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ABSTRACT
Intent recognition models, which match a written or spoken input’s
class in order to guide an interaction, are an essential part of modern
voice user interfaces, chatbots, and social robots. However, getting
enoughdata to train thesemodels canbeveryexpensiveandchalleng-
ing, especiallywhen designing novel applications such as real-world
human-robot interactions. In this work, we� rst investigate how
much training data is needed for high performance in an intent clas-
si�cation task. We train and evaluate BiLSTM and BERTmodels on
various subsets of the ATIS and Snips datasets. We� nd that only
25 training examples per intent are required for our BERTmodel to
achieve94% intent accuracycompared to98%with theentiredatasets,
challenging the belief that large amounts of labeled data are required
for high performance in intent recognition.We apply this knowledge
to train models for a real-world HRI application, character strength
recognition during a positive psychology interaction with a social
robot, and evaluate against the Character Strength dataset collected
in our previous HRI study. Our real-world HRI application results
also con�rm that our model can produce 76% intent accuracy with
25 examples per intent compared to 80% with 100 examples. In a
real-world scenario, the di�erence is only one additional error per
25 classi�cations. Finally, we investigate the limitations of our min-
imal data models and o�er suggestions on developing high quality
datasets. We conclude with practical guidelines for training BERT
intent recognition models with minimal training data and make our
code and evaluation framework available for others to replicate our
results and easily develop models for their own applications.
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1 INTRODUCTION
Voice user interfaces (VUI) (e.g. Amazon Alexa, chatbots, and so-
cial robots) are becoming an essential part of everyday life [5, 15].
For these systems to carry out e�ective dialogue, they must be able
to determine the intent behind a user’s spoken utterance. For the
purpose of this paper, intent recognition is de�ned as commonly
understood in the NLP community, i.e. the task of taking awritten or
spoken input, and determining which of several classes it matches
in order to best respond or guide the interaction, not to be confused
with the broader meaning in the HRI context, i.e. inferring goals
of the user based on their observed actions from sensors or visual
cues. This type of intent recognition is essential to building complex
conversational experiences in HRI, which is a key challenge. While
rule-based parsing is a common approach for some interactions, it
is not e�ective for more advanced and novel dialogue contexts [27].
To improve user experience while interacting with such systems,
state-of-the-art models are trained using large labeled datasets for
intent recognition customized to speci�c applications [8, 9, 26].

Even though the importance of intent recognition models is clear,
it can be very challenging to build e�ective intent recognition mod-
els. The amount of data typically used to train these systems can be
prohibitively expensive or di�cult to acquire for a new application.
Models in research are trained on thousands of example utterances
[24], which is far more than a small organization can easily manage
to prepare, let alone a student or sole developer working on a new
project. Such challenge is prevalent inHRI applications, as gathering
large amount of data that matches the exact social context the robot
is deployed to is often impossible. Social robot applications often
involve interactions in private settings such as homes or hospital
rooms [13, 20–22, 31, 35], and the dialogue contexts can be highly
uncommon topics for large public dataset to exist. Even though there
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is a great need for understanding how high-performing intent recog-
nition models can be trained with small amounts of data, this area
has largely been unexplored.

In this paper, we propose practical guidelines for building intent
recognition models that can be deployed in real-world applications
such asHRI dialogue scenarios.We try to answer three keyquestions:
1)What is the "minimal e�ective dose" of training examples for intent
recognition? Howmany training examples are actually needed for
high performance in typical applications? 2) Can we achieve high
performance using model architectures that are easy for anyone to
setup and customize? 3) Howwell can our methods generalize to a
more complex, real-world HRI application?

We �rst demonstrate that much fewer training examples are
needed thanapparent, and then investigatehowthesemodels’ perfor-
mances on small datasets can be further improved by understanding
their dependence on speci�c syntactic and semantic features. We
evaluate these �ndings by collecting examples to train models for
character strength identi�cation, evaluated on data previously col-
lected througha real-worldHRI interaction inwhichcollege students
engaged in positive psychology intervention sessions with a social
robot coach. The key contributions of this paper are as follows:

• A framework for evaluating howmuch training data is needed to
e�ectively train intent recognition models for real-world appli-
cations.

• Practical guidelines to collecting, building, and testing these mod-
els on a real-world HRI application.

• Ananalysis of the strengths and limitations of ourmodels, and rec-
ommendations for training intent recognition models in limited-
data scenarios.

2 BACKGROUND
Intent Classi�cation: Traditionally, intent classi�cation sys-

tems were based on keywords [30] or Context Free Grammars [11].
Recently, many deep learning approaches have been explored, such
as convolutional neural networks (CNN) [46], long short-termmem-
ory (LSTM) [34], and attention-based CNN [47]. Typically these
approaches require a large labeled datasets to achieve a state-of-the-
art performance. While intent classi�cation and slot �lling are often
doneas separate tasks, some recentworkhas also focusedoncreating
models that do both tasks together. Liu and Lane [25] proposed an
attention-based Bi-directional Recurrent Neural Network (BiRNN)
model for joint intent classi�cation and slot�lling. Liu et al. [26] used
a CollaborativeMemory Network to capture slot-speci�c and intent-
speci�c features in order to enhance local context representations.
Finally, a BERT-based model that combines intent classi�cation and
slot �lling into a single token classi�cation task was presented in [7].

