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Centrifugal Casting of Paraffin and Beeswax 

for Hybrid Rockets 

Keith Javier Stober1, Alana Sanchez2, Juliet Wanyiri3, Suzanna Jiwani4, 

and Danielle Wood5 
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA 

A high-level research framework is presented which seeks to navigate the barriers 

associated with reusing wax phase change material onboard a satellite as a hybrid rocket fuel 

for de-orbit or other in-space propulsion needs, while also conducting fundamental studies of 

the fluid mechanics and heat transfer phenomena which drive the cooling and solidification of 

wax within a horizontal rotating cylinder in various gravitational and thermal environments.  

A detailed review of past work in the area of beeswax fuel for hybrid chemical propulsion is 

reported and served to motivate consideration of this fuel for centrifugal casting efforts, due 

to previously reported values of regression rate comparable to that of paraffin wax.  The 

production process of beeswax fuel from beekeeping detritus was perfected and documented.  

Analysis of the shrinkage of beeswax and the neat Candlewic FR5560 paraffin wax used herein 

determined a volume shrinkage percentage during liquid to solid phase transition of 18.7 ± 

0.62 and 13.3 ± 0.22%, respectively.  An image analysis routine was developed in order to 

automate the process of determining the instantaneous solidification rate for each one-second 

timestep through the centrifugal casting process of paraffin and beeswax fuel grain sizes 

common for small-scale hybrid rockets.  Beeswax completed solidification in 22% less time 

than paraffin under identical conditions but exhibited more coning of resulting solid wax.  

Calculated time- and space-averaged solidification rates for paraffin and beeswax were 0.017 

and 0.028 mm/s, respectively, within a 50.8 mm inner diameter, 57.15 mm outer diameter, and 

254 mm length polycarbonate tube.  Careful analysis, however, shows that instantaneous 

solidification rate increases very slightly but steadily over time for both paraffin and beeswax, 

though the rate increase is greater for beeswax.  The image analysis routine was most effective 

when applied to the beeswax solidification process as compared to that of paraffin, as the 

solid/liquid interface is considerably more salient in beeswax due to a distinct color change 

upon solidification.  Dye will be used with paraffin casting in the future with the goal of 

improving solid/liquid phase contrast. 

I. Nomenclature 

PCM = phase change material 

HTPB = hydroxyl-terminated polybutadiene 

LAH = lithium aluminum hydride, LiAlH4 

MMH = monomethylhydrazine, CH3(NH)NH2 

NTO = nitrogen tetroxide, N2O4 

HAN = hydroxylammonium nitrate, (NH3OH)(NO3) 

ADN = ammonium dinitramide, (NH4)(N(NO2)2) 
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Isp = specific impulse 

fps = frames per second 

II. Introduction 

The Space Enabled Research Group at the Massachusetts Institute of Technology is conducting a multiyear 

investigation of the technology required for the repurposing of paraffin and beeswax phase change materials (PCMs) 

onboard satellites for utilization as fuels for in-space propulsion systems.  A framework for the long-term investigation 

is shown in Fig. 1.  Paraffin and beeswax offer low-cost, widely available, nontoxic, safe, high-performing alternatives 

to commonly-used in-space propellants for chemical propulsion systems.  The reuse of wax PCM as a fuel for chemical 

propulsion inherently requires in-situ centrifugal casting – a process that would differ in important ways from Earth-

based centrifugal casting efforts due to the thermodynamics that occur in a vacuum under microgravity conditions. 

 

 

Fig. 1  Framework for long-term study of technologies required for the reuse of wax phase change materials as 

fuels for in-space chemical propulsion systems. 

 

This long-term study comprises experimental and computational efforts focusing, in particular, on the centrifugal 

casting process of waxes in various physical environments, as shown in Fig. 2, each of which contribute to deeper 

understanding of casting under specific gravitational and thermal conditions, in preparation for testing on an orbital 

platform.  The primary utility of these different experimental platforms is the ability to disentangle the unique 

contributions to wax cooling on the part of natural convection, forced convection, and radiation, as described in Table 

1.  Prior work by the authors described initial testing using the tabletop apparatus and two parabolic aircraft flights [1, 

2]. 
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Fig. 2  Progressing complexity of experimental environments used to simulate various gravitational and 

thermal environments of interest in the long-term study. 

Table 1  Assessment of specific heat transfer mechanism contributions to the cooling and solidification 

process of wax centrifugal casting in all anticipated testing environments. 

 
 

The portion of this long-term study described herein relates to the centrifugal casting of paraffin and beeswax in 

the laboratory tabletop apparatus and the development of an image analysis routine to analyze casting results.  The 

latter image analysis serves to automate post-processing of images acquired through the transparent acrylic endcap of 

the casting tube and outputs solidification distance and, ultimately, solidification rate for each timestep. 

