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Abstract
Programmable analog devices are a powerful new computing sub-
strate that are especially appropriate for performing computation-
ally intensive simulations of neuromorphic and cytomorphic mod-
els. Current state of the art techniques for con�guring analog de-
vices to simulate dynamical systems do not consider the current
and voltage operating ranges of analog device components or the
sampling limitations of the digital interface of the device.

We present Jaunt, a new solver that scales the values that con�g-
ure the analog device to ensure the resulting analog computation
executes within the operating constraints of the device, preserves
the recoverable dynamics of the original simulation, and executes
slowly enough to observe these dynamics at the sampled digital
outputs. Our results show that, on a set of benchmark biological
simulations, 1) unscaled con�gurations produce incorrect simula-
tions because they violate the operating ranges of the device and
2) Jaunt delivers scaled con�gurations that respect the operating
ranges to produce correct simulations with observable dynamics.

CCS Concepts • Computer systems organization→ Analog
computers; • Hardware → Emerging languages and compil-
ers; • Applied computing → Systems biology; • Software and
its engineering→ Domain speci�c languages;
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1 Introduction
Programmable analog devices provide a powerful new substrate for
performing computationally intensive simulations of neuromorphic
and cytomorphic models [5, 9, 10, 26, 28, 29, 31, 32, 36]. To simulate
a model, the model parameters, state, and transient variables map
to voltages and currents in the analog device.

The biological dynamical systems these programmable analog
devices target are used for optimizing medical doses, predicting
diseases, and understanding biological phenomena such as cellular
pathways [19, 30]. To make these simulations tractable on digital
systems, these models often oversimplify the dynamics of the bio-
logical system [7, 13], which reduces the �delity of the model and
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renders the simulation less faithful to the system it is designed to
capture [13, 34]. Because the simulation runs on a digital platform,
time is discretized and systems with fast and slow dynamics (such
as many biological systems) are prone to instability unless the time
step is small, which can signi�cantly extend the simulation time.

Analog devices, in contrast, perform simulations in the continu-
ous time domain, which negates may of the time scale issues from
which discrete solvers su�er. Analog devices can also e�ciently
implement complex, domain-speci�c basis functions and deliver
signi�cant energy consumption bene�ts [32, 35]. Analog devices
therefore have the potential to productively support more sophisti-
cated stochastic simulations of biological phenomena that currently
do not perform well on digital hardware [35].

In recent years, there have been advances in compiler techniques
that target recon�gurable analog devices devices [2, 3, 16, 22]. The
Arco compiler, for example, takes as input a speci�cation of a recon-
�gurable analog device and a speci�cation of a dynamical system
and produces an analog device con�guration that simulates the
dynamical system [2]. Arco treats the available analog components
as idealized computational blocks that implement abstract alge-
braic functions. But analog components are physical hardware
components with limitations that a compiler must consider when
con�guring the analog device:
• Operating Ranges: In our target analog devices, physical prop-
erties such as voltage and current have operating ranges in the
form of minimum and maximum values within which the volt-
age or current must fall for the device to operate properly. If
these operating ranges are violated, the component may become
damaged or fail to perform the computation to speci�cation.
• Digital-Analog Interface: Although the simulation executes
continuously, the digital to analog converters and analog to digi-
tal converters through which the simulation is con�gured and ob-
served are clocked. If the analog simulation executes too quickly,
the dynamics may not be observable in the sampled digital output
stream collected from the digital to analog converters.
We present Jaunt, a solver which starts with an initial unscaled

analog device con�guration, then scales the values that con�gure
the device to ensure that the resulting scaled simulation is:
• Physically Realizable: Each of the signals in the con�gured
analog device stays within the operating range of the analog
component that carries the signal.
• Recoverable: The original simulation can be recovered by scal-
ing the magnitudes and times recorded at the sampled digital
outputs by derived scaling factors.
• Observable: The simulation executes slowly enough to observe
the transient dynamics in the sampled digital output streams.
Because all of these properties interact, Jaunt formulates the

problem of obtaining a physically realizable, recoverable, and ob-
servable scaled simulation as a constraint satisfaction problem
(speci�cally, a geometric program). The solution to this problem
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delivers scaling factors that, when applied to the digital inputs and
outputs of the analog device, deliver a physically realizable, re-
coverable, and observable simulation. Explicitly including time in
the constraint problem formulation enables Jaunt to appropriately
contract and dilate the speed of the analog simulation to satisfy the
constraints. In particular, dilating or contracting time can in�uence
the physical realizability and recoverability of the simulation by
inducing cascading changes to other device con�guration values
and analog signals. And explicitly including time in the constraint
problem formulation enables Jaunt to control the observability of
the simulation and optimize for desired simulation durations.
Implementation and Results: We implement Jaunt in concert
with a modi�ed version of the Arco compiler [2]. Arco delivers
analog device con�gurations that simulate the speci�ed dynami-
cal system assuming an idealized analog device with no operating
range constraints. Jaunt delivers scaling factors that ensure that the
scaled con�guration respects speci�ed observability and analog de-
vice operating range constraints while preserving the recoverability
of the simulation. Our experimental results show that, for our set of
benchmark biological systems running on our target recon�gurable
analog device, the unscaled Arco con�gurations often violate the
operating range constraints to produce incorrect simulations. The
Jaunt scaled con�gurations, in contrast, successfully deliver correct
simulations with reasonable combined Arco/Jaunt compilation and
simulation times.
Contributions: We claim the following contributions:

• Basic Approach: We present a new approach for scaling the
values supplied to a con�gured analog device so that the resulting
scaled, con�gured analog device operates within the operating
constraints of the hardware. The approach ensures the original
dynamical system simulation can be recovered from the scaled
execution bymultiplying the samples read from the analog device
by appropriate constant factors. Using this approach, we are able
to dilate or contract simulation time on the analog device to
satisfy observability and simulation time constraints.
• Geometric Programming Problem Generator: We present a
constraint generation algorithm that ensures that any satisfying
scaling transform renders the con�guration physically realiz-
able and recoverable. We formulate the constraint problem as a
geometric programming problem, which is then converted to a
convex optimization problem and solved using a convex solver.
We are able to optimally compute the scaling transforms that
result in the fastest and slowest simulations and de�nitively de-
termine when no Jaunt scaling factors can make the con�gured
analog device physically realizable.
• Optimizations: We present a variable aggregation optimization
for reducing the number of variables in the geometric program-
ming problem and a pruning optimization for improving the
e�cacy of the con�guration search algorithm. The pruning opti-
mization removes search paths that produce con�gurations that
cannot be made physically realizable.
• Results: We present experimental results that characterize the
e�ectiveness of Jaunt in �nding scaling factors that deliver phys-
ically realizable, recoverable, and observable scaled con�gura-
tions.

To deliver these contributions, Jaunt works with an analog hard-
ware speci�cation language that includes operating range speci�ca-
tions and a dynamical system speci�cation language that includes

E = 6800 � ES E 2 [0, 6800]
S = 4400 � ES S 2 [0, 4400]

@ES/@t = 0.0001 · E · S � 0.01 · ES ES 2 [0, 4400]
ES0 = 0

Figure 1. Enzyme-Substrate Dynamical System

speed and sampling constraints over the scaled simulation. To suc-
cessfully map the computation onto the analog device and respect
the inherent underlying hardware operating range and sampling
frequency constraints, Jaunt manipulates the values of state and
transient variables written to and read from the digital interface of
the analog device and the speed with which the device simulates
the dynamical system.

2 Example
Consider an enzyme-substrate reaction inwhich an enzyme E bonds
to a substrate S to yield the compound ES , where ES may dissociate
into E and S . The compound ES is formed at the rate kf (0.01) and
dissociates at the rate kr (0.0001):

E + S !kf ES ES !kr E + S

We model this chemical reaction using a dynamical system with
one di�erential equation and two �rst-order equations, where the
state variables E, S , and ES correspond to the number of molecules
of each compound available at any point of time.

Figure 1 presents the dynamical system that models the enzyme-
substrate reaction, including the dynamic range of each quantity.
Here 6800 is the total amount of E and 4400 is the total amount of
S available. We use physical properties of the chemical reaction to
derive the dynamic range of each state variable:

• Physical Quantity: Each state variable represents a physical
quantity and is therefore greater than or equal to 0.
• Conservation of Mass: The maximum value of each state vari-
able is limited by the principle of conservation of mass. The
amount of E and S cannot exceed the starting amounts (6800 and
4400 molecules). Because ES is formed from E and S , the amount
of ES cannot exceed 4400 molecules, the amount of the limiting
reagent (S).

