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ABSTRACT 

Several biotechnologies are currently available to quantify how cells allocate resources between growth and 

carbon storage, such as mass spectrometry. However, such biotechnologies require considerable amounts of 

cellular biomass to achieve adequate signal-to-noise ratio. In this way, existing biotechnologies inevitably 

operate in a ‘population averaging’ mode and, as such, they cannot unmask how cells allocate resources between 

growth and storage in a high-throughput fashion with single-cell, or subcellular resolution. This methodological 

limitation inhibits our fundamental understanding of the mechanisms underlying resource allocations between 

different cellular metabolic objectives. In turn, this knowledge gap also pertains to systems biology effects, 

such as cellular noise and the resulting cell-to-cell phenotypic heterogeneity, which could potentially lead to 

the emergence of distinct cellular subpopulations even in clonal cultures exposed to identical growth conditions. 

To address this knowledge gap, we applied a high-throughput quantitative phase imaging strategy. Using this 

strategy, we quantified the optical-phase of light transmitted through the cell cytosol and a specific cytosolic 

organelle, namely the lipid droplet (LD). With the aid of correlative secondary ion mass spectrometry 

(NanoSIMS) and transmission electron microscopy (TEM), we determined the protein content of different 

cytosolic organelles, thus enabling the conversion of the optical phase signal to the corresponding dry density 

and dry mass. The high-throughput imaging approach required only 2 µL of culture, yielding more than 1,000 

single, live cell observations per tested experimental condition, with no further processing requirements, such 

as staining or chemical fixation.  

Keywords: interferometry, bioimaging, single-cell, metabolism, trade-offs 

 

1. INTRODUCTION 

Most eukaryotes store excess carbon into lipid droplets (LDs), namely self-assembled, spherical organelles with significant 

implications in human health and bioengineering [1]. While substantial improvements in our fundamental understanding 

[2-4] and engineering [5-7] of lipid metabolism has been achieved in recent years, we still lack the mechanistic insight of 

how individual cells in a clonal population allocate resources between carbon assimilation into LDs and other cellular 
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objectives, such as cellular growth that has been tightly optimized under selective pressure [8]. To this end, conventional 

biotechnologies that screen for lipid accumulation and growth operate in a population-averaging mode [5]. As such, these 

methods inevitably lack the required single-cell and subcellular resolution and are thus unable to detect differences between 

individual cells and the inevitable emergence of metabolic subpopulations due to infrequent mutations, cytosolic stochastic 

phenomena, and extracellular perturbations [9-12]. These metabolic subpopulations may seem insignificant but can have 

a substantial impact on the overall population response, including the production levels of bioentities of industrial interest, 

as well as stress-response, such as antibiotic treatment [13, 14].  

A common approach to screen cell metabolism with subcellular resolution in live cells is to use optical 

microscopy. However, conventional, volumetric, microscopy informs solely about cell and LD size, namely parameters 

that contribute only partially to the cell’s enthalpy and Gibb’s free energy. Further, volumetric optical methods assume 

that cellular and LD densities are homogenous between individual cells and independent of growth conditions. This 

assumption, however, has not been yet validated. Therefore, and despite the considerable ongoing progress in single-cell 

methods [15, 16], imaging resource allocations in various metabolic objectives and especially lipid accumulation and 

growth with subcellular resolution remains an important target.  

To meet this target, we adopted interferometric, quantitative-phase imaging [17-19] using lipid biogenesis in the 

oleaginous yeast Yarrowia lipolytica as a model process [5]. By capturing the optical-phase delay (ΔΦ) induced by the cell 

cytosol and LDs separately, we attained their corresponding dry-weights (DW) with the aid of Nanoscale Secondary Ion 

Mass Spectrometry (NanoSIMs) and Transmission Electron Microcopy (TEM). In this way, we improved the precision of 

conventional, volumetric imaging by more than 50% in quantifying how resources are allocated to growth and lipid 

production [20]. In the following sections, we detail our bioimaging approach, as well as the resulting precision 

quantification of resource allocations to the accumulation of lipids and cellular growth.    

