
Seeing What a GAN Cannot Generate

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation 2020. "Seeing What a GAN Cannot Generate." Proceedings of the
IEEE International Conference on Computer Vision, 2019-October.

As Published 10.1109/ICCV.2019.00460

Publisher IEEE

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/137173

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137173
http://creativecommons.org/licenses/by-nc-sa/4.0/

Seeing What a GAN Cannot Generate

David Bau1,2, Jun-Yan Zhu1, Jonas Wulff1, William Peebles1

Hendrik Strobelt2, Bolei Zhou3, Antonio Torralba1,2

1MIT CSAIL, 2MIT-IBM Watson AI Lab, 3The Chinese University of Hong Kong

Abstract

Despite the success of Generative Adversarial Networks
(GANs), mode collapse remains a serious issue during GAN
training. To date, little work has focused on understand-
ing and quantifying which modes have been dropped by a
model. In this work, we visualize mode collapse at both the
distribution level and the instance level. First, we deploy a
semantic segmentation network to compare the distribution
of segmented objects in the generated images with the tar-
get distribution in the training set. Differences in statistics
reveal object classes that are omitted by a GAN. Second,
given the identified omitted object classes, we visualize the
GAN’s omissions directly. In particular, we compare specific
differences between individual photos and their approximate
inversions by a GAN. To this end, we relax the problem
of inversion and solve the tractable problem of inverting a
GAN layer instead of the entire generator. Finally, we use
this framework to analyze several recent GANs trained on
multiple datasets and identify their typical failure cases.

1. Introduction
The remarkable ability of a Generative Adversarial Network
(GAN) to synthesize realistic images leads us to ask: How
can we know what a GAN is unable to generate? Mode-
dropping or mode collapse, where a GAN omits portions of
the target distribution, is seen as one of the biggest challenges
for GANs [14, 24], yet current analysis tools provide little
insight into this phenomenon in state-of-the-art GANs.

Our paper aims to provide detailed insights about dropped
modes. Our goal is not to measure GAN quality using a sin-
gle number: existing metrics such as Inception scores [34]
and Fréchet Inception Distance [17] focus on that problem.
While those numbers measure how far the generated and
target distributions are from each other, we instead seek to
understand what is different between real and fake images.
Existing literature typically answers the latter question by
sampling generated outputs, but such samples only visualize
what a GAN is capable of doing. We address the complemen-
tary problem: we want to see what a GAN cannot generate.

original image reconstruction original image reconstruction

Progressive GAN on LSUN Churches

(a) generated vs training object segmentation statistics

(b) real images vs. reconstructions

Figure 1. Seeing what a GAN cannot generate: (a) We compare the
distribution of object segmentations in the training set of LSUN
churches [47] to the distribution in the generated results: objects
such as people, cars, and fences are dropped by the generator. (b)
We compare pairs of a real image and its reconstruction in which
individual instances of a person and a fence cannot be generated.
In each block, we show a real photograph (top-left), a generated re-
construction (top-right), and segmentation maps for both (bottom).

In particular, we wish to know: Does a GAN deviate from
the target distribution by ignoring difficult images altogether?
Or are there specific, semantically meaningful parts and
objects that a GAN decides not to learn about? And if so,
how can we detect and visualize these missing concepts that
a GAN does not generate?

ar
X

iv
:1

91
0.

11
62

6v
1

 [
cs

.C
V

]
 2

4
O

ct
 2

01
9

Image generation methods are typically tested on images
of faces, objects, or scenes. Among these, scenes are an
especially fertile test domain as each image can be parsed
into clear semantic components by segmenting the scene
into objects. Therefore, we propose to directly understand
mode dropping by analyzing a scene generator at two levels:
the distribution level and instance level.

First, we characterize omissions in the distribution as
a whole, using Generated Image Segmentation Statistics:
we segment both generated and ground truth images and
compare the distributions of segmented object classes. For
example, Figure 1a shows that in a church GAN model,
object classes such as people, cars, and fences appear on
fewer pixels of the generated distribution as compared to the
training distribution.

Second, once omitted object classes are identified, we
want to visualize specific examples of failure cases. To do
so, we must find image instances where the GAN should
generate an object class but does not. We find such cases
using a new reconstruction method called Layer Inversion
which relaxes reconstruction to a tractable problem. Instead
of inverting the entire GAN, our method inverts a layer of
the generator. Unlike existing methods to invert a small gen-
erator [51, 8], our method allows us to create reconstructions
for complex, state-of-the-art GANs. Deviations between the
original image and its reconstruction reveal image features
and objects that the generator cannot draw faithfully.

We apply our framework to analyze several recent GANs
trained on different scene datasets. Surprisingly, we find that
dropped object classes are not distorted or rendered in a low
quality or as noise. Instead, they are simply not rendered at
all, as if the object was not part of the scene. For example, in
Figure 1b, we observe that large human figures are skipped
entirely, and the parallel lines in a fence are also omitted.
Thus a GAN can ignore classes that are too hard, while
at the same time producing outputs of high average visual
quality. Code, data, and additional information are available
at ganseeing.csail.mit.edu.

