on IRd, but algorithmic considerations led Cuturi and
Doucet [2014a] to restrict the support of a WB to a
finite set of size k. Let Dk denote the set of probability
distributions supported on k points:

Dk =


k∑
j=1

αjδxj : αj ≥ 0,

k∑
j=1

αj = 1, xj ∈ IRd

 .

For a given integer k, the k-Wasserstein Barycenter
P̄ between N probability measures P0, . . . PN on IRd

is defined by

P̄ = argmin
P∈Dk

N∑
j=1

W 2
2 (P, P (j)) . (2)

In general (2) is not a convex problem but fast numer-
ical heuristics have demonstrated good performance in

1In this paper we omit the prefix “2-” for brevity.
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practice [Benamou et al., 2015, Claici et al., 2018, Cu-
turi and Doucet, 2014a, Cuturi and Peyré, 2016, Staib
et al., 2017]. Interestingly, Theorem 4 below indicates
that the extra constraint P ∈ Dk is also key to statis-
tical stability.

3 RESULTS OVERVIEW

Ultimately, in all the data-driven applications cited
above, Wasserstein distances must be estimated from
data. While this is arguably the most fundamental
primitive of all OT based machine learning, the sta-
tistical aspects of this question are often overlooked
at the expense of computational ones. We argue that
standard estimators of both W2(P0, P1) and its asso-
ciated optimal transport plan suffer from statistical
instability. The main contribution of this paper is to
overcome this limitation by injecting statistical regu-
larization.

Previous work Let X ∼ P0 and Y ∼ P1 and let
X1, . . . , Xn (resp. Y1, . . . , Yn) be independent copies
of X (resp. Y ).2 We call X = {X1, . . . , Xn} and
Y = (Y1, . . . , Yn) the source and target datasets re-
spectively. Define the corresponding empirical mea-
sures:

P̂0 =
1

n

n∑
i=1

δXi
, P̂1 =

1

n

n∑
i=1

δYi
.

Perhaps the most natural estimator for W2(P0, P1),
and certainly the one most employed and studied, is
the plug-in estimator W2(P̂0, P̂1). A natural question
is to determine the accuracy of this estimator. This
question was partially addressed by Sommerfeld and
Munk [Sommerfeld and Munk, 2017], where the rate at
which ∆n := |W2(P̂0, P̂1)−W2(P0, P1)| vanishes is es-
tablished. They show that ∆n � n−1/2 if P0 6= P1 and
∆n � n−1/4 if P0 = P1. Unfortunately, these rates are
only valid when P0 and P1 have finite support. More-
over, the plug-in estimator for distributions IRd has
been known to suffer from the curse of dimensionality
at least since the work of Dudley [Dudley, 1969]. More
specifically, in this case, ∆n � n−1/d when d ≥ 3 [Do-
brić and Yukich, 1995]. One of the main goals of this
paper is to provide an alternative to the naive plug-in
estimator by regularizing the optimal transport prob-
lem (1). Explicit regularization for optimal transport
problems was previously introduced by Cuturi [Cu-
turi, 2013] who adds an entropic penalty to the objec-
tive in (1) primarily driven by algorithmic motivations.
While entropic OT was recently shown [Rigollet and
Weed, 2018b] to also provide statistical regularization,

2Extensions to the case where the two sample sizes differ
are straightforward but do not enlighten our discussion.

that result indicates that entropic OT does not allevi-
ate the curse of dimensionality coming from sampling
noise, but rather addresses the presence of additional
measurement noise.

Closer to our setup are Courty et al. [2014] and Fer-
radans et al. [2014]; both consider sparsity-inducing
structural penalties that are relevant for domain adap-
tation and computer graphics, respectively. While
the general framework of Tikhonov-type regulariza-
tion for optimal transport problems is likely to bear
fruit in specific applications, we propose a new general-
purpose structural regularization method, based on a
new notion of complexity for joint probability mea-
sures.

Our contribution The core contribution of this pa-
per is to construct an estimator of the Wasserstein
distance between distributions that is more stable and
accurate under sampling noise. We do so by defining a
new regularizer for couplings, which we call the trans-
port rank. As a byproduct, our estimator also yields
an estimator of the optimal coupling in (1) that can
in turn be used in domain adaptation where optimal
transport has recently been employed [Courty et al.,
2014, 2017].

