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Abstract—Demand for high-performance, robust, and safe
autonomous systems has grown substantially in recent years.
Fulfillment of these objectives requires accurate and efficient risk
estimation that can be embedded in core decision-making tasks
such as motion planning. On one hand, Monte-Carlo (MC) and
other sampling-based techniques can provide accurate solutions
for a wide variety of motion models but are cumbersome to apply
in the context of continuous optimization. On the other hand,
“direct” approximations aim to compute (or upper-bound) the
failure probability as a smooth function of the decision variables,
and thus are widely applicable. However, existing approaches
fundamentally assume discrete-time dynamics and can perform
unpredictably when applied to continuous-time systems operating
in the real world, often manifesting as severe conservatism. State-
of-the-art attempts to address this within a conventional discrete-
time framework require additional Gaussianity approximations
that ultimately produce inconsistency of their own. In this
paper we take a fundamentally different approach, deriving
a risk approximation framework directly in continuous time
and producing a lightweight estimate that actually improves
as the discretization is refined. Our approximation is shown to
significantly outperform state-of-the-art techniques in replicating
the MC estimate while maintaining the functional and compu-
tational benefits of a direct method. This enables robust, risk-
aware, continuous motion-planning for a broad class of nonlinear,
partially-observable systems.

I. INTRODUCTION

Robotic motion planning is a decision-making problem
that must balance optimality and safety. In the real world,
these decisions are complicated by the presence of uncertainty
due to imperfect sensing, partial observability, and stochastic
dynamics. This uncertainty is often difficult or impossible to
explicitly bound, and safety cannot be guaranteed against all
realizations of noise and disturbance.

This motivates the replacement of deterministic safety con-
straints with risk constraints [11] that seek to compute or
bound the probability of failure. Unfortunately, exact evalua-
tion of this probabilistic risk is challenging and computation-
ally intractable for generic nonlinear systems. While Monte-
Carlo (MC) estimation techniques [5, 3, 8] provide a general
and powerful workaround, they are still computationally-
demanding and difficult to embed within a continuous motion
planner. A number of “directly-computable” risk approxima-
tions have been proposed [11, 2, 19, 18], but all fundamentally

Fig. 1. Consider a planar system maneuvering from the green initial
distribution to the red goal position in the presence of a rectangular obstacle.
Shaded ellipses represent the state distribution at a set of discrete timesteps,
T = {t0, t1, . . . , tk}, and reflect uncertainty under closed-loop execution.
A common technique for computing the total collision probability leverages
Boole’s inequality to simply sum the violation probabilities at each step
(magenta). However, the resulting estimate will be sensitive to the choice of
T – too coarse, and it will underestimate; too fine, and it will “double-count”
probability mass corresponding to trajectories that remain in collision across
multiple timesteps. This leads to over-conservatism, artificial infeasibility,
and ultimately brittle planning. In this paper we introduce a continuous-
time approximation (cyan) that instead aggregates probability mass entering
collision over each interval. As T is refined, our result actually improves,
eventually converging to the true failure probability.

assume the system evolves in discrete time. Many systems we
care to control in practice evolve continuously, and while ap-
plication of discrete-time methods is possible in these settings,
the ensuing risk estimates will be highly sensitive to the chosen
time discretization. As recognized by Ariu et al. [1], Janson
et al. [8], and others, they may be either too lax (allowing
“corner-cutting”), too conservative (leading to severe sub-
optimality or artificial infeasibility), or both simultaneously.

This paper addresses this problem at its source, taking a
rigorous look at the evolution of failure probability directly
in continuous time. Our approximation is general, applying
to partially-observable1 stochastic systems x(t) in X = Rnx

1Note that under partial-observability, the process x(t) can only be
considered Markov if it is “augmented” with the internal state of the
estimator/controller. For the purposes of this paper we leave this implicit –
because constraints are assumed to involve only on the state of the physical
plant, augmentation will contribute no analytic or computational cost.
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with nonlinear Itô dynamics

dx(t) = f
(
t, x(t), u(t)

)
dt+ G

(
t, x(t), u(t)

)
dw(t) (1)

where u(t) and w(t) represent a vector-valued control process
and Brownian motion, respectively. Under partial observabil-
ity, x(t) is not directly available to the controller, and feedback
must be accomplished via a parallel observation process repre-
sented by the filtration Yt (the information available at time t).
The special case of fully-observable systems is easily captured
here as well. In order to simplify presentation, our main results
impose some additional restrictions between the dynamics (1)
and the constraints that define the safe set Xsafe ⊂ X . Even
so, they accommodate a wide variety of nonlinear systems
and constraints, including the ubiquitous case of second-order
systems with position constraints. Moreover, relaxation of
some of these requirements will be straightforward, though
beyond the scope of this paper.

The types of planning problems we address take the form

min
u(·)

E

∫ T

0

l
(
t, u(t), x(t)

)
dt (2)

subject to: P
( ∨
t∈[0,T ]

x(t) 6∈ Xsafe

)
≤ ∆ (3)

where the
∨

symbol is a logical OR, implying existence of
a satisfying event among a (possibly uncountable) collection,
and ∆ ∈ (0, 1) represents a given risk tolerance over the finite
horizon [0, T ]. The constraint (3) upper-bounds the probability
of failure at any time in the planning horizon. This risk is
challenging to evaluate and optimize against because it couples
states across the planning horizon as a whole. As pointed
out by Ono et al. [18] and others, joint constraints of this
nature can be approached via Lagrangian relaxation; that is,
converting the risk-constrained problem to a risk-minimizing
one with objective

E

∫ T

0

l
(
t, u(t), x(t)

)
dt+ λ

[
P
( ∨
t∈[0,T ]

x(t) 6∈ Xsafe
)
−∆

]
(4)

for some λ ≥ 0. However, the augmented objective in (4)
does not possess the time-additive Bellman structure of (2),
precluding the application of many optimal control techniques
such as dynamic programming [21, 23, 18]. Like [2, 18] and
other direct approximations, the approximation presented in
this paper restores this time-additive structure while achieving
superior accuracy for continuous-time systems.