2. Related work
Generative Adversarial Networks [15] have enabled
many computer vision and graphics applications such as
generation [7, 21, 22], image and video manipulation [19,
20, 30, 35, 39, 41, 52], object recognition [6, 42], and text-
to-image translation [33, 45, 49]. One important issue in
this emerging topic is how to evaluate and compare different
methods [40, 43]. For example, many evaluation metrics
have been proposed to evaluate unconditional GANs such as
Inception score [34], Fréchet Inception Distance [17], and
Wasserstein Sliced Distance [21]. Though the above met-
rics can quantify different aspects of model performance,
they cannot explain what visual content the models fail to
synthesize. Our goal here is not to introduce a metric. In-

stead, we aim to provide explanations of a common failure
case of GANs: mode collapse. Our error diagnosis tools
complement existing single-number metrics and can provide
additional insights into the model’s limitations.

Network inversion. Prior work has found that inver-
sions of GAN generators are useful for photo manipula-
tion [2, 8, 31, 51] and unsupervised feature learning [10, 12].
Later work found that DCGAN left-inverses can be com-
puted to high precision [25, 46], and that inversions of a
GAN for glyphs can reveal specific strokes that the gener-
ator is unable to generate [9]. While previous work [51]
has investigated inversion of 5-layer DCGAN generators,
we find that when moving to a 15-layer Progressive GAN,
high-quality inversions are much more difficult to obtain. In
our work, we develop a layer-wise inversion method that
is more effective for these large-scale GANs. We apply a
classic layer-wise training approach [5, 18] to the problem of
training an encoder and further introduce layer-wise image-
specific optimization. Our work is also loosely related to
inversion methods for understanding CNN features and clas-
sifiers [11, 27, 28, 29]. However, we focus on understanding
generative models rather than classifiers.

Understanding and visualizing networks. Most prior
work on network visualization concerns discriminative clas-
sifiers [1, 3, 23, 26, 37, 38, 48, 50]. GANs have been visual-
ized by examining the discriminator [32] and the semantics
of internal features [4]. Different from recent work [4] that
aims to understand what a GAN has learned, our work pro-
vides a complementary perspective and focuses on what
semantic concepts a GAN fails to capture.

3. Method
Our goal is to visualize and understand the semantic concepts
that a GAN generator cannot generate, in both the entire dis-
tribution and in each image instance. We will proceed in
two steps. First, we measure Generated Image Segmentation
Statistics by segmenting both generated and target images
and identifying types of objects that a generator omits when
compared to the distribution of real images. Second, we
visualize how the dropped object classes are omitted for indi-
vidual images by finding real images that contain the omitted
classes and projecting them to their best reconstruction given
an intermediate layer of the generator. We call the second
step Layer Inversion.

3.1. Quantifying distribution-level mode collapse

The systematic errors of a GAN can be analyzed by exploit-
ing the hierarchical structure of a scene image. Each scene
has a natural decomposition into objects, so we can estimate
deviations from the true distribution of scenes by estimating
deviations of constituent object statistics. For example, a

WGAN-GP on LSUN Bedrooms StyleGAN on LSUN Bedrooms

Figure 2. Using Generated Image Segmentation Statistics to understand the different behavior of the two models trained on LSUN
bedrooms [47]. The histograms reveal that WGAN-GP [16] (left) deviates from the true distribution much more than StyleGAN [22] (right),
identifying segmentation classes that are generated too little and others that are generated too much. For example, WGAN-GP does not
generate enough pixels containing beds, curtains, or cushions compared to the true distribution of bedroom images, while StyleGAN correctly
matches these statistics. StyleGAN is still not perfect, however, and does not generate enough doors, wardrobes, or people. Numbers above
bars indicate clipped values beyond the range of the chart.

GAN that renders bedrooms should also render some amount
of curtains. If the curtain statistics depart from what we see
in true images, we will know we can look at curtains to see
a specific flaw in the GAN.

To implement this idea, we segment all the images using
the Unified Perceptual Parsing network [44], which labels
each pixel of an image with one of 336 object classes. Over
a sample of images, we measure the total area in pixels for
each object class and collect mean and covariance statistics
for all segmented object classes. We sample these statistics
over a large set of generated images as well as training set
images. We call the statistics over all object segmentations
Generated Image Segmentation Statistics.

Figure 2 visualizes mean statistics for two networks. In
each graph, the mean segmentation frequency for each gen-
erated object class is compared to that seen in the true dis-
tribution. Since most classes do not appear on most images,
we focus on the most common classes by sorting classes by
descending frequency. The comparisons can reveal many
specific differences between recent state-of-the-art models.
Both analyzed models are trained on the same image distri-
bution (LSUN bedrooms [47]), but WGAN-GP [16] departs
from the true distribution much more than StyleGAN [22].