To achieve this goal, we leverage insights from a popu-
lar technique known as nonnegative matrix factoriza-
tion (NMF) [Lee and Seung, 2001, Paatero and Tap-
per, 1994] which has been successfully applied in vari-
ous forms to many fields, including text analysis [Shah-
naz et al., 2006], computer vision [Shashua and Hazan,
2005], and bioinformatics [Gao and Church, 2005].
Like its cousin factor analysis, it postulates the ex-
istence of low-dimensional latent variables that gov-
ern the high-dimensional data-generating process un-
der study.

In the context of optimal transport, we consider cou-
plings γ ∈ Γ(P0, P1) such that whenever (X,Y ) ∼ γ,
there exits a latent variable Z with finite support such
that X and Y are conditionally independent given Z.
To see the analogy with NMF, one may view a cou-
pling γ as a doubly stochastic matrix whose rows and
columns are indexed by IRd. We consider couplings
such that this matrix can be written as the productAB
where A and B> are matrices whose rows are indexed
by IRd and columns are indexed by {1, . . . k}. In that
case, we call k the transport rank of γ. We now for-
mally define these notions.

Definition 1. Given γ ∈ Γ(P0, P1), the transport
rank of γ is the smallest integer k such that γ can
be written

γ =

k∑
j=1

λj(Q
0
j ⊗Q1

j ) , (3)
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where the Q0
j ’s and Q1

j ’s are probability measures on

IRd, λj ≥ 0 for j = 1, . . . , k, and where Q0
j ⊗Q1

j indi-
cates the (independent) product distribution. We de-
note the set of couplings between P0 and P1 with trans-
port rank at most k by Γk(P0, P1).

When P0 and P1 are finitely supported, the transport
rank of γ ∈ Γ(P0, P1) coincides with the nonnegative
rank [Cohen and Rothblum, 1993, Yannakakis, 1991] of
γ viewed as a matrix. By analogy with a nonnegative
factorization of a matrix, we call a coupling written as
a sum as in (3) a factored coupling. Using the trans-
port rank as a regularizer therefore promotes simple
couplings, i.e., those possessing a low-rank “factoriza-
tion.” To implement this regularization, we show that
it can be constructed via k-Wasserstein barycenters,
for which efficient implementation is readily available.

As an example of our technique, we show in §6 that
this approach can be used to obtain better results on
domain adaptation a.k.a transductive learning, a strat-
egy in semi-supervised learning to transfer label infor-
mation from a source dataset to a target dataset. No-
tably, while regularized optimal transport has proved
to be an effective tool for supervised domain adapta-
tion where label information is used to build an explicit
Tikhonov regularization [Courty et al., 2014], our ap-
proach is entirely unsupervised, in the spirit of Gong
et al. [2012] where unlabeled datasets are matched and
then labels are transported from the source to the
target. While both approaches, supervised and un-
supervised, have their own merits, the unsupervised
approach is more versatile and appropriate for the bi-
ological problem of single cell data integration.

4 REGULARIZATION VIA
FACTORED COUPLINGS

To estimate the Wasserstein distance between P0 and
P1, we find a low-rank factored coupling between the
empirical distributions. As we show in §5, the bias
induced by this regularizer provides significant statis-
tical benefits. Our procedure is based on an intuitive
principle: optimal couplings arising in practice can be
well approximated by assuming the distributions have
a small number of pieces moving nearly independently.
For example, if distributions represent populations of
cells, this assumption is that there are a small number
of cell “types,” each subject to different forces.

Before introducing our estimator, we note that a fac-
tored coupling induces coupled partitions of the source
and target distributions. These clusterings are “soft”
in the sense that they may include fractional points.

Definition 2. Given λ ∈ [0, 1], a soft cluster of a
probability measure P is a sub-probability measure C

of total mass λ such that 0 ≤ C ≤ P as measures. The
centroid of C is defined by µ(C) = 1

λ

∫
x dC(x). We

say that a collection C1, . . . , Ck of soft clusters of P is
a partition of P if C1 + · · ·+ Ck = P .

The following fact is immediate.

Proposition 4.1. If γ =
∑k
j=1 λj(Q

0
j ⊗Q1

j ) is a fac-

tored coupling in Γk(P0, P1), then {λ1Q
0
1, . . . , λkQ

0
k}

and {λ1Q
1
1, . . . , λkQ

1
k} are partitions of P0 and P1, re-

spectively.

We now give a simple characterization of the “cost” of
a factored coupling.