This paper takes a fresh look at the time-evolution of
the failure probability in (3), specifically in continuous-time.
Related work is outlined in Section II. Section III lever-
ages the language of first-exit times to produce a time-
additive framework for continuous-time risk estimation. The
classic theory is rich and well-explored, but to the best of
the authors’ knowledge no techniques yet exist to enable
computation in the context of generic nonlinear systems and
nonlinear constraints. To address this, we propose a piecewise-
continuous approximation in Sections IV and V that provably

converges as the time discretization is refined – this allows
us to losslessly extend classic results for constant-coefficient
systems. As a second contribution, we identify a lightweight
method to account for “safety-thus-far” that avoids attempting
to approximate an explicit posterior and ensures conservatism
without being excessively so. Finally, we identify a large class
of systems for which the requisite numerical quadratures can
be computed exactly at significantly-reduced dimension, which
is critical to ensure computational feasibility. The resulting
risk approximation is empirically demonstrated in Section
VI to well-approximate MC estimates while retaining the
computational simplicity and general applicability of direct
methods, paving the way for risk-aware, continuous motion
planning onboard real-world systems.

II. RELATED WORK

Risk-aware motion planning is far from a new problem
and has received much attention over the years. For example,
when probabilistic constraints P

(
x(t) 6∈ Xsafe

)
≤ ∆ are

enforced independently for each t, suitable extensions of
classic algorithms such as RRT [13, 4, 22] and differential
dynamic programming (DDP) [23] have been proposed. Al-
ternatively, for problems with discrete time and action spaces,
risk-constrained search methods such as RAO? [20, 7] have
shown promise.

This paper considers problems continuous in time and ac-
tion, where safety is most naturally expressed by the joint con-
straint (3). The field of robust control provides some solutions
against worst-case (i.e., bounded) disturbances, for example
Majumdar and Tedrake [15] and Lopez et al. [12]. However,
these approaches are generally restricted to fully-observable
systems. Furthermore, their performance may be severely
conservative in the average case, motivating a quantification
of probabilistic risk to allow explicit trade-off between safety
and expedience during planning.

A. Sampling-Based Methods

MC techniques provide a general and powerful method for
estimating failure probabilities, at the cost of having to run
a potentially large number of simulation rollouts. As closed-
loop partially-observable systems require simulation of plant,
estimator, and controller, this can represent non-negligible
amounts of computation. Aside from the issue of sample-
complexity, which has been partially addressed by Calafiore
and Campi [5] and Janson et al. [8], sample-based estimates
are discontinuous and therefore fundamentally cumbersome
to incorporate into a continuous optimization framework.
For example, [5] proposes enforcement of a deterministic
constraint for each sample, [8] resorts to iterative obstacle
inflation in RRT, and Blackmore et al. [3] apply Mixed-
Integer techniques. This limitation of MC motivates the search
for efficient, “direct” risk approximations amenable to online,
continuous optimization over motion plans.



B. Direct Risk Estimates (in Discrete Time)

A number of direct techniques have been developed in a
discrete-time setting, where (3) simplifies to

P
(
∨ki=0 x(ti) 6∈ Xsafe

)
≤ ∆. (5)

Early work by Li et al. [11] recognized that, under Linear-
Time-Varying (LTV) dynamics, dispersions will be distributed
as an nx(k + 1)-dimensioned normal distribution. The joint
probability in (5) can then evaluated as a high-dimensional
integral via quadrature methods or sampling, both of which
have complexity exponential in dimension. To avoid this
unfavorable scaling with k, Blackmore and Ono [2] use
Boole’s inequality (a.k.a. the union bound) to decompose the
probability in (5) over time as

P
(
∨ki=0 x(ti) 6∈ Xsafe

)
≤

k∑
i=0

P (x(ti) 6∈ Xsafe). (6)

This decoupling over timesteps is highly convenient. As
pointed out by Ono et al. [18], the right-hand side of (6) is
time-additive, allowing the use of dynamic programming to
minimize (4). Alternatively, Ono and Williams [17] introduce
the risk-allocation formulation

P (x(ti) 6∈ Xsafe) ≤ ∆i ∀i ≤ k and
k∑
i=0

∆i = ∆ (7)

which explicitly allocates a risk “budget” between timesteps.
This framework has inspired a series of other works including
[24, 14, 6], all fundamentally dependent on decomposition (6).

Despite its popularity, the use of Boole’s inequality to
decompose joint constraints over time can be severely con-
servative, as illustrated in Fig. 1. By ignoring correlations
between states at adjacent timesteps, the sum in (6) will
“double-count” violation probabilities, particularly as the time
discretization is refined. This problem is addressed by Patil
et al. [19], who recognize that the state distributions should be
conditioned on the safety of prior timesteps. Because capturing
this conditioning exactly is challenging, they approximate the
projected and truncated distribution corresponding to each
constraint as a single-dimensional Gaussian, allowing closed-
form update of the state distribution parameters. However,
Gaussianity here is inexact and the resulting estimate may
not remain statistically consistent or result in a conservative
(upper-bounding) risk estimate.

When addressing continuous-time systems, a standard nu-
meric approach to risk-aware optimization approximates the
original system as discrete-time under a given time partition
T = {t0 = 0, t1, . . . , tk = T} and then substitutes constraint
(5) for (3). This allows well-studied discrete-time techniques
to be applied, but, as mentioned earlier, the results will be
highly sensitive to the choice of discretization. Depending on
the complexity and movement speed of the robot, these effects
can lead to unsafe or overly-cautious behavior, or both. This
motivates the fundamental contribution of this paper – a direct
risk approximation derived fundamentally in continuous time.

