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Abstract

Robust identification of cortical deep (layers 5 and 6) and
superficial (layer 2 and 3) layers of the brain based on
neurophysiological recordings is a challenging and un-
solved problem in neuroscience. We still lack a complete
understanding of the fine-grained neural computations in
these layers. In this paper, we introduce a machine learn-
ing approach to identify deep and superficial layers pat-
terns. We use multilaminar probes to capture local field
potentials (LFP) data in cortical layers of the macaque
brain. Here we present experimental modeling results of
deep and superficial layers in the prefrontal cortex (PFC)
and visual area four (V4) during a delayed match to sam-
ple task. Recordings spanned all six cortical layers simul-
taneously over 10 experimental sessions in these 2 areas.
Our experimental results demonstrate that an ensemble
machine learning approach applied to the LFP data is able
to provide robust levels of identification of the layers with
an optimal f-score of 0.8 and 0.84 for areas V4 and PFC re-
spectively in combined data of 10 experimental sessions
and across two monkeys.

Keywords: machine learning, cognitive neuroscience, deep
and superficial layers, local field potentials

Introduction

The local field potential (LFP), originating largely from neural
synaptic activity, has long been known as a summation signal
of excitation and inhibitory dendritic potential around a single
recording point in the brain (Quiroga & Panzeri, 2009). The
LFP is a complex signal that depends on the electrodeposi-
tion, the dendritic morphologies of synaptic neurons, and on
the spatial distribution and temporal correlations of synaptic
inputs. The temporal structure of the LFP can provide sen-
sory and motor-related signals that can be modulated by a
cognitive process, providing additional information to single
unit activity recording in the brain (Fries et al., 2001). Tradi-
tionally, time series analysis methodologies such as spectral
analysis are used to characterize and study field potentials
recordings (Halliday et al., 1995). Nowadays with the explo-
sion of innovative machine learning inference techniques, the
analysis is now shifting to an efficient way to extract mean-
ing from larger sets of neural recordings. Modern tools for
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inference, are increasingly able to extract meaningful patterns
in large volumes of neural data (Pesaran et al., 2018). How-
ever, efficient computational methodologies are still needed to
properly identify patterns within the LFP neural signal to fully
explain its underlying functionality.

Recently, neuroscience has started paying attention to the
contribution of deep and superficial layers of the brain. These
layers have distinct functional roles (Bastos et al., 2018) and
have different anatomical structure and connectivity.

It has been well known for over 100 years that deep and su-
perficial layers differ anatomically. However, a robust method
to identify deep and superficial layers from neurophysiological
recordings alone in an unbiased and automatic way is cur-
rently lacking.

Established methods for laminar classification such as cur-
rent source density analysis (Schroeder et al., 1998) are
based on assumptions which are mostly violated outside sen-
sory cortex and are prone to human error and bias. Thus, a
method that can robustly identify layers throughout cortex in-
vivo would greatly aid the neuroscientific goal of understand-
ing fine-grained computations that take place in specific layers
of the brain.

In this paper, we introduce a machine learning methodol-
ogy to identify deep and superficial patterns of activities in the
brain. Figure 1 shows the areas of the brain studied and the
methods for electrophysiology recording.

Methods
Delayed match to sample task

During the task, the monkeys fixated at a point on the screen,
then they were cued with a sample stimulus, held the cue over
a delay period, and finally reported the identity of the sample
with a saccade. Experiments were performed in two rhesus
monkeys, one male, and one female.

All procedures followed the guidelines of the Mas-
sachusetts Institute of Technology Committee on Animal Care
and the National Institutes of Health. Further information on
the task design and methodology can be found in (Bastos et
al., 2018).
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Figure 1: Areas of the macaque brain studied and neurophysiological data recording methodology. a) Areas of the brain (high-
lighted in red) b) Multi-contact laminar probe used to obtain the neuronal recordings c) Example of the trajectory recordings

Preprocessing of cortical layers

The six-layer LFP recordings were categorized either as deep
or superficial for machine learning modeling. The neuronal
layers were labeled based on the current source density anal-
ysis technique, the most established method for this task
(Schroeder et al., 1998).

Dataset

Ten separate session recordings were used for modeling the
two areas (V4 and PFC). In area V4 there were 58,099 trials
for deep layers and 57,672 for superficial layers yielding a total
of 115,771 trials in that area. For area PFC there were 55,146
trials for deep layers while 56,780 were obtained for superficial
layers yielding a total of 111,926 trials.

Samples, features and experimental time window

For the analysis, the trials from the electrodes were the sam-
ples for the machine learning modeling, while the LFP tempo-
ral signals were the features in all the analysis of this paper.
The experimental time was divided into non-overlapping 200
ms time windows that encompass the duration of the exper-
iment, a uniqgue machine learning model (with tuned hyper-
parameters) was trained for each of the windows. The win-
dows allowed to analyze the task as a function of experimen-
tal progression. The modeling was conducted in the scikit-
learn library (python) and its computing libraries such as Scipy,
Numpy, and Pandas (Pedregosa et al., 2011).

Electrode group

The electrodes trials were separated in groups to accommo-
date them in a cross-validation strategy, this allows trials of a
specific electrode to go only to one of the folds. This approach
was used for a robust generalization strategy to prevent trials
a single electrode to leak in both the training and testing set.

Cross-validation and evaluation

We performed model validation with a 3-fold cross-validation
(Hastie et al., 2009) technique for robust model generalization.
The cross-validation strategy was adopted for all the experi-
ments presented in this paper. The F-score, a harmonic aver-
age of the precision and recall score was used to report clas-
sification performance score estimates of all the experimental
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time windows. The standard deviation of the folds was calcu-
lated to obtain performance confidence intervals, indicated as
error bars.