 

2. BIOIMAGING 

We employed the spatial light interference microscopy modality [17] to acquire approximately 1000 single-cell 

quantitative-phase images using only 2 µL of a growing culture per tested experimental condition. Subsequently, we 

localized the cell contour through the increased ΔΦ of the cell cytosol without any fluorescent labelling [21]. Contrary to 

cell-segmentation [21], however, the LD-to-cytosol contrast was inadequate for automated high-throughput LD 

localization. To overcome this shortcoming and enable high-throughput LD detection from quantitative-phase images, we 

additionally collected conventional phase-contrast intensity images, where the non-diffracted wavefront [17] was further 

modulated by an additional phase-delay of π/2 and π [11]. Cross-correlating the resulting images, any non-specific 

contributions to the LD localization were suppressed, yielding greater than 98% correlation with fluorescence, as we further 

detail in a recent publication [20].  

Following the localization of the cell cytosol and LDs, we subsequently converted their corresponding phase-

delay signal to dry-mass (DM) values, by hypothesizing that the cell cytosol is primarily comprised of proteins and nucleic 

acids, dispersed with LDs that are loaded with triacylglycerides (TAGs) at a negligible protein content. We confirmed this 

hypothesis by characterizing the cytosolic and LD elemental composition with nanoscale secondary ion mass spectrometry 

(NanoSIMS). As further detailed in [20], we indeed found the cytosol to be uniformly comprised of naturally abundant 

nitrogen (14N) following the exposure to U-13C glucose at various carbon-to-nitrogen ratios (C/N) and durations using two 

independent cultures. To a similar end, LDs, which were co-localized by Transmission Electron Microscopy (TEM) and 

NanoSIMS, were found to be comprised primarily of 13C with negligible 14N content. 
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 To finalize the conversion of the acquired phase-delay value of the cell cytosol (ΔΦcytosol) to the corresponding 

cellular biomass, we employed the protein refractive index increment, given that the cell cytosol can be approximated as 

an aqueous protein solution [22]. In contrast, a similar increment cannot be directly applied to LDs given that these pertain 

to self-assembled glycerolipids, which for Y. lipolytica are relatively homogeneous with approximately 95% 

triacylglycerides (TAGs). To address this, we employed the Clausius-Mossotti equation to convert the experimentally 

determined LD refractive index to the corresponding number-density of TAG molecules, and thus the LD dry-density. To 

this end, we considered a mixture of triolein, stearin, tripalmitin, trilinolein, and tripalmitolein and calculated the mixture 

TAG polarizability parameter for Y. lipolytica specifically. As we recently reported [20], the TAG mixture polarizability 

parameter does not vary significantly under typical growth conditions.  

 

3. RESULTS 

3.1. Precision assessment 

For various growth conditions and strains, we found that the LD volume correlated poorly with the TAG number-density, 

while exhibiting increased variance (or heterogeneity) between individual cell observations. Similarly, the cell DW-volume 

relationship exhibited high variability and occasionally scaled inversely, yielding a relatively poor correlation between 

these two parameters [20]. Both the increased variance and weak correlations in the density-size relationship for both LDs 

and non-TAG cellular biomass unravel key precision limitations of conventional, volumetric, microscopy in phenotyping 

lipid accumulation and growth. These limitations pertain both to precision quantification of the average population 

response, as well as the underlying cell-to-cell phenotypic heterogeneity and cellular noise, which for Y. lipolytica 

specifically, we determined an average error of 55% with significant differences between specific strain and growth-

conditions [20].  

To further assess the precision improvement of quantitative-phase imaging in comparison to population-averaging 

biotechnologies, we compared the lipid production levels (i.e., the amount of TAG produced per unit time) of two 

genetically similar Y. lipolytica strains (MTYL038 and Po1g). Specifically, we compared the MTYL038 productivity at a 

carbon-to-nitrogen ratio (C/N) of 15 (MTYL03815) with the productivity of MTYL038 and Po1g at C/N:150 (MTYL038150 

 

Figure 1: (a) Comparison of the MTYL03815 single-cell productivity distribution with MTYL038150 (lower) and Po1g150 (upper). 

