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Correlated Orienteering Problem and it Application
to Persistent Monitoring Tasks

Jingjin Yu Mac Schwager Daniela Rus

Abstract

We propose a novel non-linear extension to the OrienteeringProblem (OP), called the Correlated Orienteering
Problem (COP). We use COP to model the planning of informative tours (cyclic paths) for the persistent monitoring
of a spatiotemporal field with time-invariant spatial correlations, in which the tours are constrained to have fixed-
length or -time budgets. Our focus in this paper is QCOP, a quadratic COP formulation that only looks at correlations
between neighboring nodes in a node network. The main feature of QCOP is a quadratic utility function that
captures the said spatial correlation. QCOP may be solved using mixed integer quadratic programming (MIQP),
with the resulting anytime algorithm capable of planning multiple disjoint tours that maximize the quadratic utility.
In particular, our algorithm can quickly plan a near-optimal tour over a network with up to 150 nodes. Besides
performing extensive simulation studies to verify the algorithm’s correctness and characterize its performance, we
also successfully applied it to two realistic persistent monitoring tasks:(i) estimation over a synthetic spatiotemporal
field, and(ii) estimating the temperature distribution in the state of Massachusetts.

I. INTRODUCTION

Consider the problem of dispatching unmanned aerial vehicles (UAVs) with on-broad cameras to monitor road
traffic in a large city. Often, UAVs have limited range and canstay in air only for a limited amount of time.
On the other hand, traffic events such as congestion tend to have strong local correlations,i.e., if the vehicle
density at an intersection is high, the same is likely true atintersections that are close-by. Therefore, sequentially
visiting intersections following the road network’s topological structure may offer little incremental information. As
UAVs are not restricted to travel along roads, routes with carefully selected, not necessarily adjacent intersections
can potentially offer much better overall traffic information per unit of traveled distance. Under such settings,
the following question then naturally arises: how to plan the best tours for the UAVs so that they can collect the
maximum amount of traffic information per flight? Application scenarios like this are far from unique. For example,
nearly identical settings appear when we want to deploy autonomous marine vehicles to collect samples for the
detection of water pollution events such as oil spills, or when a political candidate wants to maximize his/her reach
given limited travel and time budgets. A graphical example illustrating the settings of such problems is provided
in Figure 1.

In persistent surveillance and monitoring tasks using mobile robots with onboard sensors, the robots usually have
fixed base stations which they must depart from and return to.Moreover, these robots often have limited travel
distance or time budget. Thus, when a large number of points of interest (nodes) must be surveyed, it may well
be the case that only a subset of the nodes can be visited by therobots. Then, choices among the nodes must
be made to accommodate two conflicting goals:(i) each robot must follow a tour (cyclic path) of which the total
cost does not exceed its travel budget, and(ii) the tours must be planned to maximize the amount of collected
information, as measured by some utility (reward) function. When nodes have information utilities that are additive,
an Orienteering Problem(OP) Vansteenwegen et al. (2011), a problem closely relatedto the well knownTraveling
Salesman Problem(TSP) Laporte (1992), is obtained. Research on OP has yielded effective algorithms for solving
many versions of the problem, including theTeam Orienteering Problem(TOP) Chao et al. (1996a), in which
multiple tours must be planned.1
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Fig. 1. [top] A surveillance scenario in which an UAV with limited range is faced with the problem of covering a large number of nodes.
[bottom] The abstracted node network (dots and solid lines)and the tour (dashed lines) taken by the UAV. As a measurementis made from
the UAV at a node, for example the dark node in the figure, through spatial correlation, partial information about its neighbors can also
be inferred from the same measurement (in this case, the neighbors are the three nodes connected to the dark node though the three bold
edges). Following the dashed tour lines, which is much shorter than a traveling salesman (TSP) tour, the UAV can provide at least partial
information about every node in the network.

In practice, however, the information collected at a node isfrequently correlated with the information collected
at adjacent nodes, rendering the total utility a non-linearcombination of individual node utility. That is, it is often
the case that such information can be viewed as forming a locally-correlated spatiotemporal field; surveying a
given node will also offer partial information about its neighbors. For example, the nodes may be cities, city
blocks, and locations in reservoirs with the associated quantities being population dynamics, criminal activities, and
water pollutant concentration, respectively. In this paper, assuming that the spatial correlation among the nodes are
intrinsic (i.e., determined by local structures and mostly time-invariant) we propose an extension to OP, called the
Correlated Orienteering Problem(COP), to incorporate such correlations in the informativepath planning phase.
We do not assume convexity or submodularity over the underlying field. In particular, we focus on QCOP, a COP
instantiation that only looks at correlations between immediate neighbors. After formulating COP and QCOP, we
derive mixed integer quadratic programming (MIQP) models for solving the problem for single and multiple robots.
Our simulation studies suggest that(i) QCOP captures spatial correlations among the nodes quite well, and (ii) the
MIQP-basedanytimealgorithm quickly yields approximate solutions to the QCOPproblem for instances of up to
150 nodes with user-specified optimality bounds. We note that COP and QCOP are NP-hard problems.

Related work: Our work fuses ideas from two relatively disjoint branches of research: (discrete) OP and
(mostly continuous) informative path and policy planning problems. OP, as indicated by its name, has its origin
from orienteering games Chao et al. (1996a,b). In such a game, rewards of uniform or varying sizes are spatially
scattered. To collect a reward, a player must physically visit the location where the reward is placed to pick it up.
The goal for a player or a team of players is to plan the best path(s) to gather the maximum possible reward given
limited time. Thus, OP can be viewed as a variation of both theKnapsack Problem (KP) Karp (1972) and the
Traveling Salesman Problem (TSP) Laporte (1992). For a detailed account of OP, see Vansteenwegen et al. (2011).