Several commercial intent recognition tools o�er on-the-go and
easy access solutions, but are limited in the �exibility they provide.
Google’s Dialog�ow [3], Microsoft’s LUIS [44] and Amazon Lex [2]
allow users to create custom intents and upload example utterances
but their models or architectures cannot be customized or modi-
�ed, limiting the range of tasks these tools can be used for [6]. The
Amazon Skills Kit [1] also allows users to create custom intents and
provide training examples, but its use is limited to the Alexa ecosys-
tem. Moreover, these cloud APIs require an internet connection,
which may not be feasible depending on the application. With the

tool we present in this paper, HRI designers and developers will
be able to take advantage of better (see Results) intent recognition
capabilities than these APIs o�er, but in a way that is completely
customizable, free of charge, and o�ine if needed.

Few shot learning: Few shot learning refers to the practice of
training a model with a very small amount of data[43]. Previous
work has explored techniques for creating models that better han-
dle low-data scenarios, including memory modules to help neural
networks learn from rare events [49], and matching networks that
leverage several labeled support examples to do one-shot learning
for a new input [41].While exploration of training intent recognition
models with minimal training data has been limited, Luo et al. [28]
proposed combining regular expressions with a bidirectional LSTM
in order to improve performance when training with small amounts
of data. While this approach is e�ective at improving performance
in a few-shot learning scenario, it requires the additional work of
an expert writing the appropriate regular expressions.

Novelty of Our Approach: Unlike previous work, our main fo-
cus is empowering more people to be able to train their own intent
recognition models. Previous approaches are often trained on large
amounts of data, or mall amounts of training data is augmentedwith
additional expert information [28].We aim to demonstrate that high-
performingmodels can be trainedwith nothing but small amounts of
typical training examples, so that anyone can generate enough data
to train a high-performing model on their own. In order to achieve
high performance with limited data, we take advantage of BERT’s
pre-training of Deep Bidirectional Transformers [12]. By leveraging
its powerful pre-trained internal language representation, the BERT
model used in our framework can be e�ectively trained for intent
recognition with much less data than a typical neural model.

3 EVALUATING INTENTRECOGNITION
WITHMINIMALDATA

We evaluate our approaches on two di�erent benchmark datasets:
ATIS [9], a corpus of airline travel information phone requests, and
Snips [8], which contains utterances of individuals requests/queries
to their VUI (e.g. playing music). In addition to ATIS and Snips
datasets, we applied our methods to a real-world HRI application,
which is described in Section 4. In order to evaluate how the amount
of training data a�ects the performance of our models, we created a
series of smaller training sets from both the ATIS and Snips datasets.
To create the smaller training sets,= training examples of each intent
were randomly taken from the respective training set (either ATIS
or Snips) in order to create a new partial training set. If an intent
had less than= training examples, all of the available examples were
used, resulting in fewer than = examples for that intent. Because of
the class imbalance present in ATIS, partial ATIS training sets with
larger = have many intents with less than = examples present.

This setup allows for a practical evaluation of our models. By
using the full training sets, we can understand the best possible
performance of each model, but by using several smaller training
sets, we can observe how the amount of training data impacts each
model’s performance. This allows us to not only determine what
model is best with an abundance of data, but also which models can
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be e�ectively used in scenarios with limited training data. The code
for our models and the testing framework are publicly available1.

3.1 Corpora
The ATIS Dataset. ATIS [9] is a dataset of airline-related phone

requests that is a commonly used benchmark for intent recognition
models. It consists of utterances about air travel information, such as
‘What is the �ight number?’ or ‘What is the destination of �ight 87?’.
There are 4958 training utterances, fromwhich we remove 20% for
validation, and 893 test utterances. In the dataset, some utterances
are assigned multiple intents (e.g. "�ight+�ight no"). Since only one
intent label can be given, we use the most common intent of the
ones provided as the true intent label. In the dataset, there is a strong
class imbalance, with the majority of examples having the "Flight"
intent, and many intents having less than 50 training examples in
total. On average, each intent has 276 examples in the training set,
with a median of 77 examples (min 1, max 3688).

The Snips Dataset In addition to ATIS, we also use the Snips
dataset [8], which was collected through crowdsourcing for the
Snips personal voice assistant. There are 7 unique intent classes
for the training set, on a variety of topics including playing music,
restaurant reservations, and getting theweather (e.g. ‘Book an Italian
place with a parking for my grand father and I ’ and ‘Which movie
theater is playing The GoodWill Hunting nearby? ’). The training set
contains 13,084 utterances, and separate validation and test sets that
contain 700 utterances each. Unlike ATIS, the intent classes are very
balanced in the dataset, each with about 700 training examples.

