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Learning-based Nonlinear Model Predictive Control of Reconfigurable
Autonomous Robotic Boats: Roboats

Erkan Kayacan 1, Shinkyu Park2,3, Carlo Ratti 2 and Daniela Rus 3

Abstract— This paper presents a Learning-based Nonlinear
Model Predictive Control (LB-NMPC) algorithm for recon-
figurable autonomous vessels to facilitate high-accurate path
tracking. Each vessel is designed to latch to a pre-defined
point of another vessel that allows the vessels to form a
rigid body. The number of possible configurations of such
vessels exponentially grows as the total number of vessels
increases, which imposes a technical challenge in modeling
and identification. In this work, we propose a framework
consisting of a real-time parameter estimator and a feedback
control strategy, which is capable of ensuring high-accurate
path tracking for any feasible configuration of vessels. Novelty
of our method is in that the parameter is estimated on-line and
adjusts control parameters (e.g., cost function and dynamic
model) simultaneously to improve path-tracking performance.
Through experiments on different configurations of connected-
vessels, we demonstrate stability of our proposed approach and
its effectiveness in high-accuracy in path tracking.

I. INTRODUCTION

Self-driving car technology encourages researchers for
having a fleet of autonomous vessels to change our cities and
their waterways. These reconfigurable autonomous vessels
can be used for many purposes, such as food delivery,
infrastructure and garbage collection. They can (i) form
floating food markets and become pop-ups stalls that appear
on waterways’ edges to provide crates of fresh produce, and
(ii) form temporary floating structures like bridges, concert
stages, and public squares for events on waterways (See
Fig. 1(a) for an illustration). Thus, they activate the canals
while tapping into the resources located on the pervasive
regional network of waterways. Moreover, large trash trucks
on streets cause many problems, such as pollution and noise.
Reconfigurable autonomous vessels can serve as floating
dumpsters that can collect garbage and transfer waste, where
residents deposit trash on curbs for collection (See Fig.
1(b) for an illustration). To achieve all these tasks, a fleet
of reconfigurable autonomous vessels require modular boat
platforms that can latch together to create variable size and
form [1]–[4].

Traditionally developing control algorithms for au-
tonomous vessels is challenging in that the controller should
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Fig. 1. Concept of autonomous connected-vessels (Roboats): Individual
units can (a) tessellate together to form floating stages and public squares on
waterways and (b) serve as floating garbage bins that autonomously transfer
waste.

maintain high-precision path-tracking performance in the
presence of matched and mismatched disturbances, such as
current and waves [5]. In addition, unmodeled parameters
in dynamic models introduce additional difficulties in vessel
control, and this requires control methods to adaptively
change control strategies based on sensor measurements
of vessels [7]–[9]. Furthermore, modular boat platforms,
which can latch together, create a new control problem.
The challenges in controlling reconfigurable vessels stem
from dynamically changing shape and number of connected-
vessels, which would dramatically change dynamic models
of the vessels and cause instability in path tracking [10],
[11]. This motivates us to develop and apply a Learning-
based Nonlinear Predictive Control (LB-NMPC) algorithm
for reconfigurable autonomous vessels.

In this paper, we describe the design and implementation
of reconfigurable autonomous vessels with experiment results
demonstrating their ability to track a given path in arbitrary
configurations. The key innovations of our work include:
(i) creation of the first hardware prototype for connected-
vessels, (ii) development of a generalized method for control-
ling arbitrary configurations of connected-vessels, and (iii) a
real-time iteration for LB-NMPC algorithm to reduce the
required computational burden.

The problem is formulated in Section II. The novel LB-
NMPC algorithm for reconfigurable autonomous vessels and
proposed real-time iteration scheme are given in Section III.
Roboat description and experimental results are presented in
Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

In this paper, we consider a problem of designing a
learning-based feedback control algorithm for connected
autonomous vessels. The vessels are designed to connect to
one another to form a rigid body as illustrated in Fig. 1.
To describe the problem, we explain a dynamic model and
parameter identification/feedback control of the connected-
vessels.