2.1 Initial Con�guration of the Analog Device
Figure 2a presents a recon�gurable analog device. The components
of this device are inspired by existing hardware [9, 10, 28, 32, 36].
The device contains an mm computational block, three voltage DACs
(D1-D3), two current DACs (D4 and D5), and three voltage ADCs
(A1-A3). The mm block interface contains analog input ports A, X0,
Y0, Z0, and B (top edge of mm block) and analog output ports X, Z,
and Y (bottom edge of mm block). Each DAC, ADC, and port in the
mm block has an operating range (red text) consisting of an upper
bound on the signal (top number) and a lower bound on the signal
(bottom number). As long as the signal at each port falls within
the port’s operating range, the mm block implements the following
dynamics:

X = X0 � Z Z =
R
(A · X · Y � B · Z ) @Z

@t
Y = Y0 � Z Z0 = Z0
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(b) Con�gured Analog Device

Figure 2. Con�gured Analog Device
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(b) Analog Device Simulation

Figure 3. Simulation on Con�gured Analog Device

Given a speci�cation of the recon�gurable analog device and a
speci�cation of the enzyme-substrate dynamical system, the Arco
compiler [2] generates the analog device con�guration presented
in Figure 2b. In this con�guration, the starting amounts of E (6800),
S (4400), ES (0), and the values of kf (0.01) and kr (0.0001), are
presented to the circuit via input DACs D1-D5. The resulting con-
�gured mm block simulates the reaction dynamics to produce the
values of S , ES , and E on ADCs A1-A3. These ADCs are sampled to
obtain the sequence of values that S , ES , and E take on over time
as the device simulates the reaction.

Figure 3b presents the resulting simulation on the con�gured
analog hardware (Figure 3a presents the correct reference simula-
tion). Both �gures plot the amount of E (red line), S (blue line), and
ES (green line) as a function of time. The simulation is executed
on the con�gured analog device by powering on the device and
sampling the ADCs.

Because the Arco compiler does not take the operating ranges of
the analog device into account when generating the con�guration,
some of the ports violate their operating ranges and the resulting
simulation (Figure 3b) deviates signi�cantly from the reference
simulation (Figure 3a). In particular, the constants 6800 and 4400
supplied to D1 and D3 (shaded blocks in Figure 2b) exceed 1000
mV, the maximum allowable voltage for ports X0 and Y0 in the
mm component, and the resulting anomalies propagate through the
circuit to produce an incorrect simulation.

2.2 Jaunt
Given a con�guration of the analog device (such as the con�gura-
tion presented in Figure 2a), Jaunt �nds a set of port scaling factors
and a time scaling factor that together ensure the simulation is:
• Physically Realizable: After scaling the values at the (digital)
input ports by their port scaling factors, all ports in the con�gured
device execute within their operating ranges.
• Recoverable: Scaling the signals recorded at the digital output
ports by the their port and time scaling factors correctly inverts
the scaling transform to recover the original simulation.

In the example, Jaunt controls the signals in the analog device in
two ways:
• Scaling State Variables: Jaunt scales the initial values of the
state variables in the di�erential equation, which increases or
decreases the magnitudes of the state variables in the resulting
simulation. In this example, Jaunt scales the initial values E0
(6800) on D1, ES0 (0) on D2, and S0 (4400) on D3.
• Scaling Time: Jaunt scales the speed of the di�erential equation
to obtain a faster or slower simulation. Changing the simulation
speed causes corresponding changes to the rate constants in the
di�erential equation, in this example kf (0.0001 on D4) and kr
(0.01 on D5).
Jaunt formulates the problem of �nding a set of port scaling

factors and a time scaling factor that render the simulation physi-
cally realizable and recoverable as a constraint satisfaction problem.
Speci�cally, Jaunt generates constraints that 1) ensure the signals in
the simulation remain within their corresponding port ranges and
2) deliver ADC scaling factors that recover the original simulation.
Figure 4a shows DAC scaling factors aD1 . . . aD5 and ADC scaling
factors aA1 . . . aA3, (the time scaling factor � and scaling factors ap
for the internal analog ports p are not shown). Figures 4b, 4c, and 4d
present relevant operating range, connection, and factor constraints.
Jaunt also supports sampling constraints (which ensure that the
simulation executes slowly enough for the transient dynamics to
be observable in the sampled ADC outputs) and speed constraints
(which limit how slowly the device executes the simulation).

Together, these constraints, alongwith an objective function over
one or more of the scaling factors, form a geometric program [6, 24],
a type of optimization problem that can be converted to a convex
optimization problem and solved using an o�-the-shelf solver. The
variables in the geometric program are the port scaling factors
ap and the time scaling factor � . The solution to the geometric
program produces port and time scaling factors that Jaunt then
uses to transform the analog device con�guration.
Operating Range Constraints: Figure 4c presents constraints
that ensure the dynamic range of each scaled signal falls within the
operating range of the port that carries that signal. Jaunt generates
these constraints by computing the upper and lower bounds of the
signal in the original (unscaled) con�guration, then imposing the
constraint that the scaled upper and lower bounds of the signal
must fall within the operating range of the port that carries that
signal.

In our example, each voltage DAC is able to generate voltages
between 0 and 3300 millivolts. Therefore, the scaled values aD1 ·
6800, aD2 · 0 and aD3 · 4400 must fall within the operating range
[0, 3300] for the scaled simulation to be physically realizable. From
the dynamical system speci�cation, we know that the dynamic
range of E (which is carried on the analog Y port of the mm block)
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(a) Scaling Transform

aD4 = aA aD5 = aB
aD1 = aX 0 aD2 = aZ 0
aD3 = aY 0 aA1 = aX
aA2 = aZ aA3 = aY
(b) Connection Constraints

aD4 · 0.01 2 [0,10]
aD5 · 0.0001 2 [0,10]
aD1 · 6800 2 [0,3300]

aD2 · 0 2 [0,3300]
aD3 · 4400 2 [0,3300]
aB · 0.01 2 [0.0001,1]

aA · 0.0001 2 [0.0001,0.01]
aX 0 · 6800 2 [0,1000]

aZ 0 · 0 2 [0,600]
aY 0 · 4400 2 [0,1000]

aX · [0, 6800] ✓ [0,1600]
aZ · [0, 4400] ✓ [0,1600]
aY · [0, 4400] ✓ [0,1600]
aA1 · [0, 6800] ✓ [0,3300]
aA2 · [0, 4400] ✓ [0,3300]
aA3 · [0, 4400] ✓ [0,3300]

(c) Operating Range Constraints

aX 0 = aZ aX = aZ
aY 0 = aZ aY = aZ

aA · aX · aY = aB · aZ
aZ = aB · aZ /� aZ 0 = aB · aZ /�

(d) Factoring Constraints

Figure 4. Scaled Con�guration and Scaling Transform Constraints
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Figure 5. Simulation on Scaled Con�gured Analog Device

falls within [0, 4400] molecules. Because the operating range of the
Y port is [0, 1600]millivolts, the scaled dynamic range aY · [0, 4400]
of E must fall within [0, 1600].
Connection Constraints: Because two connected ports carry the
same signal, the scaling factors of any two connected ports must
be the same. Figure 4b presents the connection constraints in our
example.
Factor Constraints: Figure 4d presents constraints that ensure
the scaling transform can be factored out of each output of the
mm block. These constraints ensure the original simulation can be
recovered from the scaled execution by inverting the scaling factors
at each ADC. Jaunt derives the factor constraints by analyzing the
propagation of the scaling factors through the (potentially nonlin-
ear, nonconvex) dynamics of the device. The dynamics of the mm
block are as follows:

X = X0 � Z Y = Y0 � Z
Z =
R
(A · X · Y � B · Z ) @Z

@t
Z0 = Z0

Applying the scaling factors produces the following scaled dynam-
ics:

aXX = aX 0X0 � aZZ aYY = aY 0Y0 � aZZ
aZZ =

R
(aAA · aXX · aY · Y � aBB · aZ · Z ) @Z

� @t
aZZ0 = aZ 0Z0

The scaled dynamics, which scale @t by � (here @t is measured in
units of hardware time), execute the di�erential equation at speed
� : with the time scaling factor � applied, integrating over one unit
of hardware time integrates over � units of simulation time.

The factor constraints in Figure 4d capture several key properties
required to correctly recover the original simulation from the scaled
execution. The constraints aX 0 = aZ , aY 0 = aZ , and aA · aX ·
aY = aB · aZ ensure that the operands of sums or di�erences have
identical scaling factors. The constraints aX = aZ , aY = aZ , and
aZ = aB ·aZ /� ensure that the scaling factor for each port matches
the scaling factor of the expression that de�nes the behavior of the
signal carried on that port. The constraint aZ 0 = aB · aZ /� ensures
that the scaling factor of the initial value of a state variable matches
the scaling factor of the expression that de�nes subsequent values
of that state variable.