It is also possible to summarize statistical differences in
segmentation in a single number. To do this, we define the
Fréchet Segmentation Distance (FSD), which is an inter-
pretable analog to the popular Fréchet Inception Distance
(FID) metric [17]: FSD ≡ ||µg − µt||2 + Tr(Σg + Σt −
2(ΣgΣt)

1/2). In our FSD formula, µt is the mean pixel
count for each object class over a sample of training images,
and Σt is the covariance of these pixel counts. Similarly,
µg and Σg reflect segmentation statistics for the generative

model. In our experiments, we compare statistics between
10,000 generated samples and 10,000 natural images.

Generated Image Segmentation Statistics measure the en-
tire distribution: for example, they reveal when a generator
omits a particular object class. However, they do not single
out specific images where an object should have been gener-
ated but was not. To gain further insight, we need a method
to visualize omissions of the generator for each image.

3.2. Quantifying instance-level mode collapse

To address the above issue, we compare image pairs (x,x′),
where x is a real image that contains a particular object class
dropped by a GAN generator G, and x′ is a projection onto
the space of all images that can be generated by a layer of
the GAN model.

Defining a tractable inversion problem. In the ideal
case, we would like to find an image that can be per-
fectly synthesized by the generator G and stay close to
the real image x. Formally, we seek x′ = G(z∗), where
z∗ = arg minz `(G(z),x) and ` is a distance metric in im-
age feature space. Unfortunately, as shown in Section 4.4,
previous methods [10, 51] fail to solve this full inversion
problem for recent generators due to the large number of lay-
ers in G. Therefore, we instead solve a tractable subproblem
of full inversion. We decompose the generator G into layers

G = Gf (gn(· · · ((g1(z)))), (1)

where g1, ..., gn are several early layers of the generator, and
Gf groups all the later layers of the G together.

Any image that can be generated by G can also be gen-
erated by Gf . That is, if we denote by range(G) the

generator Gencoder E

loss

reconstruction

Gf(r*)

target x

nth layer

z0 r0

G(z0)

target x

r Gf

Step 2: initialize

z0 = E(x)

r0 = gn(…(g1(z0)))

Step 3: optimize

Gf(r) à x

r ≈ r0

+δiz0

generator G encoder E

z

synthesized

G(z)

z'

loss

Step 1: train

encoder E

E(G(z)) à z

Gf

Gf

Figure 3. Overview of our layer inversion method. First, we train
a network E to invert G; this is used to obtain an initial guess of
the latent z0 = E(x) and its intermediate representation r0 =
gn(· · · (g1(z0))). Then r0 is used to initialize a search for r∗ to
obtain a reconstruction x′ = Gf (r

∗) close to the target x.

set of all images that can be output by G, then we have
range(G) ⊂ range(Gf). That implies, conversely, that any
image that cannot be generated by Gf cannot be generated
by G either. Therefore any omissions we can identify in
range(Gf) will also be omissions of range(G).

Thus for layer inversion, we visualize omissions by solv-
ing the easier problem of inverting the later layers Gf :

x′ = Gf (r∗), (2)
where r∗ = arg min

r
`(Gf (r),x).

Although we ultimately seek an intermediate represen-
tation r, it will be helpful to begin with an estimated z: an
initial guess for z helps us regularize our search to favor
values of r that are more likely to be generated by a z. There-
fore, we solve the inversion problem in two steps: First
we construct a neural network E that approximately inverts
the entire G and computes an estimate z0 = E(x). Sub-
sequently we solve an optimization problem to identify an
intermediate representation r∗ ≈ r0 = gn(· · · (g1(z0))) that
generates a reconstructed image Gf (r∗) to closely recover
x. Figure 3 illustrates our layer inversion method.

Layer-wise network inversion. A deep network can be
trained more easily by pre-training individual layers on
smaller problems [18]. Therefore, to learn the inverting
neural network E, we also proceed layer-wise. For each
layer gi ∈ {g1, ..., gn, Gf}, we train a small network ei to
approximately invert gi. That is, defining ri = gi(ri−1), our
goal is to learn a network ei that approximates the compu-
tation ri−1 ≈ ei(ri). We also want the predictions of the

network ei to well preserve the output of the layer gi, so we
want ri ≈ gi(ei(ri)). We train ei to minimize both left- and
right-inversion losses:

LL ≡ Ez[||ri−1 − e(gi(ri−1))||1]

LR ≡ Ez[||ri − gi(e(ri))||1]

ei = arg min
e

LL + λRLR, (3)

To focus on training near the manifold of representations
produced by the generator, we sample z and then use the
layers gi to compute samples of ri−1 and ri, so ri−1 =
gi−1(· · · g1(z) · · ·). Here || · ||1 denotes an L1 loss, and we
set λR = 0.01 to emphasize the reconstruction of ri−1.

