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ABSTRACT
We consider the problem of finding Nash equilibrium for two-player

turn-based zero-sum games. Inspired by the AlphaGo Zero (AGZ) al-

gorithm [26], we develop a Reinforcement Learning based approach.

Specifically, we propose Explore-Improve-Supervise (EIS) method

that combines “exploration”, “policy improvement” and “supervised

learning” to find the value function and policy associated with Nash

equilibrium. We identify sufficient conditions for convergence and

correctness for such an approach. For a concrete instance of EIS

where random policy is used for “exploration”, Monte-Carlo Tree

Search is used for “policy improvement” and Nearest Neighbors is

used for “supervised learning”, we establish that this method finds

an ε-approximate value function of Nash equilibrium in Õ(ε−(d+4))
steps when the underlying state-space of the game is continuous

and d-dimensional. This is nearly optimal as we establish a lower

bound of Ω̃(ε−(d+2)) for any policy.
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1 INTRODUCTION
In 2016, AlphaGo [24] became the first program to defeat the world

champion in the game of Go. Soon after, another program, AlphaGo

Zero (AGZ) [26], achieved even stronger performance despite learn-

ing the game from scratch given only the rules. Starting tabula
rasa, AGZ mastered the game of Go entirely through self-play

using a new reinforcement learning algorithm. The same algo-

rithm was shown to achieve superhuman performance in Chess

and Shogi [25].
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One key innovation of AGZ is to learn a policy and value function

using supervised learning from samples generated via Monte-Carlo

Tree Search. Motivated by the remarkable success of this method,

in this work we study the problem of finding Nash Equilibrium for

two-player turn-based zero-sum games and in particular consider

a reinforcement learning based approach.

Our Contributions. The central contribution of this work is the

Explore-Improve-Supervise (EIS) method for finding Nash Equilib-

rium for two-player turn-based zero-sum games with continuous
state space, modeled through the framework of Markov game. It

is an iterative method where in each iteration three components

are intertwined carefully: “explore” that allows for measured explo-

ration of the state space, “improve” which allows for improving the

current value and policy for the state being explored, and “super-

vise” which learns the improved value and policy over the explored

states so as to generalize over the entire state space.

Importantly, we identify sufficient conditions, in terms of each

of the “explore”, “improve” and “supervise” modules, under which

convergence to the value function of the Nash equilibrium is guar-

anteed. In particular, we establish a finite sample complexity bound

for such a generic method to find the ε-approximate value func-

tion of Nash equilibrium. See Theorem 2 and Proposition 3 for the

precise statements.

We establish that when random sampling is used for “explore”,

Monte-Carlo-Tree-Search (MCTS) is used for “policy improvement”

and Nearest Neighbor is used for “supervised learning”, the theoret-

ical conditions identified for convergence of EIS are satisfied. Using

our finite sample bound for EIS, and quantification of conditions as

stated above, we conclude that such an instance of EIS method find

an ε-approximate value function of Nash equilibrium in Õ
(
ε−(d+4))

steps, where d is the dimension of the state space of the game (cf.

Theorem 8). We also establish a mini-max lower bound on the num-

ber of steps required for learning an ε-approximate value function

of Nash equilibrium as Ω̃
(
ε−(d+2)) for any method (cf. Theorem 4).

This establishes near-optimality of an instance of EIS.

Related Work. The Markov Decision Processes (MDP) provide

a canonical framework to study the single-agent setting. Its natu-

ral extension, the Markov Games, provide a canonical framework

to study multi-agent settings [12]. In this work, we consider an

instance of it—turn-based two players or agents with zero-sum

rewards. Analogous to learning the optimal policy in MDP, here

we consider finding the Nash Equilibrium in the setting of Markov

Games. There has been a rich literature on existence, uniqueness
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as well as algorithms for finding the Nash Equilibrium. In what

follows, we describe the most relevant literature in that regard.

To start with, in [22], for finite state and action spaces where

game would terminate in a finite number of stages with posi-

tive probability, the existence of optimal stationary strategies and

uniqueness of the optimal value function are established. For generic

state space, the existence of Nash Equilibrium has been established

for Markov Games with discounted rewards. Particularly, when the

state space is a compact metric space, [15, 16] and [17] show the

uniqueness of value function and existence of optimal stationary

policy. The same result has been established by [10] when the state

space is complete, separable metric space. For two-player zero-sum

discounted Markov games, the Bellman operator corresponding to

the Nash equilibrium is a contraction and hence, the value function

is unique and there exists a deterministic stationary optimal pol-

icy [3, 28]. We also note that existence of Nash equilibrium for a

general class of games (stochastic shortest path) is established by

[18]. It argues that the optimal value function is unique and can be

achieved by mixed stationary strategies.

For computing or finding optimal value function and policy

associated with the Nash equilibrium, there are two settings con-

sidered in the literature: (i) when system model is entirely known,

and (ii) when model is not known but one can sample from the

underlying model. In the first setting, classical approaches from

the setting of MDPs such as value/policy iteration are adapted to

find the optimal value function or policy associated with the Nash

equilibrium [3, 18]. In the second setting which is considered here,

various approximate dynamic programming algorithms have been

proposed [1, 4, 5, 11, 13, 14, 19, 20, 28]. More recent work approxi-

mates the value function/policy by deep neural networks [24–26].

In terms of theoretical results, there has been work establishing

asymptotic convergence to the optimal value function when the

state space is finite. For example, Q-learning for MDP adapted to

the setting of two-player zero-sum games converges asymptoti-

cally [28]. Non-asymptotic results are available for model-based

algorithms developed for Markov games with finite states, includ-

ing R-max algorithm [2] and an algorithm that extends upper

confidence reinforcement learning algorithm [31]. Recent work

in [23] provides an algorithm that computes an ε-optimal strategy

with near-optimal sample complexity for Markov games with fi-

nite states. For Markov games where the transition function can

be embedded in a given feature space, the work by [6] analyzes

the sample complexity of a Q-learning algorithm. However, non-

asymptotic or finite sample analysis for continuous state space

without a special structure, such as that considered in this work,

receives less attention in the literature.

Comparison with PriorWork. In this work, we develop Explore-

Improve-Supervise (EIS) policy when the model is unknown, but

one is able to sample from the underlying model. We study the

convergence and sample complexity of our approach. Our goal is

to provide a formal study on the general framework of EIS. The

overall framework is inspired by AlphaGo Zero and inherits similar

components. However, we take an important step towards bridging

the gap between sound intuitions and theoretical guarantees, which

is valuable for a better understanding on applying or extending this

framework with different instantiations. We note that EIS bears

certain similarities with another AlphaGo-inspired study [21]. Both

works follow the main idea of coupling improvements with super-

vised learning. However, there are major differences. Shah et al.