A. Modeling of Connected-Vessels

The moving coordinate frame fixed at the connected-
vessels is called the body-fixed reference frame. The origin of
the body-fixed frame is chosen to coincide with the center of
the gravity. Moreover, the motion of the body-fixed frame is
described relative to an inertial reference frame. The position
and orientation of the connected-vessels described relative
to the inertial reference frame while the linear and angular
velocities of the connected-vessels can be expressed in the
body-fixed coordinate system (see Fig. 2 for an illustration).
Finally, the kinematic equation is written as follows:

η̇ηη = R(ψ)ννν (1)

where ηηη = [E,N,ψ]T ∈ R3 is the vector for posi-
tion and heading angle of the connected-vessels in the
inertial frame, ννν = [u,v,r]T ∈ R3 is the vector for
the velocities on the body-fixed frame, and RRR(ψ) =
[cosψ,−sinψ,0;sinψ,cosψ,0;0,0,1]T is the transforma-
tion matrix.

Inspired by the approach described in [10], we adopt a
simple approximate model that varies only on the number
of connected vessels α . The nonlinear connected-vessels dy-
namics are described by the following differential equations
[12]:

Mν̇νν +C(ννν)ννν +Dννν = Aτττ (2)

where M ∈ R3×3 is the positive-definite symmetric inertia
matrix, ννν = [u,v,r]T ∈R3 are the velocities on the body-fixed
frame, C(ννν) ∈ R3×3 is the skew-symmetric Coriolis matrix,
D∈R3×3 is the positive-semi definite drag matrix, A∈R3×3

is the positive definite diagonal matrix and τττ = [τu,τv,τr]
T ∈

R3 is the forces and torque applied to the connected-vessels.
The inertia matrix is written as follows:

M = diag(m11,m22,m33) (3)

Considering the fact that the origin and the center of mass
of the connected-vessels are the same point [13], the Coriolis
matrix is written as follows:

C(ννν) =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 (4)

The connected-vessels always moves at low speed (e.g.,
maximum speed is 6 kmh−1) so that the drag matrix can
be described by a linear damping term. Moreover, the vessel
platform is symmetric with respect to longitudinal and lateral
axes in the body-fixed frame. Therefore, the drag matrix is
written as follows:

D = diag(ζu,ζv,ζr) (5)

where ζζζ = [ζu,ζr,ζr, ]
T ∈ R3 is the damping coefficients

vector.
The matrix AAA is written as follows:

AAA = diag
( 1

α
,

1
α
,

1
α2

)
(6)

where α is a parameter for the number of connected-vessels.
From the forces { fi}4n

i=1 ∈ R4n applied to the propellers
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Fig. 2. An example of connected system consisting of 3 vessels.

on the connected-vessels, we define the forces and torque
τττ = (τu,τv,τr) ∈ R3 applied at the center of mass (CM) as
follows: (

τu
τv

)
=

4n

∑
i=1

fi and τr =
4n

∑
i=1

ri× fi (7)

where ri is the vector from CM to the point at which fi is
applied.

As it is clear from (2), the parameters mmm and ζζζ defined
by mmm = (m11,m22,m33) and ζζζ = (ζu,ζv,ζr) can be found
through analysis of experiment data obtained using a single
vessel (α = 1). For notational convenience, given parameters
(mmm,ζζζ ,α), we refer to the Connected-Vessels Dynamic Model
(2) as CV DM(mmm,ζζζ ,α). The variables are represented in
Table I.

Remark 1 (Discovery of Platform Configuration): To de-
fine the transformation (7), we need the information on how
the vessels are connected in the platform from which we can
infer the orientations of the force vectors fi and the values of
the parameters ri. This problem is known to be configuration
discovery [14], [15] in modular robotics. Due to space limit,
our work in this paper focuses on designing learning-based
control scheme, and we leave integration of algorithms and
hardware for configuration discovery as a future plan.

We define the state of the platform by the pose (E,N,ψ)
of CM in the inertial frame in conjunction with the velocity
(u,v,r) in the body-fixed frame defined at CM (see Fig. 2
for an illustration). The system model describes how the full
state xxx = (ηηη ,ννν) = (E,N,ψ,u,v,r) ∈R6 changes in response
to applied control input τττ = (τu,τv,τr) ∈ R3.

In the rest of the paper, we denote a nonlinear system
model as

ẋxx(t) = f (xxx(t),τττ(t),α) (8)

where xxx ∈ Rnx is the state vector, τττ ∈ Rnτ is the control
input, α ∈ R is a parameter, f (·, ·, ·) : Rnx+nτ+1 −→ Rnx

is the continuously differentiable state update function and
f (0,0,α) = 0 ∀t. The derivative of x with respect to t is
denoted by ẋ ∈ Rnx .