Once all the layers are inverted, we can compose an in-
version network for all of G:

E∗ = e1(e2(· · · (en(ef (x))))). (4)

The results can be further improved by jointly fine-tuning
this composed networkE∗ to invertG as a whole. We denote
this fine-tuned result as E.

Layer-wise image optimization. As described at the be-
ginning of Section 3.2, inverting the entire G is difficult: G
is non-convex, and optimizations over z are quickly trapped
in local minima. Therefore, after obtaining a decent initial
guess for z, we turn our attention to the more relaxed opti-
mization problem of inverting the layers Gf ; that is, starting
from r0 = gn(· · · (g1(z0))), we seek an intermediate repre-
sentation r∗ that generates a reconstructed image Gf (r∗) to
closely recover x.

To regularize our search to favor r that are close to the
representations computed by the early layers of the genera-
tor, we search for r that can be computed by making small
perturbations of the early layers of the generator:

z0 ≡ E(x)

r ≡ δn + gn(· · · (δ2 + g2(δ1 + g1(z0))))

r∗ = arg min
r

(
`(x, Gf (r)) + λreg

∑

i

||δi||2
)
. (5)

That is, we begin with the guess z0 given by the neural net-
work E, and then we learn small perturbations of each layer
before the n-th layer, to obtain an r that reconstructs the
image x well. For ` we sum image pixel loss and VGG
perceptual loss [36], similar to existing reconstruction meth-
ods [11, 51]. The hyper-parameter λreg determines the bal-
ance between image reconstruction loss and the regulariza-
tion of r. We set λreg = 1 in our experiments.

4. Results
Implementation details. We analyze three recent models:
WGAN-GP [16], Progressive GAN [21], and StyleGAN [22],

Figure 4. Sensitivity test for Generated Image Segmentation Statis-
tics. This plot compares two different random samples of 10, 000
images from the LSUN bedroom dataset. An infinite-sized sample
would show no differences; the observed differences reveal the
small measurement noise introduced by the finite sampling process.

trained on LSUN bedroom images [47]. In addition, for Pro-
gressive GAN we analyze a model trained to generate LSUN
church images. To segment images, we use the Unified Per-
ceptual Parsing network [44], which labels each pixel of an
image with one of 336 object classes. Segmentation statistics
are computed over samples of 10,000 images.

4.1. Generated Image Segmentation Statistics

We first examine whether segmentation statistics correctly
reflect the output quality of models across architectures. Fig-
ure 2 and Figure 5 show Generated Image Segmentation
Statistics for WGAN-GP [16], StyleGAN [22], and Progres-
sive GAN [21] trained on LSUN bedrooms [47]. The his-
tograms reveal that, for a variety of segmented object classes,
StyleGAN matches the true distribution of those objects bet-
ter than Progressive GAN, while WGAN-GP matches least
closely. The differences can be summarized using Fréchet
Segmentation Distance (Table 1), confirming that better mod-
els match the segmented statistics better overall.

Model FSD

WGAN-GP [16] bedrooms (Figure 2) 428.4
ProGAN [21] bedrooms (Figure 5) 85.2
StyleGAN [22] bedrooms (Figure 2) 22.6

Table 1. FSD summarizes Generated Image Segmentation Statistics

4.2. Sensitivity test

Figure 4 illustrates the sensitivity of measuring Generated
Image Segmentation Statistics over a finite sample of 10,000
images. Instead of comparing a GAN to the true distribution,
we compare two different randomly chosen subsamples of
the LSUN bedroom data set to each other. A perfect test with
infinite sample sizes would show no difference; the small
differences shown reflect the sensitivity of the test and are
due to sampling error.

original image x generated image original image x generated image

Progressive GAN on LSUN Bedrooms

g
e

n
e

ra
te

d
 v

s
tr

a
in

in
g

 o
b

je
c
t

st
a

ti
st

ic
s

tr
a

in
in

g
 i

m
a

g
e

s
v

s
re

co
n

st
ru

c
ti

o
n

s

Figure 5. A visualization of the omissions of a bedroom generator;
a Progressive GAN for LSUN bedrooms is tested. On top, a com-
parison of object distributions shows that many classes of objects
are left out by the generator, including people, cushions, carpets,
lamps, and several types of furniture. On the bottom, photographs
are shown with their reconstructions G(E(x)), along with segmen-
tations. These examples directly reveal many object classes omitted
by the bedroom generator.

4.3. Identifying dropped modes

Figure 1 and Figure 5 show the results of applying our
method to analyze the generated segmentation statistics for
Progressive GAN models of churches and bedrooms. Both
the histograms and the instance visualizations provide in-
sight into the limitations of the generators.