[21] focus on approximating value function in deterministic MDPs

and only studies a particular instance of the modules. In contrast,

we focus on a broader class of algorithms, formulating general prin-

ciples and studying the guarantees. This poses different challenges

and requires generic formulations on properties of the modules

that are technically precise and practically implementable.

Finally, as mentioned previously, non-asymptotic analysis for

continuous state space, considered in this work, is scarce forMarkov

games. While there are some results for finite states, the bounds

are not directly comparable. For example, the complexity in [20]

depends on some oracle complexities for linear programming and

regression.

For the setting with continuous state space, the sample complex-

ity results in [6] for Q-learning rely on the assumption of linear

structure of the transition kernel. The recent work [32] studies the

finite-sample performance of minimax deep Q-learning for two-

player zero-sum games, where the convergence rate depends on

the family of neural networks. We remark that these belong to a dif-

ferent class of algorithms. We also derive a fundamental mini-max

lower bound on sample-complexity for any method (cf. Theorem

4). The lower bound is interesting on its own. Moreover, it shows

near optimal dependence on dimension for an instance of our EIS

framework.

Organization. The remainder of the paper is organized as follows.

We formally introduce the framework of Markov Games and Nash

equilibrium in Section 2. Section 3 describes a generic Explore-

Improve-Supervise (EIS) algorithm. The precise technical properties

for the modules of EIS are then stated in Section 4, under which

we establish our main results, convergence and sample complexity

of EIS, as stated in Section 5. Finally, a concrete instantiation is

provided in Section 6, demonstrating the applicability of the generic

EIS algorithm. The proofs of our main results are presented in

Sections 7 and 8.

2 TWO-PLAYER MARKOV GAMES AND
NASH EQUILIBRIUM

We introduce the framework of Markov Games (MGs) (also called

Stochastic Games [22]) with two players and zero-sum rewards.

The goal in this setting is to learn the Nash equilibrium.

2.1 Two-player Zero-sum Markov Game
We consider two-player turn-based Markov games like Go and

Chess, where players take turns to make decisions. We denote the

two players as P1 and P2. Formally, aMarkov game can be expressed

as a tuple (S1,S2,A1,A2, r , P ,γ ), where S1 and S2 are the set of

states controlled by P1 and P2 respectively, A1 and A2 are the

set of actions P1 and P2 can take, r represents reward function, P
represents transition kernel and γ ∈ [0, 1) is the discount factor.

Specifically, for i = 1, 2, let Ai (s) be the set of feasible actions for
player i in a given state s ∈ Si . We assume that S1 ∩ S2 = ∅1.

1
This assumption is typical for turn-based games. In particular, one can incorporate

the “turn” of the player as part of the state, and thus P1’s state space (i.e. when it is

player 1’s turn) is disjoint from that of P2’s turn.
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Let S = S1 ∪ S2. For each state s ∈ S, let I (s) ∈ {1, 2} indicate

the current player to play. At state s , upon taking action a by the

corresponding player I (s), player i ∈ {1, 2} receives a reward r i (s,a).
In zero-sum games, r1(s,a) = −r2(s,a). Without loss of generality,

we let P1 be our reference and use the notation r (s,a) ≜ r1(s,a) for
the definitions of value functions.

Let P(s,a) be the distribution of the new state after playing action

a, in state s , by player I (s). In this paper, we focus on the setting

where the state transitions are deterministic. This means that P(s,a)
is supported on a single state, s ◦ a, where s ◦ a denotes the state

after taking action a at state s .
For each i ∈ {1, 2}, let πi be the policy for player i , where πi (·|s)

is a probability distribution over Ai (s). Denote by Πi the set of

all stationary policies of player i , and let Π = Π1 × Π2 be the set

of all polices for the game. A two-player zero-sum game can be

seen as player P1 aiming to maximize the accumulated discounted

reward while P2 attempting to minimize it. The value function and

Q function for a zero-sumMarkov game can be defined in a manner

analogous to the MDP setting:

Vπ1,π2 (s) = Eat ,st+1,at+1, ...
[ ∞∑
k=0

γkr (st+k ,at+k )|st = s
]
,

Qπ1,π2 (s,a) = Est+1,at+1, ...
[ ∞∑
k=0

γkr (st+k ,at+k )|st = s,at = a
]
,

where al ∼ πI (sl )(·|sl ) and sl+1 ∼ P(sl ,al ). That is, Vπ1,π2 (s) is the
expected total discounted reward for P1 if the game starts from

state s , players P1 and P2 use the policies π1 and π2 respectively.
The interpretation for Q-value is similar.

To simplify the notation, we assume that A1 = A2 ≜ A, where

A is a finite set. We consider S to be a compact subset of Rd ,
where d ≥ 1. The rewards r (s,a) are independent random variables

taking value in [−Rmax,Rmax] for some Rmax > 0. Define Vmax ≜
Rmax/(1 − γ ). It follows that absolute value of value function and

Q function for any policy is bounded by Vmax.

Regarding Deterministic Transitions Assumption. In fact, our ap-

proach and main results of EIS framework (i.e., Sections 4 and 5)

apply to general non-deterministic cases as well, though the exam-

ple we consider in Section 6 is for deterministic cases. In particular,

the improvement module is instantiated by a variant of Monte

Carlo Tree Search, where a non-asymptotical analysis has been

only established for the deterministic case [21]. To facilitate a co-

herent exposition, we focus on deterministic cases here. Indeed,

many games, such as Go and Chess, are deterministic. Additionally,

note that one could instantiate our EIS framework with other meth-

ods for the non-deterministic cases—for instance, by adapting the

sparse sampling oracle [8] as the improvement module—to obtain

a similar analysis.

2.2 Nash Equilibrium
Definition 1 (Optimal Counter Policy). Given a policy π2 ∈ Π2, pol-
icy π1 ∈ Π1 for P1 is said to be an optimal counter-policy against π2, if
and only if for every s ∈ S, we haveVπ1,π2 (s) ≥ Vπ ′

1
,π2 (s),∀π ′

1
∈ Π1.

Similarly, a policy π2 ∈ Π2 for P2 is said to be an optimal counter-
policy against a given policy π1 ∈ Π1 for P1, if and only if for every
s ∈ S Vπ1,π2 ≤ Vπ1,π ′

2

,∀π ′
2
∈ Π2.

In a two-player zero-sum game, it has been shown that the pairs

of optimal policies coincides with the Nash equilibrium of this

game [10, 15, 17]. In particular, a pair of policies (π∗
1
,π∗

2
) is called

an equilibrium solution of the game, if π∗
1
is an optimal counter

policy against π∗
2
and π∗

2
is an optimal counter policy against π∗

1
.