Similarly, a nonlinear measurement model denoted yyy(t)
can be described with the following equation:

yyy(t) = h(xxx(t),τττ(t),α) (9)

where h : Rnx+nτ+1 −→ Rny is the measurement function,
which describes the relation between the variables of the



system model and the measured outputs of the real-time
system.

The state, input and output vectors are respectively de-
noted as follows:

xxx =
[

ηηη ννν
]T

=
[

E N ψ u v r
]T (10a)

τττ =
[

τu τv τr
]T (10b)

yyy =
[

E N ψ r τu τv τr
]T (10c)

B. Problem Description

As we mentioned in Section I, one key technical challenge
in reconfigurable vessels control is that computing precise
value of α for every possible vessels configuration is imprac-
tical, and high-precision path-tracking performance is hard
to achieve without accurate estimates of the parameters. To
address this challenge, we consider a problem of designing
a model parameter estimator and an optimal feedback con-
troller.

We begin with the following description of a parameter
estimation problem: Given output yyy(t) = h(xxx(t),τττ(t)) of the
platform and the control inputs to the propellers { fi(t)}4n

i=1
over the time horizon [0,T ), the parameter identification
problem is to find an estimator E that minimizes

J E
(
{yyy(t),{ fi(t)}4n

i=1 | t ∈ [0,T )}
)
=
∫ T

0
‖yyy(t)−h(x̂xx(t))‖2 dt

(11)
subject to the following constraints:

dynamic model CV DM(mmm,ζζζ , α̂)

(x̂xx(t),mmm,ζζζ , α̂) = E
(
{yyy(s),{ fi(s)}4n

i=1 |s ∈ [0, t)}
)
, ∀t ∈ [0,T )

To maneuver the connected-vessels, we need to assign
proper control inputs to the propellers. For this purpose, we
consider the following optimal path tracking problem to find
a control law U : Given the model parameter (mmm,ζζζ , α̂) and
sets X, V, F, find U that minimizes

J U (xxx0) =
∫ T

0

[∥∥xxx(t)− xxxre f (t)
∥∥2

+
4n

∑
i=1
| fi(t)|2

]
dt (13)

subject to the following constraints:

dynamic model CV DM(mmm,ζζζ , α̂), xxx(0) = xxx0 (14a)
(E,N,ψ) ∈ X (14b)
(u,v,r) ∈ V (14c)

fi = Ui(xxx(t)) ∈ F, ∀i ∈ {1, · · · ,4n} (14d)

The sets X and V can be regarded as safety constraint sets,
which limit respectively the movement and speed of the
connected-vessels, and the set F limits the force that each
propeller generates.

Note that in the implementation of the LB-NMPC algo-
rithm described in Section III, the parameter used to find a
solution to (13) comes from the parameter estimator E and
control inputs generated by the control law U are fed into
the parameter estimator to refine the parameter estimates.
For this reason, to address the challenges in the control of

TABLE I
NOMENCLATURE

RRR(((···))), Rotation matrix.
MMM,CCC(((···))),DDD Inertia, Coriolis and Drag matrices.
ηηη ,ννν Pose and velocity vectors.
E,N,ψ East, North, heading angle.
u,v,r Longitudinal, lateral and angular velocities.
τττ Control vector.
τu,τv,τr Forces and torque.
BBB Actuator configuration matrix.
fi,4n Forces to thusters and number of thrusters.
xxx,xxxr State and reference state vectors.
α,AAA Parameter and matrix for parameter.
x̂xx, α̂ Estimated state vector and estimated parameter.
yyy,yyym System output and measurements vectors.
f (·, ·, ·) System model.
h(·, ·) Measurement model.
N Estimation and control horizons.
HHHk,HHHN Inverses of measurements and process noise

covariance matrices for NMHE.
QQQk,QQQN ,RRR Weighting matrices for NMPC.
‖ · ‖2 Euclidean vector norm.

connected-vessels, we need to find a joint solution to both the
parameter estimation and control problems. We summarize
the main problem addressed in this paper as follows:

Problem 1: Find a parameter estimator E and a feedback
controller U that, respectively, minimizes (11) and (13),
where at each time t ∈ [0,T ), the parameter α for the model
CV DM(mmm,ζζζ ,α) is determined by E given output of the
platform {yyy(s) | s ∈ [0, t)}.