This work builds upon two decades of research in the area of paraffin- and beeswax-based hybrid rocket propulsion 

catalyzed by the discovery of paraffin wax as a high-performing hybrid rocket fuel by Karabeyoglu et al., followed 

by a wide array of fundamental and applied investigations into combustion phenomena and auxiliary technologies 

associated with the use of paraffin [3].  These investigations have incremented the technology readiness level 

sufficiently to enable (1) the development and testing of Peregrine, a sounding rocket capable of flying a 5 kg payload 

to 100 km altitude propelled by a paraffin-based fuel formulation and nitrous oxide, and (2) the consideration of a 

paraffin-based propulsion system for the Mars Ascent Vehicle of the Mars Sample Return mission operated by the 

NASA Jet Propulsion Laboratory [4, 5].  Notable is the absence of documented plans to use paraffin for in-space 

propulsion, considering the possibility of impending regulations for orbital debris mitigation which could significantly 

increase the number of low-Earth-orbit satellites requiring onboard propulsion.  A 2013 study by DeLuca et al. 

considered hydroxyl-terminated polybutadiene (HTPB) and paraffin as candidate fuels for an active space debris 

removal mission, but eliminated paraffin due to the need for multiple burns and high mechanical strength [6, 7].  
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However, since that research was conducted, Narsai demonstrated improvements in paraffin mechanical strength by 

the addition of 2% stearic acid by mass and Stober et al. demonstrated reliable hypergolic ignition of lithium—

aluminum—hydride(LAH)-doped paraffin wax [8, 9].  The latter results enable multiple restarts of paraffin and 

strengthen the argument for the use of paraffin as a fuel for an in-space propulsion system. 

In parallel and in response to the aforementioned progression of technological maturation of paraffin as a high-

performing hybrid rocket propellant, non-conventional, bio-derived hybrid rocket fuels have also been investigated, 

including lard, tallow, edible oils, and beeswax.  Early work in this area conducted by Lyne et al. identified beeswax 

as a promising area of research focus due to its combination of regression rate and mechanical stability as compared 

to softer bio-derived fuels [10].  This work was followed by numerous others at multiple research institutions, a 

detailed review of which follows and suggests that further investigation into beeswax as a high-performing hybrid 

rocket fuel is merited. 

III. Review of Literature 

A. Paraffin 

The use of paraffin wax as an in-space propellant follows extensive investigation of paraffin as a hybrid rocket 

fuel by private companies, government researchers, and academic organizations internationally, including but not 

limited to such varied topics as novel fuel formulations for increased performance and combustion stability, internal 

geometry optimization, regression rate improvements, oxidizer swirling for improved combustion efficiency, injector 

design, self-pressurizing oxidizer tank dynamics, the analysis of droplet formation and combustion above the solid 

fuel surface, fuel/oxidizer mixture ratio control, and numerical examination of radiative wall heat flux, among many 

others [11-19]. 

Independent from progress in paraffin investigations, numerous research studies focused on the search for green 

propellant alternatives to state-of-the-art in-space propellants such as hydrazine (N2H4), monomethylhydrazine 

(MMH, CH3(NH)NH2), nitrogen tetroxide (NTO, N2O4), and strong acids, which despite high performance and 

decades of heritage suffer from costly toxicity, carcinogenicity, and environmental threats [20-22].  The two most 

investigated green propellant substitutes have been AF-M315E and LMP103S, which are hydroxylammonium nitrate 

(HAN, [NH3OH]NO3) and ammonium dinitramide (ADN, [NH4][N(NO2)2]) based on liquid monopropellants, 

respectively [23-27].  Bi-liquid green propulsion systems have also been considered as alternatives to hydrazine and 

NTO, including a nitrous oxide/ethylene combination as well as energetic ionic liquids [28-30]. 

The earliest reviewed work that considered doping paraffin with LAH was that of DeSain et al. [31-33].  These 

studies examined the hypergolic ignition of LAH-doped paraffin with various oxidizers under pure oxygen 

environments.  Following this work, Stober et al. characterized the hypergolic ignition of LAH-doped paraffin and 

analytical reagent grade nitric acid, among other oxidizers, at various LAH loadings in standard atmospheric 

conditions as well as under vacuum and up to 2.03 MPa pressures [9].  The reliable ignition of LAH and LAH-doped 

wax above 50% LAH loadings and at a wide range of pressures warrants deeper investigations into the use of wax as 

fuel for an in-space hybrid chemical propulsion system. 