The value function of the optimal policy,Vπ ∗
1
,π ∗

2

, is the unique fixed
point of a γ -contraction operator. In the sequel, we will simply refer

to the strategy π∗ = (π∗
1
,π∗

2
) as the optimal policy. Finally, we use

the concise notation V ∗
and Q∗

to denote the value function and

the Q function under the optimal policy, respectively, i.e., V ∗(s) =
Vπ ∗

1
,π ∗

2

(s) and Q∗(s,a) = Qπ ∗
1
,π ∗

2

(s,a).

Algorithm 1 The Generic EIS Algorithm

1: Initialization: a supervised learning model f0(s) =

(V0(s),π0(·|s)) for every s ∈ S.

2: for l = 1, 2, . . . ,L do
3: receives an initial state s1.
4: /* data generation via improvement & exploration */
5: for i = 1, 2, . . . ,nl do
6: query the improvement module, which takes as inputs the

current model fl−1, and outputs estimates V̂ (si ) for the
optimal value V ∗(si ) and π̂ (·|si ) for the optimal policy

π∗(·|si ):(
V̂ (si ), π̂ (·|si )

)
= Improvement Module(fl−1, si ) (1)

7: query the exploration module for the next state si+1:

si+1 = Exploration Module(si ) (2)

8: end for
9: /* model update via supervised learning */
10: query the supervised learning module with the collected

data D(l ) = {(si , V̂ (si ), π̂ (·|si )}
nl
i=1 and obtained an updated

model fl (s) for every s ∈ S.

fl = Supervised Learning Module

(
D(l ))

(3)

11: end for
12: Output: final model fL .

3 EIS: EXPLORE-IMPROVE-SUPERVISE
We describe Explore-Improve-Supervise (EIS) algorithm for learn-

ing the optimal value function V ∗
and optimal policy π∗

. The al-

gorithm consists of three separate, but intertwined modules: ex-

ploration, improvement and supervised learning. Below is a brief

summary of these modules. The precise, formal description of prop-

erties desired from these modules is stated in Section 4, which will

lead to convergence and correctness of the EIS algorithm as stated

in Theorem 2. Section 6 provides a concrete example of modules of

EIS satisfying properties stated in Section 4.

Exploration Module. To extract meaningful information for

the entire game, sufficient exploration is required so that enough

representative states will be visited. This is commonly achieved by

an appropriate exploration policy, such as ϵ-greedy policy and Boltz-
mann policy. The existence of an exploration module is required to

guarantee sufficient exploration.

Improvement Module. For the overall learning to make any

progress, the improvement module improves the existing estimates

of the optimal solution. In particular, given the current estimates
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V̂ for V ∗
and π̂ for π∗

, for a state s , a query of the improvement

module produces better estimates V̂ ′(s) and π̂ ′(·|s) that are closer
to the optimal V ∗(s) and π∗(·|s) in an appropriate sense.

Supervised Learning Module. The previous two modules can

be collectively viewed as a data generation process: the exploration

module samples sufficient representative states, while a query of the

improvement module provides improved estimates for the optimal

value and policy. With these as training data, supervised learning

module would learn and generalize the improvement of the training

data to the entire state space. Subsequently, the trained supervised

learning module produces better estimates for V ∗
and π∗

.

Combining together, the three modules naturally lead to the

following iterative algorithm whose pseudo-code is provided in

Algorithm 1. Initially, the algorithm starts with an arbitrary model

for the value function and policy. In each iteration l ≥ 1, it performs

two steps:

Step 1. Data Generation. Given current model fl−1 = (Vl−1,πl−1):
for current state s , query the improvement module to obtain bet-

ter estimates V̂ (s) and π̂ (·|s) than the current estimates fl−1(s);
and then query the exploration module to arrive at the next state

s ′; repeat the above process to obtain training data of n samples,

{(si , V̂ (si ), π̂ (·|si ))}
n
i=1.

Step 2. Supervised Learning.Given the improved estimates {(si , V̂ (si ),
π̂ (·|si ))}

n
i=1, use the supervised learning module to build a new

model fl = (Vl ,πl ).
Intuitively, the iterative algorithm keeps improving our esti-

mation after each iteration, and eventually converges to optimal

solutions. The focus of this paper is to formally understand un-

der what conditions on each of the exploration, improvement and

supervised learning module does the algorithm work. Of course,

proof is in the puddling—we provide examples of existence of such

modules in Section 6.

4 PROPERTIES OF MODULES
In this section we formally state the desired properties of each

of the three modules of EIS. With these properties, we establish

convergence and correctness of EIS algorithm in Section 5 to follow.

We remark that the properties are not made for the ease of technical

analysis. Examples satisfying these properties shall be provided in

Section 6.

4.1 Improvement Module
This module improves both value function and policy. The value

function is real-valued, whereas policy for each given state can be

viewed as a probability distribution over all possible actions. This

requires a careful choice of metric for quantifying improvement.

Let V̂ (s) and π̂ (·|s) be the estimates output by the improvement

module in the l-th iteration of EIS. Improvement of value function

means |V̂ (s) −V ∗(s)| < |Vl (s) −V ∗(s)|. Improvement for policy is

measured by the KL divergence between π̂ (·|s) and π∗(·|s). Here
some care is needed as KL divergence would become infinite if

supports of the distributions mismatch.

Note that the optimal policy π∗
only assigns positive probability

to the optimal actions. On the other hand, there is no guarantee that

π̂ (·|s) always has a full support onA. To overcome these challenges,

we instead measure the KL divergence with an alternative "optimal

policy" that guarantees a full support on A. This naturally leads

to the optimal Boltzmann policy: given a temperature τ > 0, the

optimal Boltzmann policy is given by

P∗τ (a |s) =
eQ

∗(s,a)/τ∑
a′∈A eQ

∗(s,a′)/τ
, for a ∈ A. (4)

If I (s) is player P2, use −Q∗(s,a) instead in the above equation

to construct the Boltzmann policy (Recall that player P1 is set to
be our reference in Section 2). By definition, DKL

(
π̂ (·|s)| |P∗τ (·|s)

)
is guaranteed to be finite for any estimate π̂ (·|s). Furthermore,

P∗τ converges to π∗
as τ → 0. Therefore, we could use the KL

divergence DKL

(
π̂ (·|s)| |P∗τ (·|s)

)
with a small enough τ to measure

the improvement of the estimates.

Finally, the statistical efficiency of the module is measured by

the number of samples (i.e., observed state transitions) required to

improve the policy and value function. We now formally state the

following desirable property for the improvement module.