III. LEARNING-BASED NMPC OF RECONFIGURABLE
AUTONOMOUS VESSELS

In this paper, we propose an LB-NMPC algorithm, which
consists of coordination, moving horizon estimation, and
model predictive control to find a solution to Problem 1. The
key idea behind our solution is to adopt a coordinated control
scheme: Among the group of connected vessels, the scheme
assigns one vessel as a coordinator for which the coordinator
computes appropriate control inputs to all propellers in the
platform. This approach allows us to simplify the feedback
control design. The diagram in Fig. 3 depicts the interplay
between these three modules in the algorithm, while the real-
time LB-NMPC algorithm is summarized in Algorithm 1.

A. Coordination
We proceed with re-formulating the cost functional (13) in

terms of the forces and torque applied at CM. Based on (7)
and assuming that the connected-vessels form a rigid body,
we can represent τττ as a linear function of the forces { fi}4n

i=1
that the propellers exert as follows:

τττ = BBB
(

f1, . . . , f4n
)T (15)

where BBB in a 3× 4n known matrix that can be derived
from (7). Assuming that BBB has the full row rank, we can
find a particular pseudo inverse matrix BBB† defined as BBB† =
BBB′(BBBBBB′)−1. Note that given τττ , the pseudo inverse matrix
BBB† finds the minimum-energy propeller inputs { fi}4n

i=1: The
propeller inputs determined by [ f1, · · · , f4n]

T =BBB†
τττ minimize

min
{ fi}4n

i=1

4n

∑
i=1
| fi|2 subject to (15) (16)



Using the transformation matrix BBB and its pseudo inverse
BBB†, we cast the cost function (13) as follows:

J U
r (xxx0) =

∫ T

0

[∥∥xxx(t)− xxxre f (t)
∥∥2

+
∥∥BBB†

τττ(t)
∥∥2
]

dt (17)

In the reformulation, notice that the constraints (14) are
unchanged except the constraint on the propeller inputs
(14d), which now has the following form:

τττ ∈ Fτττ (18)

where Fτττ =
{

BBB
(

f1 · · · f4n
)T
∣∣∣ fi ∈ F, ∀i ∈ {1, · · · ,4n}

}
.

Compare to the optimal controller synthesis problem de-
scribed in Section II-B, the cost function (17) has the smaller
and fixed number of control variables. Interestingly, it can
be shown that any controller U ? that minimizes (17) can be
used to derive an optimal controller for (13). We summarize
the argument in the following proposition.

Proposition 1: Suppose that U ?
r is the optimal con-

troller that minimizes (17). A controller U ? determined by
U ?(xxx) = BBB†U ?

r (xxx), ∀xxx ∈ X is optimal to (13).

B. Nonlinear Moving Horizon Estimation

In the LB-NMPC approach for reconfigurable vessels,
online parameter estimation is required to generate proper
control signals to propellers. It is to be noted that the number
of vessels cannot be negative so that online parameters
estimator must incorporate constraints on the parameter.

Nonlinear Moving Horizon Estimation (NMHE) is an on-
line optimization-based state estimation method that can han-
dle nonlinear systems and satisfy inequality constraints on
the estimated states and parameters [16]. Moreover, NMHE
method is robust to initial guesses in contrast to Extended
Kalman filter, which might fail due to poor initialization
[17]. Additionally, NMHE guarantees local stability, while
Extended Kalman filter cannot guarantee any general con-
vergence. NMHE considers a fixed number of measurements
in a moving time window and the truncated data before the
moving time window were presented by the arrival cost [18].

The considered MHE problem is formulated as follows:

min
xxx(t),α

Γ(xxxk−N ,α)+Γ(yyym(ti),yyy(ti)) (19a)

s. t. ẋxx(t) = f
(
xxx(t),τττ(t),α

)
∀t ∈ [tk−N , tk] (19b)

yyy(t) = h
(
xxx(t),τττ(t)

)
∀t ∈ [tk−N , tk] (19c)

xxxmin ≤ xxx(t)≤ xxxmax ∀t ∈ [tk−N , tk] (19d)
αmin ≤ α ≤ αmax (19e)

where the cost function (19a) consists of the arrival and
quadratic costs, and is defined as follows:

Γ(xxxk−N ,α) =

∥∥∥∥ x̂xx− xxx(tk−N)
α̂−α

∥∥∥∥2

HHHN

(20a)

Γ(yyym(ti),yyy(ti)) =
k

∑
i=k−N

‖yyym(ti)− yyy(ti)‖2
HHHk

(20b)