B. Beeswax 

1) Evaluation as a Hybrid Rocket Fuel 

The field of beeswax-fueled hybrid chemical propulsion is considerably underdeveloped compared to paraffin.  

An extensive search of literature related to beeswax hybrid rocket fuels yields a series of initial studies at the University 

of Tennessee, Knoxville culminating in two postgraduate theses [10, 34, 35], a series of annual senior design projects 

at Central Connecticut State University [36-44], and the lone peer reviewed article in the field of beeswax propulsion 

by the Egyptian Space Technology Centre [45].  Most of these works generally investigated a broad range of bio-

derived hybrid rocket fuels, but beeswax consistently proved most practical as a hybrid rocket fuel. 

In the earliest available work on the topic known to the authors, Lyne et al. point out that the energy densities of 

lard, tallow, partially hydrogenated coconut oil, and beeswax are comparable to traditional hydrocarbon fuels, but 

focus the study on theoretical combustion temperature and specific impulse, mechanical strength, and regression rate 

of paraffin, lard, beeswax, and some select mixtures thereof [10].  Nineteen successful hot fires with gaseous oxygen 

were conducted of 7 to 10 s burn times with 12.7 and 25.4 mm fuel grain port diameters.  Beeswax exhibited 

mechanical strength superior to lard (which was consistently subject to spallation) and experimentally-determined 

time- and space-averaged regression rates as a function of oxidizer mass flux were on par with paraffin wax. 

Scholes contributed considerable experimental data on beeswax combustion beyond the original work of Lyne, 

resulting in regression rates for beeswax higher than those reported for paraffin [3] at all tested oxidizer fluxes 

(approximately 3-10 g/cm2s) [34].  Putnam expanded the research to include combustion experiments with nitrous 
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oxide as an oxidizer and theoretical analyses of aluminum powder as an additive to beeswax fuel [35].  Analytical 

results suggested that the addition of 20% aluminum powder to beeswax burning with gaseous oxygen improved the 

specific impulse by about 1% at both 1.03 and 3.45 MPa chamber pressures, though nozzle area ratios were not 

specified.  Experimental results reaffirmed regression rates for pure beeswax burning with gaseous oxygen 

consistently higher than or equal to those reported for paraffin [3] at all tested oxidizer fluxes (3.5-6.5 g/cm2s). 

A series of studies by Naoumov et al. from 2013 to 2020 attempted to establish regression rate comparisons 

between paraffin, beeswax, and each of these with up to 10% micron-sized aluminum powder added for fuel grain 

port diameters of 12.7, 25.4, and 38.1 mm at combustion chamber pressures of 0.448 to 0.965 MPa [36-44].  Over 150 

hot fires were conducted with gaseous oxygen alongside theoretical thermodynamic calculations which showed (1) 

little influence of aluminum addition on regression rate, (2) experimentally-determined regression rates of beeswax 

above those for paraffin reported by Karabeyoglu [3] but below those for beeswax reported by Putnam [35] at similar 

conditions; namely, oxidizer mass fluxes between 0.7 and 1.75 g/cm2s.  Experimental efforts in these studies were 

plagued with low oxidizer mass flow rates (0.5-0.95 equivalence ratios), though in the most recent work attempts at 

increasing the mass flow rate of gaseous oxygen proved successful [44].  An idiosyncrasy of this series of studies is 

the novel attempt to estimate unburned fuel losses using thermocouples placed downstream of the nozzle exit, 

predominantly discussed in Naoumov 2015 [39].  The publication most focused on beeswax and beeswax with 

aluminum additive results is that of Naoumov 2016a [40].  Throughout this series of studies, fuel grains were drip 

casted and geometric voids were observed, though improvements in the drip casting process were noted by Naoumov 

2020 [44] which were characterized by low-conductivity casting materials housing the solidifying wax. 

Most recently, Makled investigated regression rates in beeswax burning with gaseous oxygen [45].  This work 

differs from that of Naoumov in that significantly higher oxidizer mass fluxes were used, in part due to initial port 

diameters of 7 mm.  Over a 12 to 15 g/cm2s range of oxidizer mass fluxes, Makled reported space- and time-averaged 

beeswax regression rates between 1.4 and 1.6 mm/s.  Also of note is the drip casting process used, which leveraged 

extremely slow cooling to reduce voids and x-ray scans of the casted fuel grain in order to ensure adequately casted 

grains. 