Together, these constraints ensure that it is possible to recover
the original dynamics from the scaled dynamics by factoring out
a single number from each equation that de�nes the scaled dy-
namics to recover the equations in the original unscaled dynamics.
Speci�cally, because aX 0 = aZ , aX = aZ , aY 0 = aZ , and aY = aZ :

[aXX = aX 0X0 � aZZ ] ! aZ [X = X0 � Z ]
[aYY = aY 0Y0 � aYZ ] ! aZ [X = Y0 � Z ]

Because aZ = aA · aX · aY /� = aB · aZ /� :

[aZZ =
R
(aAA · aXX · aY · Y � aBB · aZ · Z ) @Z

� @t ]!
aZ [Z =

R
(A · X · Y � B · Z ) @Z

@t ]

And because aZ = aZ 0:

[aZZ0 = aZ 0Z0] ! aZ [Z0 = Z0]

From the factored dynamics, it is evident that ports X, Y, and Z
have the same scaling factor, speci�cally aZ , where aZ = aA · aX ·
aY /� . We can rewrite the scaling expression aZ = aA ·aX ·aY /� as
aZ = aA ·aZ ·aZ /� , which implies aA = �/aZ . Because aB ·aZ /� =
aZ , aB = � .
Objective Function: Jaunt supports objective functions that min-
imize � , which slows down the simulation to maximize the sam-
pled observability of the transient dynamics, or maximize � , which
speeds up the simulation to minimize the execution time. We can
analytically compute bounds on the time scaling factor � in our
example as follows:
• Lower Bound on � : The time scaling factor � must be greater
than 0.01 since aB = � and aB � 0.01. We derive the lower
bound on � by applying the derived factor constraint aB = � to
the range constraint aB · 0.01 2 [0.0001, 1] (� · 0.01 � 0.0001).
• Upper Bound on � : The time scaling factor � must be less than
14.7 since aA = �/aZ , aZ  0.147 and aA  100. We derive
the upper bound on � by applying the constraint aA = �/aZ
to the aA  100 constraint (�/aZ  100), then choosing the
largest value of aZ and solving for tau (�/0.147  100). We derive
aA  100 from the range constraint aA · 0.0001 2 [0.0001, 0.01]
(aA ·0.0001  0.01). We derive the upper bound of aZ by applying
the factor constraint aX 0 = aZ to the range constraint aX 0 ·
6800 2 [0, 1000] (aZ 6800  1000).
Jaunt is able to match these analytical bounds experimentally to

compute scaling factors for any value of � between 0.01 and 14.7
(the solution space is convex). Jaunt is therefore able to scale the



original Arco con�guration to execute the simulation anywhere
between 100 times slower (� = 0.01) to 14.7 times faster (� = 14.7),
while still delivering scaling factors that ensure that the simulation
is physically realizable and recoverable.

2.3 Scaled Con�guration
Figure 5a presents the analog signals observed at each ADCwith the
Jaunt scaling transform applied to each DAC. For this simulation,
the developer speci�ed a sampling constraint (�  0.5) that requires
the time between ADC samples to be at most 0.5 simulation units
(the ADCs are sampled once per hardware time unit). With this
constraint, Jaunt scales time by a factor of 0.5x (� = 0.5) and the
initial quantities of E, S , and ES by a factor of 0.06 (aZ ). To preserve
the dynamics of the simulation, Jaunt also scales kf by 8.28x (aA)
and kr by 0.5x (aB ). The resulting scaled simulation executes within
the operating constraints of the device.

Figure 5b presents the simulation recovered from the sampled
signals by dividing each sample read from ADCs A1-A3 by 0.06
(aZ ) and multiplying the hardware time of each sample by the time
scaling factor (� = 0.5). The resulting recovered simulation matches
the reference simulation in Figure 3a.

The chosen scaling transform executes the simulation on the
device 2x slower (� = 0.5) than a real-time simulation (� = 1). At
this speed, the transient dynamics are observable in the sampled
signals, the simulation executes for 20 hardware time units (hu)
instead of 10 hu, and takes 0.04 seconds instead of 0.02 seconds of
wall clock time to complete (1 hu is 2 ms of wall clock time).

Without a sampling constraint, the simulation can execute 14.7x
faster and �nish in 0.68 hardware time units, or 0.0009 seconds of
wall clock time. At this speed, the simulation executes too quickly
for the ADCs to record the transient dynamics, but the �nal values
of E, S , and ES (the steady state dynamics) remain observable.

3 Background
Arco and Jaunt, working together, produce con�gurations for a
recon�gurable analog device. Each con�guration models a speci�ed
dynamical system. The con�gured analog device, when powered
on, executes a simulation of the dynamical system.
Analog Device Speci�cation: The analog device contains input
ports IP and output ports OP , with HP = IP [OP the ports in the
device. The signal at each output port op 2 OP is a (potentially
nonlinear, nonconvex) function of the signals at the ports hp 2 HP .
The algebraic port expression ehp = R (op) 2 EHP de�nes the signal
at output port op 2 OP . To ensure the dynamics hold, the signal for
each port hp must fall within its speci�ed operating range interval
hx ,�i = I (hp), where hx ,�i 2 L and I : HP ! L. The analog
device is recon�gurable and has a set HZ ✓ OP ⇥ IP of available
programmable connections between input ports and output ports.

The analog device functions as a co-processor. The main com-
puter provides values to the analog device through digital input
ports DI attached to digital-to-analog converters (DACs), then
records the simulation by sampling digital output ports DO at-
tached to analog-to-digital converters (ADCs). DP = DI [ DO is
the set of digital ports.

The DACs and ADCs operate synchronously in accordance to
a clock. Although the simulation runs in real time, the sampling
rates of the DACs and ADCs a�ect the granularity of the sampled

hardware speci�cation
R+ = {x 2 R |x > 0} positive real numbers.

L = {hx, �i 2 R2 |x  � } an interval of two real numbers
ip 2 I P input ports in hardware speci�ation
op 2 OP ouput ports in hardware speci�cation

hp 2 HP = I P [OP hardware ports in speci�cation
dp 2 DP ✓ HP hardware ports in the digital interface
di 2 DI ✓ I P digital inputs to DACs
do 2 DO ✓ OP digital outputs from ADCs
HZ ✓ OP ⇥ I P available connections
ehp 2 EHP expressions over hardware ports.

R : OP ! EHP maps output ports to port dynamics
G : DP ! R+ maps digital ports to sample periods
I : HP ! L maps hardware ports to operating ranges

dynamical system speci�cation
i� 2 IV input variables
o� 2 OV output variables

� 2 V = IV [OV variables
e� 2 EV expressions over variables
� : V ! L maps variables to dynamic ranges.
�min minimum speed
�max maximum time between samples.

analog con�guration
p 2 P ✓ HP hardware ports used in the con�guration
z 2 Z ✓ HZ hardware connections used in con�guration

ep 2 EP ✓ EHP expressions over ports in con�guration
F : P ! EV expression each port models
Q = hP, Z , F i analog device con�guration

geometric program
ap 2 A port scaling factors
� 2 A time scaling factor (simulation speed)
m 2 M monomials composed of scaling factors.
s 2 S posynomials composed of scaling factors.
c 2 C geometric program constraints.
sopt posynomial of scaling factors to minimize

X = hsopt , Ci geometric program.

Table 1. Notation Quick Reference

data points in the simulation. The function G : DP ! R+ maps
each digital ports dp 2 DP to its time between samples.
Dynamical System Speci�cation: The dynamical system speci-
�cation includes input variables IV and output variables OV , with
V = IV [OV the set of variables in the dynamical system. The value
of each output variable o� 2 OV is a (potentially nonlinear, non-
convex) function over the variables � 2 V de�ned by an expression
e� 2 EV . At any point in the simulation, the value of each variable
� 2 V falls within the interval hx ,�i = � (� ), where hx ,�i 2 L and
� : V ! L. The dynamical system speci�cation may also include a
minimum speed �min and maximum time between samples �max .
Analog Device Con�guration: An analog device con�guration
Q = hZ , P , F i includes connections Z ✓ HZ , active ports P ✓ HP ,
and a function F : P ! EV that maps each port p 2 P to the
expression e� 2 EV that de�nes the value of the signal carried on
the port.
InteractionBetweenArco and Jaunt:Given a dynamical system,
Arco generates a sequence of candidate unscaled con�gurations that
map the dynamical system onto the device. Jaunt processes each
candidate unscaled con�guration in turn until it �nds a con�gura-
tion and scaling factors that deliver a scaled, physically realizable,
and recoverable simulation. Jaunt is implemented as an extension
to the Arco compiler and accepts an analog device con�guration,



a dynamical system speci�cation with sampling and speed con-
straints, and an analog device speci�cation with operating ranges
and sampling rates.