C. Stochastic Processes in Continuous-Time

In an effort to explicitly address the continuous-time con-
straint (3) and avoid “corner-cutting,” Ariu et al. [1] apply
Boole’s inequality over intervals rather than instantaneous
states as

P
( ∨
s∈[0,T ]

x(s) 6∈ Xsafe

)
≤
k−1∑
i=0

P
( ∨
s∈[ti,ti+1)

x(s) 6∈ Xsafe

)
. (8)

Note that continuity allows the endpoint x(T ) to be dropped.
As with (6), this “interval Boole’s” neglects correlations be-
tween events. In particular, their method assumes the state
process itself follows a Brownian motion, ultimately resulting
in a doubly-conservative estimate compared to its discrete-time
counterpart. In contrast, the approximation proposed in this
paper also operates on intervals, but it addresses the nonlinear
dynamics directly and avoids the use of Boole’s inequality in
this way, producing a much tighter risk bound.

This paper leans heavily on the classical notion of first-
passage times, a well-studied topic in the field of continuous
stochastic processes. Indeed, the piecewise approximation pre-
sented in Section IV of this paper is similar in spirit to that
of Jin and Wang [9], although we consider the case where the
process (rather than purely the boundary) is nonlinear.

III. HOW RISK EVOLVES IN TIME

Consider a càdlàg2, Markov process z(t) ∈ Rm with
associated probability space (Ω,F , P ). Here, Ω represents the
outcome space, F is a sigma-algebra over Ω (a collection of
events E ⊆ Ω) such that z(t) is measurable for all t, and
P is a probability measure over F . Note that for now we
do not assume z(t) has continuous sample paths. We begin
by exploring the “nearly” time-additive evolution of the exit
cumulant

Fz(t) , P
( ∨
s∈[0,t]

z(s) 6∈ D
)

(9)

for some closed set D ⊂ Rm.
For clarity in the following discussion, we adopt the lan-

guage of passage times, also known as hitting or exit times
[10, 25]. Define a parameterized family of exit times with
respect to process z(t) as

zτ t , inf
{
s ∈ [t, T ]

∣∣ z(s) 6∈ D
}

(10)

where the infinum of the empty set is assigned to ∞. That
is, zτ t refers to the first time (after t) that z(s) “exits” D.
For both Fz and zτ t we will drop the explicit z specification
when the corresponding process is unambiguous.

The following useful properties can be identified.

Lemma 1. For any 0 ≤ t1 < t2 ≤ T , the following hold:
• τ t1 ≥ t2 ⇐⇒ z(s) ∈ D ∀s ∈ [t1, t2).
• τ0 ∈ [t1, t2) ⇐⇒ τ0 ≥ t1, τ t1 < t2.
• For each outcome ω ∈ Ω, either

1) τ0 =∞ (“no exit”), or

2a.k.a. right-continuous with left limits.



2) z(τ0) ∈ ∂D∪Dc (“smooth exit” or a “jump out”).
where ∂D and Dc are the boundary and complement of
D, respectively.

It is straightforward to verify that the total exit probability
can be written as F(T ) = P (τ0 ≤ T ), and thus τ0 offers
a means by which to analyze the time-evolution of F(t). In
some cases F(t) is known to be time-differentiable [9], and
thus computing this derivative (called the first-passage density)
would seem to be a natural goal. However, this computation
is challenging for generic nonlinear processes, and instead
we will settle for an interval-based “integration” scheme that
reflects how F(T ) can be approximated in practice. In later
sections, through both analysis and experiment we demonstrate
that this approximation indeed converges to the true value as
the time discretization is refined.

Proceeding, assume a given partition T = {t0 =
0, t1, t2, . . . , tk = T} of the fixed horizon [0, T ]. A crucial
advantage of the language of the first-exit time is that it pro-
vides a natural disjointness between events, and in particular

F(T ) =

k−1∑
i=0

P
(
τ0 ∈ [ti, ti+1)

)
+ P (τ0 = T ). (11)

Note that, in contrast to (8), the relation (11) holds with
equality. Proceeding from here and adopting the shorthand
zi , z(ti), τ i , τ ti , and so on, the above can be written

k−1∑
i=0

(
P
(
τ0 ∈ [ti, ti+1), zi ∈ D

)
+ P (τ0 = ti, zi 6∈ D)

)
+ P (τ0 = T, z(T ) ∈ Dc) (12)

=

k−1∑
i=0

P
(
τ0 ∈ [ti, ti+1), zi ∈ D

)
+

k∑
i=0

P (τ0 = ti, zi ∈ Dc)

(13)

where in (12) we split the probability over the event that zi ∈
D. Note that the right-hand summation in (13) involves the
probabilities that discontinuous sample paths “jump out” of
D at each of the partition points ti. Examining the first set of
terms, Lemma 1 allows

P
(
τ0 ∈ [ti, ti+1), zi ∈ D

)
(14)

= P
(
τ i < ti+1 | τ0 ≥ ti, zi ∈ D

)
P (τ0 ≥ ti, zi ∈ D).