The histograms reveal that the generators partially skip
difficult subtasks. For example, neither model renders as
many people as appear in the target distribution. We use
inversion to create reconstructions of natural images that
include many pixels of people or other under-represented
objects. Figure 1 and Figure 5 each shows two examples
on the bottom. Our inversion method reveals the way in
which the models fail. The gaps are not due to low-quality
rendering of those object classes, but due to the wholesale
omission of these classes. For example, large human figures
and certain classes of objects are not included.

re
co

n
st

ru
ct

ed
 z

co
m

p
o
n

en
ts

re
co

n
st

ru
ct

ed

la
y

er
4

fe
a
tu

re
s

re
co

n
st

ru
ct

ed

p
ix

el
 c

h
a
n

n
el

s

original image

(goal)

baseline (a)

optimize z

baseline (b)

learn E directly

ablation (d)

layered E alone

ablation (e)

layered E then z

our method (f)

layered E then r

g
en

er
a
te

d

n/a

re
a
l
p

h
o
to

ev
a
lu

a
ti

n
g
 r

ec
o
n

st
ru

ct
io

n
s

o
f

sa
m

p
le

 o
f

g
en

er
a
te

d
 i

m
a
g
es

ev
a
lu

a
ti

o
n

re
co

n
st

ru
ct

ed

p
ix

el
 c

h
a
n

n
el

s

baseline (c)

direct E then z

Figure 6. Comparison of methods to invert the generator of Progressive GAN trained to generate LSUN church images. Each method
is described; (a) (b) and (c) are baselines, and (d), (e), and (f) are variants of our method. The first four rows show behavior given
GAN-generated images as input. In the scatter plots, every point plots a reconstructed component versus its true value, with a point for every
RGB pixel channel or every dimension of a representation. Reconstruction accuracy is shown as mean correlation over all dimensions for z,
layer4, and image pixels, based on a sample of 100 images. Our method (f) achieves nearly perfect reconstructions of GAN-generated
images. In the bottom rows, we apply each of the methods on a natural image.

4.4. Layer-wise inversion vs other methods

We compare our layer-wise inversion method to several pre-
vious approaches; we also benchmark it against ablations of
key components of the method.

The first three columns of Figure 6 compare our method to
prior inversion methods. We test each method on a sample of
100 images produced by the generator G, where the ground
truth z is known, and the reconstruction of an example image
is shown. In this case an ideal inversion should be able to

perfectly reconstruct x′ = x. In addition, a reconstruction
of a real input image is shown at the bottom. While there is
no ground truth latent and representation for this image, the
qualitative comparisons are informative.

(a) Direct optimization of z. Smaller generators such as
5-layer DCGAN [32] can be inverted by applying gradient
descent on z to minimize reconstruction loss [51]. In column
(a), we test this method on a 15-layer Progressive GAN and
find that neither z nor x can be constructed accurately.

photograph generated photograph generated photograph generated photograph generated
tr

a
in

in
g

 s
et

h
o

ld
o

u
t

se
t

in
d

o
o

r
o

u
td

o
o

r

L
S

U
N

 b
ed

ro
o

m
s

d
a
ta

U
n

re
la

te
d

 i
m

a
g

es

Figure 7. Inverting layers of a Progressive GAN bedroom generator. From top to bottom: uncurated reconstructions of photographs from the
LSUN training set, the holdout set, and unrelated (non-bedroom) photographs, both indoor and outdoor.

(b): Direct learning of E. Another natural solution [10,
51] is to learn a deep network E that inverts G directly, with-
out the complexity of layer-wise decomposition. Here, we
learn an inversion network with the same parameters and
architecture as the network E used in our method, but train
it end-to-end by directly minimizing expected reconstruc-
tion losses over generated images, rather than learning it by
layers. The method does benefit from the power of a deep
network to learn generalized rules [13], and the results are
marginally better than the direct optimization of z. However,
both qualitative and quantitative results remain poor.

(c): Optimization of z after initializing withE(x). This
is the full method used in [51]. By initializing method (a) us-
ing an initial guess from method (b), results can be improved
slightly. For smaller generators, this method performs better
than method (a) and (b). However, when applied to a Pro-
gressive GAN, the reconstructions are far from satisfactory.

Ablation experiments. The last three columns of Figure 6
compare our full method (f) to two ablations of our method.

(d): Layer-wise network inversion only. We can simply
use the layer-wise-trained inversion network E as the full
inverse, and simply use the initial guess z0 = E(x), setting
x′ = G(z0). This fast method requires only a single forward
pass through the inverter network E. The results are better
than the baseline methods but far short of our full method.

Nevertheless, despite the inaccuracy of the latent code
z0, the intermediate layer features are highly correlated with
their true values; this method achieves 95.5% correlation

versus the true r4. Furthermore, the qualitative results show
that when reconstructing real images, this method obtains
more realistic results despite being noticeably different from
the target image.