The literature on informative path and policy planning for persistent monitoring is fairly rich Michael et al. (2011);
Smith et al. (2011); Alamdari et al. (2012); Arvelo et al. (2012); Cassandras et al. (2013); Girard et al. (2004);
Grocholsky et al. (2006); Lan and Schwager (2013); Nigam andKroo (2008); Ny et al. (2008); Smith et al. (2012);
Soltero et al. (2012); Hollinger and Sukhatme (2014); Yu et al. (2014a), covering theories, systems, algorithm
designs, and applications. In the works presented in Alamdari et al. (2012); Arvelo et al. (2012); Lan and Schwager
(2013); Ny et al. (2008); Smith et al. (2012); Hollinger and Sukhatme (2014), fundamental limits as well as prov-
ably correct algorithms were established for a variety of persistent monitoring problems. At the same time,
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comprehensive systems have been designed to address specific application domains, such as ground, aerial, and
underwater applications Michael et al. (2011); Smith et al.(2011); Girard et al. (2004); Grocholsky et al. (2006);
Nigam and Kroo (2008). On work most closely related to ours, in Alamdari et al. (2012), iterative TSP paths are
planned to minimize the maximum latency across all nodes in aconnected network. The authors show that the
approach yieldsO(logn) approximation on optimality in whichn is the number of nodes in the network. The problem
of generating speed profiles for robots along predeterminedcyclic paths for keeping bounded the uncertainty of
a varying field is addressed in Smith et al. (2012), in which the authors characterize appropriate policies for both
single and multiple robots. In Soltero et al. (2012), decentralized adaptive controllers were designed to morph the
initial closed paths of robots to focus on regions of high importance.

Sampling based planning methods (e.g. PRM, RRT, RRT∗ and their variations Kavraki et al. (1996); LaValle
(1998); Karaman and Frazzoli (2011)) have also been appliedto informative path planning problems. In Hollinger and Sukhatme
(2014), Rapidly-Exploring Random Graphs (RRG) are combined with branch and boundmethods for planning the
most informative path for a mobile robot. In Lan and Schwager(2013), the authors tackle the problem of planning
a cyclic trajectory for best estimation of a time-varying Gaussian Random Field, using a variation of RRT called
Rapidly-Expanding Random Cycles (RRC).

Lastly, our problem, and OP in general, also has acoverageelement. Coverage of a two-dimensional region
has been extensively studied in robotics Choset (2000, 2001); Gabriely and Rimon (2003), as well as in purely
geometric settings, for example, in Chin and Ntafos (1988),where the proposed algorithms compute the shortest
closed routes for continuous coverage of polygonal interiors under an infinite visibility sensing model. Coverage
with limited sensing range was also addressed later Hokayemet al. (2008); Ntafos (1991).

Contribution: This paper brings three main contributions:

• We introduce COP as a novel non-linear extension to OP, to model and harness time-invariant spatial correla-
tions that are frequently present in informative path and policy planning problems. In particular, our formulation
addresses the challenging problem of planning informationmaximizing tours for single and multiple robots
under a limited travel budget.

• We provide complete mixed integer quadratic programming (MIQP) models for solving a QCOP, a quadratic
instantiation of COP. These models, combined with a good off-the-shelf MIQP solver, yields an anytime
algorithm that can effectively compute robot tour(s) over networks with tens to hundreds of nodes, for the
optimal estimation of the underlying spatially corrected spatiotemporal fields.

• We demonstrate that our models and algorithms are effectiveover both simulated and empirical data sets.

In comparison to the conference publication Yu et al. (2014b), the current paper provides a much more thorough
treatment of COP. From the perspective of the problem statement, we now give a cleaner and more general
formulation. From the perspective of algorithmic solutions, we have developed an anytime algorithm and additional
heuristics, which greatly boost the computational speed, allowing much larger problems to be solved. In the
simulation study, a much more comprehensive evaluation of the algorithmic performance as well as simulations on
real temperature data are now included.

Organization: The rest of the paper is organized as follows. In Section II, we formally introduce COP and QCOP.
In Section III, we derive MIQP-based anytime algorithms forsolving QCOP for single and multiple robots. In
Sections IV, we perform extensive computational experiments to verify the correctness and evaluate the performance
of our algorithmic solutions. We then illustrate how QCOP may be applied to solve realistic persistent monitoring
tasks in Section V and conclude the paper in Section VI. TableI lists symbols that are frequently used in the paper.

II. PROBLEM STATEMENT

We study the problem of using mobile sensing robots to periodically survey spatially distributed locations (nodes),
assuming that the quantities to be measured at the nodes comefrom a smooth spatiotemporal (scalar or vector) field.
Due to spatial and temporal variations, such fields can be highly complex and dynamic. However, in applications
involving large spatial domains (e.g., terrains, road networks, forests, oceans, and so on), the underlying spatial
domain often does not change. The observation allows us to work with the premise that nearby nodes have mostly
time-invariantspatial correlations2, even though the overall field may change significantly over time. Exploiting

2Here, we use the broad meaning of correlation, which could be, but is not necessarily, the correlation of random variables.
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TABLE I
L IST OF FREQUENTLY USED SYMBOLS AND THEIR INTERPRETATIONS.

V = {vi} Node or point of interest,|V|= n
G= (V,E) Node network

pi The two dimensional coordinate ofvi
r i Utility of knowing complete information aboutvi

ψ(vi , t) Time-varying scalar field
A= {ak} Mobile robotk, |{ak}|= m

vbk
Start and end node for robotak

ck Travel budget for robotak
Π π1, . . . ,πm, a set of robot tours

J(Π) The cost function for a given set of robot tours
wi j The weight measuringvi ’s influence onv j
xi Binary variable indicating whethervi is on a tour
xi j Binary variable indicating whetherv j is visited

immediately aftervi
xi jk Binary variable indicating whetherv j is visited

immediately aftervi , by robotak
ui Integer variable, 2≤ ui ≤ n, the order ofvi in a

tour path, if used
uik Integer variable, 2≤ uik ≤ n, the order ofvi in a

tour path, if used, by robotak
di j Travel cost fromvi to v j , maybe non-symmetric

αi j ,βi j Linear regression coefficients

these correlations, at any given time, it becomes possible to infer the field’s value at a certain node from the values
of adjacent nodes.

Before formally stating the problem, roughly speaking, we are interested in deploying mobile sensors with limited
travel range to sample nodes of a network. Based on the samples at the nodes, we then infer the field’s value at the
rest of the nodes from correlation when possible. Besides time-invariant spatial correlations, we assume that the
field remains relatively static during a single trip of the mobile sensor(s). We denote this problem theCorrelated
Orienteering Problem(COP). After introducing the broad COP problem, we focus on aspecial type of COP
with a quadratic cost function induced by independent, linear correlations between adjacent nodes. We call this
special instantiation of COP theQuadratic Correlated Orienteering Problem(QCOP). Below, COP and QCOP
are formally defined.