4 The Jaunt Solver
Given hR,G, I i from the hardware speci�cation, h� ,�min , �max i
from the dynamical system speci�cation, and an analog device
con�guration Q = hZ , P , F i, Jaunt �nds a positive scaling factor for
each port p 2 P and a simulation time scaling factor such that the
con�guration is physically realizable and recoverable.

4.1 Geometric Program
Jaunt formulates the problem of �nding a physically realizable,
recoverable scaled con�guration as a geometric program, which
consists of an objective function sopt and constraintsC over the geo-
metric program variables A. There is a geometric program variable
ap 2 A for each port p 2 P and the time scaling geometric program
variable � 2 A. C may contain inequality constraintsmi  1 2 C
and equality constraints sj = 1 2 C:

minimize sopt

mi  1, i = 1, ...,n
sj = 1, j = 1, ...,m

Here themi are monomials of the following form, where ci 2 R+
(positive real numbers), ap ,� 2 A, and xi,p ,xi,� 2 R:

mi = ci�
xi,�
Y

p2P
a
xi,p
p

Monomials are closed under multiplication and exponentiation
to a real number, and are therefore closed under division by ex-
tension. Any positive nonzero constant is a monomial. The sj are
posynomials (sums of monomials) of the following form:

si =
X

i
mi =

X

i
ci�

xi,�
Y

p2P
a
xi,p
p

The variables in a geometric program (i.e., ap ,� 2 A) take on only
positive values. The geometric program solver computes a binding
that maps each geometric program variable to a numerical value
x 2 R+.

4.2 Generated Geometric Program
Jaunt generates the constraints C in the geometric program by
traversing the ports P and connections Z in the analog con�g-
uration and generating appropriate constraints for each port or
connection:
• Connection Constraints: These constraints ensure that the
scaling factors for connected input and output ports are the same.
Jaunt generates, for each connection hop, ipi 2 Z , the connection
constraint aip/aop = 1, which ensures that the scaling factors
aip and aop of the connected input and output ports ip and op
are the same. The generated connection constraints are:

[

hop,ipi2Z
{aip/aop = 1}

• Operating Range Constraints: These constraints ensure that
the signal at each port p 2 P falls within p’s operating range. The
relevant ranges are the operating range hx ,�i = I (p) for the port
p and the dynamic range hx 0,�0i = I(F (p)) for the dynamical

system value that appears on the port p. The constraints x 
ap · x 0 and ap · �0  �, where ap is the scaling factor for port p,
ensure that the scaled signal dynamics fall within the operating
range of the port. The generated operating range constraints are:

[

p2P
L(x ,ap ,x

0) [U(�0,ap ,�)

where hx ,�i = I (p) and hx 0,�0i = I(F (p)). The lower bound
function L(x ,ap ,x 0) (Figure 6) generates constraints that ensure
that x  ap ·x 0. The upper bound functionU(�0,ap ,�) (Figure 6)
generates constraints that ensure that ap · �0  �. The interval
function I(F (p)) (Figure 8) computes the bounds hx 0,�0i for the
dynamical system value that appears on port p.
Note that if x > 0 and x 0 < 0 or � < 0 and �0 > 0, the range
constraints cannot be satis�ed. In this case L orU generates a
false constraint and Jaunt does not �nd a physically realizable
con�guration.
• Factor Constraints: These constraints ensure that the scaled
dynamics of each output port op is equivalent to the original
dynamics scaled by a constant value. Jaunt derives a set of con-
straints C required to factor out a monomial expression m of
scaling factors from the scaled dynamics of the output port R (op).
Jaunt also enforces the constraintm/aop = 1, which ensures the
scaling factor for the output port aop equalsm, the monomial
of scaling factors factored out of the dynamics. The set of factor
constraints is:

[

op2P\OP
{m/aop = 1} [C

where hm,Ci = F(R (op)) generates constraints that ensure the
scaled signal at the output port op equalsm · R (op).
• Speed Constraints: All digital output ports are subject to speed
constraints that ensure that � , the speed of the scaled signal, is
greater than or equal to the minimum speed �min . The following
generated speed constraint enforces this property:

�min/�  1

• Sampling Constraints: All digital output ports do 2 P and
nonconstant digital input ports di 2 P are subject to sampling
constraints that ensure the time between samples of the scaled
signal is less than or equal to the maximum allowed time between
samples �max . The following generated sampling constraints
enforce this property:

[

dp2DP\P
{� ·G (dp)/�max  1}

where � ·G (dp) is the time between samples, in simulation time.
Objective Function: Jaunt uses the objective function sopt to focus
its selection of scaling factors. The objective function is an arbitrary
posynomial, which enables Jaunt to support a range of scaling factor
selection criteria. And because the geometric program is reduced
to a convex optimization problem, Jaunt delivers optimal solutions
for each objective function. The current Jaunt objective functions
support optimization criteria related to the execution time and
dynamic ranges of the signals in the simulation:
• Minimum/Maximum Speed: The objective function sopt = �
minimizes the simulation speed. The objective function sopt =
1/� maximizes the simulation speed. These objective functions



are useful for minimizing the simulation time and enabling de-
velopers to understand the range of feasible simulation times.
• Balanced Speed: The objective function sopt = � +1/� produces
a balanced speed. This objective function is useful for pruning
partial con�gurations early in the search process and is the de-
fault Jaunt objective function.
• Minimum/Maximum Scaling Factor: The objective function
sopt = ap minimizes the scaling factor for port p. The objective
function sopt = 1/ap maximizes this scaling factor. These objec-
tive functions are useful for exploring how small or large Jaunt
can make the dynamic range of the scaled signal carried on p.
• Balanced Scaling Factors:The objective function

P
do2DO\P

1/ado
maximizes the scaling factors (and therefore the dynamic ranges)
of the observable outputs. This objective function is useful for
maximizing the dynamic ranges, and therefore the binary preci-
sion, of the observable outputs.

This range of implemented objective functions highlights the
�exibility of formulating the con�guration scaling problem as a
geometric program. This approach enables Jaunt to supportmore so-
phisticated optimization strategies, for example hierarchical strate-
gies that �rst maximize and �x the speed within a desired range,
then maximize the scaling factors applied to select ports while
preserving the speed constraints.

4.2.1 Upper and Lower Bound Functions (L andU)
Figure 6 presents the lower bound function L, which accepts a
value x 0 2 R that is scaled by some monomialm0 and a minimum
value x 2 R, and generates a geometric constraint that enforces
x  m0 · x 0:
• x · x 0 > 0: if x and x 0 have the same sign, then the constraint
x  m0 · x 0 can be rewritten as x/(m0 · x 0)  1, where x/x 0 is a
positive nonzero number.
• x  0 ^ x 0 � 0: if x 0 is greater than x , and x and x 0 do not have
the same sign, then the constraint x  m0 · x 0 is true (C = ;) for
allm0, sincem0 · x 0 is always positive and x is always negative.
• x > 0 ^ x 0 < 0: if x 0 is less than x and x and x 0 do not have
the same sign, then the constraint x  m0 · x 0 is never true
(C = { f alse}) for allm0, sincem0 · x 0 is always negative and x is
always positive.

The upper bound functionU accepts a value�0 2 R that is scaled
by some monomialm0 and a maximum value � 2 R and generates
a geometric constraint that enforcesm0 · �0  �. The upper bound
functionU enforcesm0 · �0  � using the same technique as L.

4.2.2 Factor Function (F)
Figure 7 presents the factor functionF, which accepts a port expres-
sion ep and generates a set of constraintsC that make it possible to
factor out the monomialm from ep :

• F(x ): The constant value x cannot be scaled, and therefore has
the scaling factor 1.
• F(p): The port p is scaled by ap , the scaling factor associated
with p.

For the remaining rules, we introduce subexpressions ep and e 0p
that are scaled by monomialsm andm0 provided constraintsC and
C 0 hold. The scaled expressions are thereforem · (ep ) andm0 · (e 0p ).