The conditioning on τ0 ≥ ti and zi ∈ D in (14) implies that
the process has not exited “yet,” imposing a specific posterior
over zi that we will call the anthropic distribution3

π̄t(dz) , P (z(t) ∈ dz | τ0 ≥ t, z(t) ∈ D). (15)

Before proceeding further, define the function

Φz(ti, ti+1;µi) , P (τ i < ti+1 | zi ∼ µi) (16)

for any (not necessarily normalized) measure µi over Rm. (16)
captures the probability of an exit (not necessarily the first) in

3In cosmology, the anthropic principle remarks that life can only observe
universes that themselves allow for the existence of life.

the interval [ti, ti+1), given that zi is distributed according
to µi. As before, the z subscript will be left implicit where
possible. Because the process z(t) is assumed Markov and
applying (14), sum (13) can be re-written in terms of Φ and
π̄t as

F(T ) =

k−1∑
i=0

Φ(ti, ti+1; π̄i)P (τ0 ≥ ti, zi ∈ D)

+

k∑
i=0

P (τ0 = ti, zi ∈ Dc). (17)

A key challenge in evaluation of (17) is computation of
π̄i. For one thing, its support is clearly limited to D, which is
sufficient to ensure non-Gaussianity. This motivates us to avoid
attempting to approximate or bound π̄t directly and instead
decompose it via Baye’s rule, producing

π̄t(dz) =
P
(
τ0 ≥ t, z(t) ∈ D | z(t) = z

)
P
(
z(t) ∈ dz

)
P (τ0 ≥ t, z(t) ∈ D)

,
Ψ̄t(z)b̄t(dz)

P (τ0 ≥ t, z(t) ∈ D).
(18)

where b̄t is the a priori distribution of z(t), and we refer
to Ψ̄t : Rm 7→ [0, 1] as the anthropic likelihood. It is
straightforward to show

Φ(ti, ti+1; π̄i)P (τ0 ≥ ti, zi ∈ D) = Φ(ti, ti+1; Ψ̄ib̄i), (19)

and therefore (17) can be written

F(T ) =

k−1∑
i=0

Φ(ti, ti+1; Ψ̄ib̄i) +

k∑
i=0

P (τ0 = ti, zi ∈ Dc).

(20)
As discussed in Section V-B, and in contrast to the case of π̄t,
identifying conservative approximations for Ψ̄t will be both
straightforward and effective.

A. Analogous Development Under Filtration Ft
Though not the primary focus of this paper, we note that

the preceding development can be applied analogously in
the context on a filtration Ft representing information that
becomes available during execution as opposed to a priori.
For example, in the context of x(t) as defined in (1), we
might consider the observation filtration Ft = Yt.

Though the information generated by Ft itself evolves
randomly, modification of the above discussion is straight-
forward and we simply provide some analogous definitions
here for clarity. As in (15), we can define the anthropic belief
πt(dz) , P

(
z(t) ∈ dz | τ0 ≥ t, z(t) ∈ D,Ft

)
, and like (15)

it has the structure

πt(dz) =
Ψt(z)bt(dz)

P
(
τ0 ≥ t, z(t) ∈ D | Ft

) (21)

where the familiar estimation belief bt and anthropic likelihood
Ψt are adapted to Ft. An analogous identity to (19) can be



established, yielding

F(T ) = E
[ k−1∑
i=0

Φ(ti, ti+1; Ψibi)
]
+

k∑
i=0

P (τ0 = ti, zi ∈ Dc).

(22)
where the expectation is taken over Ft.

IV. A PIECEWISE-CONTINUOUS APPROXIMATION

The preceding section introduced a framework for comput-
ing the failure probability based on a helper function Φ defined
in (16). Rather than attempting to evaluate Φx directly for
the nonlinear process x(t), this section introduces an approx-
imating process in the constraint space, for which compu-
tation is made tractable. This simplified process is piecewise-
continuous according to the given time discretization T , which
controls the “accuracy” of the approximation. Though T in
practice will likely be dictated by the computational resources
available, we prove that as it is refined the corresponding
failure probability estimate converges to Fx(T ). That is to
say, the approximation is asymptotically lossless.

Assume the feasible set Xsafe ⊂ X is defined by the sublevel
sets gj(x) ≤ 0 for a set of m twice-differentiable, real-valued
functions {gj}. Let g(x) refer to the stacked vector in Rm, and
let aj(x) and Hj(x) refer to the gradient vector and Hessian
of each gj , respectively. Note that x ∈ Xsafe is equivalent to
the statement that gj(x) ≤ 0 for all j. This naturally motivates
a consideration of y(t) , g

(
x(t)

)
as a process with respect

to the non-positive orthant O− ⊂ Rm.
Before we proceed, however, computation and analysis will

require some regularity conditions on the control process u(t),
which evolves according to Yt and some (potentially non-
deterministic) policy. Rather than complicate the discussion
by attempting to account for all such possibilities, we make
the following simplifying assumption.

Assumption 1 (y(t) Locally Independent of Control). We
require that either

1) we have state-feedback u(t) = κ
(
t, x(t)

)
, with κ

deterministic and Lipschitz, or
2) aT

j (x)f(t, x, u) and aT
j (x)G(t, x, u) are independent

of u for all constraints j.

Assumption 1 ensures that the dynamics of process y(t)
depend on the control only via the state x(t), and notably
accommodates second-order systems under workspace con-
straints (i.e., obstacle avoidance). Partial relaxation of this as-
sumption will in many cases require only minor modifications
of the analysis and computations presented in this paper.

Proceeding, we consider a piecewise approximation of this
process constructed from the time discretization T . Using the
shortcuts f t , f

(
t, x(t), u(t)

)
, Gt , G

(
t, x(t), u(t)

)
, and

yj(t)

ŷj(t)

0
0 T

Fig. 2. An illustration of the continuous process yj(t) = gj(x(t)) and our
approximation ŷj(t). The two processes coincide at each discrete timestep
ti ∈ T , and as T is refined, Prop. 1 establishes that the two converge
pathwise-uniformly. Zero-crossings of yj(t) imply constraint violations, and
therefore exit-times of ŷ(t) from the non-positive orthant approximate those
of x(t) from Xsafe.

so on, define the process ŷ(s) such that

ŷ(s) , g
(
x(t)

)
+

∫ s

t

ht ds′ +

∫ s

t

Σt dw(s′) (23)

ht,j , aj
(
x(t)

)T
f t +

1

2
tr
(
GT
t Hj

(
x(t)

)
Gt

)
(24)

Σt ,

a
T
1

(
x(t)

)
...

aT
m

(
x(t)

)
Gt ,

 σ1

(
t, x(t)

)
...