A. Correlated Orienteering Problem

Let V = {v1, . . . ,vn} be a set of spatially distributed nodes in some workspaceW ⊂ R
2. Each nodevi ∈ V is

associated with coordinatespi ∈ R
2. Let ψ(p, t),p ∈ R

2 be a time varying scalar field overW. The values on
the nodes ofV, with a slight abuse of notation, are written as asψ(vi, t),1≤ i ≤ n. We assume that the spatial
relationship among the nodes ofV, as determined byψ , induces a directed graphG over V. More precisely,
G= (V,E) has an edge(vi,v j) if and only if ψ(v j , t) is dependent onψ(vi, t). That is, letNi = {vi1, . . . ,vik} be the
set of neighbors ofvi in G, with edges pointing tovi, then for some time-invariantfi ,

ψ(vi, t) = fi(ψ(vi1, t), . . . ,ψ(vik, t)). (1)

Let there bem mobile robots,A= {a1, . . . ,am}. Each robot follows the standard single integrator dynamics with
constant magnitude on the control input (i.e., ẋ= u with ‖ u‖= 1). To model the travel distance constraints inherent
with mobile robots, for a robotak, let its base (i.e., where it must start and end in a cyclic tour) be a nodevbk ∈V.
Let

c : A→ R
+,ak 7→ ck

represent the maximum distance (budget) the mobile robots can travel before they must return to their respective
bases. Other than the single integrator dynamics and the distance budget constraints, these robots have no other
motion constraints. In particular, a robot is not constrained to the implicitly defined graphG and can travel in a
straight line between anypi,p j ∈W as permitted by the travel distance budget.
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A mobile robot can measureψ(vi, t) when the robot is located atvi ∈V. Let Π = {π1, . . . ,πm} be a set of tours
in which eachπk is a cyclic path forak that goes through a set of nodes ofV including vbk. The overall quality of
Π is measured by some utility functionJ : {Π} → R

+∪{0} that maps path sets to non-negative real values. We
do not consider sensor measurement noises in the current paper.

TheCorrelated Orienteering Problem(COP) is defined as a 4-tuple(V,ψ ,{vbk},J) over which we wish to find a
set of toursΠ that maximizes the utilityJ(Π). Note thatψ is fixed but generally unknown; it can only be measured
(by mobile robots) at particular locations and time instances. An illustrative and qualitative example of what COP
aims to achieve is given in Figure 2.

Fig. 2. Two tours with the same budget over the same node network and ψ. Here, all edges have unit length. Given a budget of 3 with
the black node as the starting node, intuitively, with correlations of node values between nearby nodes, if we want to estimate ψ over all
9 nodes, the tour (dashed path) on the left is likely better because each of the 9 nodes is adjacent to some node visited by the tour. COP
aims to allow the planning of such a tourΠ through the maximization of a properly definedJ(Π).

Remark. At a first glance, COP may appear to mimic a problem whose underlying process is a Markov Decision
Process (MDP). Although there are some similarities between the two formulations (e.g., like in an MDP-based
problem, in COP, the robots take actions to go to different physical states and the information to be collected follows
some distribution), a key difference is that it is never beneficial to revisit a node in a COP instance but revisiting
a state in an MDP problem can be rewarding. This is also a key source of computational difficulty associated with
COP because dynamic programming techniques that are usefulin solving MDP problems can no longer be applied
to COP.

B. Quadratic Correlated Orienteering Problem

After defining the general COP problem class, we now describean instantiation of COP with a quadratic utility
(alternatively, reward or cost) function. If the tours of the m robots,Π, go through a nodevi ∈V, then a utility of
r(vi) is collected, defined according to the mapping

r : V→ R
+,vi 7→ r i.

The robots do not gain more utility for revisitingvi in Π. To represent the total utility of QCOP, let{x1, . . . ,xn}
be n binary variables, withxi = 1 if and only if vi (i.e., pi) is on some tourπk ∈ Π. To incorporate correlations
among the nodes during the tour planning phase while also rendering the formulation more concrete, we letψ (and
therefore{ fi}) andJ have the following instantiation. Let the weight function

w : E→ R
+,(v j ,vi) 7→ w ji

represent the effectiveness of usingψ(v j , t) to estimateψ(vi, t). One may vieww ji as representing the amount of
information thatψ(v j , t) has aboutψ(vi, t), independent of other neighbors ofvi . The utility that can be collected
over a nodevi is defined as

r i

(

xi + ∑
v j∈Ni

w jix j(x j−xi)

)

, (2)

in which the quadratic termx j(x j − xi) is non-zero if and only ifx j = 1 and xi = 0. Essentially, (2) says that
correlations is only relevant forvi if vi is not directly visited by a robot. Obviously, for each 0≤ i ≤ n, ∑v j∈Ni

w ji ≤ 1.
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Note that we do not assume thatwi j = w ji , which may be the case if the field’s values atvi andv j are, for example,
jointly Gaussian random variables. Over a set of tours for the robots,Π, the total utility to be maximized is then

J(Π) =
n

∑
i=1

(

r ixi + ∑
v j∈Ni

r jwi j xi(xi−x j)

)

. (3)

We observe that the utility function (3) defines a natural quadratic extension to OP, which has a linear utility
∑n

i=1 r ixi. We denote this COP instantiation as theQuadratic Correlated Orienteering Problem(QCOP). By assuming
independence amongwi j ’s in formulating QCOP, we trade model fidelity for computational efficiency. Nevertheless,
we note that QCOP is still a difficult problem computationally.

Theorem 1 COP and QCOP are NP-hard.

PROOF. It is straightforward to observe that OP, for even a single robot (player), is NP-hard Vansteenwegen et al.
(2011). To see this, for a given travel budget, an algorithm solving OP for a single robot must implicitly answer
the question of whether the budget is enough for the robot to go through all nodes inV. Therefore, OP contains
as a sub-problem the Euclidean traveling salesman problem (TSP), which is NP-hard.

For QCOP with the quadratic utility given by Equation (3), making the weights{wi j} sufficiently small reduces
it to an OP, because the quadratic utility (the second summation in Equation (3)) then becomes negligible. This
shows that a general COP is also NP-hard. �

III. M IXED INTEGER QUADRATIC PROGRAMMING MODELS FORQUADRATIC COP

In this section, we propose a quadratic integer programmingmodel with quadratic utility functions and linear
constraints (often known asmixed integer quadratic programmingor MIQP) for solving QCOP with the utility
function given by Equation (3). We start from the case of a single mobile robot and then move to the case of
multiple robots. Then, we discuss the associated algorithmic aspects and provide an algorithm outline.