Property 1. (Improvement Property) Suppose the current model
f (s) = (V (s),π (·|s)) (potentially random) has estimation errors ε0,v >
0 and ε0,p > 0 for the value and policy estimates, respectively, i.e.,

E
[
| |V −V ∗ | |∞

]
≤ ε0,v ,

E
[
DKL

(
π (·|s)| |P∗τ (·|s)

) ]
≤ ε0,p , ∀ s ∈ S,

where the expectations are taken with respect to the randomness of
the model f = (V ,π ).

Fix any state s ∈ S, and query the improvement module on s
via

(
V̂ (s), π̂ (·|s)

)
= Improvement Module(f , s). Let the temperature

be τ > 0, and improvement factors be 0 < ζv < 1 and 0 < ζp <
1. Then, there exists a function κ(τ , ε0,v , ε0,p , ζv , ζp ) such that if
κ(τ , ε0,v , ε0,p , ζv , ζp ) number of samples are used, the new estimates
satisfy that

E
[��V̂ (s) −V ∗(s)

��] ≤ ζv · ε0,v ,

E
[
DKL

(
π̂ (·|s)| |P∗τ (·|s)

) ]
≤ ζp · ε0,p ,

where the expectations are with respect to the randomness in the
model f and the improvement module.

Property 1 allows for a randomized improvement module, but re-

quires that on average, the errors for the value and policy estimates

should strictly shrink.

4.2 Supervised Learning Module
To direct the model update in an improving manner, the super-

vised learning step (line 10 of Algorithm 1) should be able to learn

from the training data, V̂ and π̂ , and generalize to unseen states

by preserving the same order of error as the training data. Gener-

ically speaking, generalization would require two conditions: (1)

sufficiently many training data that are “representative” of the un-

derlying state space; (2) the model itself is expressive enough to

capture the characteristics of the function that is desired to be

learned.

Before specifying the generalization property, let us provide a

few remarks on the above conditions. Condition (1) is typically

ensured by using an effective exploration module. Recall that the

state space is continuous. The explorationmodule should be capable
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of navigating the space until sufficiently many different states are

visited. Intuitively, these finite states should properly cover the

entire space, i.e., they are representative of the entire space so

that learning from these states provide enough information for

other states. Formally, this means that given the current estimation

errors ε1,v and ε1,p for the optimal value and policy, there exists

a sufficiently large set of N (ε1,v , ε1,p ) training states, such that

supervised learning applied to those training data would generalize

to the entire state space with the same order of accuracy. The precise

definition of representative states may depend on the particular

supervised learning algorithm.

Regarding condition (2), generalization performance of tradi-

tional models has been well studied in classical statistical learning

theory. More recently, deep neural networks exhibit superior empir-

ical generalization ability, although a complete rigorous proof seems

beyond the reach of existing techniques. Our goal is to seek general

principle underlying the supervised learning step and as such, we

do not limit ourselves to specific models—the learning model could

be a parametric model that learns via minimizing empirical squared

loss and cross-entropy loss, or it could be a non-parametric model

such as nearest neighbors regression. With the above conditions in

mind, we state the following general property for the supervised

learning module:

Property 2. (Generalization Property) Let temperature τ > 0,
estimation errors ε1,v > 0 and ε1,p > 0 be given. There exists at
least one set of finite states, denoted by S(τ , ε1,v , ε1,p ), with size
NS(τ , ε1,v , ε1,p ), so that the following generalization bound holds:
Suppose that a training dataset

{(
si , V̂ (si ), π̂ (·|si )

)}n
i=1 satisfies

S(τ , ε1,v , ε1,p ) ⊂ {si }
n
i=1 and the following error guarantees:

E
[
|V̂ (si ) −V ∗(si )|

]
≤ ε1,v ,

E
[
DKL

(
π̂ (·|si )∥P

∗
τ (·|si )

) ]
≤ ε1,p , ∀ i ∈ [n],

where the expectation is taken with respect to the randomness of the
value V̂ (si ) and π̂ (·|si ). Then, there exist non-negative universal con-
stants cp and cv such that after querying the supervised learning mod-
ule, i.e., (V ,π ) = Supervised LearningModule({

(
si , V̂ (si ), π̂ (·|si )

)
}ni=1),

(V ,π ) satisfy

E
[V −V ∗


∞

]
≤ cv · ε1,v ;

E
[
DKL

(
π (·|s)∥P∗τ (·|s)

) ]
≤ cp · ε1,p , ∀s ∈ S.

4.3 Exploration Module
With the above development, it is now straightforward to identify

the desired property of the exploration module. In particular, as

part of the data generation step, it should be capable of exploring

the space so that a set of representative states S(τ , ε1,v , ε1,p ) are
visited. Consequently, the supervised learning module can then

leverage the training data to generalize. Formally, let E be the set

of all possible representative sets that satisfy the Generalization

Property:

E(τ , ε1,v , ε1,p ) =
{
S(τ , ε1,v , ε1,p ) ⊂ S :

Property 2 is satisfied with S(τ , ε1,v , ε1,p ).
}
.

Denote by T(t) ≜ {si }
t
i=1 the set of states explored by querying

the exploration module up to time t , with s1 being the initial state

and si+1 = Exploration Module(si ) (cf. line 7 of Algorithm 1). We

now state the exploration property, which stipulates that starting

at an arbitrary state s , the explored states should contain one of the

representative sets in E, within a finite number of steps.

Property 3. (Exploration Property) Given the temperature τ >
0, and estimation errors ε1,v > 0 and ε1,p > 0 for the value and
policy, define

T (τ , ε1,v , ε1,p , s) ≜ min

{
t ≥ 1 :

s1 = s;∃ ˆS ∈ E(τ , ε1,v , ε1,p ) such that ˆS ⊂ T(t)
}
.

Then, the exploration module satisfies that ∀s ∈ S,

E
[
T (τ , ε1,v , ε1,p , s)

]
< B(τ , ε1,v , ε1,p ),

for some B(τ , ε1,v , ε1,p ) < ∞ independent of s . The above expectation
is taken with respect to the randomness in the exploration module
and the environment (i.e., state transitions).

In the sequel, when the context is clear or the initial state does

not matter, we usually drop the dependence in s to simplify the

notation, i.e., T (τ , ε1,v , ε1,p ).

5 MAIN RESULTS: CONVERGENCE
GUARANTEES AND SAMPLE COMPLEXITY

5.1 Convergence Guarantees
As the main result of this paper, we establish convergence of the

EIS algorithm under the three desired properties given in Section 4,

and quantify the corresponding finite sample complexity. We also

provide an algorithm-independent minimax lower bound; in Sec-

tion 6 we introduce an instance of EIS that essentially matches this

lower bound.