3.2 Models
In this section, we describe our approach for �ne-tuning both BiL-
STM and BERTmodels for intent recognition. As a baseline, we also
use a logistic regressionmodel that takes the concatenatedGloVe em-
beddings [32]of theutteranceas input.WechoseBiLSTMand logistic
regression models as baselines because 1) they are smaller models
that we may expect to perform better with very small amounts of
data when compared to models with more parameters, and 2) they
are easy approaches that someone with limited experience in ma-
chine learning research could easily attempt, serving our goal to
help more researchers create their own intent recognition systems.
While our BERT approach is much more complex, it can be easily
replicated by using an open-source pre-trained BERT base [19].

BiLSTM. A diagram of our BiLSTMmodel can be found in Fig-
ure 1a. First, the input utterance is tokenized and padded to 3?03
tokens, which is the length of the longest utterance in the training
dataset.Each token is thenreplacedby itsGloVeembedding, resulting
in a 3?03 by 34<143 (300) input matrix. Padding and out of vocabu-
lary (OOV) tokens are represented by a vector of zeros. The input
sequence is fed through a bidirectional LSTM [18]. The hidden states
ofeachLSTMareconcatenated to formtheencoding,withshape3?03
by twice thehiddendimension.Tocreate the intentprediction, theen-
coding ismultiplied at each time step by a trainable parametermatrix
with bias, resulting in an output sequence of shape3?03 by the num-
berofpossible intents (18 forATIS, 7 forSnips).Theresultof the linear
transform is then �attened, followed by a Dense layer with ReLU
activation. Finally, Softmax is applied to create a vector of the intent
1https://github.com/mitmedialab/bert-slu

probabilities. In total, our BiLSTMmodel has 1.5M trainable param-
eters. In our experiments, the BiLSTM and BERTmodels are trained
using categorical cross entropy loss and the ADAM optimizer [23].

BERT.We also use a BERT-based model for intent classi�cation,
similar to the one proposed by Chen et al. [7]. BERT is state-of-
the-art language modelling architecture developed by Google [12],
which applies a Masked Language Modeling objective to perform
bidirectional training on a stack of self attention-based layers called
“transformers”[40]. The end system generates vector embeddings
which give an e�ective contextual representation of an input text.
BERT has been highly successful due to its performance, modularity,
and ease of transfer learning (i.e. it is easily customized for a particu-
lar task such as intent recognition). Figure 1b shows an overview of
our BERT architecture. In the model, an input utterance is tokenized
using aWordPiece tokenizer [45]. This tokenized representation is
then passed through a stack of encoder transformer layers (12 in our
model). The special token “[CLS]" is placed before the start of the
utterance by the tokenizer, and the output of this token, after the�nal
transformer layer, is passed through a fully connected layer (called
the pooling layer), and then �nally passed through a fully-connected
layer, followed by softmax, to create the intent predictions. In our
experiments, we use the English uncased BERT base model [39],
with 12 layers, with 768-dimensional hidden layers, and 12 atten-
tion heads. This model contains 110M parameters and is pre-trained
on the BookCorpus (800M words) [48] and on English Wikipedia
(2,500Mwords). We �ne-tune the model end-to-end by minimizing
the cross-entropy loss on our datasets. Starting with the pre-trained
BERT weights, the entire model is trained, including all transformer
layers, the pooling layer, and the �nal dense output layer, which is
consistent with typical BERT �ne-tuning for speci�c tasks.

3.3 Experiments
In our�rst experiments,we evaluate all of ourmodels (logistic regres-
sion, BiLSTM, and BERT) on the complete ATIS and Snips datasets,
in order to determine their best possible performances. In our sec-
ond set of experiments, we evaluate our models on subsets of the
ATIS and Snips datasets, varying the total number of training exam-
ples used, as described above in Section 3. For example, we trained
our BERT model on a subset of the ATIS dataset with at most 10
training examples per intent, chosen from the complete training set
at random.We then evaluate how the amount of data used a�ects
each model’s performance, in order to understand howmuch data
is needed to create a strong model that is ready to be deployed to a
real-world application.Moreover, to show the power of BERTend-to-
end �ne-tuning, we compare the results when the pre-trained BERT
weights are held constant and only train the output layer. Finally, we
evaluate the consistency of our BERTmodel’s performance when
using di�erent randomly chosen partial training sets of the same
size. For each value of = for each corpus, we create 10 new partial
datasets, in addition to the original ones from our previous experi-
ments.We then trainBERTmodels on eachnewdataset, and evaluate
the consistency of results across di�erent random selections.

Entire Dataset BiLSTM, logistic regression, and BERT models
were trained on the entire ATIS training set (with 20% of examples
set aside for validation), as well as on the Snips training set. We
conducted hyper-parameter sweeps and selected the best models
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Figure 1: Overview of theModels used in thisWork

(a) Overview of our BiLSTMModel. GloVe embeddings representing the input sequence
are fed through a bidirectional LSTM. A linear transform is applied to the concatenated
hidden states, and is then�attened and used as input to a dense layer to create the intent
prediction.