L(x,m0, x 0) = {x/(m0x 0)  1} if x · x 0 > 0
{f alse } if x > 0 ^ x 0 < 0
; if x  0 ^ x 0 � 0

U(�0,m0, � ) = {m0�0/�  1} if � · �0 > 0
{f alse } if �0 > 0 ^ � < 0
; if �0  0 ^ � � 0

Figure 6. L(x ,m0,x 0) = C andU(�0,m0,�) = C functions

F(x ) = h;, 1i
F(p ) = h;, ap i

F(ep ⇥ e0p ) = hC [C0,m ⇥m0i
F(ep ÷ e0p ) = hC [C0,m/m0i
F(ep + e0p ) = hC [C0 [ {m/m0 = 1},m0i
F(ep � e0p ) = hC [C0 [ {m/m0 = 1},m0i

F(e
e0p
p ) = hC [C0 [ {m0 = 1},mx i

if hx, x i = I(E(e0p ))
hC [C0 [ {m = 1}, 1i
otherwise

F(
R
ep@p/@t p0 = e0p ) = hC [C0 [ {(m/� )/m0 = 1},m/� i

where hC,mi = F(ep ) , hC0,m0i = F(e0p )

Figure 7. F(ep ) = hC,mi function

I(x ) = hx, x i
I(� ) = � (� )

I(e� + e0� ) = I(e� ) + I(e0� )
I(e� � e0� ) = I(e� ) � I(e0� )
I(e� ⇥ e0� ) = I(e� ) ⇥ I(e0� )
I(e� ÷ e0� ) = I(e� ) ÷ I(e0� )

I(ee
0
�
� ) = I(e� )I(e

0
� )

I(
R
e� @�/@t �0 = e0� ) = � (� )

Figure 8. I(e� ) = l function

• F(ep · e 0p ) and F (ep/e 0p ): The monomialm ·m0 can be factored
out of the scaled expressionm · ep ·m0 · e 0p . The monomialm/m0

can be factored out of the scaled expressionm · ep/(m0 · e 0p ).
• F(ep + e 0p ) and F(ep � e 0p ): The monomialm can be factored out
of a scaled expressionm · ep +m0 · e 0p orm · ep �m0 · e 0p provided
m =m0.
• F(ee

0
p
p ): If e 0p evaluates to a constant x , the scaling factormx can

be factored out of the scaled expression (m · ep )m
0 ·x provided

m0 = 1. If ep is not a constant value, the expression cannot be
scaled and therefore has a scaling factor of 1. For the scaling
factor to be 1,m must also be 1.
• F(

R
ep@p/@t p0 = e 0p ): The scaling factorm/� can be factored out

of the scaled expression
R
m ·ep@p/� @t p0 =m0 ·ep0 provided the

scaling factor of the initial conditionm0 equals the scaling factor
of the di�erential equation dynamicsm/� , where the di�erential
equation executes at speed � .

4.2.3 Interval Function (I)
Figure 8 presents the interval function I, which accepts a dynamical
system variable expression e� and computes the interval l that
contains the expression.



• I(x ): The interval of a constant value is hx ,xi.
• I(� ): The interval of a variable � is the interval de�ned in the
dynamical system speci�cation � (� ).
For the remaining rules, we introduce subexpressions e� and e 0�

with intervals hx ,�i = I(e� ) and hx 0,�0i = I(e 0� ).
• I(e� � e 0� ): We use interval arithmetic to de�ne the interval
of an expression e� � e 0� , where � 2 {+,�,⇥,÷, /, ˆ} (addition,
subtraction, multiplication, division, or exponentiation). For ex-
ample, I(e� � e 0� ) is hx � �0,� � x 0i, where hx ,�i = I(e� ) and
hx 0,�0i = I(e 0� ), since the smallest possible value is the lower
bound of e� minus the upper bound of e 0� and the largest pos-
sible value is the upper bound of e� minus the lower bound
of e 0� . I(e� + e 0� ) is hx + x 0,� + �0i where hx ,�i = I(e� ) and
hx 0,�0i = I(e 0� ).
• I(
R
e� @�/@t ^ �0 = e 0� ): The interval of the integral of the

expression e� is de�ned as l = � (� ) in the dynamical system
speci�cation. Jaunt additionally veri�es that hx 0,�0i 2 l .

4.2.4 Evaluation Function (E)
Figure 9 presents the evaluation function E, which accepts a port
expression ep and produces a dynamical system variable expression
e� by applying the port mapping F .
• E(x ): The constant x evaluates to x .
• E(p): The port p evaluates to its mapped variable expression
e� = F (p).
• E(ep � e 0p ): The evaluation function recursively evaluates ep and
e 0p to e� and e 0� , then constructs the expression e� � e 0� . Here
� 2 {+,�,⇥,÷, ˆ}.
• E(

R
ep@p/@t p0 = e 0p ): The evaluation function recursively eval-

uates the di�erential equation expression ep and initial condition
e 0p and retrieves � = F (p), the variable mapped to p to construct
the evaluated integral

R
e� @�/@t �0 = e 0� . We note that� = F (p)

always exists because if p 2 P is a port whose behavior is de�ned
by a di�erential equation, Arco always maps some variable� 2 V
to p.

4.3 Implementation and Optimizations
Jaunt builds the geometric program using the geometric program-
ming kit API (gpkit) [8]. The gpkit library translates the geomet-
ric program to a convex optimization program and then solves the
convex optimization program using cvxopt. Jaunt uses gpkit to
produce a set of scaling factors if a solution exists:
• Found Scaling Transform: If Jaunt successfully �nds a trans-
formation, Arco emits the analog con�guration along with the
scaling transformation found by Arco. By default Jaunt emits the
minimum, maximum, and balanced speed scaling transforms.
• No Scaling Transform: If Jaunt fails to �nd a transformation,
Arco discards the analog con�guration.
Jaunt implements several optimizations to reduce the complexity

of the generated geometric program and improve the e�cacy of
the Arco compiler’s search algorithm.
Metavariables: Jaunt aggregates equivalent scaling factors into
a single aggregate scaling factor. This optimization reduces the
number of variables in the geometric program and improves the
performance of the geometric program solver.
Search Path Pruning: Arco generates con�gurations by exploring
a search space of partially completed con�gurations. Arco can

E(x ) = x
E(p ) = F (p )

E(ep + e0p ) = E(ep ) +E(e0p )
E(ep � e0p ) = E(ep ) �E(e0p )
E(ep ⇥ e0p ) = E(ep ) ⇥E(e0p )
E(ep ÷ e0p ) = E(ep ) ÷E(e0p )

E(e
e0p
p ) = E(ep )

E(e0p )

E(
R
ep@p/@t p0 = e0p ) =

R
E(ep )@�/@t �0 = E(e0p )

where � = F (p )

Figure 9. E(ep ) = e� function

reduce the size of the explored search space by querying Jaunt to
determine if the partial con�guration associated with the current
search path is physically realizable. If not, all con�gurations derived
from the partial con�guration are also physically unrealizable and
Arco prunes the search path from the search. This optimization
eliminates unproductive regions of the search space and helps Arco
�nd successful con�gurations more quickly.

4.4 Design Decisions
Geometric Programming Formulation: We chose to formulate
the constraint problem as a geometric programming problem be-
cause it can be translated into a convex optimization problem and
supports constraints over monomials, which cover all of the Jaunt
scaling expressions. This formulation does exclude three kinds of
scaling patterns. Including these scaling transforms would produce
a nonconvex optimization problem and would not, in our experi-
ence, signi�cantly improve Jaunt’s ability to produce successful
scaling transforms.
• Exponentiation: We exclude scaling transforms on exponen-
tials (exp ) that simultaneously scale the base and the exponent of
the expression (monomials do not include variables in exponents).
Supporting these transforms would complicate the constraint
problem and would not confer signi�cant bene�ts because, in
practice, the base and exponent rarely, if ever, need to both be
scaled.
• Negative Scaling Factors: Negative scaling factors are useful
only for 1) mapping negative values onto components with posi-
tive operating ranges or 2) mapping positive values onto compo-
nents with negative operating ranges. An earlier version of Jaunt
supported negative scaling factors. We eliminated this support
because 1) it signi�cantly simpli�ed the formulation and solu-
tion of the constraint problem and 2) we found negative scaling
factors to be of little to no use in practice.
• Scaling by Zero: We exclude transforms that scale signals by
zero, since any nonzero signal scaled by zero cannot be recovered.

ScalingAnalogCon�gurations:When designing Jaunt, we chose
to compute the scaling transform starting from an analog con�g-
uration instead of directly searching for a physically realizable
con�guration. The analog con�guration synthesis problem is a
discrete, combinatorial problem that Arco solves by searching com-
binations of con�gured blocks and connections to include in the
con�guration. The problem of computing a scaling transform is a
numerical optimization problem over a continuous space. Solving
these two problems separately enabled us to use di�erent algo-
rithms as appropriate for these two di�erent kinds of problems.



benchmark parameters functions di�eqs sample (�max ) time description
smol 4 2 1 0.5 su 10 su simpli�ed Michaelis-Menten reaction in terms of mols.
sconc 4 2 1 1 su 25 su simpli�ed Michaelis-Menten reaction in terms of concentrations.
mmrxn 5 0 4 80 su 6000 su Michaelis-Menten equation reaction[25]
gtoggle 9 3 2 0.1 su 10 su genetic toggle switch in E.coli [15]
repri 7 0 9 20 su 1000 su synthetic oscillatory network of transcriptional regulators [12]
bont 8 1 5 5 su 250 su paralysis of skeletal muscles from botulinum neurotoxin A [20]
epor 3 1 6 20 su 100 su information processing at the erythropoletin receptor [4]

Table 2. Benchmark Characteristics. Minimum speed �min for all benchmarks is 0.0001x.