Theorem 2. Given a small enough τ > 0, let Properties 1, 2 and 3
hold. LetC0,v = ∥V0−V

∗∥∞ andC0,p = sups ∈S DKL

(
π0(·|s)∥P

∗
τ (·|s)

)
be initialization errors. Then for a given ρ ∈ (0, 1), with appropri-
ate parameters for Algorithm 1, the output fL = (VL ,πL) after L-th
iteration satisfies

E
[VL −V ∗


∞

]
≤ C0,vρ

L , (5)

E
[
DKL

(
πL(·|s) ∥ P

∗
τ (·|s)

) ]
≤ C0,pρ

L , ∀s ∈ S. (6)

The proof of Theorem 2 is provided in Section 7. Theorem 2

implies that the model (VL ,πL) learned by the generic EIS algo-

rithm converges to the optimal value function V ∗
and the optimal

Boltzmann policy P∗τ exponentially with respect to the number of

iterations. In particular, after

L =
⌈ log ε

max{C0,v ,C0,p }

log ρ

⌉
= Θ

(
log

1

ε

)
iterations, we can obtain estimates for both V ∗

and P∗τ that are

within ε estimation errors. We note that with a sufficiently small

temperature, P∗τ is close to the optimal policy π∗
. Therefore, the

model fL = (VL ,πL) can be close to (V ∗,π∗) for a large L.
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5.2 Sample Complexity
We can also characterize the sample complexity of the EIS algo-

rithm. Recall that the sample complexity is defined as the total

number of state transitions required for the algorithm to learn

ϵ-approximate value/policy function. The sample complexity of

Algorithm 1 comes from two parts: the improvement module and

the exploration module. Recall that the improvement module re-

quires κ(τ , ε0,v , ε0,p , ζv , ζp ) samples for each call (cf. Property 1).

The sample complexity of exploration module is proportional to

T (τ , ε1,v , ε1,p ), which satisfies E[T (τ , ε1,v , ε1,p )] ≤ B(τ , ε1,v , ε1,p )
(cf. Property 3). The following proposition, whose proof is given

in Section 8, bounds the sample complexity in terms of the above

relevant quantities.

Proposition 3. Consider the setting of Theorem 2. Then, with prob-
ability at least 1 − δ , the convergence result (i.e., Eqs (5) and (6)) is
achieved with sample complexityM such that

M ≤

L∑
l=1

[
κ
(
τ ,C0,vρ

l−1,C0,pρ
l−1,

ρ

cv
,
ρ

cp

)
×

B
(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· e · log

L

δ

]
.

In Section 6, we provide a concrete instance of EIS that finds

ε-approximate value function and policy of Nash equilibrium with

Õ(ε−(d+4)) transitions.

5.3 A Generic Lower Bound
To understand how good the above sample complexity upper bound

is, we establish a lower bound for any algorithm under any sampling

policy. In particular, we leverage the the minimax lower bound for

the problem of non-parametric regression [27, 29] to establish the

lower bound, as stated in the following theorem.

Theorem 4. Given an algorithm, let VT be the estimate of V ∗ after
T samples of transitions for the given Markov game. Then, for each
δ ∈ (0, 1), there exists a two-player zero-sum Markov game such that

in order to achieve P
[V̂T −V ∗


∞
< ε

]
≥ 1 − δ , it must be that

T ≥ C ′d · ε−(d+2) · log(ε−1),

where C ′ > 0 is an algorithm-independent constant.

6 IMPLEMENTATION: A CONCRETE
INSTANTIATION OF THE KEY MODULES

In this section, we demonstrate the applicability of the generic

EIS algorithm by giving a concrete instantiation. Specifically, we

will use a variant of Monte Carlo Tree Search (MCTS) as the im-

provement module, nearest neighbor regression as the supervised

learning module, and random sampling as the exploration mod-

ule. We prove that all properties in Section 4 are satisfied. This

shows that these properties are reasonable and hence gives a strong

support for the generic recipe developed in this paper. Due to

space limit, we provide discussions here with technical results. The

complete proof is deferred to the technical report.

6.1 Improvement Module: MCTS
Recall that the improvement module should be capable of providing

improved estimates for both the value and policy functions, at the

queried state s . Since both the value and the policy are closely

related to the Q function, one simple approach to simultaneously

produce improved estimates is to obtain better estimates ofQ∗
first

and then construct the improved estimates of value and policy from

Q̂ . We will take this approach in this example and use MCTS to

obtain the Q estimates. Throughout this section, we assume the

existence of a generative model (i.e., a simulator).

MCTS is a class of popular search algorithms for sequential

decision-makings, by building search trees and randomly sampling

the state space. It is also one of the key components underlying

the success of AlphaGo Zero. Most variants of MCTS in literature

uses some forms of upper confidence bound (UCB) algorithm to

select actions at each depth of the search tree. Since our focus is

to demonstrate the improvement property, we employ a fixed H -

depth MCTS, which takes the current model of the value function

Vl as inputs and outputs a value estimate V̂ (s) of the root node s .
The current model Vl of the value function is used for evaluating

the value of the leaf nodes at depth H during the Monte Carlo

simulation. This fixed depth MCTS has been rigorously analyzed in

[21] with non-asymptotic error bound for the root node, when the

state transition is deterministic. We refer readers to [21] (precisely,

Algorithm 1) for the details of the pseudo code. We remark that in

principle, many other variants of MCTS that has a precise error

guarantee could be used instead; we choose the fixed H -depth

variant here to provide a concrete example.

We now lay down the overall algorithm of the improvement

module in Algorithm 2 below. Recall that the state transition is

deterministic and the reward r (s,a) could be random (cf. Section 2).

Given the queried state s , note that the Q-value estimate Q̂(s,a) for
each a ∈ A is given by the sum of two components: (1) empirical

average of the reward r (s,a); (2) the estimated value V̂ (s ◦a) for the
next state, returned from calling the fixed depth MCTS algorithm

with s ◦ a being the root node. Further recall that we use player P1
as the reference (i.e., r (s,a) ≜ r1(s,a)). The module then obtains

improved value estimate V̂ (s) by taking proper max or min of the

Q-value estimates Q̂(s,a)—depending on whether I (s) is player P1
(maximizer) or player P2 (minimizer)—and improved policy esti-

mate π̂ (·|s) as the Boltzmann policy based on Q̂(s,a). It is worth
mentioning that the fixed depth MCTS algorithm was applied for

discounted MDP in [21], but extending to game setting is straight-

forward as in literature [7, 9], i.e., by alternating betweenmax nodes

(i.e., P1 plays) and min nodes (i.e., P2 plays) for each depth in the

tree and properly adjusting the sign of the upper confidence term.

The following theorem states the property of this specific im-

provement module (Algorithm 2). It is not hard to see that it directly

implies the desired improvement property, i.e., Property 1.