σm
(
t, x(t)

))
 (25)

where t = max{ti ∈ T | ti ≤ s} corresponds to the start
point of the interval [ti, ti+1) containing s. Here hs and Σs
can be identified as the drift and diffusion coefficients of
y(s) as prescribed by Itô’s formula [25, Thm. 5.5]. Thus, the
piecewise-continuous ŷ(s) has constant coefficients over each
interval and coincides with y(s) for every s = t ∈ T .

Approximating Fŷ will be much easier than working di-
rectly with Fx, and in the following we show that, under mild
conditions, the substitution of ŷ(s) for y(s) can be considered
asymptotically lossless.

A. Convergence Analysis

Consider evaluating Fŷ(T ) for the process ŷ(t) – the
result will, of course, depend on ŷ(t) and therefore the
underlying time discretization T . We show that as T is refined,
ŷ(t) converges to y(t) in a specific sense, and that Fŷ(T )
converges to Fy(T ) = Fx(T ). Proofs are left to Appendix A.

Definition 1 (Pathwise-Uniform Convergence). For a se-
quence of processes z(n)(t) and an associated real-valued
sequence εn → 0, we say z(n)(t) converges εn-pathwise-
uniformly to process z(t) if there exists for each ω ∈ Ω an
0 < Mω <∞ almost surely such that

P
(

sup
s∈[0,T ]

∥∥∥z(n)(s)− z(s)
∥∥∥
2
> εnMω

)
→ 0.

Note that pathwise-uniform convergence (PUC) does not
imply that z(n)(·;ω) converges to z(·;ω) for any fixed out-
come ω ∈ Ω. Additionally, it is specific to the given sequence
εn. Nonetheless, we will see that this condition is sufficient
to ensure a non-trivial convergence-of-probabilities result.

Definition 2 (Supremum Process). For a process z(t), the
corresponding supremum process is z?(t) , sups∈[0,t] z(s).



Theorem 1. If a given sequence of Rm-valued processes
z(n)(t) converges εn-pathwise-uniformly to z(t), and we have
that P (z?j (T ) = 0) = 0 for all j, then

P
( ∨
s∈[0,T ]

z(n)(s) 6∈ O−
)
→ P

( ∨
s∈[0,T ]

z(s) 6∈ O−
)
.

For technical reasons, we will be required to make the
following additional assumption relating the diffusion matrix
G and the constraint gradients {aj}.

Assumption 2 (Paired Lipschitz:). With respect to a given
function g : X 7→ R and diffusion matrix G(t, x, u), either

1) G is constant and the function gradient, a, is Lipschitz,
2) a is constant (i.e., g is linear) and G is Lipschitz, or
3) both a and G are bounded and Lipschitz.

Remark 1. The requirements that Assumption 2 imposes on G
in no way imply that disturbances are bounded. Furthermore,
when constraints are linear G is only required to be Lipschitz,
so cases of multiplicative noise can be handled here as well.

This leads to our main result.

Proposition 1. Let Assumptions 1 and 2 hold for the m
constraint functions {gj}. Additionally, assume:

1) f t is pathwise-bounded a.s., and E
∫ T
0
‖f t‖

2
2 dt <∞.

2) E ‖Gt‖22 bounded over [0, T ], and E
∫ T
0
‖Gt‖22 dt <∞.

Then, for a sequence of partitions Tn = {0 = t0, t1, . . . , tkn =
T} over the compact interval [0, T ] with mesh δn → 0 and
knδn ≤ cT for fixed c > 0, there exists a sequence εn → 0
such that the sequence of processes ŷ(n)(s) converges εn-
pathwise-uniformly to y(s).

From Thm. 1 and the definition of y(t) the following
corollary immediately follows.

Corollary 1. If the assumptions of Prop. 1 hold and
P
(
y?(T ) = 0

)
= 0 for all j then Fŷ(n)(T )→ Fx(T ).

Remark 2. The condition P
(
y?j (T ) = 0

)
= 0 is somewhat

difficult to verify; while conditions over which the variable
yj(t) admits a density have been somewhat examined, the case
of the supremum process is less explored. For the purposes of
the paper we consider this, as well as the regularity conditions
required by Prop. 1, to be fairly mild.

Corollary 1 makes clear that the substitution of ŷ(s) for
y(s) is (asymptotically) loss-less for the purposes of comput-
ing the risk probability Fx(T ). It is worth noting that this result
does not anywhere assume that the dynamics or observation
model are Gaussian or LTV, although practical computation of
bt may still require this assumption.

V. COMPUTATION

The results of Section IV indicate that we can perform
computation with the simplified process ŷ(t) and the result
will approximate the true Fx(T ) in an asymptotic sense.
While ŷ(t) is only piecewise-continuous and thus “jump out”
probabilities in (22) may be non-zero, our empirical results

indicate that they can be safely ignored. Identifying a rigorous
proof is left as a topic for future work. Additionally, for the
sake of presentation we make the simplifying assumption that
P (x0 6∈ Xsafe) = 0. In light of these considerations, we focus
on computing

F̂ (T ) ,
k−1∑
i=0

Φŷ(ti, ti+1; Ψ̄ib̄i). (26)

In order to compute (26), we require both a means of
computing the quantity Φŷ(ti, ti+1;µi) for arbitrary measure
µi and a means of approximating Ψ̄ib̄i. The former is the
subject of V-A and the latter of V-B.