(b) Overview of our BERT Model. The input utterance is tokenized,
and the "[CLS]" and "[SEP]" tokens are added. The label of the �rst
token ("[CLS]") is used for the intent classi�cation.

based on their intent classi�cation performance on the validation
set. For ATIS, the best parameters were used to train models on
the whole training set (validation included). Test performances of
these models are reported in Table 1, alongside the results of Wang
et al. [42], which is the state of the art at the time of writing. For
the logistic regression models, the batch size was varied between 16
and 32. For the BiLSTM, the batch size was varied between 16 and
32, the LSTM hidden dimension between 200, 300, and 400, and the
LSTM dropout between 0, 0.25, and 0.5. The best logistic regression
model was trained for 15 epochs with a batch size of 16, and the best
BiLSTMmodel was trained for 15 epochs with batch size 16, LSTM
dimension 300, and dropout 0.25. For the BERTmodels, a batch size
of 32 was used, and the number of epochs was chosen from between
1 and 65, in increments of 5 (1, 5, 10, etc.).

PartialDatasetsAsdescribed above in Section 3, partial datasets
were created from both the ATIS and Snips datasets separately with
at most = training examples per intent, with = 2 [1,5,10,25,50,100].
Logistic regression, BiLSTM, and BERTmodels were trained on each
partial dataset. For eachpartial training set, hyper-parameter sweeps
were done for both the logistic regression and BiLSTMmodels. The
LSTM hidden dimension was varied between 200, 300, and 400, and
the LSTMdropout between 0, 0.25, and 0.5. Batch sizes for the logistic
regression and BiLSTMmodels were varied depending on the size
of the training set, with the smallest batch size of 1, and the largest
of 64. For the BERT models, a batch size of 32 was used, and the
number of epochs was chosen from between 1 and 65, in increments
of 5 (1, 5, 10, etc.). Best models were chosen by intent classi�cation
performance on the appropriate validation set. For the majority of
the partial datasets, the best BiLSTM hidden dimension was 300, the
best batch size was 16, and the best dropout was 0.25.

3.4 Results
EntireDataset. Results for ourmodels trainedon the entireATIS

and Snips datasets can be found in Table 1. When training on the
entire ATIS dataset, our logistic regression model achieved 89.6%
accuracy. Our BiLSTMmodel’s highest accuracy was 96.6%. Finally,
the BERTmodel achieved 98.4%. The current state of the art intent ac-
curacy by Liu et al. (2019) is 99.1%. For the Snips dataset, the BiLSTM
slightly outperformed BERTmodel with 98.3% (compared to 98.0%).
The logistic regression model achieved 95.9% intent accuracy.

Partial Datasets The results for best partial dataset models are
shown in Table 2. On both corpora, the BERTmodels were quickly
able to achieve very high performance with very little data. With
at most 25 examples per intent, the BERT model achieved 94.6%
intent classi�cation accuracy on the ATIS dataset, and 94.0% for the
Snips dataset. With at most 50 examples per intent, the BERT intent
performance increased to 96.7% on ATIS and 95.9% on Snips.

Batch Sizes In our baselines, we explored various batch sizes
similarly to the other hyperparameters. We found no consistent per-
formance e�ects for di�erent batch sizes of 8, 16, and 32. However
for smaller batch sizes (1, 4)we typically getworse results. This is not
surprising as usually batch size has little e�ect on performance, as
long as it is not too small or large, however larger batch sizes require
less training iterations [16, 38]. We recommend a batch size of 16
for the BiLSTM, as the model trains quickly with good performance
so there is no need to increase the batch size further. For the BERT
model, we chose a batch size of 32 as it results in faster training (on
a CPU), and no signi�cant performance di�erence between 16 and
32 was found in our BiLSTM experiments.

BERT Consistency The minimum, mean, and maximum test ac-
curacies for BERTmodels trained on partial datasets of each size are
shown in Table 3. While performance across the 11 random train-
ing sets was highly varied for very low numbers of examples, the
variation reduced signi�cantly at 25 examples per intent.

BERT Fine-Tuning For our tests, we evaluated the performance
of �ne-tuning all of the components of a pre-trained BERTmodel.
Without �ne-tuning the entire model, performance is much worse,
especially when using less training data. To showcase this, we com-
pared the e�ects of freezing the transformer layers, the pooling
layer, and only training the �nal output layer against �ne-tuning
the complete model. This comparison can be seen in Table 4. The
best test performance on the ATIS dataset �ne-tuning only the �nal
output layer, using the entire training set, was only 72.4% vs. 98.4%
with complete �ne-tuning. When trained on 25 samples/intent, the
partially�ne-tunedmodel achieves only 3.9% vs. 94.6%with the com-
plete �ne-tuning. The discrepancy persists with 100 samples/intent
at 24.2% vs. 96.1% respectively. Tests on the Snips dataset had similar
results, the best test performance using the entire training set, was
only 73.5% vs. 98.0%. When trained on 25 samples/intent, the model
achieves only 21.4% vs. 94.0% and the discrepancy persists with 100
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samples/intentwith a test accuracyof 31.0%vs. 96.6% for thepartially
�ne-tuned model and the completely �ne-tuned model respectively.

Table 1: Entire Dataset Results

Model LR BiLSTM BERT Wang
et al.

Chen
et al.

Liu
et al.

ATIS 89.6 96.6 98.4 98.9 97.9 99.1
Snips 95.9 98.3 98.0 - 98.6 99.3

Test set accuracies on the entire ATIS and Snips datasets. LR refers to the
logistic regression baseline.