A. MIQP Model for a Single Robot

We start withm= 1 (single robot) and adapt the constraints from Vansteenwegen et al. (2011), which yields
a compact model. Whereas our description of the model is self-contained for completeness, more background
knowledge on the development of linear OP models can be foundin Vansteenwegen et al. (2011) and the references
within.

Without loss of generality, let the robot start fromv1. Let xi j be a binary variable withxi j = 1 if and only
if the robot visitsv j immediately after it visitsvi . Recall that this does not depend on the existence of an edge
betweenvi and v j in G. Because it is never beneficial to revisit a node, the robot must only enter and leave any
node at most once. This allows us to represent the number of times that the robot enters (resp. leaves) a nodei
as ∑n

j=1, j 6=i xi j (resp.∑n
j=1, j 6=i x ji ). Both of these quantities can be at most one. The tour constraint then says that

these two quantities must be equal,i.e., ∑n
j=1, j 6=i xi j = ∑n

j=1, j 6=i x ji . Recall thatxi is the binary variable indicating
whethervi is visited, we obtain the following constraints

n

∑
j=1, j 6=i

xi j =
n

∑
j=1, j 6=i

x ji = xi ≤ 1, ∀2≤ i ≤ n. (4)

For i = 1, becausev1 must be visited, we have
n

∑
i=2

x1i =
n

∑
i=2

xi1 = x1 = 1. (5)

The constraints (4) and (5) ensure that the robot will take a tour starting and ending atv1. They do not, however,
prevent multiple disjoint tours from being created. To prevent this from happening, let 2≤ ui ≤ n be integervariables
for 2≤ i ≤ n. If there is a single tour starting fromv1, thenui can be chosen to satisfy the constraints

ui−u j +1≤ (n−1)(1−xi j), 2≤ i, j ≤ n, i 6= j (6)
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To see that this is true, note that sinceui−u j +1≤ n−1 regardless of the values taken by 2≤ ui ,u j ≤ n, (6) can
only be violated ifxi j = 1. The conditionxi j = 1 only holds ifv j is visited immediately aftervi is visited. Setting
ui to be the order with whichvi is visited on the tour, ifxi j = 1, thenui−u j +1= 0, satisfying (6). On the other
hand, if there is another tour besides the one starting fromv1 and whenvi j = 1, then the RHS of (6) equals zero.
For (6) to hold, we must haveui−u j +1≤ 0⇒ ui < u j . However, this condition cannot hold for all consecutive
pairs of nodes on a cycle. Thus, (6) enforces that only a single cycle may exist.

With the introduction of the variables{xi j}, the tour distance constraint can be enforced via
n

∑
i=1

n

∑
j=1, j 6=i

xi j di j ≤ c1, (7)

in which di j is the distance fromvi to v j andc1 is the tour distance constraint for the single (first) robot.Note that
the distancedi j needs not to be symmetric. Moreover, it is straightforward to incorporate sensing cost at a nodevi

by absorbing that cost intodi j for all j 6= i. Alternatively, if the sensing cost is not compatible with the travel cost,
an additional cost constraint can be added as well. Putting things together, we obtain a complete MIQP model for
QCOP, summarized below.

maximizeJ(Π) =
n

∑
i=1

(

r ixi + ∑
v j∈Ni

r jwi j xi(xi−x j)

)

subject to
n

∑
j=1, j 6=i

xi j =
n

∑
j=1, j 6=i

x ji = xi ≤ 1, ∀2≤ i ≤ n

n

∑
i=2

x1i =
n

∑
i=2

xi1 = x1 = 1

ui−u j +1≤ (n−1)(1−xi j), 2≤ i, j ≤ n, i 6= j
n

∑
i=1

n

∑
j=1, j 6=i

xi j di j ≤ c1

(8)

B. MIQP Model for Multiple Robots

Extending a single tour to multiple tours is rather straightforward. To accommodatem robots, the variables{xi j}
and{ui} are extended toxi jk anduik, with 1≤ k≤m representing the robots. Constraints (4) and (5) become

n

∑
j=1, j 6=i

xi jk =
n

∑
j=1, j 6=i

x jik ≤ 1, ∀1≤ i ≤ n,1≤ k≤m, (9)

m

∑
k=1

n

∑
j=1, j 6=i

xi jk =
m

∑
k=1

n

∑
j=1, j 6=i

x jik = xi ≤ 1, ∀1≤ i ≤ n, (10)

and
n

∑
i=1,i 6=bk

xbkik =
n

∑
i=1,i 6=bk

xibkk = xbk = 1, 1≤ k≤m. (11)

Equation (4) splits into Equations (9) and (10) because we need Equations (9) to ensure that a node is used by at
most one robot. With only (10) but not (9), it can happen that one robot enters a node while a different robot exits
the same node, which should not happen.

The constraints onuik become (for all 1≤ k≤m)

uik−u jk +1≤ (n−1)(1−xi jk), i, j 6= bk, i 6= j,1≤ i, j ≤ n. (12)

The traveled distance constraint, Equation (7), becomes
n

∑
i=1

n

∑
j=1, j 6=i

xi jkdi j ≤ ck, 1≤ k≤m. (13)

Finally, the utility function Equation (3) remains the same.
Remark. The above MIQP model for QCOP does not allow two robots to start from the same base. We can

easily accommodate such scenarios via modifying Equations(9), (10), and (11) accordingly.
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C. Algorithmic Perspectives

In this subsection, we discuss several important algorithmic aspects that were explored in the implementation of
MIQP models, aiming at improving the performance of the algorithm. An algorithm outline is also provided.

Anytime Property:An interesting and extremely useful property, which also comes naturally from our MIQP-
based method, is that it leads to ananytimealgorithm. Integer linear and quadratic programming solvers, which
are often variations of branch-and-bound algorithms, workwith a polytope containing all feasible solutions to the
(relaxed) continuous optimization problem. The algorithmfunctions by braking the polytope into smaller pieces
and evaluate the objective function on each of these pieces.As the algorithm progresses, more and more of the
initial polytope gets truncated. After some initial steps,a tree structure is built and the leaves of the tree contain
active portions of the original feasibility polytope. For each of these pieces (which are again polytopes), in a
maximization problem, it is relatively easy to locate a feasible solution with the correct integrality condition (i.e., a
feasible solution in which binary/integer variables get assigned binary/integer values). The maximum objective value
from all these feasible solutions is then a lower bound of theoptimal value. At the same time, without respecting
the integrality constraints, the maximum achievable objective can also be computed for each leaf polytope. This
yields a lower bound on the optimal value. The difference between the two bounds is often referred to as thegap.
An optimal solution is found when this gap reaches zero. If the gap gradually decreases in the execution of a
branch-and-bound algorithm, which is the case in our problem, an anytime algorithm is obtained.