(e): Inverting G without relaxation to Gf . We can im-
prove the initial guess z0 = E(x) by directly optimizing
z to minimize the same image reconstruction loss. This
marginally improves upon z0. However, the reconstructed
images and the input images still differ signficantly, and the
recovery of z remains poor. Although the qualitative results
are good, the remaining error means that we cannot know if
any reconstruction errors are due to failures of G to generate
an image, or if those reconstruction errors are merely due to
the inaccuracy of the inversion method.

(f): Our full method. By relaxing the problem and regu-
larizing optimization of r rather than z, our method achieves
nearly perfect reconstructions of both intermediate represen-
tations and pixels. Denote the full method as r∗ = Ef (x).

The high precision of Ef within the range of G means
that, when we observe large differences between x and
Gf (Ef (x)), they are unlikely to be a failure of Ef . This
indicates that Gf cannot render x, which means that G can-
not either. Thus our ability to solve the relaxed inversion
problem with an accuracy above 99% gives us a reliable tool
to visualize samples that reveal what G cannot do.

Note that the purpose of Ef is to show dropped modes,
not positive capabilities. The range of Gf upper-bounds the
range ofG, so the reconstructionGf (Ef (x)) could be better

photograph generated photograph generated photograph generated photograph generated
tr

a
in

in
g

 s
et

h
o

ld
o

u
t

se
t

in
d

o
o

r
o

u
td

o
o

r

L
S

U
N

 o
u

td
o

o
r

ch
u

rc
h

 d
a
ta

U
n

re
la

te
d

 i
m

a
g

es

Figure 8. Inverting layers of a Progressive GAN outdoor church generator. From top to bottom: uncurated reconstructions of photographs
from the LSUN training set, the holdout set, and unrelated (non-church) photographs, both indoor and outdoor.

than what the full network G is capable of. For a more com-
plete picture, methods (d) and (e) can be additionally used
as lower-bounds: those methods do not prove images are
outside G’s range, but they can reveal positive capabilities
of G because they construct generated samples in range(G).

4.5. Layer-wise inversion across domains

Next, we apply the inversion tool to test the ability of genera-
tors to synthesize images outside their training sets. Figure 7
shows qualitative results of applying method (f) to invert and
reconstruct natural photographs of different scenes using a
Progressive GAN trained to generate LSUN bedrooms. Re-
constructions from the LSUN training and LSUN holdout
sets are shown; these are compared to newly collected unre-
lated (non-bedroom) images taken both indoors and outdoors.
Objects that disappear from the reconstructions reveal visual
concepts that cannot be represented by the model. Some
indoor non-bedroom images are rendered in a bedroom style:
for example, a dining room table with a white tablecloth
is rendered to resemble a bed with a white bed sheet. As
expected, outdoor images are not reconstructed well.

Figure 8 shows similar qualitative results using a Progres-
sive GAN for LSUN outdoor church images. Interestingly,
some architectural styles are dropped even in cases where
large-scale geometry is preserved. The same set of unrelated
(non-church) images as shown in Figure 7 are shown. When
using the church model, the indoor reconstructions exhibit
lower quality and are rendered to resemble outdoor scenes;
the reconstructions of outdoor images recover more details.

5. Discussion
We have proposed a way to measure and visualize mode-
dropping in state-of-the-art generative models. Generated
Image Segmentation Statistics can compare the quality of dif-
ferent models and architectures, and provide insights into the
semantic differences of their output spaces. Layer inversions
allow us to further probe the range of the generators using
natural photographs, revealing specific objects and styles
that cannot be represented. By comparing labeled distribu-
tions with one another, and by comparing natural photos with
imperfect reconstructions, we can identify specific objects,
parts, and styles that a generator cannot produce.

The methods we propose here constitute a first step to-
wards analyzing and understanding the latent space of a
GAN and point to further questions. Why does a GAN de-
cide to ignore classes that are more frequent than others
in the target distribution (e.g. “person” vs. “fountain” in
Figure 1)? How can we encourage a GAN to learn about a
concept without skewing the training set? What is the impact
of architectural choices? Finding ways to exploit and address
the mode-dropping phenomena identified by our methods
are questions for future work.

Acknowledgements
We are grateful for the support of the MIT-IBM Watson AI Lab,
the DARPA XAI program FA8750-18-C000, NSF 1524817 on
Advancing Visual Recognition with Feature Visualizations, NSF
BIGDATA 1447476, the Early Career Scheme (ECS) of Hong Kong
(No.24206219) to BZ, and a hardware donation from NVIDIA.