Table 2: Partial Dataset Intent Accuracy Results

Examples ATIS Snips
Per Intent LR BiLSTM BERT LR BiLSTM BERT

1 14.1 34.7 14.5 33.9 35.6 55.7
5 35.3 46.6 51.5 59.6 78.4 80.6
10 41.7 66.2 82.5 70.4 85.7 89.3
25 62.5 81.7 94.6 78.1 90.7 94.0
50 72.5 89.1 96.7 85.9 93.3 95.9
100 73.1 92.7 96.1 87.7 93.0 96.6

Entire 89.6 96.6 98.4 95.9 98.3 98.0
Results for the entire datasets are included for reference. Best accuracies for
each partial training dataset are in bold.

Table 3: Variation in Performance for BERTmodels

Examples ATIS Snips
Per Intent Min Mean Max Min Mean Max

1 5.8 13.8±7.2 27.0 33.6 49.7±6.7 57.7
5 43.6 59.5±12.1 73.8 75.3 80.4±2.5 84.3
10 68.5 82.7±6.7 93.4 81.8 90.2±3.2 93.0
25 93.2 94.7±1.1 96.9 92.5 94.3±1.0 95.2
50 94.9 96.2±0.8 97.4 95.2 95.7±0.4 96.3
100 95.9 96.8±0.6 97.8 95.7 96.5±0.5 97.2

For each unique = examples per intent on both ATIS and Snips, 10 partial
training sets were randomly chosen in addition to the training sets used for
results in Table 2. BERT models were trained on each partial dataset, and the
minimum,mean, andmaximum test accuracy for each= are reported here.

Table 4: BERT Fine-Tuning E�ects

Examples ATIS Snips
Per Intent Partial Complete Partial Complete

1 4.8 2.1 12.1 13.5
5 3.5 11.7 13.8 30.9
10 3.9 55.7 20.1 89.3
25 3.9 94.6 21.4 94.0
50 9.5 96.7 26.0 95.9
100 24.2 96.1 31.0 96.6
All 72.4 98.4 73.5 98.0

4 EVALUATION: REALWORLDAPPLICATION
The use of conversational agents for therapeutic interventions has
been growing rapidly [10]. Social robots have been developed for
various health-related tasks as well, such as supporting older adults
with dementia [37], serving as a home �tness coach [17], acting as
a pediatric companion [21] and a life coach [4]. In order to provide
engaging and �uent interactions, it is important for these robots to
understand users’ intents during interactions. However, it is com-
monly believed that creating a high-performing model for any nat-
ural language understanding task requires large labeled datasets in
order to generalize well in real-time deployments [28]. The lack of
such large datasets in novel interventions can hinder researchers’
ability to achieve the desired outcomes, and limits user experience.

To test our guidelines for low resource tasks, and perform evalua-
tion of our models, we used a dataset collected through a real-world
deployment study. In our previous study [20],wedeployed aportable
robot station, which comprised of a tablet and a social robot Jibo (see
Figure 2), to the dorms of 42 undergraduate students. In the study, the
robot delivered daily positive psychology sessions over one week.
The social robotwas designed to improveparticipants’ psychological
well-being and mood through various positive psychology inter-
ventions [36], including character strengths. Peterson et al. lists 24
positive parts of personality that impact how people think, feel and
behave [33]. Character-strength-based coaching has been growing
extensively in the last few decades, because of its bene�t of empow-
ering people to increase their awareness of their signature strengths,
so that they can better use them in everyday life [29]. The intention
of the character-strength session in our intervention is to provide
an automated way of delivering such coaching by the robot.

We evaluated the e�ects of �ne-tuning only the output layer (Partial) of our
BERT system vs. the complete system consisting of the dense output layer,
the pooling layer, and the pre-trained BERT transformer layers (Complete)

4.1 Character Strength Testing Dataset
While our results on the ATIS and Snips datasets are very promising,
wewant to demonstrate that the samemethods can be e�ectively ap-
plied to a real-worldHRI application. Asmentioned above, the social
robot delivered seven positive psychology sessions, two of which
covered contents about character strengths. In the �rst character
strengths session, participants learned about character strengths and
were given an opportunity to identify their own signature strengths
through a dialogue with the robot. In the second session, the partic-
ipants were asked by the robot about the newways they could use
their signature strengths to improve their well-being and were en-
couraged topracticeusing their strengths. Theverbal responses from
the participants were recorded and transcribed post study. At the
timeof the study, the robotwasunable toparsewhichparticular char-
acter strength the participant was referring to. Instead, it listened to
the user and provided generic responses and encouragements. After
the study, three annotators labeled the dataset for which character
strength each utterance was referring to. We refer to this labeled
dataset as the Character Strengths dataset. In total, 118 utterances
were collected across 35 participants. We used Fleiss kappa agree-
ment formulti-raters [14] tomeasure inter-rater reliability (IRR). The
con�dence interval among the three annotatorswas 0.70. The cuto�s
for qualitative IRR based on Fleiss kappa values is considered a "sub-
stantial agreement" if the value is between 0.61 and 0.80 [14]. When-
ever there was a disagreement between the annotators, the majority
voting was selected as the �nal labels. For the eight utterances that
the annotators did not agree on, �ve were cross-checked with other
utterances from the same participant, two utterances acquired a 4th
annotation, and one utterance was deleted due to severe obscurity.
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The �nal Character Strengths dataset contained 117 utterances,
with the number of samples per character strength varied due to
the nature of the interaction. There were no samples for Leadership,
Humility, Prudence, and Judgment character strengths. An example
utterance for Kindness was "But yeah it would be nice to .. for people
who need help, I mean someone wants me to do something for them,
even like a volunteering thing like this".