Proposition 4.2. Let γ ∈ Γk(P0, P1) and let
C0

1 , . . . , C
0
k and C1

1 , . . . , C
1
k be the induced partitions

of P0 and P1, with C0
j (IRd) = C1

j (IRd) = λj for
j = 1, . . . k. Then∫

‖x− y‖2 dγ(x, y) =

k∑
j=1

(
λj‖µ(C0

j )− µ(C1
j )‖2

+
∑

l∈{0,1}

∫
‖x− µ(Clj)‖2 dClj(x)

)

The sum over l in the above display contains intra-
cluster variance terms similar to the k-means objec-
tive, while the first term is a transport term reflecting
the cost of transporting the partition of P0 to the par-
tition of P1. Since our goal is to estimate the transport
distance, we focus on the first term. This motivates
the following definition.

Definition 3. The cost of a factored transport γ ∈
Γk(P0, P1) is

cost(γ) :=

k∑
j=1

λj‖µ(C0
j )− µ(C1

j )‖2

where {C0
j }kj=1 and {C1

j }kj=1 are the partitions of P0

and P1 induced by γ, with C0
j (IRd) = C1

j (IRd) = λj for
j = 1, . . . , k.

Given empirical distributions P̂0 and P̂1, the (unregu-
larized) optimal coupling between P̂0 and P̂1, defined
as

argmin
γ∈Γ(P̂0,P̂1)

∫
‖x− y‖2dγ(x, y) ,

is highly sensitive to sampling noise. This motivates
considering instead the regularized version

argmin
γ∈Γk(P̂0,P̂1)

∫
‖x− y‖2dγ(x, y) , (4)

where k ≥ 1 is a regularization parameter. Whereas
fast solvers are available for the unregularized prob-
lem [Altschuler et al., 2017], it is not clear how to find
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a solution to (4) by similar means. While alternat-
ing minimization approaches similar to heuristics for
nonnegative matrix factorization are possible [Arora
et al., 2012, Lee and Seung, 2001], we adopt a differ-
ent approach which has the virtue of connecting (4) to
k-Wasserstein barycenters.

Following Cuturi and Doucet [2014a], define the k-
Wasserstein barycenter of P̂0 and P̂1 by

H = argmin
P∈Dk

{
W 2

2 (P, P̂0) +W 2
2 (P, P̂1)

}
. (5)

As noted above, efficient procedures have been shown
to work well in practice for this non-convex objective.

Strikingly, the k-Wasserstein barycenter of P̂0 and P̂1

implements a slight variant of (4). Given a feasible
P ∈ Dk in (5), we first note that it induces a factored
coupling in Γk(P̂0, P̂1). Indeed, denote by γ0 and γ1

the optimal couplings between P̂0 and P and P and
P̂1, respectively. Write z1, . . . , zj for the support of P .
We can then decompose these couplings as follows:

γ0 =

k∑
j=1

γ0(· | zj)H(zj), γ1 =

k∑
j=1

γ1(· | zj)H(zj)

Then for any Borel sets A,B ⊂ IRd,

γP (A×B) :=

k∑
j=1

P (zj)γ0(A|zj)γ1(B|zj) ∈ Γk(P̂0, P̂1)

and by the considerations above, this factored
transport induces coupled partitions C0

1 , . . . , C
0
k and

C1
1 , . . . , C

1
k of P̂0 and P̂1 respectively. We call the

points z1, . . . , zj “hubs.”

The following proposition gives optimality conditions
for H in terms of this partition.

Proposition 4.3. The partitions C0
1 , . . . , C

0
k and

C1
1 , . . . , C

1
k induced by the solution H of (5) are the

minimizers of

k∑
j=1

(λj
2
‖µ(C0

j )−µ(C1
j )‖2+

1∑
l=0

∫
‖x−µ(Clj)‖2 dClj(x)

)
where λj = C0

j (IRd) = C1
j (IRd). The minimum is over

all partitions of P̂0 and P̂1 induced by feasible P ∈ Dk.

Comparing this result with Proposition 4.2, we see
that this objective agrees with the objective of (4) up
to a multiplicative factor of 1/2 in the transport term.

We therefore view (5) as a algorithmically tractable
proxy for (4), expecting γH to be close to the optimal
factored coupling. Hence, we propose the following
estimator Ŵ of the squared Wasserstein distance:

Ŵ := cost(γH) , where H solves (5) . (6)

We can also use γH to construct an estimated trans-
port map T̂ on the points X1, . . . , Xn ∈ supp(P̂0) by
setting

T̂ (Xi) = Xi+
1∑k

j=1 C
0
j (Xi)

k∑
j=1

C0
j (Xi)(µ(C1

j )−µ(C0
j )) .