References
[1] Sebastian Bach, Alexander Binder, Grégoire Montavon, Fred-

erick Klauschen, Klaus-Robert Müller, and Wojciech Samek.
On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PloS one, 10(7), 2015.
2

[2] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,
Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Seman-
tic photo manipulation with a generative image prior. SIG-
GRAPH, 2019. 2

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In CVPR, 2017.
2

[4] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei,
Joshua B. Tenenbaum, William T. Freeman, and Antonio
Torralba. Gan dissection: Visualizing and understanding
generative adversarial networks. In ICLR, 2019. 2

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo
Larochelle. Greedy layer-wise training of deep networks. In
NIPS, 2007. 2

[6] Konstantinos Bousmalis, Nathan Silberman, David Dohan,
Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-level
domain adaptation with generative adversarial networks. In
CVPR, 2017. 2

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis. In
ICLR, 2019. 2

[8] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. In ICLR, 2017. 2

[9] Antonia Creswell and Anil Anthony Bharath. Inverting the
generator of a generative adversarial network. IEEE transac-
tions on neural networks and learning systems, 2018. 2

[10] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
versarial feature learning. In ICLR, 2017. 2, 3, 7

[11] Alexey Dosovitskiy and Thomas Brox. Inverting visual repre-
sentations with convolutional networks. In CVPR, 2016. 2,
4

[12] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb,
Martin Arjovsky, Olivier Mastropietro, and Aaron Courville.
Adversarially learned inference. In ICLR, 2017. 2

[13] Samuel Gershman and Noah Goodman. Amortized inference
in probabilistic reasoning. In Proceedings of the annual
meeting of the cognitive science society, 2014. 7

[14] Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016. 1

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.
2

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In NIPS, 2017. 3, 4, 5

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two

time-scale update rule converge to a local nash equilibrium.
In NIPS, 2017. 1, 2, 3

[18] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. Science,
313(5786):504–507, 2006. 2, 4

[19] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. ECCV,
2018. 2

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In CVPR, 2017. 2

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 2, 4, 5

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 2, 3, 4, 5

[23] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maxi-
milian Alber, Kristof T Schütt, Sven Dähne, Dumitru Erhan,
and Been Kim. The (un) reliability of saliency methods. arXiv
preprint arXiv:1711.00867, 2017. 2

[24] Ke Li and Jitendra Malik. On the implicit assumptions of
gans. arXiv preprint arXiv:1811.12402, 2018. 1

[25] Zachary C Lipton and Subarna Tripathi. Precise recovery of
latent vectors from generative adversarial networks. arXiv
preprint arXiv:1702.04782, 2017. 2

[26] Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In NIPS, 2017. 2

[27] Aravindh Mahendran and Andrea Vedaldi. Understanding
deep image representations by inverting them. In CVPR, 2015.
2

[28] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2(11):e7, 2017. 2

[29] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter,
Ludwig Schubert, Katherine Ye, and Alexander Mordvintsev.
The building blocks of interpretability. Distill, 3(3):e10, 2018.
2

[30] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 2

[31] Irad Peleg and Lior Wolf. Structured gans. In 2018 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
pages 719–728. IEEE, 2018. 2

[32] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional genera-
tive adversarial networks. In ICLR, 2016. 2, 6

[33] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative adver-
sarial text to image synthesis. In ICML, 2016. 2

[34] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In NIPS, 2016. 1, 2

[35] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Scribbler: Controlling deep image synthesis
with sketch and color. In CVPR, 2017. 2

[36] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In ICLR,
2015. 4

[37] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017. 2

[38] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox,
and Martin Riedmiller. Striving for simplicity: The all convo-
lutional net. arXiv preprint arXiv:1412.6806, 2014. 2

[39] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised
cross-domain image generation. In ICLR, 2017. 2

[40] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A
note on the evaluation of generative models. In ICLR, 2016.
2

[41] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video
synthesis. In NIPS, 2018. 2

[42] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta.
A-fast-rcnn: Hard positive generation via adversary for object
detection. In CVPR, 2017. 2

[43] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger
Grosse. On the quantitative analysis of decoder-based genera-
tive models. In ICLR, 2017. 2

[44] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understanding.
In ECCV, 2018. 3, 5

[45] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In CVPR, 2018. 2

[46] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G
Schwing, Mark Hasegawa-Johnson, and Minh N Do. Seman-
tic image inpainting with deep generative models. In CVPR,
2017. 2

[47] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015. 1, 3, 5

[48] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In ECCV, 2014. 2

[49] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017. 2

[50] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NIPS, 2014. 2

[51] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
Alexei A. Efros. Generative visual manipulation on the natu-
ral image manifold. In ECCV, 2016. 2, 3, 4, 6, 7

[52] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In ICCV, 2017. 2

Supplemental Materials for
Seeing What a GAN Cannot Generate

S.1. Supplemental Materials
S.1.1. Sensitivity measure

Generated Image Segmentation Statistics are computed
using sample statistics, so the estimated statistics will vary
when the data is resampled. Sampling error can be reduced
by using a larger number of samples. To estimate the sam-
pling error of our measurements at the 10,000 sample size
used in our paper, Figure S.1 and Table S.1 use histograms
and FSD to measure the difference between two different
samples of the same data set. Measurements are done for the
LSUN outdoor church and the LSUN bedroom data sets [?].