A. Bounding Φŷ

The constant-coefficient approximation ŷ(t) allows us to
leverage classic results in the study of first-exit times. First,
recalling (16) we apply the union bound to decouple individual
constraints, producing a sum over element-wise diffusions ŷj

Φŷ(ti, ti+1;µi) ≤
m∑
j=1

Φŷj (ti, ti+1;µi). (27)

Letting ∂Xsafe refer to the boundary of Xsafe, a classic result
(see Karatzsas and Shreve [10, Ch. 3, Eq. 5.12]) provides the
following lemma.

Lemma 2. Under Assumption 1, for any (not-necessarily nor-
malized) measure µi over Xsafe, and such that µi(∂Xsafe) = 0,

Φŷj(ti, ti+1;µi) = P
(

sup
s∈[ti,ti+1)

ŷj(s) > 0
∣∣∣ ŷj(ti) ∼ gj(µi))

=

∫
Xsafe

ψ
(
gj(x), hj(ti, x), ‖σj(ti, x)‖2 ,∆i

)
dµi(x) (28)

where ∆i = ti+1 − ti and we define ψ(z, h, σ,∆t) ,

1− φ
(−h∆t− z

σ
√

∆t

)
+ exp

{
− 2hz

σ2

}
φ
(−h∆t+ z

σ
√

∆t

)
(29)

and φ refers to the CDF of the standard normal distribution.

Note that the condition µi(∂Xsafe) = 0 is satisfied for all
measures which admit a density (a mild assumption).

Like the instantaneous probability P
(
x(ti) 6∈ Xsafe

)
, com-

puting (28) in general requires evaluating a multi-dimensional
integral over the state space X = Rnx . Numerical quadra-
ture techniques have exponential complexity in dimension
(the curse of dimensionality). Fortunately, depending on the
structure of the dynamics and constraints, significant dimen-
sionality reductions can often be found. In particular, consider
Gaussian-distributed second-order systems with workspace
constraints (such as obstacle avoidance). If system noise
is injected only in the velocity and acceleration dynamics
(corresponding to σj = 0 for all j), then the integral in (28)
reduces to workspace dimension np (commonly 2 or 3). This
ensures that Φŷ can be evaluated efficiently for a large class
of dynamics. Details are provided in Appendix B.



B. Approximating Anthropic Belief
Given we can compute (27), we still require some means

of estimating the anthropic state distribution via π̄t or Ψ̄tb̄t.
Though inexact, Gaussian approximations for b̄i are applicable
and widely-used whenever the state dynamics are sufficiently
smooth and, as can be seen in our experimental results, accu-
rately model the dispersion of even nonlinear MC trajectories.
However, modeling the anthropic information represented by
Ψ̄i or π̄i is not so straightforward.

1) Approximating π̄i as a Gaussian: In existing work, Patil
et al. [19] propose a Gaussian approximation for the anthropic
distribution π̄i (or analogously, anthropic belief πi) at each
timestep ti. This is attractive because it implies π̄i can be
propagated in parallel with b̄i. Likewise, we can consider
approximating π̄i by conditioning on safety (via a recursive
Gaussian approximation) at each prior timestep

ˆ̄πi(dx) ≈ P
(
xi ∈ dx | xl ∈ Xsafe ∀l ≤ i

)
. (30)

We refer the interested reader to their paper for implementation
details.

Again considering (26), we can apply identity (19) and
directly produce an upper-bound in terms of π̄i

F̂ (T ) ≤
k−1∑
i=0

Φŷ(ti, ti+1; π̄i). (31)

Together with our Gaussian approximation ˆ̄πi from (30), we
refer to the resulting estimate as ival_gauss.

While the independence and Gaussianity assumptions in-
volved here are convenient, they are also heuristic. This can
lead to inconsistent π̄t estimates and ultimately unpredictable
risk estimation, as will be seen in Section VI.

2) A Simple Alternative: Rather than attempting to estimate
π̄t, we propose a simple, yet surprisingly powerful alternative
based on the anthropic likelihood Ψ̄t. A clear upper-bound
follows directly from the definition as

Ψ̄t(x) = P
(
xτ0 ≥ t, x(t) ∈ Xsafe | x(t) = x

)
≤ 1Xsafe(x).

(32)
Applying (32) to (26) yields a conservative estimate

F̂ (T ) ≤
k−1∑
i=0

Φŷ(ti, ti+1;1Xsafe b̄i) (33)

which accumulates “new” exits over each interval – note the
contrast with the naive “interval Boole’s” approximation given
by (8). Because it restricts exit flow to probability mass which
is “safe” at the start of each interval, we refer to approximation
(33) as ival_safe.

In principle, (33) shares one of the same weaknesses of
the discrete-time Boole’s approximation in (6) – it is not
bounded above, and indeed may diverge as T is refined.
However, it avoids “locally” double-counting by counting
only probability mass leaving Xsafe over each interval. This
interpretation is illustrated in Fig. 1, and our empirical results
suggest ival_safe does very well in practice. Furthermore,
compared to [19] or (31) it requires no “extra” belief propaga-
tion at all, making this approximation particularly lightweight.

T1 ∼ 10 Hz
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T2 ∼ 60 Hz

Fig. 3. We simulate a noisy Dubin’s car system navigating in a narrow
passageway, computing collision probabilities under coarse (left) and fine
(right) time discretizations, T1 and T2. MC trajectories (red) simulate a fixed
60Hz feedback control rate, and a corresponding a priori state distribution
b̄i (blue) is propagated via an LTV-Gaussian assumption. The anthropic
estimates {ˆ̄πi}j (yellow) are computed according to each Tj . The underlying
plots confirm the divergence of dt_booles under fine discretizations, and
illustrate the susceptibility of dt_gauss and ival_gauss to inconsistency
in the Gaussian ˆ̄πi estimates. In contrast, our method ival_safe avoids
estimating π̄ entirely, producing a lightweight and consistent risk estimate.