Cells were grown for 100 hr each in YSM medium. The YPD and YSM media formulations are further detailed in [20]. All 

precultures were stored in YPD agarose (Invitrogen) plates at 4oC and passed twice in YPD medium. The second passage was 

performed at 50x dilution, followed by a 24 hr long growth in YPD, centrifugation at 2000 rpm, and washing in YSM three times, 

prior to transferring to 40 ml Falcon tubes containing 20 ml of the YSM medium. The Falcon tubes enabled limited oxygen exchange 

during batch growth. All growth experiments were performed in a shaking incubator at 200 rpm and a temperature of 28oC. Growth 

curves were determined via optical density measurements using a custom-built light transmission system utilizing a 705 nm diode 

laser and 0.5 ml samples in 1 ml polystyrene cuvettes. (b) Growth curves represented through optical density at 705 nm for all 

experimental conditions presented in (a). 
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and Po1g150, Fig. 1). Using the Kolmogorov–Smirnov (KS) statistic to account for cell-to-cell heterogeneity, we 

determined that the [MTYL03815–Po1g150] pair exhibited the largest phenotypic distance. In contrast, the largest Euclidian 

distance, which simulates the readout of population-averaging methods, was with the [MTYL03815–MTYL038150] pair. 

This inconsistency is due to the enhanced strain-classification precision of single-cell mass-balance phenotyping, which 

objectively captures the different origins of productivity improvement in each strain, namely: improvement was driven by 

overproducing subpopulations for MTYL038150, while for Po1g150 by a 4-fold productivity increase of its most likely 

phenotypes (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

3.2. Competition between LD accumulation and growth 

To visualize the competition of resource allocations between lipid accumulation and growth, we performed a single-cell 

multivariate analysis [23], as illustrated in Fig. 2. This analysis enabled direct quantification of the corresponding 

probability distributions directly in a 2D metabolic space under various experimental conditions. Specifically, we found 

that MTYL03815 allocated resources primarily to growth, as anticipated due to the low C/N ratio in the medium 

formulation. In contrast, Po1g150 displayed a metabolic shift towards high-lipid and low-biomass microstates. A similar 

behavior was observed for MTYL038150, albeit this transition exhibited only sporadic high-product and low-biomass 

subpopulations, indicative of reduced robustness during lipid accumulation. Further analysis during specific timepoints for 

MTYL038150 revealed that during late stationary phase (>70 hr, Fig. 3), both biomass and product decreased. This form of 

decrease indicates the onset of an autophagy-based central catabolic process for both metabolic objectives, which do not 

necessarily exhibit the same rates and same levels of cellular noise. Overall, quantitative-phase imaging uniquely revealed 

that the competition of resource allocations between growth and LD content pertains both during nutrient rich and 

starvation conditions.  

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

In summary, we report single-cell quantitative-phase imaging and its use in high-throughput screening of resource 

allocations between lipid accumulation and growth. Quantitative-phase imaging uniquely differentiated cell biomass from 

intracellular metabolites in single-cells, otherwise impossible to accomplish with conventional microscopy, population-

 

Figure 2: 2D probability distributions for biomass and product allocations for MTYL03815, Po1g150 and MTYL03815. 

 

Figure 3: The time-dependent change (Δ%) of cell biomass, product, and cell-doubling for MTYL038150.  

Proc. of SPIE Vol. 11060  110600E-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



averaging biotechnologies, and alternative single-cell mass characterization methods [24, 25]. The high-throughput 

imaging approach required only 2 µL of culture, yielding more than 1,000 single live cell observations with no further 

processing requirements, such as staining or chemical fixation. Overall, quantitative phase imaging precisely quantified 

how resources are allocated between growth and carbon storage at the single-cell level. Detailed analysis of our imaging 

results indicated that not all cells follow the same resource allocation strategy. In contrast, distinct metabolic 

subpopulations emerge with important implications in the overall population production of lipids. Importantly, these results 

were not possible to attain with population-averaging biotechnologies. Similarly, conventional, volumetric microscopy 

was unable to precisely quantify the competition between growth and lipid production through LD self-assembly due to 

significant biomass dry-density differences between individual cells. The described high-throughput quantitative-phase 

imaging strategy has several potential applications in bioengineering, beyond lipid biogenesis as probed by way of example 

here.      
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