Moreover, the quantity T̂]P̂0 provides a stable estimate
of the target distribution, which is particularly useful
in domain adaptation.

Our core algorithmic technique involves computing a
k-Wasserstein Barycenter as in (2). This problem is
non-convex in the variables M and (γ0, γ1), but sepa-
rately convex in each of the two. Therefore, it admits
an alternating minimization procedure, Algorithm 1,
similar to Lloyd’s algorithm for k-means [Lloyd, 1982].
The update with respect to the hubs H = {z1, . . . , zk},
given plans γ0 and γ1, is a quadratic optimization
problem with the explicit solution

zj =

∑n
i=1 γ0(zj , Xi)Xi +

∑n
i=1 γ1(zj , Yi)Yi∑n

i=1 γ0(zj , Xi) +
∑n
i=1 γ1(zj , Yi)

,

leading to Algorithm 2.

In order to solve for the optimal (γ0, γ1) given a value
for the hubs H = {z1, . . . , zk} we add the following
entropic regularization terms [Cuturi, 2013] to the ob-
jective function (5):

−ε
∑
i,j

(γ0)j,i log((γ0)j,i)− ε
∑
i,j

(γ1)j,i log((γ1)j,i),

where ε > 0 is a small regularization parameter. This
turns the optimization over (γ0, γ1) into a projection
problem with respect to the Kullback-Leibler diver-
gence, which can be solved by a type of Sinkhorn iter-
ation including updates of the hub weights λj at each
step; see Benamou et al. [2015] and Algorithm 3. For
small ε, this will yield a good approximation to the op-
timal value of the original problem, but the Sinkhorn
iterations become increasingly unstable. We employ
a numerical stabilization strategy due to Schmitzer
[2016] and Chizat et al. [2016]. Also, an initializa-
tion for the hubs is needed, for which we suggest using
a k-means clustering of either X or Y.

Algorithm 1 FactoredOT

Input: Sampled points X ,Y, parameter ε > 0
Output: Hubs M, transport plans γ0, γ1

function FactoredOT(X ,Y, ε)
Initialize M, e.g M← KMeans(X )
while not converged do

(γ0, γ1)← UpdatePlans(X ,Y,M)
M← UpdateHubs(X ,Y, γ0, γ1)

end while
return (M, γ0, γ1)

end function
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Algorithm 2 UpdateHubs

function UpdateHubs(X ,Y, γ0, γ1)
for j = 1, . . . , k do

p
(0)
i,j = γ0(zj , Xi); p

(1)
i,j = γ1(zj , Yi)

zj ←
∑n

i=1{p
(0)
i,jXi+p

(0)
i,j Yi}∑n

i=1{p
(0)
i,j +p

(1)
i,j }

end for
end function

Algorithm 3 UpdatePlans

Require: Points X ,Y, hubs M, parameter ε > 0
function UpdatePlans(X ,Y,M, ε)

u0 = u1 = 1k, v0 = v1 = 1n
(ξ0)j,i = exp(‖zj −Xi‖22/ε)
(ξ1)j,i = exp(‖zj − Yi‖22/ε)
while not converged do

v0 = 1
n1n � (ξ>0 u0) v1 = 1

n1n � (ξ>1 u1)

λ = (u0 � (ξ0v0))1/2 � (u1 � (ξ1v1))1/2

u0 = λ� (ξ0v0); u1 = λ� (ξ1v1)
end while

return (diag(u0)ξ0 diag(v0),diag(u1)ξ1 diag(v1))
end function

5 THEORY

In this section, we give theoretical evidence that the
use of factored transports makes our procedure more
robust. In particular, we show that it can overcome
the “curse of dimensionality” generally inherent to the
use of Wasserstein distances on empirical data.

To make this claim precise, we show that the objective
function in (5) is robust to sampling noise. This result
establishes that despite the fact that the unregular-
ized quantity W 2

2 (P̂0, P̂1) approaches W 2
2 (P0, P1) very

slowly, the empirical objective in (5) approaches the
population objective uniformly at the parametric rate,
thus significantly improving the dependence on the di-
mension. Via the connection between (5) and factored
couplings established in Proposition 4.3, this result im-
plies that regularizing by transport rank yields signifi-
cant statistical benefits. Specifically, |Ŵ−W 2

2 (P0, P1)|
will converge rapidly to the approximation errors from
using factored couplings and switching (4) to (5).