block description circuit relation input operating ranges
idac current input DAC ZI = XD I2 [0,10] uA,clk=0.1 hu
vdac voltage input DAC ZV = XD V2 [0,3300] mV,clk=0.1 hu
vadc voltage output ADC ZD = XV V2 [0,3300] mV,clk=1 hu
iadd current adder wires OI = AI + BI �CI �CI I 2 [0,10] µA

vadd.deriv voltage adder
P

amp+capacitor @ZV /@t = AV + BV �CV � DI · ZV , Z0 = D0V I 2 [0,10] µA, V 2 [0,3300] mV
vadd.fxn voltage adder

P
amp ZV = [AV + BV �CV ] · 0.25 V 2 [0,3300]

vgain voltage to current opamp ZI = XV KI V 2 [0,500] mV, KI 2 [0,10] µA
itovc current to voltage opamp ZV = XIKV I 2 [0,10] µA, KV 2 [0,100] mV
itov current to voltage opamp ZV = XIKV I 2 [0,0.1] µA, KV 2 [0,330] mV
vtoi voltage to current opamp ZI = XV /KV XV 2 [0,3300] mV, KV 2 [330,3300] mV
ihill hill function logic circuit SI = XI [S

nV
I /[SI nV + K

nV
I ]] KI 2 [0.5,10] µA,I 2 [0,10] µA, V 2 [1,3] mV

switch genetic switch logic circuit OI = MI /[SI /KI + 1]nV /500 I 2 [0,10] mA,nV 2 [500,3300] mV
igenebind gene binding logic circuit PI = XI · 1/[KI · TI + 1] I 2 [0,10] µA

mm michaelis menten logic circuit XV = XTV � ZV XTV , YTV 2 [0.0001,1000] mV
YV = YTV � ZV AI 2 [0.0001,0.01] µA, BI 2 [0.0001,1] µA

@ZV /@t = AI · XV · YV � BI · ZV , Z0 = Z 0V Z 0V 2 [0,600] mV
Table 3. Components and Operational Ranges in Analog Device [9, 10, 28, 32, 36]. 1 hardware time unit (hu) = 2 ms wall clock time.

5 Experimental Results
We present experimental results for Jaunt on a set of benchmark bio-
logical simulations. Each benchmark is a dynamical system selected
from a set of published artifacts included with a peer-reviewed biol-
ogy paper. We derived the ranges of inputs and state variables from
conservation properties present in systems of chemical reactions.
Table 2 presents characteristics of these benchmarks:

• smmrxn: The simpli�ed Michaelis-Menten benchmark models
a reaction E + S ↵ ES [25]. The dynamical system has 4 parame-
ters, 2 functions, and 1 di�erential equation. The system takes
no inputs and produces the quantity of E,S, and ES as outputs.
We evaluate two versions of the simpli�ed Michaelis-Menten
reaction, smol, which represents the quantities as molecules,
and sconc, which represents the quantities as concentrations.
The smol and sconc simulations execute to steady state (in 10
simulation units and 25 simulation units respectively).
• mmrxn: The Michaelis-Menten benchmark models the reaction
E + S ↵ ES ! P [25]. The dynamical system has 5 parameters
and 4 di�erential equations. The system has no inputs and pro-
duces the concentrations of E, S, ES, and P as outputs. The mmrxn
simulation executes until an signi�cant amount of P accumulates
(6000 simulation units).
• gtoggle: The genetic toggle switch is a gene regulatory network
found in E. coli with two repressible promoters [15]. The dy-
namical system has 9 parameters, 3 functions, and 2 di�erential
equations. The system takes IPTG as an input and emits the
activity levels of U and V as outputs. We evaluate gtoggle by

introducing IPTG at simulation unit 2 and withdrawing it at sim-
ulation unit 5. The gtoggle simulation executes to steady state
(10 su).
• repri: The LacI-tetR-Cl transcriptional reprissilator is an oscillat-
ing network composed of genes that are not involved in maintain-
ing a biological clock [12]. The dynamical system has 7 parame-
ters and 9 di�erential equations. The repri simulation executes
to oscillating steady state (1000 simulation units).
• bont: The bont benchmark models the onset of skeletal muscle
paralysis brought on by the botulinum neurotoxin [20]. The
dynamical system has 8 parameters, 1 function, and 5 di�erential
equations. The bont simulation executes for 250 simulation units,
the length of time reported in the relevant paper [20].
• epor: The epor benchmark models erythropoietin receptor ac-
tivation (EpoR) in response to a �xed ligand input [4]. The dy-
namical system has 3 parameters, 1 function, and 6 di�erential
equations. The epor simulation executes for 100 simulation units,
the length of time reported in the relevant paper [4].

5.1 Analog Device
The benchmarks execute on a hardware model composed of compo-
nents commonly used in analog devices that target biological com-
putations [9, 10, 28, 32, 36]. Table 3 presents the components and
operational ranges of the simulated analog device. The simulations
saturate signals that exceed the maximum operating constraint and
clamp signals that fall below the minimum operating constraint.



0 2 4 6 8 10
time (su)

0

2000

4000

6000

m
ol

ec
ul

es

(a) smol reference

0 2 4 6 8 10
time (su)

0

2000

4000

6000

m
ol

ec
ul

es

(b) smol direct

0 5 10 15 20
time (hu)

0

100

200

300

400

si
gn

al

(c) smol signal

0 2 4 6 8 10
time (su)

0

2000

4000

6000

m
ol

ec
ul

es

(d) smol recovered

0 2 4 6 8 10
time (su)

0

2000

4000

6000

m
ol

ec
ul

es

(e) smol sampled

0 5 10 15 20 25
time (su)

0.00

0.05

0.10

0.15

m
ol

ar
ity

(M
)

(f) sconc reference

0 5 10 15 20 25
time (su)

0.00

0.05

0.10

0.15

m
ol

ar
ity

(M
)

(g) sconc direct

0 5 10 15 20 25
time (hu)

0

200

400

si
gn

al

(h) sconc signal

0 5 10 15 20 25
time (su)

0.00

0.05

0.10

0.15

m
ol

ar
ity

(M
)

(i) sconc recovered

0 5 10 15 20 25
time (su)

0.00

0.05

0.10

0.15

m
ol

ar
ity

(M
)

(j) sconc sampled

0 2000 4000 6000
time (su)

0.000

0.025

0.050

0.075

0.100

0.125

m
ol

ar
ity

(M
)

(k) mmrxn reference

0 2000 4000 6000
time (hu)

0.000

0.025

0.050

0.075

0.100

0.125

m
ol

ar
ity

(M
)

(l) mmrxn direct

0 20 40 60 80
time (hu)

0

100

200

300

400
si
gn

al

(m) mmrxn signal

0 2000 4000 6000
time (su)

0.000

0.025

0.050

0.075

0.100

0.125

m
ol

ar
ity

(M
)

(n) mmrxn recovered

0 2000 4000 6000
time (su)

0.000

0.025

0.050

0.075

0.100

0.125

m
ol

ar
ity

(M
)

(o) mmrxn sampled

0 2 4 6 8 10
time (su)

0.0

2.5

5.0

7.5

10.0

12.5

m
ol

ar
ity

(M
)

(p) gtoggle reference

0 2 4 6 8 10
time (hu)

0.0

2.5

5.0

7.5

10.0

12.5

m
ol

ar
ity

(M
)

(q) gtoggle direct

0 20 40 60 80 100
time (hu)

0

2

4

6

8

si
gn

al

(r) gtoggle signal

0 2 4 6 8 10
time (su)

0.0

2.5

5.0

7.5

10.0

12.5

m
ol

ar
ity

(M
)

(s) gtoggle recovered

0 2 4 6 8 10
time (su)

0.0

2.5

5.0

7.5

10.0

12.5

m
ol

ar
ity

(M
)

(t) gtoggle sampled

0 200 400 600 800 1000
time (su)

0

25

50

75

100

125

m
ol

ec
ul

es

(u) repri reference

0 200 400 600 800 1000
time (su)

0

50

100

150

m
ol

ec
ul

es

(v) repri direct

0 100 200 300
time (hu)

0

200

400

600

800

1000

si
gn

al

(w) repri signal

0 200 400 600 800 1000
time (su)

0

25

50

75

100

125

m
ol

ec
ul

es

(x) repri recovered

0 200 400 600 800 1000
time (su)

0

25

50

75

100

125

m
ol

ec
ul

es

(y) repri sampled

0 50 100 150 200 250
time (su)

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

(t
en

si
on

)

(z) bont reference

0 50 100 150 200 250
time (su)

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

(t
en

si
on

)

(aa) bont direct

0 10 20 30 40 50
time (hu)

0

1000

2000

si
gn

al

(ab) bont signal

0 50 100 150 200 250
time (su)

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

(t
en

si
on

)