2) In the Context of Non-Propulsion Space Exploration Efforts 

In parallel to applied research on the use of beeswax as a hybrid rocket propellant in the near term, some researchers 

are separately considering the utility of bees as pollinators in far-future off-Earth agricultural efforts.  The potential 

establishment of beeswax as a viable alternative to state-of-the-art rocket fuels would add merit to the idea of using 

honey bees to pollinate, thereby yielding honey and wax for consumption and fuel, respectively.  Motivated by this 

futuristic concept, various researchers have attempted to understand the behavior of bees in microgravity.  Vandenberg 

et al. developed a honey bee experiment which flew onboard STS-41-C in 1984 in order to assess survivability as well 

as behavior and comb-building activity of western honey bees, Apis mellifera, in the long-term microgravity 

environment [46, 47].  This experiment housed roughly 3400 worker bees and one queen over a seven-day spaceflight 

mission and resulted in the bees’ moderate adaptation to the microgravity environment including comb construction 

and flying without collisions after several days of adjustment, as well as less than 1.5% bee morality.  Comb 

geometries differed significantly from those on Earth, but the queen was still able to lay eggs in orbit. 

MIT researchers unaffiliated with the authors launched approximately 40 bees on a suborbital spaceflight onboard 

a Blue Origin New Shepard rocket, NS-11, in early 2019, including two fertilized queen bees while keeping two 

fertilized queen bees on Earth as a control group in order to understand the effect microgravity flights have on bee 

behavior after returning to their native environment [48, 49].  Publication of the results of that flight are still pending.  

Stasiowska flew A. mellifera onboard two low-altitude sounding rockets with significant g-loadings, used 

environmental measurements to infer bee behavior, and encountered significantly greater mortality rates compared to 

Vandenberg (up to 50% on one flight) which they attributed to the absence of a queen and the impact of vehicle 

vibrations [50]. 

IV. Technical Approach 

The review of literature suggested that continued focus on beeswax was warranted as a high-regression-rate fuel 

for chemical propulsion systems.  Therefore, a reliable method of beeswax production which facilitated repeatable 

batches was developed, and beeswax was included alongside paraffin in drip casting and centrifugal casting efforts 

described herein. 

A. Beeswax Refinement and Chemistry 

The production of beeswax for the research described herein began with beekeeping detritus sourced in 

collaboration with the Urban Beekeeping Laboratory and Bee Sanctuary, an affiliated non-profit research arm of the 
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Best Bees Company of Boston, Massachusetts [51, 52].  This organization provided the detritus at no cost, as they 

would typically expend resources to compost the wax.  The detritus comprised three forms of waste wax from 

beekeeping: capping, honeycomb, and brood comb wax.  Capping wax – the white, almost pure wax used by bees to 

cover their honeycomb – is the wax that produces the highest yield as measured by resulting mass of usable fuel and 

is most often used in the production of commercial-grade beeswax.  Both regular comb wax, where bees store their 

honey, and brood comb, where bees store their larvae, also contain some amount of usable wax as well as honey, bees 

(both dead and alive), waste, and other living organisms. 

The wax refined in this study was processed from this state utilizing a double filtration process common in small-

scale beeswax production [52].  The detritus was immersed in water and left to sit sealed overnight to remove residual 

honey and terminate any remaining living organisms, thereby making it safer with which to work.  The detritus was 

then placed into boiling water and allowed to melt completely in a melting pot.  The melting pot was turned off after 

the wax had completely melted and allowed to cool completely overnight.  When the wax resolidifies, it remains 

separate from the water and forms a wax cake at the top of the melting pot.  The slower the wax is allowed to cool, 

the more sediment will be able to settle at the bottom of the pot, thereby producing a cleaner wax cake.  This process 

aids in separating the majority of unusable waste from the wax.  This waste, also known as slumgum, is commonly 

used as a firestarter or fertilizer.  The wax cake can be pressed down and removed from the melting pot.  Note that the 

bottom of the wax cake will have additional sediment, mostly comprising pollen.  This sediment can be scraped off 

and discarded to make the next step of filtration easier. 

The second filtration does not require the wax to be melted in water and can be conducted in a dry melting pot.  It 

is important to monitor the temperature of the wax as it is melted, as heating the wax above 85 °C risks discoloration 

of the wax and the flash point lies slightly above 250 °C [53].  Once the wax is fully melted, it is poured through a 5 

μm mesh size filter sheet to remove the last of the sediment from the usable beeswax.  It is important to pour the wax 

into a container that can be manipulated, such as a silicon mold or a plastic tub, to aid in the later removal of the wax.  

The 5 μm mesh size filter was chosen at the direction of [51] to allow only the wax through.  This filtration step can 

be repeated as many times as necessary to achieve adequately clean wax and is also useful in refiltering wax 

contaminated by dirt or similarly-sized particles in the laboratory setting. 