4.2 Training Datasets
In order to trainmodels to performcharacter strength recognition on
theCharacter Strengths dataset,we collected two small datasets. The
�rst dataset, called "De�nition" in our results, is based on web scrap-
ingof de�nitions, examples, quotes, synonymsand exercises for each
of the 24 character strengths. The De�nition dataset was collected
fromwebsites that focus on character strengths (e.g., viacharacter.org
and positivepsychology.com). Examples of the collected statements
are; "Stand up for someone who is being criticised, or treated unfairly"
forBravery, and "Expandyour knowledge in anarea of interest through
books, journals, magazines, TV, radio or internet, for half an hour, three
times a week." for Curiosity. The statements from the De�nition
dataset are di�erently nuanced than our Character Strengths dataset
since many were acquired from coaching instructions on theWeb.
Nonetheless, the goal of this dataset is to evaluate the feasibility of
acquiring a dataset with minimum e�ort that is somewhat represen-
tative to the task.Wecollectedanaverageof 65 statementsper charac-
ter strength (f=5.75,min=60,max=80), for a total of 1,556 statements.

The second dataset, which we refer to in our results as "Survey",
was crowdsourced through email responses and AmazonMechani-
cal Turk. For this dataset collection, participants were asked to select
their character strengthandanswer the following twoquestions, sim-
ilar to how the robot asked the user in our real-world application sce-
nario: (1) "Howhave you used your chosen strength before?", and (2) "In
what newwaywould you use your chosen strength tomorrow? ". An ex-
ample utterance forZest from this dataset is: "When I cook new recipes
I have the most fun and excitement combining ingredients and usually
dance while cooking.". In total, 1,476 statements were collected, with
an average of 61.5 per character strengths (f=0.8,min=60,max=63).
We also combine the data collected from both the Survey and Def-
inition datasets to create the third "Mixed" dataset. In each dataset,
we remove 20% for validation and use the rest for training.

4.3 Experiments
In order to see if our �ndings in Section 3 hold for a real-world HRI
scenario, we train BiLSTM and BERTmodels on various subsets of
the Survey, De�nition, and Mixed datasets, and evaluate them on
the Character Strengths dataset. In addition, we also provide results
from Dialog�ow using the same samples to demonstrate what one
can achieve using a commercially available API. As described in
Section 3, partial datasets were created from the Survey, De�nition,
and Mixed datasets separately with at most = training examples per
intent, with = 2 [1,5,10,25,50] for the Survey and De�nition datasets.
For the Mixed dataset, we randomly select half of the samples from
the Survey dataset and the other half from the De�nition dataset,
with the total = 2 [5,10,25,50,100]. Since the De�nitions dataset has
at most 80 examples per intent, and the Survey dataset at most 63,
neither is large enough alone to provide 100 examples per intent.

Therefore, only the Mixed dataset has results for 100 examples per
intent. Dialog�ow, BiLSTM, and BERTmodels were trained on each
partial dataset. The best BiLSTM parameters as found for ATIS and
Snips were used, with a hidden dimension of 300, LSTM dropout
of 0.25, and batch size 16. For BERT, best models were chosen by
performance on the corresponding validation set.We then evaluated
the best models on the Character Strengths dataset.

Figure 2: Character Strength dataset was collected during
positive psychology sessions delivered by a social robot.
College students interactedwith the robot for seven positive
psychology sessions in their dormitory rooms [20].

4.4 Results
The results of BERT, BiLSTM, and Dialog�owmodels trained on our
collected datasets and evaluated on the Character Strengths dataset
are shown inTable 5.When compared to theBiLSTMandDialog�ow,
BERT achieves higher performance across the board.While the abso-
lute performance falls short from the previous evaluation in Section
3, Table 2, similar patterns can be noticed with the variations of the
dataset size. A signi�cant boost in test performance is observedwith
every increase in the number of training examples up to 25 examples
per intent, after which the performance converges. Ultimately, the
25 example per intent results for the Character Strengths dataset
replicates our �ndings in Section 3, where 25 examples per intent
resulted in performance not far from the best performance.

To further inspect the reason for the lower performance, we com-
pared the results from the BERTmodel with agreement results from
the three human annotators. The agreement between annotators,
i.e., Fleiss Kappa of 0.7, indicated that even to the human annotators,
some of the character strength statements were ambiguous, with the
lowest agreement inBravery, Spirituality,Gratitude, andPerspective.
For example, a Gratitude statement such as "I was, like, really happy
that day for no particular reason. Just felt, like, it was a nice walk,
the day was nice, there was, like, a cool breeze." had an agreement
score of 0.7 and was often confused with Appreciation of Beauty.
The BERTmodel also shares confusion with the human annotators
on Gratitude and Perspective (see Figure 3).