For a difficult optimization problem like QCOP, having an anytime algorithm with known optimality gap is
beneficial for at least two reasons. First, because it generally takes more and more time for an algorithm to find
better and better solutions, having the option to stop earlyat a sub-optimal solution can save a significant amount of
time. This is theanytimeperspective. Second, because we know exactly how optimal our solution is at an arbitrary
time instance during the execution process, we may stop running the algorithm and have the confidence that a
desired level of optimality is achieved. Note that anytime algorithms are not always equipped with quantitative
characterizations of how optimal their current solutions are. Our anytime algorithm, on the other hand, always
maintains a good estimation on how optimal the current best solution (also known as the incumbent) is.

Algorithm Outline: Putting things together, we obtain the tour planning and node value estimation algorithm
outlined in Algorithm 1. In lines 1- 2, the MIQP model is set upand solved to obtain the desired set of tours for the
robots. The robots then follow the planned tours and collectdata as they pass over the nodes on these tours in line 3.
The collected data{ψ ′(vi, ts)} is subsequently updated through correlation to yield the final estimated node values.
Note that UpdateNodeEstimate(·) is only determined when QCOP is connected to a particular spatiotemporal field
ψ(·, ·) (an example is given in Section V).

Algorithm 1: QCOP ESTIMATION

Input : G= (V,E): node network,|V|= n
W = {wi j},1≤ i, j ≤ n: correlation weights
VB = {vb1, . . . ,vbm}: base nodes
C = {c1, . . . ,cm}: travel distance budgets
gap: optimality tolerance

Output: ψ ′(vi, ts),1≤ i ≤ n: node estimation at timets

%Compute robot tours

1 M← SetUpModel(G,W,VB,C) ; %Set up model

2 {π1, . . . ,πbm}← SolveModel(M,gap); %Compute tours

%Run tours and collect data

3 {ψ ′(vi, ts)}← CollectData({π1, . . . ,πbm})

%Estimate value at unvisited nodes

4 {ψ ′(vi, ts)}← UpdateNodeEstimate({ψ ′(vi, ts)})

5 return {ψ ′(vi, ts)}
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Encoding Utility in Linear Form: We observe that the utility given by (3) can in fact be turned into a linear
utility without loss of accuracy. To do so, for each(i, j) pair, define an additional binary variablezi j . We may then
enforcezi j = 1 if and only if xi(xi−x j) = 1 by adding two constraints,

zi j ≤ xi , (14)

zi j ≤
xi−x j +1

2
, (15)

to our model. Clearly, ifxi = 0 or x j = 1, these constraints ensure thatzi j = 0. On the other hand, updating (3) to

J(Π) =
n

∑
i=1

(

r ixi + ∑
v j∈Ni

r jwi j zi j

)

, (16)

whenxi = 1 andx j = 0, maximizingJ(Π) ensures thatzi j = 1.
Having a linear utility effectively transforms our MIQP model into a mixed integer linear programming (MILP)

model. Whereas the transformation does not directly reduceproblem complexity, it can be beneficial for the solver
to be aware that the problem is in fact an MILP.

Restricting the Travel Distance Between Nodes:During the computational evaluation of our algorithm, we observe
that, when utilities of the nodes are relatively similar, anoptimal robot path rarely moves between two nodes that
are too far away. In fact, due to the local correlation model,when an optimal path moves from one node to another,
the second node is almost always within the 2-neighborhood3 of the first node. Based on this observation, we
attempted a heuristic that restricts how far a robot may travel from one node to the next. With the heuristic, each
node then creates a constant numberxi j variables in the MIQP model. Thus, the size of the MIQP model is greatly
reduced with the introduction of this heuristic.

IV. M ODEL CORRECTNESS ANDPERFORMANCE

In this section, through computational experiments, we further validate the correctness of our MIQP models
for QCOP and evaluate computational performance of these models. Note that in this section our focus is on
J(Π) and we do not actually collect data and perform node value estimation (i.e., effectively, we only run lines 1-
2 of Algorithm 1). Unless otherwise stated, the quadratic utility (3) is used instead of the linear utility (16). We
implemented the linear and quadratic models in the JAVA programming language interfacing with the Gurobi solver
Gurobi Optimization Inc. (2014). All computations were performed on a Dual-Intel Xeon E5-2623 workstation
under an 8GB JavaVM.

A. Model Correctness

Regular Grids: We first briefly show that our MIQP model-based algorithms indeed maximize the objective
function given by (3). We begin with a single robot and use 3×3 and 4×4 grid networks with unit edge length
as the test node networks. We set the weightsw ji for a nodei simply as 1/|Ni|. For example, if nodei has three
neighbors, then allw ji ’s are set to 1/3. For the 3×3 grid, we let the single robot start at the middle node on

Fig. 3. Single robot tours for travel budgets 2,3,4,5, and 6, in that order, from left to right.

the top row (the circled node in Figure 3) and let the maximum allowed travel budget vary from 2 to 6 with unit
increments. Each node has a unit utility. The computed toursfor these budgets are illustrated in Figure 3, with
utilities as 4.0,4.5,5.7,7.3, and 9 (maximum possible), respectively. One can easily verify that these are consistent
with the design of the single-robot MIQP model. For the 4×4 grid, under a similar setup, we get the tours as
illustrated in Figure 4 for travel budgets 4,8, and 12, respectively. The associated maximum utilities are 6.2,11.5,
and 16.0, respectively.
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Fig. 4. Single robot tours for travel budgets 4,8, and 12, in that order, from left to right.

Fig. 5. Two-robot tours for travel budgets (per robot) 3,5, and 7, in that order, from left to right.

Next, a two-robot setup is tested on the 4×4 grid, with the robots starting at opposite locations as indicated by
the red and purple circled nodes in Figure 5, which illustrates the tours with individual travel budgets 3,5, and 7,
respectively. The associated maximum utilities are 7.2,12.5, and 16.0, respectively. Each problem instance in this
subsection took at most two seconds to solve.

Irregular Node Network:Our second experiment works with the irregular node networkfrom Figure 1. The
bounding rectangle of the network is roughly 13 units by 8 units. For this network, weights (wi j ’s) are again
computed based on the number of neighbors. Up to three robotswere attempted with the longest running time
being about 100 seconds. The trial results and the associated parameters are given in Figure 6. The base nodes,
indicated as colored circles, were hand picked (only once,i.e., we did not try any other choices and then select the
best one) to be roughly evenly distributed on the network.