The resulting beeswax is a highly-complex composite of over 300 unique chemical compounds including esters 

(67%), hydrocarbons (14%), free acids (12%), alcohols (1%), and other substances [54, 55, 56].  These proportions 

correspond to beeswax produced from A. mellifera (western honey bee), the most common species of honey bee 

globally, and exact chemical composition may vary slightly based on environmental factors [56].  In particular, the 

beeswax chemical composition literature reports a large presence of triacontanol (CH3(CH2)29OH; up to 65%, per 

Putnam [35]), a molecule with extraordinary similarities to the paraffin wax used in this study as well as many prior 

studies, CH3(CH2)30CH3.  An average chemical formula for beeswax used by Putnam and Naoumov is C46H92O, with 

molecular mass of 661.2 g/mol [35, 40].  Using this chemical formula, the stoichiometric global reactions for the 

combustion of beeswax and paraffin with molecular oxygen and nitrous oxide are shown in Reactions [1-4]. 

 

Beeswax with Molecular Oxygen:   C46H92O + 68.5 O2 → 46 CO2 + 46 H2O      [1] 

 

Paraffin with Molecular Oxygen:   C32H66 + 48.5 O2 → 32 CO2 + 33 H2O       [2] 

 

Beeswax with Nitrous Oxide:     C46H92O + 137 N2O → 46 CO2 + 46 H2O + 137 N2   [3] 

 

Paraffin with Nitrous Oxide:     C32H66 + 97 N2O → 32 CO2 + 33 H2O + 97 N2     [4] 

 

The corresponding oxidizer-to-fuel mass ratios for these four reactions are 3.32, 3.44, 9.12, and 9.47, respectively.  

A careful analysis of the percent reduction in volume was conducted in order to ensure that casting tubes were properly 

filled with liquid immediately prior to casting with the goal of producing a solid wax fuel grain with an outer to inner 

diameter ratio of 2 corresponding to a 75% volume fill factor.  For these shrinkage observations, known volumes of 

each wax were poured into a beaker and allowed to cool and solidify, yielding a considerable meniscus.  The meniscus 

was filled with a carefully measured quantity of water equal to the displaced volume of wax due to solidification.  This 

process resulted in volume reduction percentages of 13.3 ± 0.22% and 18.7 ± 0.62% for paraffin and beeswax, 

respectively, resulting in liquid volumetric fill factors at the onset of centrifugal casting of 86.5 and 93.4%.  The 

melting temperatures of beeswax and paraffin are reported as 63-65 °C and 68-70 °C, respectively [56, 9]. 
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B. Drip Casting vs. Centrifugal Casting 

While centrifugal casting of paraffin wax has become commonplace due to a desire to produce a fuel grain absent 

of voids and cracks, no evidence was found in the literature of prior efforts to investigate the formation of beeswax 

into annular fuel grain geometries, either by drip or centrifugal casting.  Therefore, a side-by-side drip casting 

comparison was carried out and is shown in Figs. 3 and 4 for paraffin and beeswax, respectively.  For each of these 

cases, a 50.8 mm inner diameter polycarbonate tube was filled with liquid wax at approximately 80 °C and a mandrel 

of 25.4 mm diameter placed at the center of the drip casting tube. 

 

 

Fig. 3  Drip casting process of paraffin showing phase change and resulting voids much deeper into the 

geometry than would be obvious to an observer from simple handling. 

 

Fig. 4  Drip casting process of beeswax showing that beeswax is generally susceptible to similar voids as 

compared to drip casted paraffin. 

 

Figures 3 and 4 illustrate that both paraffin and beeswax are susceptible to voids due to volume reduction during 

solidification.  Previous work by author Stober attempted to address void production during drip casting by breaking 

down the drip casting process into a series of smaller casts, but cracks and voids were still produced, as seen in Fig. 

5.  Taken together, Figs. 3-5 shows the justification for centrifugal casting, as solidified wax is continuously deposited 

on the outermost point in can reach via centrifugal forces, thereby mitigating void production. 
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Fig. 5  Drip casted paraffin fuel grain casted in five roughly equal heights (left to right) using a mold and 

mandrel exhibiting cracks and voids due to volume reduction upon solidification. 

 

To facilitate the centrifugal casting process in the laboratory, an experimental setup was designed and constructed 

which comprised t-slotted framing for stability and ease of alignment, a DC motor controlled by an Arduino and 

driving the casting tube via an aluminum interface plate (the fore end).  At the aft end of the casting tube, an aluminum 

ring holds an acrylic window for viewing the progression of the wax solidification front.  A protruding from the aft 

end window engages a linear bearing which is mounted on the t-slotted framing and stabilizes the aft end.  Casting 

tubes were variously made of 3.175 mm thick aluminum or polycarbonate, depending on the goals of the particular 

test.  Aluminum exhibits thermal conductivity four orders of magnitude greater than polycarbonate (154 W/mK vs. 