Table S.1. Measured Sensitivity in Fréchet Segmentation Distance.

Data set FSD vs self

LSUN outdoor church 2.57
LSUN bedrooms 5.57

S.1.2. Analysis of unseen classes for additional GAN
models

Here we present examples of analysis of differences be-
tween generated and target semantic classes for several Pro-
gressive GAN models. Figure S.2 shows a Progressive GAN
model trained on kitchens; Figure S.3 shows a model for
living rooms, Figure S.4 shows a model for dining rooms.

S.1.3. Additional qualitative results on inversion

Figure 5 in the main paper compares inversion methods
quantitatively and includes only one image of each type
(generated and photograph) for qualitatively comparing our
inversion method with baselines and ablations. In this sec-
tion we present a larger number of images comparing the
methods using reconstructions of church and bedroom mod-
els. Figure S.5 shows reconstructions for several generated
images as well as images from the validation set for LSUN.
Figure S.6 shows the same for a bedroom model.

LSUN Bedroom Dataset Sampled Twice LSUN Church Dataset Sampled Twice

Figure S.1. Sensitivity test for Generated Image Segmentation Statistics. At left, two subsamples of the LSUN outdoor church training
set are compared. At right, two subsamples of the LSUN bedroom training set are compared. Each chart compares two different random
samples of 10, 000 images from the same dataset. An infinite-sized sample would show no differences; the observed differences reveal small
measurement noise introduced by the finite sampling process.

1

ar
X

iv
:1

91
0.

11
62

6v
1

 [
cs

.C
V

]
 2

4
O

ct
 2

01
9

original image x generated image original image x generated imageobject statistics in generated vs training distributions

K
it

c
h

e
n

 P
ro

G
A

N

Figure S.2. Analysis of the differences in semantic object distribution between target and generated images for a Progressive GAN trained
on LSUN kitchens. Chairs, stove exhausts, and other objects are underrepresented.

original image x generated image original image x generated imageobject statistics in generated vs training distributions

L
iv

in
g

 R
o

o
m

 P
ro

G
A

N

Figure S.3. Analysis of the differences in semantic object distribution between target and generated images for a Progressive GAN trained
on LSUN living rooms. Some categories of furniture such as coffee tables and ottomans are omitted.

original image x generated image original image x generated imageobject statistics in generated vs training distributions

D
in

in
g

 R
o

o
m

 P
ro

G
A

N

Figure S.4. Analysis of the differences in semantic object distribution between real and generated images for a Progressive GAN trained on
LSUN dining rooms. Dining rooms that include kitchens have lost many details.

R
e

co
n

st
ru

ct
io

n
s

o
f

g
e

n
e

ra
te

d
 i

m
a

g
e

s
fr

o
m

 P
ro

g
re

ss
iv

e
 G

A
N

 t
ra

in
e

d
 o

n
 c

h
u

rc
h

e
s

R
e

co
n

st
ru

ct
io

n
s

o
f

n
a

tu
ra

l
p

h
o

to
s

fr
o

m
 L

S
U

N
 v

a
li

d
a

ti
o

n
 s

e
t

original image

(goal)

original image

(goal)

baseline (a)

optimize z

baseline (b)

learn E directly

ablation (d)

layered E alone

ablation (e)

layered E then z

our method (f)

layered E then r

baseline (c)

direct E then z

Figure S.5. Examples of reconstructions of both GAN-generated and holdout images, using several inversion methods. The columns are the
same as in Figure 5 in the main paper. (The target image is repeated to aid comparisons.) At top are GAN-generated images which can be
reconstructed nearly perfectly. Below are natural photographs. Dropped details reveal objects and styles that cannot be rendered by the GAN.

R
ec

o
n

st
ru

ct
io

n
s

o
f

g
en

er
a
te

d
 i

m
a
g

es
 f

ro
m

 P
ro

g
re

ss
iv

e
G

A
N

 t
ra

in
ed

 o
n

 b
ed

ro
o

m
s

R
ec

o
n

st
ru

ct
io

n
s

o
f

n
a
tu

ra
l

p
h

o
to

s
fr

o
m

 L
S

U
N

 v
a
li

d
a
ti

o
n

 s
et

original image
(goal)

original image
(goal)

baseline (a)
optimize z

baseline (b)
learn E directly

ablation (d)
layered E alone

ablation (e)
layered E then

z

our method (f)
layered E then r

baseline (c)
direct E then z

Figure S.6. Examples of reconstructions of both GAN-generated and holdout images, using several inversion methods. The columns are the
same as in Figure 5 in the main paper. (The target image is repeated to aid comparisons.) At top are GAN-generated images, which can be
reconstructed nearly perfectly. Below are natural photographs. Dropped details reveal objects and styles that cannot be rendered by the GAN.