(ac) bont recovered

0 50 100 150 200 250
time (su)

0.0

0.2

0.4

0.6

0.8

1.0

re
sp

on
se

(t
en

si
on

)

(ad) bont sampled

0 20 40 60 80 100
time (su)

0

500

1000

1500

2000

m
ol

ar
ity

(p
M

)

(ae) epor reference

0 20 40 60 80 100
time (su)

0

500

1000

1500

2000

m
ol

ar
ity

(p
M

)

(af) epor direct

0 200 400 600
time (hu)

0

500

1000

1500

2000

si
gn

al

(ag) epor signal

0 20 40 60 80 100
time (su)

0

500

1000

1500

2000

m
ol

ar
ity

(p
M

)

(ah) epor recovered

0 20 40 60 80 100
time (su)

0

500

1000

1500

2000

m
ol

ar
ity

(p
M

)

(ai) epor sampled

Figure 10. Reaction Dynamics



5.2 Evaluation Methodology
We run Jaunt on each of the benchmark applications, selecting
the �rst Arco con�guration for which Jaunt can �nd a physically
realizable and recoverable simulation. We con�gure Jaunt to use
the objective function sopt = 1/� that produces the fastest scaled
simulation. To ensure the adequate observability of the transient
dynamics, we enforced the sampling constraints from Table 2. We
execute three simulations for each benchmark:

• Reference Execution: Executes the dynamical system simula-
tion using a standard di�erential equation simulator.
• Direct Execution: Executes the unscaled Arco con�guration.
• Jaunt Execution: Executes the Arco con�guration with the
Jaunt scaling transform applied.

We implement each execution using Simulink [21]. Following stan-
dard practice in the �eld, we consider a simulation accurate if it
produces the same result as the reference simulation [32, 36].

5.3 Results
Figure 10 presents graphs that summarize the execution results.
Each graph plots executed relevant values of state variables from
the benchmark dynamical system measured in millivolts and mil-
liamps as a function of time. We plot selected dynamical system
state variables of interest to a biologist, using guidelines from the
BioModels database when available [1]. We present �ve graphs
for each benchmark:

• Reference: Plots values from the standard di�erential equation
solver. Each graph plots the values of the selected state variables
measured in the units of the speci�ed dynamical system as a
function of time measured in the simulation time units (su).
• Direct: Plots values from the direct execution. Each graph plots,
as a function of time, values of the selected state variables mea-
sured at the analog ports that carry these values. The values are
measured in the units of the analog hardware signals (mV or µA).
Time is measured in hardware time units. Because Arco directly
maps the simulation onto the analog hardware, the simulation
units match the hardware units.
Our instrumentation of these executions indicates that all exe-
cutions except bont violate the device operating ranges. These
violations cause the direct executions to diverge (in most cases
signi�cantly) from the reference executions.
• Signal: Plots values from the scaled Jaunt execution measured at
the analog ports that carry the values. The graphs plot the values
measured in hardware signal units as a function of hardware time
units. Because of the applied scaling transformation, the time
and state variable values are scaled with respect to the reference
simulation.
Our instrumentation of these simulations indicates that they all
respect the device operating ranges.
• Recovered: Plots values from the scaled Jaunt execution mea-
sured at the analog ports that carry the values after recovering
the simulation by inverting the scaling transformation. Each
graph plots the values of the selected state variables measured
in the units of the speci�ed dynamical system as a function of
time measured in the simulation time units. The reference and
recovered plots correctly match for all benchmarks.
• Sampled: Plots values from the scaled Jaunt execution sampled
at the digital ADC ports that carry the values out of the device

after recovering the simulation by inverting the scaling transfor-
mation. Each graph plots the values of the selected state variables
measured in the units of the speci�ed dynamical system as a func-
tion of time measured in the simulation time units.
The reference and recovered plots match for all benchmarks,
indicating that the scaled executions are executed slowly enough
to adequately observe the dynamics in the sampled signal.

Direct Executions: All of the direct executions except bont devi-
ate from their reference execution. We attribute these deviations
to the fact that the direct mapping drives the device outside its
operating range. Some of these operating range violations occur
at observable variables mapped to external ports and are straight-
forward to detect. In other cases, however, the operating range
violations occur at saturated internal ports in the analog device.
In this case, the observable variables can be well within their op-
erating ranges while the execution itself is operating well outside
the operating range of the device. In the absence of a specialized
debugging interface, which analog devices typically do not provide,
it can be di�cult to pinpoint or even detect the presence of these
operating range violations. By automating the process of scaling
the con�guration to �t within the operating range, Jaunt eliminates
this potential source of error. We next discuss speci�c operating
range violations that occur in our benchmark direct executions:
• smol: The starting concentrations of E (6800) and S (4000) exceed
the maximum acceptable voltage of 1000mV at the XT and YT

ports. This causes the dynamics of E (red line) and S (blue line)
to look the same.
• sconc: The parameter 1 exceeds the maximum acceptable current
of 0.01mA at the K1 port of the mm block. This causes ES (green)
to be break down much faster than it is formed, eliminating any
changes in concentration in E (red line), ES (green line) and P
(blue line).
• mmrxn: The parameter 317.05 falls below the minimum accept-
able voltage of 330 mV at the K port of two di�erent vtoi blocks.
In the resulting execution, E (red line), S (green line), and ES (pur-
ple line) begin to increase around 1000 hardware units instead of
remaining constant.
• gtoggle: The parameters 15.6 and 13.32 exceed the maximum
current of 10mA at the X port of two di�erent ihill blocks. This
triggers the amount of U (green line) to saturate prematurely at
10 molar in response to the introduction of IPTG (blue line).
• bont: The directly mapped con�guration respects the operating
range of the device.
• repri: The LacLp, clp and TetRp signals ([0, 140]) exceed the
maximum current of 10 µA at the S port and the parameter 20
exceeds the maximum current of 10 µA of the K port in three
distinct ihill blocks. These operating range violations eliminate
the oscillations from the dynamics.
• epor: The EpoR signal ([0,516]) exceeds the maximum voltage
of 100 mV of port X in two distinct vtoic blocks. The Epo signal
([0,2031]) exceeds the maximum current of 10 µA of the Z port of
the vgain block. These violations alter the transient dynamics
of the system.

Scaled Executions: As highlighted in the signal plots, the applied
scaling transforms often apply di�erent scaling factors to di�erent
ports and scale time to maximize the speed of the simulation while
still ensuring the scaled con�guration is physically realizable, recov-
erable, and observable. The smol and sconc benchmarks scale the



bmark min � max � slow fast slow fast
(hu) (hu) (s) (s)

smol 0.010x 0.500x 1000 hu 20 hu 2s 0.004s
sconc 0.0001x 1.000x 25000 hu 25 hu 50s 0.05s
mmrxn 0.0001x 77.482x 6 · 106 hu 77 hu 3h20m 0.155s
gtoggle 0.099x 0.100x 100 hu 100 hu 0.2s 0.2s
repri 0.0001x 2.839x 106 hu 352 hu 32m40s 0.704s
bont 0.0001x 5.000x 25 · 104 hu 50 hu 8m20s 0.1s
epor 0.0001x 0.142x 106 hu 704 hu 3m20s 1.408s

Table 4. Jaunt Time Scaling Factors.

output signals uniformly. The mmrxn, gtoggle, repri, bont, and
epor benchmarks scale each output signal by a di�erent scaling
factor.
• smol: All the output signals in the smol benchmark (Figure 10c)
are scaled uniformly by 0.060x. Time is scaled by 0.50x.
• sconc: All the output signals in the sconc benchmark (Fig-
ure 10h) are scaled by 3643.68x. The simulation executes in real
time (� = 1).
• mmrxn: The output signals in the mmrxn benchmark (Figure 10m)
are all scaled by di�erent amounts: E (red line) by 80.64x, S (green
line) by 164.88x, ES by 167.57x (purple line), and P by 50291.40x
(blue line). Time is scaled by 77.48x. We note the state variable
P , which is scaled the most, has the smallest dynamic range and
is most visible in the plot.
• gtoggle: All the input and output signals in the gtoggle bench-
mark (Figure 10r) are scaled by di�erent amounts: the input IPTG
by 12.74 (blue line),U by 0.58x (green line), and V by 0.72x (red
line). The simulation time is scaled by 0.10x. We note the IPTG
signal has the smallest dynamic range and the largest scaling
factor.
• repri: All the output signals of the repri benchmark (Figure 10w)
are scaled di�erently: most notably the LacLp,clp, andTetRp vari-
ables (red, cyan, and yellow lines) are scaled by 8.25x, 0.065x
and 0.064x respectively. The clm, LacLm and TetRm variables
(blue, purple, and green) are scaled by 2.98x, 7.05x and 6.51x
respectively. The simulation time is scaled by 2.84x.
• bont: All the output signals of the bont benchmark (Figure 10ab)
are scaled di�erently: most notably tension and l�tic (green and
yellow) are scaled by 2428.06x and 1183.00x respectively and
dominate the �gure. The bnd , f ree and transloc variables (blue,
red, and purple respectively) are scaled by 8.47x, 212.12x and
9.49x. The simulation time is scaled by 5.00x.
• epor: All the output signals of the epor benchmark (Figure 10ag)
are scaled di�erently: most notably, thedEpoe anddEpoi variables
(purple and green) are scaled by 3.36x and 10.65x respectively.
The Epo and EpoR variables (cyan and blue) are both scaled by
0.0049x and the EpoEpoRi and EpoEpor variables (yellow and red)
are scaled by 0.011x and 0.023x. The simulation time is scaled by
0.14x.