The arrival cost (20a) stands for the measurements before
the beginning of the estimation horizon (t = [t0,k−N+1]) while
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Fig. 3. Schematic diagram for LB-NMPC of reconfigurable autonomous
vessels.

the quadratic cost (20b) stands for the measurements within
the estimation window t = [tt−N+1,k]. The measurements
are denoted by yyym and the system output is denoted by
yyy. The formulation (19) does not take the input variables
τττ into account as optimization variables, while they are
used to simulate the system. The estimates for states and
parameter are denoted by x̂xx and α̂ , respectively, while the
estimation horizon is denoted by N. All constraints on states
and parameter respectively denoted by xxxmin, xxxmax, αmin and
αmax are summarized in (19d)-(19e), and used for safety to
ensure that the physical limitations and/or validity of models
are satisfied. The weighting matrices HHHk and HHHN are the
inverses of the measurement and process noise covariance
matrices, respectively. They must be chosen adequately to
obtain good state and parameter estimates based on knowl-
edge or prediction of the error distributions. Considering the
noise characteristics of sensors given in Section IV-A, the
weighting matrix HHHk used in the experiments in the order of
(10c) is as follows:

HHHk = diag(σ2
E ,σ

2
N ,σ

2
ψ ,σ

2
r ,σ

2
τu ,σ

2
τv ,σ

2
τr)
−1

=
(
10−2×diag(52,52,72,12,12,12,12)

)−1 (21)

Additionally, the weighting matrix HN used in the experi-
ments in the order of (10a) and α , respectively, is as follows:

HHHN = diag(E,N,ψ,u,v,r,α)−1

= diag(10,10,6.28,1,1,10,0.25)−1 (22)

The weighting coefficients for immeasurable variables (e.g.,
u,v and α) are chosen smaller than measurable variables to
obtain a smooth estimates of these variables. Moreover, the
lower and upper bounds on the parameter α are defined as
follows:

0.25≤ α ≤ 10 (23)

C. Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is a family of
optimal control algorithms that anticipate systems’ behavior



in the future by minimizing a given cost function [19], [20].
The main principle is to solve an optimal control problem at
every time iteration to obtain a control trajectory U , which
guarantees the constraints on system states and inputs [21].

The cost functions consist of least squares error between a
given and predicted state trajectories. NMPC solves the fol-
lowing nonlinear constrained optimization problem at every
time instant:

min
x(t),u(t)

k+N−1

∑
i=k+1

l
(

xxx(ti),τττ(ti)
)
+ lN

(
xxxN(ti),τττN(ti)

)
(24a)

s. t. xxx(tk) = x̂xx(tk) (24b)
α = α̂(tk) (24c)

ẋxx(t) = f
(
xxx(t),τττ(t),α

)
(24d)

xxxmin ≤ xxx(t)≤ xxxmax t ∈ [tk+1, tk+N ] (24e)
τττmin ≤ τττ(t)≤ τττmax t ∈ [tk+1, tk+N−1] (24f)

where the stage and terminal cost functions are defined as
follows:

l
(

xxx(ti),τττ(ti)
)
= ‖xxxr(ti)− xxx(ti)‖2

QQQ +‖τττ(ti)‖2
RRR (25a)

lN
(

xxxN(ti),τττN(ti)
)
= ‖xxxr(tk+N)− xxx(tk+N)‖2

QQQN
(25b)

where QQQ ∈ Rnx×nx , RRR ∈ Rnτ×nτ and QQQN ∈ Rnx×nx are sym-
metric positive semi-definite weighting matrices, xxxr is the
reference state trajectory, xxx and τττ are respectively the states
and inputs, tk is the current time, N is the prediction horizon,
x̂xx(tk) is the current estimates for states, α̂(tk) is the current
estimate for the parameter, xxxmin and xxxmax are the constraints
on the states xxx, whereas τττmin and τττmax are the constraints on
the control inputs τττ . The matrix QQQ weights the difference
between the given and actual state trajectory throughout
the prediction horizon while the matrix QQQN weights the
difference between the given and actual state trajectory at
the end of the prediction horizon.