0.2 W/mK [57, 58]), but polycarbonate has the advantage of optical transparency.  Therefore, polycarbonate is used 

on all early tests where the image analysis routine is being developed, including those described herein.  Ultimately, 

identical tests will be run with aluminum exchanged for polycarbonate which will aid in the isolation of the influence 

of thermal conductivity on solidification rate. 

Prior work by the authors determined the time to form an annulus as a function of rotation rate for water, SAE 

5W-30 motor oil, and liquid paraffin wax in 1g and in microgravity [2].  The paraffin results for a grain geometry 

identical to the current study are repeated in Fig. 6.  From this data, a rotation rate of 1850 RPM was chosen.  The 

time taken to form an annulus was not so relevant as was the assurance that we were well above the critical threshold 

to maintain a smooth annulus. 

 

 

Fig. 6  Result from a prior study by the authors [2] showing the ability of liquid paraffin to form a smooth 

annulus at various rotation rates for an identical geometric and environmental case to that studied herein. 
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Figure 7, also from a prior study by the authors, shows the progression of turbulent to laminar flow as the rotation 

rate of liquefied paraffin is accelerated from 1450 to 1700 RPM.  The formation of a smooth annulus followed about 

10 to 15 s after sending the rotation rate increase command.  Figure 7d) shows the state of paraffin wax immediately 

prior to beginning optical data acquisition for the image analysis described herein.  Prior to this moment, paraffin was 

melted in a heating pot to approximately 110 °C, poured into the tube up to a marked fill line (which is positioned 

based on the aforementioned shrinkage analysis), and installed on the test rig.  The time between initial opening of the 

melting pot flow valve and beginning of casting tube rotation was approximately two minutes, and the average 

temperature of paraffin at onset of rotation was always above the melting temperature, as only rarely small amounts 

of paraffin adjacent to highly-thermally-conductive aluminum parts had solidified prior to rotation but always re-

melted immediately. 

 

 

Fig. 7  Progression of smooth annulus formation in liquefied paraffin wax as the rotation rate is increased from 

1450 to 1700 RPM. 

C. Wax Solidification Imagery Analysis 

In order to determine the behavior of both beeswax and paraffin wax in the centrifugal casting chamber, two videos 

were taken with a GoPro HERO 7 Black at 60 frames per second (fps) and an image analysis script was created in 

Python to evaluate the rate at which the wax solidified.  Individual frames were binarized to differentiate between the 

solidified and liquid wax and a length of solidification in units of number of pixels was obtained from these binarized 

frames.  A preliminary analysis revealed that using only one fps significantly reduced computation time without 

causing a reduction in accuracy.  A pixels-to-physical-distance scale conversion factor was obtained by averaging the 

pixel values obtained from the o-ring groove present on the face of the solidification chamber, as the width of the o-

ring groove is known a priori. 

There is slight ambiguity in tracking the solidification front because there are sometimes two interfaces observed.  

The authors hypothesize the presence of solid, liquid, and semisolid phases in paraffin and beeswax based on 

observations of numerous centrifugal casting experiments.  Therefore, the interface between liquid and semisolid is 

termed the leading edge solidification front, while the interface between solid and semisolid is termed the trailing 

edge solidification front.  The presence of two solidification fronts is particularly salient in beeswax casting due to 

significant color differences between these three proposed phases – a fact that reduces noise in image analysis results 

as compared to those for paraffin.  The existence of multiple solidification fronts is congruent with aforementioned 

literature which posits that beeswax is a composite of over 300 chemical constituents, certainly with varying melting 

temperatures that would cause portions to soften before others.  Examples of the solidification process as viewed 
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through the aft window can be seen in Figs. 8 and 9, where the trailing and leading edge solidification fronts are 

visible, respectively. 

 

 

Fig. 8  Solidification of paraffin wax during the centrifugal casting process showing the progression of the 

trailing edge solidification front (red dotted line) migrating radially inward, as is the case for all tests. 

 

 

Fig. 9  Solidification of paraffin wax during the centrifugal casting process showing the progression of the 

leading edge solidification front (white dotted line) migrating radially inward. 