Simulation Speed: Table 4 presents the simulation speeds for the
optimal fastest and slowest simulations for each benchmark, and
the corresponding simulation time in hardware time and wall clock
time. The smol, sconc, gtoggle, and bont benchmarks attain
the maximum possible simulation speed possible subject to each
benchmark’s sampling constraints. The mmrxn, repri, and bont
benchmarks support executing the simulation 3.84x-77.48x faster

variable min scale max scale balopt
mmrxn

� 0.020 77.48 69.88
E 20.82 80.64 80.64
S 20.82 185.19 185.19
P < 10�6 61111.11 61107.74
ES 0.11 185.19 185.19

gtoggle
� 0.000033 0.10 0.10
U 0.50 0.64 0.64
V 0.50 0.75 0.75

IPTG 0.033 16.66 16.66
repri

� 0.0033 2.84 0.16
LacLp 8.25 23.57 23.57
TetRp 0.025 0.071 0.071
clp 0.025 0.071 0.071

LacLm 0.0082 110.00 109.99
clm 0.0000010 3.33 3.33

TetRm 0.000025 110.00 109.99
bont

� 0.00083 5.00 2.09
bnd < 10�6 10 10.00

tension < 10�6 3299.99 3299.26
lytic < 10�6 3299.99 3299.27

transloc < 10�6 10 10.00
free < 10�6 329.99 329.99

epor
� 0.00033 0.14 0.14

EpoR 0.00010 0.0049 0.0049
dEpoi < 10�6 13.20 13.19

EpoEpoR < 10�6 0.030 0.030
EporEporI < 10�6 0.019 0.019

Epo 0.00010 0.0049 0.0049
dEpoe < 10�6 4.13 4.12

Table 5. Jaunt Output Variable Scaling Factors.

than a real time execution (� = 1). The fastest physically feasible
simulations complete in 20 hardware units (0.004s) to 704 hardware
units (1.408s). The slowest physically feasible simulations complete
in 6 · 106 hardware units (3 hours, 20 minutes) to 100 hu (0.2 s).

5.4 Dynamic Range Analysis
We next present results that use the port scaling factor objective
functions (Section 4.2) to explore Jaunt’s ability to minimize and
maximize the dynamic ranges of output variables. For each bench-
mark, we execute the geometric programs used to generate the
scaling transforms in Section 5.3 with the port scaling objective
functions and with a minimum speed constraint that ensures the
simulation �nishes in ten minutes. Table 5 presents results from
solving the geometric program with the following optimization
functions:
• Minimize/Maximize Individual Output Variables: We solve
the geometric program twice for each output variable, once to
�nd the minimum scaling factor (column min scale) for that
variable and once to �nd the maximum scaling factor (column
max scale). The di�erences between the minimum and maxi-
mum possible scaling factors for each output variable highlight
the substantial ranges that Jaunt makes available for the scaling
factors for each individual output variable.



bmark exec total (s) solver (s) probs succ fail # vars
smol std 18.18 0.573 14 11 3 4

nmt 25.51 7.32 16 10 6 25
sconc std 17.14 0.833 17 14 3 4

nmt 21.93 8.665 12 10 2 25
mmrxn std 150.97 6.26 50 50 0 20

nmt 152.33 23.38 50 50 0 76
gtoggle std 199.00 4.74 56 56 0 15

nmt 227.66 45.84 56 54 2 63
repri std 384.27 12.06 95 87 8 34

nmt 458.61 95.89 106 95 11 129
bont std 112.20 4.13 56 49 7 18

nmt 126.41 21.65 58 49 9 81
epor std 295.90 9.42 96 81 15 25

nmt 334.48 71.82 81 76 5 122
Table 6. Jaunt Execution times.

• Maximize All Output Variables: We solve the geometric pro-
gram once for each benchmark, using the balanced scaling factor
objective function to (conceptually) maximize all of the scaling
factors together (column balopt). The results show that, for
all benchmarks, it is possible to obtain scaled con�gurations in
which each scaling factor attains close to its maximum possible
value. For the mmrxn, gentoggle, and epor benchmarks, Jaunt
is also able to obtain close to (within 10% of) the maximum sim-
ulation speed. The bont and repri benchmarks execute more
slowly — bont executes 2.09x faster than real time (maximum
speed is 5x faster) and repri benchmark executes 6.37x slower
than real time (maximum speed is 2.84x faster).

5.5 Jaunt Optimizations
We analyze the performance of the Jaunt compiler and the e�ect of
di�erent optimizations. We execute two trials for each benchmark:
• std: Jaunt prunes partial con�gurations during the Arco search
process and merges equivalent scaling factors into metavariables.
• nmt: Jaunt prunes partial con�gurations during the Arco search
process but does not perform the optimization that merges equiv-
alent scaling factors into metavariables.
Table 6 presents the time required for Arco and Jaunt, working

together, to generate a physically realizable, recoverable scaled
con�guration. It also presents the total amount of time taken by
the combined Arco/Jaunt compiler in seconds (total) and the
time spent in solving geometric programming problems in seconds
(solver).

Jaunt generates and attempts to solve one geometric program-
ming problem for each partial or complete Arco con�guration. Ta-
ble 6 presents the total number of geometric programming problems
that Jaunt generates and attempts to solve (probs), the number
of geometric programming problems that produce physically re-
alizable scaling transforms (succ), and the number of geometric
programming problems that do not have a solution (fail). The
# vars column reports the number of variables in the geometric
programming problem that produces the �nal scaled con�guration.
Metavariable Support: The nmt (no metavariable) trials spend
substantially more time in the geometric solver than the std trials
(7.32 to 95.89 seconds vs. 0.573 to 12.06 seconds). This di�erence
re�ects the impact of the metavariable optimization, which substan-
tially reduces the number of variables in the generated geometric

problems (25 to 129 variables vs. 4 to 34 variables). The reduced geo-
metric program solution times translate into reduced overall com-
pilation times (21.93 to 458.61 seconds vs. 17.14 to 384.27 seconds),
highlighting the e�ectiveness of the metavariable optimization.
Pruning Search Paths: Both the std and nmt executions perform
the con�guration search with pruning enabled. With pruning dis-
abled, Jaunt is unable to �nd physically realizable con�gurations
for epor, bont, and repri.

6 Related Work
Historically, simple analog circuits with manually developed map-
pings have been used to perform numerical computation and per-
form dynamical system simulations [11, 23, 27, 33]. Jaunt automates
the process of deriving a mapping that respects the physical oper-
ating constraints of the underlying analog device.

Analog computing has recently reemerged as a computing sub-
strate within the hardware research community. New modern ana-
log devices often contain domain speci�c computational blocks
designed closely model physical phenomena from the domain of
interest [5, 9, 10, 26, 28, 29, 32, 36]. By manipulating the simu-
lation speed, Jaunt derives mappings that respect the operating
constraints of these modern analog hardware devices.

Other work in synthesizing analog circuits has focused on tran-
sistor level techniques to help hardware designers create specialized
logic circuits [3, 16, 22]. Researchers have also leveraged analog
accelerators such as neural network accelerators to approximate
digital subcomputations written in imperative languages [14, 31].
In contrast, the Jaunt solver accurately transforms the dynami-
cal system speci�cation to ensure that the simulation respects the
physical limitations of the computational blocks on the device.

The Jaunt solver uses interval analysis to reason about the range
of subexpressions comprised of dynamical system variables and
subexpressions comprised of hardware port properties. Interval
analysis has a long history in �elds such as electrical engineering,
control theory and robotics [17, 18]. The Jaunt solver automates in-
terval propagation techniques in the constraint generation process
and when inferring operating ranges.

7 Conclusion
Programmable analog devices are a powerful new computing sub-
strate for neuromorphic and cytomorphic models [5, 9, 10, 26, 28,
29, 31, 32, 36]. Jaunt automates the complex process of deriving a
mapping of the dynamical system onto the analog hardware that
respects the device’s physical operating constraints, a key step in
enabling the use of this promising new class of devices.
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