Fig. 6. Results from running MIQP models for QCOP on the irregular, realistic node network from Figure 1. The numbers under each
picture indicate the budget (B) per tour/robot and the totalutility (U), respectively.

From the result (Figure 6), we see that the MIQP model always selects tours that do not have spatial overlaps,
which is expected but a nice feature to have nevertheless. Also, regardless of the number of robots and tours,
the total travel budgets (35.0 for one tour, 36.0 for two tours, and 40.5 for three) to ensure full coverage of the
network appear to be similar. We note that for the cases with multiple tours, some of the individual budgets can be

3A nodev j is in the2-neighborhoodof a nodevi if there existsvk ∈ Ni (Ni is the set of immediate neighbors ofvi) such thatv j ∈ Nj .
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shortened. For example, the tours in Figure 6(f) can be (manually) updated to the tours in Figure 7, with reduced
total (actual) travel budget but without reducing the collected utility. Varying individual budgets is supported by
our model by default.

Fig. 7. Updated two-robot tours with the same utility as the tours in Figure 6(f).

B. Computational Performance, Regular Grid

Computing Exact (Optimal) Solutions:We now look at the performance of our MIQP/MIP models for solving
QCOP, starting with computing the exact solution. For all computations, we set a 2,500-second time limit. To
evaluate the computational performance, we again start with a single robot and attempt grid networks with different
sizes. For networks with up to 6×6 nodes, our MIQP model can compute optimal solutions for allchoices of
budgets within 10 minutes. We note that a 36-node network is applicable to many realistic scenarios as demonstrated
in Section V. The performance characteristics are listed inTable II.

TABLE II
PERFORMANCE, REGULAR GRIDS AND A SINGLE ROBOT

Grid
Trial #

1 2 3 4

4×4 budget/utility
time(s)

3.2/4.3
0.06

6.4/9.7
0.40

9.6/13.7
0.72

12.8/16.0
0.03

5×5 budget/utility
time(s)

8.0/12.1
2.4

12.0/18.0
8.9

16.0/23.3
5.1

20.0/25.0
0.3

6×6 budget/utility
time(s)

9.6/14.2
63.6

14.4/22.3
45.3

19.2/28.3
243

24.0/34.0
217

7×7 budget/utility
time(s)

11.2/16.5
550

16.8/-
>2,500

Because the MIQP model requires one extra set of variables for each extra robot, computing exact solutions
for multiple robots becomes more challenging as the number of robots increases. Table III lists the complete
computational results on the same grids for two robots and upto 5×5 grids with various budgets. It becomes fairly
infeasible to compute for grids of size 6×6 and beyond with two robots. For three robots (we omit the limited
detail here), it becomes challenging to compute exact solutions for all budgets over a 5×5 grid.

TABLE III
PERFORMANCE, REGULAR GRIDS AND TWO ROBOTS

Grid
Trial #

1 2 3 4

4×4 budget/utility
time(s)

3.2/7.2
0.08

4.8/10.9
0.17

6.4/14.6
5.3

8.0/16.0
0.06

5×5 budget/utility
time(s)

4.0/11.1
0.11

6.0/15.8
34.8

8.0/20.5
1070

10.0/24.3
1961

To get a better grasp at the overall performance of the exact algorithm, we randomly perturb regular grids to
obtain node networks such as the one shown in Figure 8. This allows us to get random test cases that mimic more
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realistic scenarios. Since a regular 7× 7 grid proves to be time-consuming to work with, we focus on network
with up to 36 nodes. The result is listed in Table IV. For each grid size and budget combination, the utility and
the computation time are averages over ten randomly generated instances. Comparing Table II with Table IV, we
observe that instances with randomized grids and regular grids seem to have similar computational complexity.

Fig. 8. A perturbed 5×5 grid network.

TABLE IV
PERFORMANCE, RANDOM GRIDS AND A SINGLE ROBOT

Grid
Trial #

1 2 3 4

4×4 budget/utility
time(s)

3.6/5.1
0.05

7.1/10.7
0.90

10.7/15.4
0.41

14.2/16
0.14

5×5 budget/utility
time(s)

4.4/6.3
0.19

8.9/13.5
9.9

13.3/20.3
16.0

17.8/25.0
3.6

6×6 budget/utility
time(s)

10.7/16.4
195

16/25.6
177

21.3/32.7
83.7

26.7/36
3.7

Performance of Anytime Algorithms:Once we are willing to allow a small amount of deviation from the true
optimal solution, which is perfectly acceptable for practical purposes, the anytime property can greatly boost the
computational performance. In our tests, we set the optimality gap to be 0.2, meaning that the solution is at most
20% worse than the optimal solution (note that we may still stop the algorithm at any time and have an intermediate
solution). Our first experiment compares the anytime algorithm with the exact algorithm by executing the program
over the same set of instances used for obtaining the result listed in Table IV. The performance of the anytime
algorithm is listed in Table V. In comparison to Table IV, theloss of optimality is often much less than the set
20% threshold. At the same time, the computation time is improved up to 30 times. The improvement become
more obvious as the grid size grows.

TABLE V
PERFORMANCE, ANYTIME , RANDOM GRIDS AND A SINGLE ROBOT

Grid
Trial #

1 2 3 4

4×4 budget/utility
time(s)

3.6/5.1
0.01

7.1/10.6
0.52

10.7/14.1
0.22

14.2/14.9
0.07

5×5 budget/utility
time(s)

4.4/6.2
0.15

8.9/13.2
5.2

13.3/19.2
3.4

17.8/21.7
0.7

6×6 budget/utility
time(s)

10.7/16.0
43.7

16/24.3
13.3

21.3/31.6
2.9

26.7/31.2
1.7

The speed improvement only widens as the problems get bigger. In Table VI, we test the anytime algorithm on
regular-grid instances (the rest of our tests in this section work only with regular grids, since they appear to be of
similar difficulty as instances over random grids) with up toabout 150 nodes. All instances were solved with the
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longest running time being about 12 minutes. The result suggests that if we settle for near-optimal solutions, very
large problem instances can be solved quickly.