The weighting matrices QQQk and QQQN in the order of
(10a) and RRR in the order of (10b) for NMPC used in the
experiments are respectively chosen as

QQQ = diag(1,1,0.3,0,0,0), and QQQN = 10×QQQ (26a)

RRR = diag(0.5,0.5,2)×AAA2 (26b)

It is to be noted that the weighting matrix RRR changes by
time with respect to the estimated parameter α in real-
time. The reason is that we want to maintain the same
aggressiveness for the control algorithm and thus obtain the
similar path tracking performance for any feasible configu-
ration of connected-vessels. Moreover, we take the square
of the matrix AAA in the formulation of the weighting matrix
RRR (26b) due to the least-square formulation in (25a). The
constraints on the control inputs τττ used in the experiments
are as follows:

−40N≤ τu and τv ≤ 40N (27a)
−40Nm≤ τr ≤ 40Nm (27b)

Algorithm 1 LB-NMPC algorithm
Initialize:

xxx(tk) = xxx(0), x̂xx(tk) = x̂xx(0) and τττ(tk) = τττ(0)
Inputs:

yyym(tk) = x(tk),y(tk),ψ(tk),r(tk),τu(tk−1),τv(tk−1),
τr(tk−1)

Outputs:
fi(tk), i = 1, . . . ,4n.

while k ≥ N +1 do
MHE receives the current measurements yyym(tk).
Solve the MHE (19)
Obtain the state estimate trajectory X =

[x̂xx(tk−N), . . . , x̂xx(tk)]T throughout the estimation horizon
and the recent parameter estimate α̂(tk−N).

Update x̂xx with the last element of the obtained state
estimate trajectory and α̂ , and send them to the NMPC.

Update the weighting matrix RRR (26b) and dynamics
model (2) with the current parameter estimate α̂ .

Solve the NMPC (24)
Obtain control input trajectory U =

[τττ(tk),τττ(tk+1), . . . ,τττ(tk+N−1)]
T throughout the prediction

horizon.
Update τττ with the first element of the control input

trajectory, and send forces and torque to the Coordination.
Send the forces to the thusters fi, i = 1, . . . ,4n.
Shift forward the estimation and prediction horizons.
Wait for a new measurement yyym.

end while

D. Real-Time Iteration Scheme

The direct multiple shooting method is incorporated with
a generalized Gauss-Newton method that is derived from
the classical Newton method for least-squares problems.
The superiority of this method is that it does not require
arduous computations of second derivatives. On the other
hand, since it is an iterative method, it is difficult to decide
the number of iterations to achieve a desired accuracy. To
cope with this challenge, a single iteration is employed for
having quick feedback time, and the initial value of each
optimization problem takes on the value of the previous one
intelligently [22]. As a consequence, this solution improves
the convergence of the Gauss-Newton method. Furthermore,
qpOASES software package for online active set strategy as
a QP solver is used in this study [23].

As can be seen from the NMPC and NMHE formulations
respectively in (24) and (19), they are similar problems. The
arrival cost in NMHE, i.e., an approximation of the infinite
horizon cost before estimation horizon, is the counterpart of
the terminal penalty in NMPC, i.e., an approximation of the
infinite horizon cost after the prediction horizon. In quadratic
costs, differences between the target trajectory and system
response are summed in NMPC, while differences between
the measurements and measurement function are summed
in NMHE. Therefore, the fusion of the multiple shooting
method and Gauss-Newton method is employed for NMHE.

In this paper, the Gauss-Newton iteration is splitted into



Algorithm 2 Real-time iteration scheme
Initialize:

xxx(tk) = xxx(0), x̂xx(tk) = x̂xx(0) and τττ(tk) = τττ(0)
Repeat online:
1. Preparation step

1.1. Shift the previous solution.
1.2. Evaluate objective and constraints in (19) for

NMHE and in (24) for NMPC.
1.3. Generate corresponding sensitives.
1.4. Wait for new measurements for NMHE and new

estimates for NMPC.
2. Feedback step

2.1. Compute linear term in QP.
2.2. Solve the sparse QP.
2.3. Send the updated state and parameter estimates to

NMPC, and control signal to real-time system.
2.4. Update Nonlinear Programming (NLP) variables

for NMHE and NMPC.

two parts: preparation and feedback steps [24], [25]. The
preparation step is executed after the feedback step, and the
feedback step is executed after measurements for NMHE and
estimates for NMPC are available. In the preparation step, the
system dynamics are integrated with the previous solution,
and objectives, constraints and corresponding sensitives are
evaluated. In the feedback step, a single quadratic program-
ming is solved with current estimates for the NMPC and
current measurements for the NMHE. Thus, new estimates
for the NMHE and new control signals for the NMPC
are computed. The proposed method minimizes feedback
delay and produces similar results with higher computational
efficiency when compared to the classical method. The real-
time iteration scheme for NMPC and NMHE is summarized
in Algorithm 2. IV. EXPERIMENTS