Figure 3 illustrates the di�erences in models performance be-
tween the 5, 10, 25 and 100 examples with Mixed dataset. In general,
the performance between the highest performing model (79.5%, 100
sample per intent) and the model trained with 25 samples per intent
(76.1%) in the Mixed dataset does not di�er much compared to the
lowest preforming models (44.4% and 65.0% for 5 and 10 samples
respectively). The only noticeable di�erence between the two high-
est performing models was the Self-Regulation results, where it is
likely that certain keywords appearing in the 100 samples per intent
training dataset were missing or less frequent in the 25 per example
training dataset (See Syntactic and Semantic Limitations in Section 5).
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Table 5: Testing Accuracy Results using Di�erent Datasets for Character Strengths Intent Classi�cation

Examples Survey De�nition Mixed
per Intent BiLSTM Dialog�ow BERT BiLSTM Dialog�ow BERT BiLSTM Dialog�ow BERT

1 4.2 2.5 11.1 4.2 2.5 7.7 - - -
5 7.6 20.3 42.7 9.3 16.9 35.0 6.8 25.4 44.4
10 6.8 42.4 76.1 8.5 18.6 53.0 5.9 39.8 65.0
25 9.3 53.4 76.1 5.1 43.2 75.2 10.2 56.8 76.1
50 16.9 55.9 76.9 11.9 52.5 76.1 18.6 56.8 76.1
100 - - - - - - 16.9 64.4 79.5

Intent accuracies of models trained with subsets of the De�nition, Survey, and Mixed datasets, and evaluated on the
Character Strengths dataset. The best intent scores for each partial training dataset are in bold.

) )

Figure 3: Performance of BERT trained on 5, 10, 25 and 100 examples per intent with the Mixed dataset. The performance
di�erence between the 25 and 100 models is only one additional error per 25 classi�cations, even though the model trained
with 25 examples per intent requires far less training data.

5 DISCUSSION
Performance with Minimal Training Data: Our results show
that it is possible to train a very-high performing intent classi�ca-
tion model with only about 25 examples per intent. For comparison,
the entire Snips training set has around 700 examples per intent, and
the ATIS training set contains 276 examples per intent on average,
with a median of 77 examples per intent. Our BERT model’s high
performancewithminimal data is true not only for the Snips dataset,
which has a small number of very di�erent intents, but also for ATIS,
which has many similar intents with nuanced distinctions.

While 94% accuracy with 25 examples per intent may seem like a
largedrop from the entire training set performanceof 98%at�rst, in a
real-world scenario, the di�erence is only one additional error per 25
classi�cations.For someone trying toquicklydevelopawell-working
model in a low-resource scenario, this is a very small price to pay. If a
model trained on only 25 examples per intent can achieve such high
performance, then anybody, whether a small organization or a sole
student, can create their own deployment-ready intent classi�cation
model using a dataset they can create in a matter of hours.

A signi�cant concern of trainingwith such a small amount of data
is the dependence of performance on the particular training exam-
ples used. It would be reasonable to believe that two di�erent small
datasets of the same size may lead to very di�erent test performance,
however our results show that this risk isminimized once there is suf-
�cient training data, which for ATIS and Snips is around 25 examples
per intent. Once this threshold is reached, the expected di�erence in

performance of models trained on two di�erent datasets of the same
size is low. This means that our methods are still robust, even with
such limited data. Of course, when gathering new training data, it
is still essential that the data is of high quality, and representative of
the distribution of data in testing and in the real-world application.

Evaluating on real-world HRI: Models trained for the char-
acter strengths classi�cation task showed a similar pattern to the
benchmark datasets, with 25 examples per intent resulting in a near-
maximum performance. Similar to the ATIS/Snips evalution, the
performance di�erence between the models trained with 25 and 100
examples per intent is only one additional error per 25 classi�cations.
We also con�rm that using a training dataset with a more repre-
sentative distribution of the expected testing data results in better
generalization (i.e., the Survey dataset that mimics the human-robot
Q&A dialogues in the actual deployed study). Nonetheless, having
a variety of examples from di�erent sources of data collection, such
as fromWeb crawling, also showed not only the ability to general-
ize with a small amount of data, but also the ease and performance
gains of augmenting the training dataset with more samples. Com-
paring human annotation agreement with the performance of the
BERTmodel reveals that the human agreementwas also low in some
closely nuanced character strength labels. Even with the complexity
of identifying the character strengths, given their subtle de�nition
di�erencesand theiroverlappingactivities inpeople’sutterances, the
BERTmodelwith small training sampleswasable togeneralize toour
HRI application. The BiLSTM struggled to perform on the character
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strengths task; while it was able to e�ectively �t the training exam-
ples, itwasunable togeneralize to the character strength interactions.
Across the board, our BERTmodels achieved much higher perfor-
mance than Dialog�ow, consistently by a margin of around 20%.