Proposition 5. Suppose that the state transitions are deterministic.
Given the current model f = (V ,π ), a small temperature τ < 1, and
the improvement factors 0 < ζv < 1 and 0 < ζp < 1. Suppose that
the current value model, V , satisfies that

E
[
| |V −V ∗ | |∞

]
≤ ε0,v .

Session 3: Data Science Theory  FODS ’20, October 19–20, 2020, Virtual Event, USA

144



Algorithm 2 Improvement Module

1: Input: (1) Current model f = (V ,π ); (2) root node s .
2: /* Q-value estimates*/
3: for each a ∈ A do
4: call the fixed depth MCTS (Algorithm 1 of [21]) with: (1)

depthH ; (2) root node s◦a; (3) current modelV for evaluating

value of the leaf nodes at depth H ; (4) number of MCTS

simulationm. That is,

V̂ (s ◦ a) = Fixed Depth MCTS(H , s ◦ a,V ,m)

5: simulate action a form times to obtain an empirical average,

r̂ (s,a) , of the reward r (s,a).
6: form Q-value estimate for Q∗(s,a):

Q̂(s,a) = r̂ (s,a) + γV̂ (s ◦ a)

7: end for
8: /* Improved value and policy estimates*/
9: form value and policy estimates for V ∗(s) and P∗τ (s) based on

the Q-value estimates, i.e.,

V̂ (s) = max

a∈A
Q̂(s,a)

π̂ (a |s) =
eQ̂ (s,a)/τ∑

a′∈A eQ̂ (s,a′)/τ
for every a ∈ A.

if I (s) is player P2, then replace max with min in the value

estimate and replace Q̂ with −Q̂ in the policy estimate (recall

that the maximizer P1 is the reference).
10: Output: improved estimates V̂ (s) and π̂ (·|s).

Then, with appropriately chosen parameters for Algorithm 2, for each
query state s0 ∈ S,

(
V̂ (s0), π̂ (·|s0)

)
= Improvement Module(f , s0),

we have:

E
[��V̂ (s0) −V ∗(s0)|

��] ≤ ζv · ε0,v

E
[
DKL

(
π̂ (·|s0)| |P

∗
τ (·|s0)

) ]
≤ ζp · ε0,v .

The above is achieved with a sample complexity of

O
( (
τ ·min{ζv , ζp } · ε0,v

)−2
·
log(τ ·min{ζv , ζp })

logγ

)
.

6.2 Supervised Learning Module: Nearest
Neighbor Regression.

We employ a nearest neighbor algorithm to learn the optimal value

function and policy. Intuitively, suppose that the optimal value

function and the Boltzmann policy is smooth in the state space,

then this algorithm will generalize well if there are sufficiently

many training data points around each state in the state space

S. Formally, to establish the generalization property of nearest

neighbor supervised learning algorithm, we make the following

smoothness assumption about the Markov game.

Assumption 1. (A1.) The state space S is a compact subset of Rd .
The chosen distance metric d : S ×S → R+ associated with the state
space S satisfies that (S,d) forms a compact metric space. (A2.) The
optimal value functionV ∗

: S → R satisfies Lipschitz continuity with

parameter Lv , i.e., ∀s, s ′ ∈ S, |V ∗(s)−V ∗(s ′)| ≤ Lvd(s, s
′). (A3.) The

optimal Boltzmann policy P∗τ defined in Eq. (4) is Lipschitz continuous
with parameter Lp (τ ), i.e., ∀s, s ′ ∈ S, ∀a ∈ A, |P∗τ (a |s) − P∗τ (a |s

′)| ≤

Lp (τ )d(s, s
′).

For each h > 0, the compact S has a finite h/2-covering num-

ber N (h). There exists a partition of S,
{
Bj , j ∈ [N (h)]

}
, such that

each Bj has a diameter at most h, that is, supx,y∈Bj d(x ,y) ≤ h.

We assume that states in the training set, T := {si , i ∈ [n]}, are
sufficiently representative in the following sense: for any given h
and K , the sample size n can be chosen large enough to ensure that��Bj ∩T

�� ≥ K for all j ∈ [N (h)], i.e., eachBj having at least K training

data. If T satisfies this condition, we call it (h,K)-representative.
Given the training data, we fit a value function VNN : S → R

using the following Nearest Neighbor type algorithm: set

VNN(s) =
1��Bj ∩T

�� ∑
si ∈Bj∩T

V̂ (si ), ∀s ∈ Bj .

For each a ∈ A, a similar algorithm can be used to fit the action

probability πNN(a |·) : S → [0, 1]. The proposition below shows

that this algorithm has the desired generalization property. To

simplify the notation, we use εv and εp to represent the estimation

errors of the value function and the policy, respectively, for the

training data. That is, εv ≜ ε1,v and εp ≜ ε1,p in Property 2.

Proposition 6. Suppose Assumption 1 holds. If the training data is
representative with respect to appropriate h > 0 and K > 0, the above
regression algorithm satisfies Property 2. In particular, if

h = min

{ εv
Lv
,

√
εp/2

Lp

}
, (7)

K = max

{V 2

max

2ε2v
log

(
4VmaxN (h)

εv

)
,
1

εp
log

(
4N (h)

εp

)}
, (8)

we have

E
[ VNN −V ∗


∞

]
≤ 4 · εv ,

E
[
DKL

(
πNN(·|s) ∥ P

∗
τ (·|s)

) ]
≤ c · εp , ∀s ∈ S,

where the constant c > 0 is independent of n, the size of the training
data.

The size of a representative data set should at least scale as

KN (h). Consider a simple setting where the state space is a unit vol-

ume hypercube in Rd with l∞ metric. By [30, Lemma 5.7], the cov-

ering number N (h) of S scales asΘ
(
(1/h)d

)
. Let ε = min{εv ,

√
εp }.

Note that h = Θ(ε). Therefore, to achieve the desired generalization
property, the size of the training dataset should satisfy

n ≥ KN (h) = O
( K
hd

)
= O

(
d

εd+2
log

1

ε

)
.

6.3 Exploration Module: Random Sampling
Policy

As stated in Proposition 6, the sampled states for nearest neighbor

regression should be (h,K)-representative, where h,K are given by

Eq. (7)-(8). We will show that a random sampling policy—uniformly

sampling the state space—is able to visit a set of (h,K)-representative
states within a finite expected number of steps. We need to assume

that the state space S is sufficiently regular near the boundary. In
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particular, we impose the following assumption which is naturally

satisfied by convex compact sets in Rd , for example.

Assumption 2. The partition {Bj , j ∈ [N (h)]} of S satisfies

λ(Bj ) ≥ c0
λ(S)

N (h)
, ∀j ∈ [N (h)],

for some constant c0 > 0, where λ is the Lesbegue measure in Rd .