A. Roboats: Robotic Boats

The prototype Roboat used in this study is 0.9 m long ×
0.45 m wide × 0.15 m height and approximately an 1 : 4
scale of a full-size Roboat, which is 4 m long × 2 m wide.
The prototype Roboat is powered by Lithium Ion batteries
that offer up to 2 h duration. An indoor positioning system
(Marvelmind robotics, USA) is used to acquire centimeter-
level accurate positional information in the swimming pool.
In addition to positional information, two antennas are
mounted straight up the center of the Roboat to obtain the
heading angle information. This indoor positioning system
provides approximately positional information with an accu-
racy of 5 cm and heading angle information with an accuracy
of 0.07 rad. Moreover, an inertial measurement unit (LORD
Microstain, 3DM-GX5-25, USA), which provides angular
rate information with an accuracy of 0.01 rad, is mounted
on the Roboat body’s principal axes. There are four T200
thrusters (BlueRobotics, USA), each of which is capable of
providing 35 N force, and four motor controllers, which are
one channel motor drivers that use digital control signals to
drive thrusters per channel.

Fig. 4. Roboats with an L-shape configuration in the swimming pool, MIT,
Cambridge, MA, USA.

Algorithm is executed on an onboard computer (2.5GHz,
64bit, dual-core CPU with 16 GB of memory) and updated
at a rate of 5 Hz.The Arduino Mega 2560, which is a micro-
controller board, is used as an a general-purpose input/output
for each Roboat and radio frequency modules (Digi XBee
S1, USA) are used for communications between multiple
Roboats.

B. Experimental Results

The identified parameters for Roboat are found as m11 =
21.67 kg, m22 = 39.08 kg, m33 = 14.56 kgm2, ζu = 23.52
kgs−1, ζv = 22.32 kgs−1 and ζr = 3.762 kgm2 s−1. The
sampling time is set to 0.2 s, while the prediction horizon in
NMPC, as well as the estimation horizon in MHE, is set to
3 s (e.g., N = 15) in this study. The experiments have been
carried out in a 12 m × 6 m swimming pool (See Fig. 4).

Throughout the experiments, the developed LB-NMPC al-
gorithm for Roboats is evaluated for a desired path consisting
of two straight lines and two curves. In Fig. 5(a), path-
tracking performances of different number of Roboats with
different configurations are shown. The developed algorithm
gives similar path-taking performance for each configuration.

The Euclidean errors for different configurations of
Roboats are shown in Fig. 5(b). The mean values of the
Euclidean errors are respectively 0.0950 m, 0.1115 m, 0.1259
m and 0.1191 m for a single Roboat, two Roboats with
side-by-side (SS) configuration, two Roboats with back-
to-front (BF) configuration and three Roboats with an L-
shape configuration. The LB-NMPC algorithm gives similar
Euclidean errors for different shape and number of connected
Roboats. This show the capability of the proposed algorithm
in this paper.

The estimated values for the parameter α for different
configurations of Roboats are shown in Fig. 5(c). The pa-
rameter α increases, while the number of Roboats increases
as expected. Since the estimation horizon is set to 3 s in the
MHE, such a short estimation horizon is enough to capture
the steady-state response of a system. If we also want to
capture the transient response of a system, the estimation
horizon must be long enough; however, in this case, the
estimate for the parameter α cannot be a recent value. The
reason is that the parameter is assumed to be time-invariant



1 2 3 4 5 6 7 8

E (m)

-1

0

1

2

3

4

5

6

7

8

9

N
 (

m
)

Desired path

Single Roboat

Two Roboats SS

Two Roboats BF

Three Roboats

(a) Desired and actual paths. LB-NMPC algo-
rithm gives similar path-tracking performances for
different configurations.

0 20 40 60 80 100

Time (s)

0

0.1

0.2

0.3

0.4

0.5

E
u
c
lid

e
a
n
 E

rr
o
r 

(m
)

Single Roboat

Two Roboats SS

Two Roboats BF

Three Roboats

(b) Euclidian errors. The mean values of tracking
errors are around 12 cm for different configura-
tions.