Syntactic and Semantic Limitations: In order to evaluate the
limitations of our minimal data models, we inspected training and
validation examples that were falsely classi�ed by our BERTmodels
trained on at most 25 examples per intent for both ATIS and Snips,
when compared to themodels trained on the entire datasets. Looking
at theSnipsmisclassi�edexamples, it is clear that themajorityof false
classi�cations are confusions between the "SearchScreeningEvent"
and"SearchCreativeWork" intents.While the "SearchScreeningEvent"
intent covers requests for nearby movie screenings, "SearchCre-
ativeWork" covers searches for books, music, and other forms of
media. Many utterances of both intents share similar syntax, how-
ever they di�er by the use of speci�c keywords, such as "schedule",
which occurs commonly in "SearchScreeningEvent" examples and
not "SearchCreativeWork". In many of the "SearchScreeningEvent"
examples misclassi�ed as "SearchCreativeWork", these keywords
are present, which would suggest that while the models may have
e�ectively learned the syntactic patterns of the various intents, the
semantics may have been less e�ectivelymodeled, especially for key
words and phrases. These �ndings are consistent with the ATIS mis-
classi�ed examples. ForATIS, confusion occurs between intentswith
similar syntax, but di�erent keywords. For example, the "quantity"
intent is used for questions about howmany airlines use speci�c air-
craft, while questions about howmany �ights leave from certain air-
ports are contained in the "�ight" intent.While these utterances have
very similar syntax, speci�cwords, especially verbs, are consistently
di�erent, however themodel isunable tomake thisdistinction.When
trained on the entire dataset, this confusion is signi�cantly reduced.

Ease of Training: One of our main goals is to demonstrate that
it is easy for anyone to train a high-performing intent recognition
model, without deep technical expertise and access to typical com-
pute resources such as GPUs. Since the pre-trained BERTmodel that
forms the core of our BERT architecture is publicly available [19],
it is incredibly easy for anyone to reproduce our model and adapt it
to their needs. Our models can also be trained very quickly without
specialized hardware. When trained on a 2019 MacBook Pro with a
2.8GHz Intel Core i7CPU, our partial dataset BERTmodels took only
37minutes to train on average.While the �nal training time depends
on the number of training examples used, no model exceeded two
hours of training time. This means that it is quite reasonable for
these models to be trained on personal laptops.

Practical Recommendations for Intent Recognition Models
in Low Data Scenarios: Based on our �ndings, it is feasible for
any individual to train a high-performing intent recognition system
using only example utterances they create themselves, or a small cor-
pus of training examples collected in another fashion. Once enough
training and validation data has been gathered, it is simple to train
our models on that new data. We have a few recommendations that
may be helpful for an individual attempting to train their own intent
recognition model with a small amount of data:

• Even though our BERT model is certainly not small, it can be
trained on a personal laptop in a matter of minutes when using
several hundred (or a few thousand) training examples.

• While ourmodels can achieve high performancewith only around
25 examples per intent in our experiments, it is still essential to
have enoughvalidationdata to e�ectively evaluate amodel trained
on a new corpus. A typical 80%/20% split for training/evaluation is
reasonablewith larger amounts of data, we recommend a 50%/50%
split when using very small amounts of data.

• When comparing the performances of models trained on di�erent
partial datasets of the same size and from the same corpus, we
found a positive correlation between performance and training set
type-token ratio (TTR), de�ned as the ratio of unique tokens in the
dataset to the total number of tokens. We also found positive cor-
relation between the average TTR of examples in each intent with
performance, and negative correlation between the percentage
of tokens that only appear once in any intent with performance.
These �ndings suggest that, when building a new training set, it is
advantageous to gather exampleswith a broad range of vocabulary,
while still having enough similar examples in each intent.

6 CONCLUSION
In this paper, we explored the impact of the amount of training data
on intent recognition models’ performance, in order to understand
theminimumamountofdata required for trainingahigh-performing
intent classi�er. We trained logistic regression, BiLSTM, and BERT
models on both theATIS and Snips datasets, achieving results compa-
rable to state-of-the-art.We then trained thesemodels on smaller sub-
sets of each dataset, and found that our BERTmodel can achieve 94%
intent accuracy on both datasets using only 25 training examples per
intent. In order to evaluate the consistency of performance for mod-
els trained on di�erent training sets of the same size, we randomly
generated 11 unique training sets from ATIS and Snips datasets for
each number of examples per intent. We found that for around 25
examples per intent, ourBERTmodels performed consistently across
the random training sets, with a standard deviation in test accuracy
of only 1%. Finally,we found thatwhile theseminimal datamodels ef-
fectively model the syntactic di�erences between intents, additional
training data is needed to model more nuanced semantic di�erences.

We validated these �ndings on the character strength data col-
lected from real-worldHRI interactions to assess the generalizability
of our approach. Our BERT model acheived 80% accuracy in this
recognition task. Similarly to the results from the ATIS and Snips
dataset, we found that the BERT model trained on 25 samples per
intent achieved a near-maximum accuracy of 76%. Comparing our
model’s performance and human annotators’ agreement revealed
the complex nature of the character strength classi�cation task.

This work demonstrates that high-performance intent classi�-
cation models can be trained using an exceptionally small amount
of data. We also made the code for our BERTmodel and the testing
framework publicly available, so that anyone can easily replicate
our results and develop models for their own HRI applications.
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