 

Note that the difference between the semisolid and liquid phase could be described as one of opacity, while the 

difference between the semisolid and solid phase could be described as one of color.  This fact causes the Python 

routine to most easily track the leading edge solidification front.  Therefore, all results presented here correspond to 

that front.  Examples of the binarized images for beeswax are shown in Fig. 10 and comprise a series of 12 frames, 

each spaced 1 minute apart in the solidification process.  The o-ring groove where the aforementioned conversion 

factor is obtained can be seen as the first black band in each frame.  The white region immediately radially inward 

from the o-ring is partially comprised of an aluminum lip, seen also in Fig. 9, as well as the solidified wax up to the 

leading edge solidification front.  The aluminum lip exhibits a constant pixel count in each frame which can be 

subtracted from the total white pixels counted leaving only the number of pixels representing solid wax.  Full 

solidification in Fig. 10 occurs after about 10 minutes time. 
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Fig. 10  Binarization of the upper region of the solidification chamber displaying the solidification process of 

beeswax.  Each image displays data from one additional minute after onset of rotation. 

 

V. Results 

The solidification process can be seen in Fig. 11 for both the beeswax and paraffin.  Because beeswax has a 

distinguishable color difference between liquid and semisolid phases (light yellow semisolid beeswax vs. medium 

brown liquid beeswax, evident in Fig. 4), it was easy for the image analysis routine to accurately calculate distance 

solidified.  Note that two brief decreases in the solidification of beeswax can be seen in Fig. 11a and are a result of 

momentary spin down and spin up of the driving DC motor in order to understand impact on solidification rate.  In 

both cases, the wax remelts – a result that is not an artifact of the image analysis, as it can clearly be seen in captured 

video. 

The solidification process for paraffin wax, shown in Fig. 11b, however, was considerably more difficult to 

measure due to the relative transparency of paraffin wax in a liquid state and the tendency of the wax to diffuse light, 

even through extremely thin solidified slivers, which resulted in inconsistent ambient lighting within the chamber.  To 

address this, the video was divided into two temporal phases, the first encompassing the initial six minutes of 

solidification and the second encompassing the remainder of captured video.  The solidification was determined for 

these two videos in the horizontal and vertical directions, respectively.  Due to parallax caused by the image acquisition 

setup, data from the initial six minutes needed to be multiplied by a constant correction factor of 1.23 representing the 

ratio of pixel sizes from the leftward and upward directions.  That is, pixels located directly above the center of the 

casting tube represent a larger true area than pixels located directly to the left of the center of the casting tube, an 

artifact of the experimental setup geometry and camera placement which is accounted for via the correction factor. 
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Figure 11  Solidification process of a) beeswax and b) paraffin wax resulting from the Python-based image 

analysis code developed herein.  Each test was characterized by a 50.4 mm inner diameter, 254 mm length 

polycarbonate casting tube of 3.175 mm thickness and rotation rates in excess of 1500 RPM.  Noise in paraffin 

results caused by ambient lighting effects which uniquely impacted paraffin phase contrast. 

 

From Fig. 11, it’s clear that beeswax completed its solidification in approximately 22% less time than paraffin 

under identical conditions, despite having to cover a 29% farther solidification distance due to coning.  This was 

because the final inner diameters of beeswax and paraffin were approximately 17 and 25 mm instead of the ideal 25.4 

mm.  This is caused by heat leaving the endcaps and allowing greater solidification at the longitudinal ends of the fuel 

grain as compared to the center.  Figure 12 shows the cross-sectional view of the paraffin fuel grain that resulted from 

the casting plotted in Fig. 11b.  Recall that the fore end cap is completely aluminum and the aft end cap is an aluminum 
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ring holding up an acrylic window as viewed in Figs. 8 and 9.  The presence of aluminum on each end cap provides 

an exit path for heat leading to non-uniformities in fuel grain inner diameter.  Furthermore, the simple existence of an 

endcap, no matter the material, causes the 1D assumption of wax solidification to never be fully accurate.  In the best 

case scenario, the endcap material has infinite thermal resistance, leading to the 1D assumption holding and identical 

annular cross sections at each longitudinal station.  In the worst case scenario, the endcap comprises a material with 

zero thermal resistance and wax preferentially solidifies at the endcaps, sealing them off and leaving a hollow cavity 

in the longitudinal center of the resulting fuel grain.  The actual endcap is closer to the best case scenario than worse, 

as acrylic exhibits a very low thermal conductivity nearly identical to polycarbonate at 0.2 W/mK [59]. 

 

 

Fig. 12  Cross-sectional view of annular paraffin wax fuel grain after centrifugal casting at 1850 RPM 

illustrating coning at each longitudinal edge caused by heat escaping the through the endcaps. 