TABLE VI
PERFORMANCE, ANYTIME , REGULAR GRIDS AND A SINGLE ROBOT

Grid
Trial #

1 2 3 4

6×6 budget/utility
time(s)

10.7/15.5
16.3

16.0/22.9
5.0

21.3/30.2
3.8

26.7/32.5
1.5

8×8 budget/utility
time(s)

14.2/19.4
112

21.3/31.3
169

28.4/39.7
162

35.6/50.6
17.3

10×10 budget/utility
time(s)

17.8/26.3
217

26.7/39.6
546

35.6/49.3
236

44.4/64.2
270

12×12 budget/utility
time(s)

21.3/31.7
722

32.0/48.5
235

42.7/61.7
669

53.3/79.5
300

With the anytime algorithm, more challenging multi-robot problems can be solved. For two robots, with 20%
optimality tolerance, regular grids with sizes up to 7×7 can now be tackled. The performance is similar for three
robots. The results are listed in Tables VII and VIII.

TABLE VII
PERFORMANCE, ANYTIME , REGULAR GRIDS AND TWO ROBOTS

Grid
Trial #

1 2 3 4

5×5 budget/utility
time(s)

4.0/10.3
0.06

6.0/15.8
13.2

8.0/19.8
9.6

10.0/21.1
3.0

6×6 budget/utility
time(s)

4.8/10.9
0.16

7.2/19.3
225

9.6/25.3
322

12.0/30.0
18.1

7×7 budget/utility
time(s)

5.6/14.6
144

8.4/23.0
1329

11.2/30.9
1640

14.0/37.6
871

TABLE VIII
PERFORMANCE, ANYTIME , REGULAR GRIDS AND THREE ROBOTS

Grid
Trial #

1 2 3 4

5×5 budget/utility
time(s)

2.7/10.3
0.05

4.0/15.3
0.11

5.3/19.3
1.1

6.7/21.7
0.89

6×6 budget/utility
time(s)

3.2/11.3
0.08

4.8/17.0
0.44

6.4/25.8
82.8

8.0/30.3
26.5

7×7 budget/utility
time(s)

3.7/14.2
0.2

5.6/22.4
514

7.5/31.8
514

9.4/-
>2,500

Linear Utility Function and Restricted Travel Distance:With everything being equal, having a linear model
instead of a quadratic one generally boosts computational performance because solvers for linear models are more
efficient in general. On the other hand, in our particular case, turning the MIQP model to a MILP model introduces
a significant number (usually about one-third more) of additional variables, which unfortunately increases the size
of the model quite a lot. In practice, we noticed that linear utility by itself does not improve the computational
performance by much, unless the problem instance is large (i.e. > 50 nodes). Even though a several-fold speed
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Fig. 9. Snapshots of a synthetic scalar field at time steps 0,50,100,150, and 200, from left to right, respectively. [top row] Three-dimensional
views. [bottom row] Two-dimensional heat-map views.

boost was observed (we omit the limited result here), these instances still take hours to compute using a MILP
formulation.

We also experimented heavily on restricting the travel distance between nodes. Somewhat surprisingly, the
reduction of model size from this heuristic, usually over several folds, does not substantially alter the running
time. Interestingly, however, when we combine these two heuristics with the anytime algorithm, something of
practical importance came out. For instances with up to 100 nodes, significant performance increase is observed.
The result is listed in Table IX. When compared with Table VI,we observe that the computation time is greatly
reduced without noticeable impact on the solution quality.

TABLE IX
PERFORMANCE, ANYTIME WITH HEURISTICS, REGULAR GRIDS AND A SINGLE ROBOT

Grid
Trial #

1 2 3 4

6×6 budget/utility
time(s)

10.7/15.3
7.5

16.0/23.8
1.8

21.3/30.0
0.9

26.7/30.8
0.1

8×8 budget/utility
time(s)

14.2/20.7
13.8

21.3/31.2
10.2

28.4/41.3
18.2

35.6/51.5
11.1

10×10 budget/utility
time(s)

17.8/26.3
24.8

26.7/39.7
13.1

35.6/52.4
89.6

44.4/64.1
167

V. A PPLICATIONS TOWARDPERSISTENTMONITORING

In this section, we demonstrate how QCOP and our algorithm may be applied to realistic persistent monitoring
problems. Because our focus here is on estimation quality, we apply the the exact algorithm on a single mobile
robot. To be extensive, we include one simulation experiment performed over a synthetic spatiotemporal field and
one simulation experiment using real temperature data from14 weather stations in the state of Massachusetts. When
it comes to applying QCOP to persistent monitoring tasks, wemust first obtain{wi j} from historical data collected
over all nodes, which is alearning problem. Recall thatNi := {v j | (vi,v j) ∈ E} is the neighbor set ofvi ∈V. We
apply a linear regression model overψ , i.e.,

ψ(vi, t) = α0i + ∑
v j∈Ni

α ji ψ(v j , t), (17)

in which α0i and α ji ’s are coefficients to be computed from historical data withT sets of node value data. (17)
corresponds to models such as the Gaussian Process (GP). To map these coefficients to QCOP, for eachw ji , we
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compute two sets of such coefficients. The first set of coefficientsα ′ji ’s are computed assuming all ofNi are visited;
the second set,α ′′ji ’s, are computed assumingv j is vi ’s only visited neighbor. We then compute the weightw ji via

w ji =
α ′ji +α ′′ji

∑k∈Ni
(α ′ki +α ′′ki)

. (18)

Equation (18) was chosen to balance the impact of single neighbors as well as the impact of the entire neighborhood.
With {wi j}, for a given travel budget, a utility maximizing tour can be computed. Assuming the robot collects

exact values at timets from nodes it visits, the values on nodes that are not visitedby the robot are estimated
as follows. Letvi be such a node and letN′i be its neighbor set such that a nodev j ∈ N′i has either measured or
estimated value (at timets). The historical data forvi and nodes inN′i from 1≤ t ≤ T are then used to perform
multiple linear regression according to

ψ(vi, t) = β0i + ∑
v j∈N′i

β ji ψ(v j , t). (19)

The obtainedβ0i andβ ji ’s can then be used to compute the estimatedψ ′(vi, ts) using (19). The process is repeated
until all nodes are covered. This iterative process defines the function UpdateNodeEstimate(·) in in Algorithm 1.