0 20 40 60 80 100

Time (s)

0

2

4

6

8

10

N
u
m

b
e
r 

o
f 
R

o
b
o
a
ts

 

Single Roboat

Two Roboats SS

Two Roboats BF

Three Roboats

Bounds

(c) Estimates for the number of boats. The esti-
mates stay within the lower and upper bounds.

Fig. 5. Experimental results for a single Roboat, two Roboats with side-by-side (SS) configuration, two Roboats with back-to-front (BF) configuration
and three Roboats with an L-shape configuration.
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(c) Control inputs generated by the NMPC: the
forces τu, τv and the torque τr . They stay within
the lower and upper bounds.

Fig. 6. Experimental results for three Roboats with an L-shape configuration.

throughout the estimation horizon, while it is time-varying in
the arrival cost in (19a), (20a) and (20b). Therefore, we can
capture only the steady-state behavior of connected Roboats
in this study, which explains the variations on the estimated
values for the parameter α . Furthermore, the estimates stay
within the lower and upper bounds specified in (19e) in
Section III-B, which shows the capability of MHE method.

The measured and estimated heading angle and angular
velocity for three Roboats with an L-shape configuration are
shown in Fig. 6(a). This demonstrates that the MHE can
successfully deal with noise on the measurements. The mea-
surements and estimates for the heading angle are constant
while the system tracks the straight lines. They decrease
while the system tracks curved lines since the system makes
right turns. Moreover, the coefficient for the heading angle is
penalized less than the coefficients for the positions in (26a).
The reason is that the purpose of the LB-NMPC algorithm
is to track a desired path accurately; therefore, we penalize
the heading angle to find the direction of Roboats and to
avoid oscillations around the desired path. The reference
angular velocity is set to 0 and −0.13 rads−1 for straight
and curved lines, respectively. Therefore, the measurements
and estimates for the angular velocity change around these
reference values throughout the experiments as the system is
on-track.

The estimates for the linear velocities (e.g., longitudinal
velocity u and lateral velocity v) for three Roboats with an
L-shape configuration are shown in Fig. 6(b). The reference
linear velocities are respectively set to 0.2 ms−1 and 0
ms−1 for the longitudinal velocity u and lateral velocity v
throughout the desired path generation. The estimates change
around the these reference values as the system is on-track.
If the system was not on-track, these estimates would be
different than the reference values because the system would
try to reach the point on the desired path. Moreover, since the
purpose of the LB-NMPC algorithm for connected-Roboats
is to obtain high-accurate path-tracking performance, we do
not need to penalize the deviations in the linear velocities
in the cost function of the NMPC in (26a). They could be
penalized to obtain more stable path-tracking performance to
avoid oscillations around the desired path if required.

The control signals (e.g., forces and torque) for three
Roboats with an L-shape configuration are shown in Fig.
6(c). The generated control signals by the NMPC stay within
the lower and upper bounds specified in (27) in Section III-C.
The coefficient for the torque is larger than the coefficients
for the forces in the weighing matrix (26b) for the NMPC
design. The reason is that the drag (e.g., fluid resistance)
force for yaw motion is smaller than the ones for the
longitudinal and lateral movements for Roboats.
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Fig. 7. Mean values of the Euclidean errors for four different configura-
tions.

In order to illustrate that the viability of the proposed LB-
NMPC algorithm, the experiments are repeated ten times
while the mean values of the Euclidean errors are recorded.
A box plot presented in Fig. 7 is prepared for statistical
information. It is evident from the figure that the mean
values for the Euclidean errors remain the same. This is
in accordance with our expectation as the learning helps
NMPC to adapt according to the different number and shape
of connected-Roboats.

The LB-NMPC algorithm has been run on an onboard
computer (2.5 GHz, 64bit, dual-core processor, 16GB RAM)
throughout the experiments. The mean value of execution
times for LB-NMPC is approximately 0.45 ms. This shows
the success of the real-time iteration scheme proposed in this
paper.

V. CONCLUSION

In this paper, a novel Learning-based Nonlinear Model
Predictive Control (LB-NMPC) algorithm for reconfigurable
autonomous vessels has been elaborated to obtain accurate
path-tracking. NMHE estimates the unknown parameter by
using on-board sensors and the NMPC designed on the aug-
mented model enables accurate path-tracking performance.
The experimental results show that the LB-NMPC algorithm
is capable of giving less than 12 cm averagely for any fea-
sible configuration of connected-vessels. Moreover, thanks
to a single Gauss-newton iteration principle, the LB-NMPC
algorithm is solved within less than a millisecond in real-
time.
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