Proposition 7. Suppose that the state space S is a compact subset of
Rd satisfying Assumption 2. Given temperature τ > 0, and estimation
errors εv > 0 and εp > 0 for the value and policy respectively, define
h,K as in Eq. (7)-(8). Then the expected number of steps to obtain a
set of (h,K)-representative states under the random sampling policy
is upper bounded by

B(τ , εv , εp ) = O

(
KN (h)

c0
logN (h)

)
.

6.4 Convergence Guarantees of the Instance
For the instance of EIS algorithm with MCTS, random sampling

policy and nearest neighbor supervised learning, we have shown

that each module satisfies the desired properties (cf. Propositions 5-

7). Therefore, the convergence result stated in Theorem 2 holds for

the specific instance we consider here. Below we make this result

explicit, providing concrete bounds on the estimation errors and

sample complexity.

Theorem 8. Suppose that Assumptions 1 and 2 hold. For a given ρ ∈

(0, 1), and a small τ < 1, there exist appropriately chosen parameters
for the instance of Algorithm 1 with MCTS, random sampling and
nearest neighbor supervised learning, such that:

(1) The output fL = (VL ,πL) at the end of L-th iteration satisfies

E
[VL −V ∗


∞

]
≤ Vmaxρ

L ,

E
[
DKL

(
πL(·|s) ∥ P

∗
τ (·|s)

) ]
≤

cVmax

4

ρL , ∀s ∈ S,

where c is the generalization constant for policy in Proposi-
tion 6.

(2) With probability at least 1 − δ , the above result is achieved
with sample complexity of

L∑
l=1

c ′ log
1

τ ρ
·

1

τ 2ρ4l
· log

N (c1ρ
l )

ρl
· N (c1ρ

l ) · logN (c1ρ
l ) · log

L

δ
,

where c ′ > 0 and c1 > 0 are constants independent of ρ and l .
(3) In particular, if S is a unit volume hypercube in Rd , then the

total sample complexity to achieve ε-error value function and
policy is given by

O

(
log

1

τ ρ
·

1

τ 2εd+4
· log

( 1
ε

)
4

· log
1

δ

)
.

Theorem 8 states that for a unit hypercube, the sample com-

plexity of the instance of EIS scales as Õ
(
ε−(4+d )

)
(omitting the

logarithmic factor). Note that the minimax lower bound in Theo-

rem 4 scales as Ω̃
(
ε−(2+d )

)
. Hence, in terms of the dependence on

the dimension, the instance we consider here is nearly optimal. We

note that the Õ
(
ε−(4+d )

)
sample complexity results from two parts:

the MCTS contributes a sample complexity scaling as ε−2 due to

simulating the search tree, while nearest neighbor requires ε−(2+d )

samples due to the need of sufficiently many good neighbors. Ob-

taining tighter bound with potentially more powerful improvement

module or supervised learning module such as neural networks is

an interesting future avenue.

7 PROOF OF THEOREM 2
Proof. With the three detailed properties, the proof is concep-

tually straightforward. At each iteration, the improvement module

would produce better estimates for the explored states, by factors

of ζv and ζp . The exploration continues until one of the desired

representative sets in E has been visited, and the exploration prop-

erty guarantees that the exploration time will be finite. The current

iteration then ends by calling the supervised learning module to

generalize the improvement to the entire state space. In what fol-

lows, we make these statements formal.

Let us first introduce some notion. We will use the term iter-

ation to refer to a complete round of improvement, exploration

and supervised learning (cf. Line 2 of Algorithm 1). In general, at

each iteration, we use a superscript (l) to denote quantities rele-

vant to the l-th iteration, except that for the supervised learning

module, we follow the convention in the paper and use a subscript

l , i.e., fl = (Vl ,πl ). We denote by Z (l )
all the information during

the l-th iteration. Let {F (l )} be the sigma-algebra generated by the

stochastic process {Z (l )}, where the randomness comes from the

environment and any randomness that may be used in the three

modules. Let ω
(l )
v and ω

(l )
p be the estimation errors of the model at

the beginning of the iteration, i.e.,

ω
(l )
v ≜ E

[Vl−1 −V ∗

∞

]
,

ω
(l )
p ≜ sup

s ∈S
E
[
DKL

(
πl−1(·|s)∥P

∗
τ (·|s)

) ]
.

We useD(l ) =
{(
si , V̂

(l )(si ), π̂
(l (·|si )

)}nl
i=1

to denote the set of train-

ing data generated by the exploration module and querying the

improvement module during the l-th iteration. Let S(l ) = {si }
nl
i=1 be

the set of states visited by the exploration module. Correspondingly,

the estimation errors for the value function and the optimal policy

after querying the improvement module are denoted by ε
(l )
v and

ε
(l )
p , respectively:

ε
(l )
v = sup

s ∈S (l )
E
[
|V̂ (l )(s) −V ∗(s)|

]
,

ε
(l )
p = sup

s ∈S (l )
E
[
DKL

(
π̂ (l )(·|s)∥P∗τ (·|s)

) ]
.

At the l-th iteration, the supervised learning modules takes the

outputs of the improvement module, D(l )
, as the training data.

Note that the estimation errorsω
(l+1)
v andω

(l+1)
p for the new model

fl = (Vl ,πl ), after querying the supervised learning module, is

given by:

ω
(l+1)
v = E

[Vl −V ∗

∞

]
,

ω
(l+1)
p = sup

s ∈S
E
[
DKL

(
πl (·|s)∥P

∗
τ (·|s)

) ]
.
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First, the improvement property of the improvement module (cf.

Property 1) implies that

ε
(l )
v ≤ ζvω

(l )
v , (9)

ε
(l )
p ≤ ζpω

(l )
p . (10)

For the supervised learning module, according to the general-

ization property (cf. Property 2), when the size of training set nl
is sufficiently large and the sampled states S(l ) = {si }

nl
i=1 are rep-

resentative of the state space, the same order of accuracy of the

training data will be generalized to the entire state space. For now,

let us assume that this is the case; we will come back to verify the

generalization bound in Property 2 can indeed be satisfied by S(l ).
Then, the following bounds hold:

ω
(l+1)
v ≤ cvε

(l )
v ≤ cvζvω

(l )
v ,

ω
(l+1)
p ≤ cpε

(l )
p ≤ cpζpω

(l )
p .

Therefore, when querying the improvement module, if we select

the improvement factors to be

ζv = ρ/cv and ζp = ρ/cp , (11)

then we have

ω
(l+1)
v ≤ ρω

(l )
v , (12)

ω
(l+1)
p ≤ ρω

(l )
p . (13)

It is worth taking note of the fact that cv and cp would be larger

than 1 (cf. Property 2): a reasonable supervised learning model may

generalize the same order of accuracy as training data, but unlikely

for it be smaller; hence, ζv and ζp are required to be smaller than 1

in Property 1 so that ρ < 1.