A. Measuring a Time-Varying Scalar Field

Our first application-driven simulation verifies the effectiveness of Equation (18) in connecting actual scalar
fields to QCOP. Our experiments are performed over a synthetic scalar field generated by three two-dimensional
Gaussians. These Gaussians have fixed centers but varying intensities and covariance matrices over time; we fix
the centers to ensure that the spatial correlations are relatively time-invariant. The field is simulated for 201 time
steps; the snapshots of the field at time steps 0,50,100,150, and 200 are provided in Figure 9. The node network
used here is a 5×5 randomized grids (see,e.g., Figure 8) scaled to the dimensions of the support of the scalar
field. For each fixed travel budget, 100 random 5×5 node networks are generated. In each randomly generated
network, the nodes of the network are given equal importance(i.e., unit utility). To estimateα ′i j ’s and α ′′i j ’s for
computing the weights, data from the first fifty time steps were used (T = 50). For running the model to obtain a
utility maximizing tour, the second diagonal node from the top-left corner was used as the base node. The resulting
tour is then used to obtainψ ′(vi, ts) for ts= 100,150, and 200, according to (19). We define thequality of ψ ′(vi, ts)
as

∑ts∈{100,150,200}(ψ(vi, ts)−|ψ ′(vi, ts)−ψ(vi, ts)|)

∑ts∈{100,150,200}ψ(vi, ts)
. (20)

To compare to our results, we also exhaustively search through the network for a tour starting and ending at
the same base node that minimizes the same quality defined by Equation (20) under the same travel budget. This
experiment was limited to travel budgets 6 and 8, corresponding to tours containing up to five nodes. While our
model can produce tours with many more nodes, for comparing the result, we have to exhaustively search through
all tours starting from the base node to find the best one, which becomes very costly as the number of nodes is
over 5. The quality score obtained this way is denoted as “actual quality”. The result comparing the approaches is
given in Table X. Using the given metric, the average qualityerror was less than one, meaning that it was not more
than the error incurred by omitting a single node. In roughly30% of the cases, the tour found using our method
was identical to the one found using exhaustive tour search.

TABLE X
MODEL FIDELITY OVER A SYNTHETIC SCALAR FIELD

Travel Budget Model Quality Actual quality Relative error
6.0 7.16 7.64 0.48
8.0 8.46 9.38 0.92

As a secondary and more intuitive measure of the quality of our method, we put a regular 6×6 node network
fitted over the same field (Figure 9) and run the MIQP model suchthat we just have enough budget to obtain a full
utility of 36. We let the start node be the second node from theleft on the first row. From the output we can then
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estimate values for all nodes that are not visited on the tour. We plot the much sparser survey data over the same
space for time steps 100,150, and 200 as shown in Figure 10. Comparing these figures with the corresponding
ones from Figure 9, we observe that our models provide reasonable estimation of the entire synthetic scalar field
without the need to visit all the nodes.
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Fig. 10. Estimated scalar field based on the data obtained using the MIQP model.

B. Temperature Scalar Field

Our second simulation works with real temperature data retrieved from National Oceanographic Data Center4.
The data consists of monthly average temperatures taken at 14 locations in the state of Massachusetts (see Figure 11)
over a 24 month period. Using methodology similar to the synthetic scalar field example, we use the first year’s
data as training data (i.e., T = 12) and then run our algorithm to sample and estimate temperature for the next year
for every three months (a total of 12/3= 4 sets of temperatures). Node 10 (Boston) is selected as the base. The
ground truth for these four sets is plotted in the top row of Figure 12.

1 North Adams

2 Pittsfield

3 Westfield

4 Amherst

5 Greenfield

6 Ashburnham

7 Worcester

8 Lowell

9 Newburyport

10 Boston

11 Norton

12 Plymouth

13 New Bedford 14 Chatham

Fig. 11. Node network of 14 weather stations in Massachusetts.

For constructing the budget, since the area of Massachusetts is relatively small, we treat it as flat and use
longitudes and latitudes to measure the distance between the nodes. We run our algorithm using varying budgets
from 2.0 to 6.0. The results are plotted using heat map in Figure 12. Although the figures are visualizations
of discrete data through interpolation, via similarity, weobserve that additional budget allows better sampling and
estimation quality. Quantitatively, since temperature itself is a good metric, we measure the quality of the estimation
by summing up the absolute difference between actual and estimated values at each node. Then, the total error is
averaged over the number of nodes. The outcome is listed in Table XI. At a budget of 3.0, which is enough to
visit half of the nodes, the estimation quality is already fairly good at an average error of 0.27◦C. The error goes
to less than 0.1◦C with budget of 6.0. On the other hand, visiting all nodes requires a budget of roughly 8.5.

VI. CONCLUSION AND FUTURE WORK

We introduced COP (and QCOP) as an extension to OP to address the problem of planning tours for surveying a
spatially correlated field that also changes over time. Our computational experiments showed that the MIQP-based

4http://www.nodc.noaa.gov/General/temperature.html
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Fig. 12. Heat maps of Massachusetts in four different seasons of a year. Note that the color-scaling for each figure is different horizontally
but the color-scaling used for each column of figures is the same. [top row] Interpolations using temperature data at 14 weather stations.
[rows 2-4] Interpolations using estimated data with various budgets.

TABLE XI
TEMPERATUREESTIMATION ERROR WITH RESPECT TOBUDGET

Travel Budget 2.0 3.0 4.0 5.0 6.0
Average Error (◦C) 0.46 0.27 0.22 0.15 0.08

anytime algorithms for QCOP are effective in capturing the spatial correlation among nearby nodes, indicating that
QCOP and the associated MIQP models are applicable to persistent monitoring tasks in which the mobile robots
have limited travel range.

For future work, we plan to improve our models to better capture real-world application scenarios. There are
many promising directions; we mention two here. First, instead of looking at only immediate correlations as we
did with QCOP, it may be beneficial look at correlations of nodes that are further apart in the node network,
i.e., nodes that are in the 2- or 3-neighborhood. This extension is not trivial since the inclusion of additional
nodes will certainly pose new computational challenges. Weexpect, however, the gain in estimation accuracy will
degrade quickly as the neighborhood expands. Therefore, a 3-neighborhood is perhaps all that is needed. Second,
for QCOP, the current weight selection criterion for applying the model in practice is somewhat ad-hoc and has
ample room for improvement. Through a more systematic approach, perhaps via statistical methods, we hope to
derive more principled and systematic procedures for selecting the weights for the MIQP models to further improve
its applicability.

Furthermore, this paper only begins to address the problem of using correlations in informative path and policy
planning in a discrete fashion. The dual problem to this estimation problem is a learning problem: how can we
learn the correlations among the nodes so as to apply the methods from this paper? How can we carry out the
learning task with limited number of mobile robots? Can we perform learning and estimation simultaneously? We
will investigate these and other problems in the future.
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