VI. RESULTS

To evaluate the accuracy of our approximation, we simulate
a second-order Dubin’s car system in the plane. System details
are provided in Appendix C. Noise in dynamics and obser-
vations render the system partially-observable, and an LQG-
style feedback control policy stabilizes around a nominal tra-
jectory. We evaluate four principle approximations. Discrete-
time methods dt_booles and dt_gauss refer to the naive
Boole’s approximation (6) and the conditioned variant pro-
posed by [19], respectively. Our methods ival_gauss and
ival_safe are described in the preceding section.

First, we successfully use our ival_safe estimate to
optimize a risk-constrained (∆ = 2%) plan in a tight en-
vironment, shown in Fig. 3. We then computed risk esti-
mates for this plan under multiple time discretizations. As
predicted, dt_booles diverges severely as T is refined while
ival_safe converges correctly. Interestingly, dt_gauss
and ival_gauss converge to incorrect values, likely due
to inconsistency in the underlying Gaussian ˆ̄πt estimate.

Next, we perform a larger statistical evaluation over random,
programmatically-generated environments. We consider two
different regimes: nominally-safe trajectories, which ensure
only that the nominal trajectory is collision-free, and risk-
constrained trajectories optimized using ival_safe with
∆ = 10%. This segregation allows us to identify potentially
distinct statistical performance in scenarios representing the
full range of risk values [0, 1] and over the smaller range of
“planning-relevant” values in [0,∆]. These environments are
non-convex, and the locally-optimal trajectories were gener-
ated via MATLAB’s fmincon routine [16]. To ensure that
the batch of experiments is not dominated by “uninteresting”
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Fig. 4. Sample Dubin’s car trajectories in randomly-generated environments over a T = 2.5 [s] horizon under 60 Hz LQG feedback control towards
the (green) goal. The two scenarios on the left demonstrate nominally-safe plans, which can experience significant risk upon stochastic execution. On the
right are risk-constrained plans (generated using our ival_safe approximation with ∆ = 10%). MC trajectories are shown in red, and dispersions are
well-approximated by the a priori distributions {b̄i} shown in blue. The Gaussian anthropic belief estimates {ˆ̄πi} are shown in yellow. The lower plots show
Fx(t) estimates as compared to MC (estimated standard error is indicated by the shaded region). Note that dt_booles is prone to extreme over-estimation,
while the two {ˆ̄πi}-dependent methods dt_gauss and ival_gauss suffer from the inconsistency of the underlying Gaussianity assumption. In contrast,
our proposed method ival_safe achieves the best approximation performance and avoids explicit π̄i approximation.

TABLE I
COMPUTE TIMES FOR DUBIN’S CAR MATLAB IMPLEMENTATION ON CONSUMER LAPTOP. QD REFERS TO QUADRATURE DIMENSION.

Monte Carlo
∑k

i=0 P
(
x(ti) 6∈ Xsafe

) ∑k−1
i=0 Φ(ti, ti+1;1Xsafe b̄i)

(N = 1000) LTV-Gaussian b̄i Gaussian ˆ̄πi QD: (np − 1) = 1 QD: np = 2

39.1 [s] 0.034 [s] 0.054 [s] 0.034 [s] 0.316 [s]

cases, we specifically reject scenarios where the unconstrained
optimal has negligible failure probability (i.e., when the obsta-
cles are not relevant). Computation times for our MATLAB
implementation of various methods are shown in Table I –
as predicted, our method is significantly faster than MC while
representing some additional complexity compared to discrete-
time methods. A more detailed discussion is presented in
Appendix B.

Some representative scenarios are shown in Fig. 4, and
statistics are reported in Table II over 100 nominally-safe
and 50 risk-constrained scenarios. For reference, the average
MC-evaluated risk in each of the two test batches is listed
in the top of the column. The Bias column lists the mean
(signed) difference between the estimate and a 1000-sample
MC estimate, and P (Conservative) reports the percentage of
cases where the estimate was greater than (or within 5%) of
the MC “truth.” The proposed method ival_safe outper-
forms or matches all others in bias, root-mean-squared error
(RMSE), and median relative error (MRE), while remaining
conservative (i.e., safe) in a significant majority of trials. Both
dt_gauss and ival_gauss outperform dt_booles but
suffer from inconsistency of the Gaussian ˆ̄πi estimate.

VII. CONCLUSION

This paper addresses the challenging problem of efficiently
and accurately estimating failure probabilities to enable risk-
aware, continuous motion planning. By developing a rigorous
framework directly in continuous-time and leaning heavily on

TABLE II
Fx(T ) ESTIMATION STATISTICS FOR DUBIN’S CAR SYSTEM.

Batch / Method Bias RMSE MRE P (Conservative)

Nominally-safe MC : 0.2649
dt_booles +2.9780 4.908 948 % 100 %
dt_gauss +0.3156 0.923 70 % 89 %
ival_gauss +0.0073 0.257 49 % 46 %
ival_safe +0.0915 0.173 32 % 92 %

Risk-constrained MC : 0.0321
dt_booles +0.4849 0.957 1162 % 100 %
dt_gauss +0.0510 0.067 224 % 96 %
ival_gauss -0.0138 0.025 39 % 30 %
ival_safe +0.0057 0.019 41 % 86 %

the classic study of first-exit times, it becomes straightfor-
ward to identify a lightweight approximation (ival_safe)
that dramatically outperforms existing methods. Furthermore,
our approximation restores a convenient Bellman structure
required for optimal control, enabling practical application for
a wide variety of nonlinear systems.