Theorem 4. Let P be a measure on IRd supported on
the unit ball, and denote by P̂ an empirical distribu-
tion comprising n i.i.d. samples from P . Then with
probability at least 1− δ,

sup
ρ∈Dk

|W 2
2 (ρ, P̂ )−W 2

2 (ρ, P )| .
√
k3d log k + log(1/δ)

n
.

A simple rescaling argument implies that this n−1/2

rate holds for all compactly supported measures.

This result complements and generalizes known results
from the literature on k-means quantization [Maurer
and Pontil, 2010, Pollard, 1982, Rakhlin and Capon-
netto, 2006]. Indeed, as noted above, the k-means ob-
jective is a special case of a squared W2 distance to
a discrete measure [Pollard, 1982]. Theorem 4 there-
fore recovers the n−1/2 rate for the generalization error
of the k-means objective; however, our result applies
more broadly to any measure ρ with small support.
Though the parametric n−1/2 rate is optimal, we do
not know whether the dependence on k or d in The-
orem 4 can be improved. We discuss the connection
between our work and existing results on k-means clus-
tering in the supplement.

Finally note that while this analysis is a strong indica-
tion of the stability of our procedure, it does not pro-
vide explicit rates of convergence for Ŵ defined in (6).
This question requires a structural description of the
optimal coupling between P0 and P1 and is beyond the
scope of the present paper.

6 EXPERIMENTS

We illustrate our theoretical results with numeri-
cal experiments on both simulated and real high-
dimensional data. Further details about the experi-
mental setup are included in the appendix §F.

6.1 Synthetic data

Two synthetic examples show the improved perfor-
mance of our estimator for the W2 distance.

Fragmented hypercube We consider P0 =
Unif([−1, 1]d), the uniform distribution on a hyper-
cube in dimension d and P1 = T#(P0), the push-
forward of P0 under a map T , defined as the dis-
tribution of Y = T (X) if X ∼ P0. We choose
T (X) = X + 2 sign(X) � (e1 + e2), where the sign
is taken element-wise. As can be seen in Figure 1, this
splits the cube into four pieces which drift away. This
map is the subgradient of a convex function and hence
an optimal transport map by Brenier’s Theorem [Vil-
lani, 2003, Theorem 2.12]. This observation allows us
to compute explicitly W 2

2 (P0, P1) = 8. We compare
the results of computing optimal transport on samples
and the associated empirical optimal transport cost
with the estimator (6), as well as with a simplified
procedure that consists in first performing k-means on
both P̂0 and P̂1 and subsequently calculating the W2

distance between the centroids.

The bottom left subplot of Figure 1 shows that Fac-
toredOT provides a substantially better estimate of
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Figure 1: Fragmenting hypercube example. Top row: Projections to the first two dimensions (computed for
d = 30) of (left) the OT coupling of samples from P0 (in blue) to samples from P1 (red), (middle) the FactoredOT
coupling (factors in black), and (right) the FactoredOT coupling rounded to a map. Bottom row: Performance
comparisons for (left) varying n and (middle) varying d with n = 10d, as well as (right) a diagnostic plot with
varying k. All points are averages over 20 samples.

the W2 distance compared to the empirical optimal
transport cost, especially in its scaling with the sample
size. Moreover, from the bottom center subplot of the
same figure, we deduce that a linear scaling of samples
with respect to the dimension is enough to guarantee
bounded error for FactoreedOT, unlike for an empiri-
cal coupling. Finally, the bottom right plot indicates
that the estimator is rather stable to the choice of k
above a minimum threshold. We suggest choosing k
to match this threshold.

Disk to annulus To show the robustness of our esti-
mator in the case where the ground truth Wasserstein
distance is not exactly the cost of a factored coupling,
we calculate the optimal transport between the uni-
form measures on a disk and on an annulus. In or-
der to turn this into a high-dimensional problem, we
consider the 2D disk and annulus as embedded in d
dimensions and extend both source and target distri-
bution to be independent and uniformly distributed
on the remaining d−2 dimensions. In other words, we
set

P0 = Unif({x ∈ Rd : ‖(x1, x2)‖2 ≤ 1,

xi ∈ [0, 1] for i = 3, . . . , d})
P1 = Unif({x ∈ Rd : 2 ≤ ‖(x1, x2)‖2 ≤ 3,

xi ∈ [0, 1] for i = 3, . . . , d})

Figure 2 shows that the performance is similar to that
obtained for the fragmenting hypercube.