By definition, ω
(1)
v = C0,v and ω

(1)
p = C0,p . Therefore, we have

the desired inequalities:

E
[VL −V ∗


∞

]
≤ C0,vρ

L

E
[
DKL

(
πL(·|s)∥P

∗
τ (·|s)

) ]
≤ C0,pρ

L , ∀s ∈ S.

Finally, to complete the proof, as we mentioned before, we need

to verify that we could sample enough representative states at

each iteration in finite time steps. This is indeed guaranteed by the

exploration property. In particular, note that at the l-th iteration, we
would like to sample enough representative states that are of errors

ζvω
(l )
v and ζpω

(l )
p for the value and policy functions (cf. Eqs. (9)

and (10)). By a recursive argument (cf. Eqs. (12) and (13)), it is

not hard to see that at the l-th iteration, we need to query the

exploration module until the sampled states, S(l ) = {si }
nl
i=1, contain

one of the representative sets in E(τ , ζvC0,vρ
l−1, ζpC0,pρ

l−1), i.e.,

we immediately stop querying the exploration module at time nl
when the following holds:

∃ Ŝ ∈ E(τ , ζvC0,vρ
l−1, ζpC0,pρ

l−1) such that Ŝ ⊂ {si }
nl
i=1,

where ζv and ζp are given by Eq. (11). From the exploration prop-

erty, we know that E
[
T
(
τ , ζvC0,vρ

l−1, ζpC0,pρ
l−1) ]

is finite, which

implies that nl is also finite with high probability. Therefore, we are

guaranteed that the training data D(l )
contains one of the represen-

tative sets, and hence the supervised learning module generalizes

at each iteration. This completes the proof of Theorem 2. □

8 PROOF OF PROPOSITION 3
To prove Proposition 3, we first establish the following lemma.

Lemma9. Consider the explorationmodule and suppose thatE[T (τ , ε1,v ,
ε1,p )] ≤ B(τ , ε1,v , ε1,p ). Then, with probability at least 1 − δ ,

T (τ , ε1,v , ε1,p ) ≤ e · B(τ , ε1,v , ε1,p ) · log
1

δ
.

Proof of Lemma 9. Consider a total time steps ofn = eB(τ , ε1,v ,

ε1,p ) log
1

δ . All the states, {si }
n
i=1, are sampled via querying the ex-

ploration module. Let us divide the total time steps n into M ≜
log(1/δ ) segments, each consisting of J ≜ eB(τ , ε1,v , ε1,p ) states.
Denote by S(m) the set of states in them-th segment, i.e., S(m) =

{si }
m J−1
i=(m−1)J . The key idea of the proof is to argue that with high

probability, at least one of the sets S(m),m = 1, 2, . . . ,M will con-

tain a representative set in E(τ , ε1,v , ε1,p ).
Denote by Em the event that them-th segment does not contain

any the representative sets, i.e.,

Em = { � Ŝ ∈ E(τ , ε1,v , ε1,p ) such that Ŝ ∈ S(m)}.

Let Fm be the filtration containing information untill the end of

segmentm. Since E[T (τ , ε1,v , ε1,p )] ≤ B(τ , ε1,v , ε1,p ), by Markov

inequality, we have,

P
(
T (τ , ε1,v , ε1,p ) ≥ J + 1

)
≤
E[T (τ , ε1,v , ε1,p )]

J + 1
≤

B(τ , ε1,v , ε1,p )

J

=
1

e
.

This then implies that

P(Em |Fm−1) ≤
1

e
, m ∈ [M].

Therefore,

P
(
T (τ , ε1,v , ε1,p ) > e · B(τ , ε1,v , ε1,p ) · log

1

δ

)
≤ P( ∀m ∈ [M], Em occurs)

≤ (
1

e
)m

= δ ,

which completes the proof of Lemma 9. □

Proof of Proposition 3. With Lemma 9, we are now ready to

prove Proposition 3. This is achieved by simply counting the sample

complexity for each of the L iterations. As discussed in the conver-

gence proof of Theorem 2, at the l-th iteration, we need to query

the exploration module until the sampled states, S(l ) = {si }
nl
i=1, con-

tains one of the representative sets in E(τ ,C0,vρ
l /cv ,C0,pρ

l /cp ).
For each of the explored states, a query of the improvement module

incurs a deterministic sample complexity of

κ
(
τ ,C0,vρ

l−1,C0,pρ
l−1,

ρ

cv
,
ρ

cp

)
,

for the required improvement factors ζv = ρ/cv and ζp = ρ/cp .
Let us now apply Lemma 9. We have

P
(
nl ≤ e · B

(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· log

L

δ

)
≥ 1 −

δ

L
.
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That is, with probability at most δ/L, the sample complexity of the

l-th iteration is larger than

κ
(
τ ,C0,vρ

l−1,C0,pρ
l−1,

ρ

cv
,
ρ

cp

)
· B

(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· e · log

L

δ
.

Finally, applying union bound over the L iterations, we have

P
(
∃ l ∈ [L] such that nl > e · B

(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· log

L

δ

)
≤

L∑
l=1

P
(
nl > e · B

(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· log

L

δ

)
≤L ·

δ

L
=δ .

Therefore, with probability at least 1 − δ , for every l ∈ [L],

nl ≤ e · B
(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
· log

L

δ
.

Equivalently, with probability at least 1 − δ , the total sample com-

plexity is upper bounded by

L∑
l=1

κ
(
τ ,C0,vρ

l−1,C0,pρ
l−1,

ρ

cv
,
ρ

cp

)
·B
(
τ ,

C0,vρ
l

cv
,
C0,pρ

l

cp

)
·e ·log

L

δ
.

□

9 CONCLUSION
In this paper, we take theoretical steps towards understanding

reinforcement learning for zero-sum turn-based Markov games. We

develop the Explore-Improve-Supervise (EIS) method with three

intuitive modules intertwined carefully. Such an abstraction of three

key modules allows us to isolate the fundamental principles from

the implementation details. Importantly, we identify conditions for

successfully finding the optimal solutions, backed by a concrete

instance satisfying those conditions. Overall, the abstraction and

the generic properties developed in this paper could serve as some

guidelines, with the potential of finding broader applications with

different instantiations. Finally, it would be interesting to extend

this framework to general Markov games with simultaneous moves.

We believe the generic modeling techniques in Section 4 could be

applied, but a key challenge is to develop an improvement module

with rigorous non-asymptotic guarantees that satisfies the desired

property. We believe that addressing this challenge and formally

establishing the framework is a fruitful future direction.
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