 

From Fig. 11, the total trajectory of solidification for beeswax is approximately 16.7 mm in 600 s, while that for 

paraffin is 12.9 mm in 765 s.  From these values, a time- and space-averaged solidification rate for beeswax and 

paraffin is calculated as 0.028 and 0.017 mm/s, respectively.  That is, on average, the radial accumulation rate of solid 

wax in the casting tube was 65% greater for beeswax at any given moment as compared to paraffin.  In order to 

determine instantaneous solidification rate, the raw data from Fig. 11 was differentiated.  As expected, this yielded 

highly noisy solidification rate results.  Binning schemes which averaged the instantaneous solidification rate over 10 

and 50 data points were executed and compared to the unbinned solidification rate.  Ultimately, binning by 10 

optimally smoothed the data without excessively removing informative data points.  Figure 13 shows the instantaneous 

solidification rates of beeswax and paraffin over the entire centrifugal casting process. 
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Fig. 13  Instantaneous solidification rates for a) beeswax and b) paraffin wax during the centrifugal casting 

process, determined by differentiating raw data output from the Python-based image analysis routine and 

binning by 10.  Each test was characterized by a 50.4 mm inner diameter, 254 mm length polycarbonate casting 

tube of 3.175 mm thickness and rotation rates of 1850 RPM.  Noise in paraffin results are caused by ambient 

lighting effects which uniquely impacted paraffin phase contrast. 

 

Figure 13 illustrates the gradual and steady increase of solidification rate over time observed during the centrifugal 

casting tests.  The trend was somewhat surprising to the authors.  In the earlier portions of the centrifugal casting 

process, there is a greater solid/liquid interface surface area through which heat can escape as compared to later in the 

casting process.  However, later in the process a greater portion of the wax mass is in the solid phase, which exhibits 

approximately 50% greater thermal conductivity than the liquid phase, accelerating the expulsion of heat from the 
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center of the fuel grain.  These two phenomena have opposite influences on the solidification rate with time, but it 

appears that the latter effect dominates and solidification accelerates with time, albeit slightly. 

VI. Conclusions and Future Work 

An overarching research framework was presented which builds upon existing literature with the long-term goal 

of reusing wax phase change material onboard a satellite as a fuel for an in-space propulsion system.  This research 

agenda includes fundamental and applied, experimental and computational studies and includes the contributions of 

expert collaborators.  The current phase of study lies in the area of centrifugal casting in multiple gravitational and 

thermal environments and gaining understanding in the fundamentals of beeswax fuel; while upcoming work will 

focus on on-orbit heat transfer simulations and hot fires within a small-scale experimental rig. 

An extensive literature review of paraffin and beeswax as hybrid rocket propellants was carried out which 

suggested that further research into beeswax performance was merited based on favorable reported regression rates 

with gaseous oxygen, albeit at very low oxidizer fluxes.  A beeswax refinement process was developed under the 

guidance of experts and perfected in the laboratory.  The beeswax refinement process took beekeeping waste destined 

for a composting facility and converted it to hybrid rocket fuel which was then used throughout centrifugal casting 

studies and is planned for use in side-by-side combustion studies with paraffin in the future.  Beeswax and paraffin 

wax volume shrinkage during phase change from liquid to solid was carefully evaluated in order to inform filling 

fractions of the casting tube with liquid wax and reliably produce solid wax fuel grains with customary 2:1 outer-to-

inner diameter ratios. 

Numerous centrifugal casting experiments were run on a tabletop setup in the laboratory with paraffin and beeswax 

in form factors congruent with small-scale hybrid rockets, two of which were selected for analysis in the current study.  

An image analysis code was developed which automated the process of observing the centrifugal casting process 

through an acrylic window on the aft (non-motor) end and using pixel counts calibrated to known o-ring thicknesses 

to determine solidified distance of wax once per second over a casting time between 10-13 minutes.  Once 

solidification distances were inferred from video footage, data was differentiated to estimate instantaneous 

solidification rates which revealed that the rate slightly but steadily increased over time for both beeswax and paraffin, 

though moreso for beeswax. 

Coning was observed in both the paraffin and beeswax casted grains, though considerably more with the latter 

wax.  Future work will utilize aluminum as the casting tube material.  With its four-order-of-magnitude increase in 

thermal conductivity as compared to polycarbonate, casting time and coning should be significantly reduced.  

Furthermore, testing has already begun to evaluate casting tube length and diameter dependence for both waxes. 

An upcoming flight onboard a parabolic trajectory microgravity aircraft will complement results from two prior 

flights on this same vehicle.  The next flight will be the first of this research effort involving liquefied paraffin and 

beeswax for determining rotation rate thresholds in microgravity which sustain reliable annulus formation in form 

factors identical to those presented in this work. 

An upcoming flight on the Blue Origin New Shepard vehicle will provide three minutes of uninterrupted 

microgravity time to attempt an entire solidification run on paraffin inside of a casting chamber considerably smaller 

than those used in this study, due to the 2U allowable volume of the entire experiment including heater, camera, and 

control systems. 
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