6.2 Batch correction for single cell RNA data

The advent of single cell RNA sequencing is revolu-
tionizing biology with a data deluge. Biologists can
now quantify the cell types that make up different
tissues and quantify the molecular changes that gov-
ern development (reviewed in Wagner et al. [2016] and
Kolodziejczyk et al. [2015]). As data is collected by dif-
ferent labs, and for different organisms, there is an ur-
gent need for methods to robustly integrate and align
these different datasets [Butler et al., 2018, Crow et al.,
2018, Haghverdi et al., 2018].

Cells are represented mathematically as points in a
several-thousand dimensional vector space, with a di-
mension for each gene. The value of each coordinate
represents the expression-level of the corresponding
gene. Here we show that optimal transport achieves
state of the art results for the task of aligning single cell
datasets. We align a pair of haematopoietic datasets
collected by different scRNA-seq protocols in different
laboratories (as described in Haghverdi et al. [2018]).
We quantify performance by measuring the fidelity of
cell-type label transfer across data sets. This informa-
tion is available as ground truth in both datasets, but
is not involved in computing the alignment.
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Figure 2: Disk to annulus example, d = 30. Left: Visualization of the cluster assignment in first two dimensions.
Middle: Performance for varying n. Right: Diagnostic plot when varying k.

Figure 3: Domain adaptation for scRNA-seq. Both
source and target data set are subsampled (50
cells/type) and colored by cell type. Empty circles in-
dicate the inferred label with 20NN classification after
FactoredOT.

Table 1: Mean mis-classification percentage (Error)
and standard deviation (Std) for scRNA-Seq batch
correction

Method Error Std

FOT 14.10 4.44
MNN 17.53 5.09
OT 17.47 3.17
OT-ER 18.58 6.57
OT-L1L2 15.47 5.35
kOT 15.37 4.76
SA 15.10 3.14
TCA 24.57 7.04
NN 21.98 4.90

We compare the performance of FactoredOT (FOT)
to the following baselines: (a) independent majority
vote on k nearest neighbors in the target set (NN), (b)
optimal transport (OT), (c) entropically regularized
optimal transport (OT-ER), (d) OT with group lasso
penalty (OT-L1L2) [Courty et al., 2014], (e) a two-step
method in which we first perform k-means and then
use OT on the k-means centroids (kOT), (f) Subspace
Alignment (SA) [Fernando et al., 2013], (g) Transfer

Component Analysis (TCA) [Pan et al., 2011], and
(h) mutual nearest neighbors (MNN) [Haghverdi et al.,
2018]. After projecting the source data onto the target
set space, we predict the label of each source single cell
by using a majority vote over the 20 nearest neighbor
cells in the target dataset (Figure 3). FactoredOT out-
performs the baselines for this task, as shown in Table
1, where we report the percentage of mislabeled data.

7 DISCUSSION

We have made a first step towards statistical regular-
ization of optimal transport with the objective of esti-
mating both the Wasserstein distance and the optimal
coupling between two probability distributions. Such
regularization remains largely unexplored and many
other forms of inductive bias may be envisioned, in-
cluding latent distributions with infinite support but
low complexity. The method proposed here generically
applies to various tasks associated to optimal trans-
port, leads to a good estimator of the W2 distance even
in high dimension, and is also competitive with state-
of-the-art domain adaptation techniques. Our theoret-
ical results demonstrate that the curse of dimensional-
ity in statistical optimal transport can be overcome by
imposing structural assumptions. This is an encourag-
ing step towards the deployment of optimal transport
as a tool in high-dimensional data analysis.
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G. Peyré. Iterative bregman projections for regu-
larized transportation problems. SIAM Journal on
Scientific Computing, 37(2):A1111–A1138, 2015.

A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. Assoc. Comput. Mach.,
36(4):929–965, 1989. ISSN 0004-5411. doi: 10.1145/
76359.76371. URL https://doi.org/10.1145/

76359.76371.

N. Bonneel, M. Van De Panne, S. Paris, and W. Hei-
drich. Displacement interpolation using Lagrangian
mass transport. In ACM Transactions on Graphics,
volume 30, pages 158:1–158:12, 2011.
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