Results
Model search and selection

In a model search procedure, several machine learning algo-
rithms were tested in their ability to classify deep or superficial
layers of the brain. One monkey and the initial 200 ms win-
dow was used for both the model search and hyperparameter
search procedures, this in order to do the model and hyper-
parameter search in a small subset of the dataset and then
aim to generalize the model and parameter search to several
sessions and 2 monkeys with the obtained parameters, which
was successfully in the case presented here.

The following algorithms were tested in the model search
procedure: nearest neighbors, linear support vector machine
(SVM), SVM with an RBF kernel, Gaussian process classifier,
decision tree, random forest, neural network, AdaBoost, naive
Bayes, quadratic classifier, Xgboost, extremely randomized
trees (extra-trees) classifier and Logistic Regression (Hastie
et al., 2009; Pedregosa et al., 2011). The performance results
are shown in Figure 2.

The highest performance was delivered by the nearest
neighbor algorithm (0.68 f-score) followed by a neural network
and an extra-tree (0.67 f-score). The lowest ranking algorithm
was obtained with an SVM model with RBF kernel (0.38 f-
score).

Extremely randomized trees

The extra-trees model delivered a very close performance with
the nearest neighbor algorithm to classify deep and superfi-
cial layers in the brain as shown in Figure 2. The main ad-
vantage of the extra-trees approach was that it offered the
fastest times for training and testing compared to the other al-
gorithms, therefore the extra-trees algorithm was selected as
the main algorithm. The extra-tree algorithm is an ensemble
method (Hastie et al., 2009) able to combine the predictions
of several base estimators in order to improve generalization
and robustness. On average, the combined estimator is usu-
ally better than any of the single base estimator because its
variance is reduced. The extra-trees is also a computational
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Figure 2: Machine learning model performance comparison

Features R1 R2 R3 R4 R5
Number of trees 606 686 | 287 | 269 | 58
Min. samples split node | 11 15 11 6 18
Min. samples leaf node | 3 3 5 6 2
maximum features 0.3 1 0.2 1 0.35
mean val. f-score .681 | .681 | .677 | .676 | .676
STD (%) .072 | .074 | .076 | .071 | .071

Table 1: Top-5 Hyper-parameter optimization models

efficient ensemble algorithm: it splits a decision tree node dur-
ing feature learning (Geurts et al., 2006), this allows decreas-
ing variance at the expense of slightly increasing the bias.

Hyper-parameter optimization

A randomized search of hyper-parameters with a 3-fold cross-
validation strategy was implemented to fine-tune the extra-tree
model (Pedregosa et al., 2011). Hyper-parameters were sam-
pled from the following feature distributions: number of trees
(1-700), minimum samples to split a node (2-30), minimum
samples to leaf a node (1-30) maximum-features (0-1, with a
0.05 step). We randomly sampled hyper-parameters in 100
runs for the randomized search. The top 5 hyper-parameters
set for the extra-tree simulation area shown in Table 1.

From the top 5 results, the rank #5 result was selected since
it offered the least number of trees that maximizes the f-score
performance. The approach is advantageous since the small-
est number of trees to train is equal to the least computational
time spent in training the models.

Unique session deep and superficial layers
identification of PFC and V4

Once the model and the hyper-parameters were defined, then
unique sessions were modeled in both monkeys and both ar-
eas PFC and V4. Figure 3 shows the average performance
of unique sessions (f-score and STD of the fold) in both mon-
keys.
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Figure 3: Unique session performance

Multisession deep and superficial layers
identification of PFC and V4

To improve generalization, all the sessions from both monkeys
were combined in models for V4 and PFC areas. The model-
ing results of areas PFC and V4 are shown in Figure 4. For
both areas, the models delivered a steady f-score in the deep-
superficial layers of 0.8 and 0.84 (approximately) respectively
throughout the execution of the task.

The results demonstrate that there is a steady f-score level
identification of the deep and superficial layers across the
tasks. F-scores below the horizontal grey dotted line were the
same as random chance. In this case, due to generalization
error, the f-score dropped by approximately 5% compared to
unigue session experiments.

Laminar Similarity Maximization algorithm

This method seeks to identify deep and superficial layers of
the brain by obtaining the best possible match between lami-
nar probes with an alignment algorithm. The reader should be
referred to (Bastos et al., 2019) for further explanation of the
methodology.

Conclusions and future directions

We have presented for the first time in the literature a method-
ology to classify deep and superficial layers of the brain from
a data-driven approach with a machine learning methodology.
We have presented experimental results in both unique ses-
sion and multi-session modeling from LFP data in the pre-
frontal cortex and visual area 4. Our results delivered a ro-
bust f-score above 0.8 throughout the execution of the delayed
match to sample task in a challenging multisession scenario
in two monkeys to identify the deep and superficial layers of
the brain.

As a future direction, we aim to test whether a unique model
can generalize to PFC and other higher-order and sensory ar-
eas. ldeally, this generalization would be robust that given
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Figure 4: Multisession deep and superficial layers identification of PFC and V4

LFP data recorded in any brain area, the model would be able
to accurately resolve the layer of origin of that electrode. This
would enable laminar identification for areas in which perpen-
dicular electrode recordings are not possible such as in corti-
cal sulci.

We also intend to include in the modeling specific features
from the LFP data such as frequency or power to be able to
relate frequency (alpha, beta, and gamma) to cortical layers
of the brain.

If these spectral features are indeed different among dif-
ferent layers it would suggest that unique computations take
place in deep and superficial layers, and perhaps in the sep-
aration of time scales of processing. To summarize, the
methodology presented here for laminar identification is the
first step in discovering the functional properties of the differ-
ent cortical layers, a long-standing and unresolved mystery in
neuroscience.
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