Ultimately, the framework and concepts introduced in this
paper (particularly Section III) motivate a number of future
investigations. Of particular interest are robust methods of
estimating anthropic belief via πt or Ψt, as “survival-thus-far”
may represent a useful and yet-uncaptured source of informa-
tion for aspects of autonomous decision-making not limited
to risk estimation. Also, fusing MC and Gaussian-based risk-
approximations in a hybrid approach may provide the best of
both worlds: high accuracy in the face of nonlinearity and



compatibility with continuous optimization.
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APPENDIX

A. Proofs of Stated Results

Lemma 1
Proof: The claims follow almost directly from the defi-

nitions; the proof here simply makes this explicit.
Let St1 , {s ∈ [t1, T ] | z(s) 6∈ D} be the set of “violation

times” after (and possibly including) t1. Note that τ t1 ≥ t2 is
equivalent to the statement t1 ≤ t2 ≤ τ t1 ≤ S1 (where the last
inequality refers to a set lower bound), and the first claim is
immediate. The contrapositive is then also established, namely

τ t1 < t2 ⇐⇒ ∃s ∈ [t1, t2) s.t. z(s) 6∈ D (34)
⇐⇒ St1 ∩ [t1, t2) 6= ∅. (35)

Moving on to the second claim, note that St1 = S0∩ [t1, T ],
where S0 is defined analogously to St1 above. Therefore,

S0 ∩ [t1, t2) = S0 ∩ [t1, T ] ∩ [t1, t2) = St1 ∩ [t1, t2). (36)

Thus,

τ0 ≥ t1, τ t1 < t2 ⇐⇒ t1 ≤ S0, St1 ∩ [t1, t2) 6= ∅ (37)
⇐⇒ t1 ≤ S0, S0 ∩ [t1, t2) 6= ∅ (38)
⇐⇒ τ0 ∈ [t1, t2) (39)

and we are done.
The final set of claims follow directly from z(t) càdlàgand

D closed.

The following auxiliary lemma does most of the heavy
lifting.

Lemma 3. Consider process x(t) under dynamics (1) and C2

function g : X 7→ R. Assume there exists a finite c̄ such that

1) f t is pathwise-bounded a.s. and E
∫ T
0
‖f t‖

2
2 dt ≤ c̄2.

2) E ‖Gt‖22 ≤ c̄2 for all t and E
∫ T
0

tr(GtG
T
t ) dt <∞.

3) Assumptions 1 and 2 hold with respect to f , G and g.
For any t let at and Ht represent the gradient and Hessian
of g at x(t), and

tẑ(s) , g
(
x(t)

)
+

∫ s

t

ht ds′ +

∫ s

t

σt dw(s′)

hs , aT
s fs +

1

2
tr
(
GT
s HsGs

)
σs , aT

s Gs

be a constant-coefficient approximation to z(s) , g
(
x(s)

)
for

s ≥ t. Then there exists a random Mω <∞ a.s. such that

P
(

sup
s′∈[t,s]

|tẑ(s′)−z(s′)| > (s− t)pMω

)
≤ (s− t)2−2p (40)

for any p < 1 and s ≥ t.

Proof: In the following, we will at several points make
use of the sum-of-squares (SOS) inequality: For any a, b ∈
Rm

‖a+ b‖22 ≤ 2 ‖a‖22 + ‖b‖22 . (41)

Additionally we rely on the Itô isometry for Brownian
motion w(t), which follows directly from Yong and Zhou
[25, Prop. 5.2] (also Karatzsas and Shreve [10, Prop. 2.10])
and the independent increments property.

E

∥∥∥∥∫ t2

t1

At dw(t)

∥∥∥∥2
2

= E

∫ t2

t1

tr(AtAt)
T dt (42)

for any progressively-measurable At.
As a first step, we will show

E ‖x(s)− x(t)‖22 ≤ (s− t)c̄2 ∀s ≤ t ∈ [0, T ]. (43)

Starting from the left-hand-side,

E ‖x(s)− x(t)‖22 = E

∥∥∥∥∫ s

t

fs′ ds′ +

∫ s

t

Gs′ dw(s′)

∥∥∥∥2
2
(44)

≤ 2 E

∥∥∥∥∫ s

t

fs′ ds′
∥∥∥∥2
2

+ 2 E

∥∥∥∥∫ s

t

Gs′ dw(s′)

∥∥∥∥2
2

(45)

= 2 E

∫ s

t

∫ s

t

fT
s1fs2 ds1 ds2 + 2 E

∫ s

t

tr(Gs′G
T
s′) ds′

(46)

where in (45) we use the SOS inequality, and in (46) we appeal
to the Itô isometry (42). Evaluating the first term, application
of Cauchy-Schwarz to the integrand produces

2 E

∫ s

t

∫ s

t

fT
s1fs2 ds1 ds2

≤ 2 E

∫ s

t

∫ s

t

max
( ∥∥fs1∥∥22 ,∥∥fs2∥∥22 ) ds1 ds2 (47)

≤ 2 E

∫ s

t

∫ s

t

( ∥∥fs1∥∥22 +
∥∥fs2∥∥22 )ds1 ds2 (48)

≤ 4(s− t)c̄2 (49)

by assumption of square-integrability. After leveraging an
assumption to bound the integrand in its second term, (46)
can now be bounded

E ‖x(s)− x(t)‖22 ≤ 4(s− t)c̄2 + 2(s− t)c̄2 (50)

and after absorbing constants into c̄ we are done. X
Next we show that the drift term ht is pathwise-bounded.

Recall that g being C2 ensures that at and Ht are continuous
and therefore pathwise-bounded over [0, T ] a.s.. Furthermore,
note that Assumption 2 implies that either Gt is bounded or
Ht = 0, so in either case tr(GT

t HtGt) must be pathwise-
bounded. From our assumption that f t is pathwise-bounded,
it clearly follows that ht is also pathwise-bounded, say by
Mω <∞ almost surely.

Now we proceed to show the main claim (40). Itô’s rule
[25, Thm. 5.5] justifies the given definitions of hs and σs, in
the sense that

z(s) = z(t) +

∫ s

t

hs′ ds′ +

∫ s

t

σs′ dw(s′). (51)



The approximation gap |z(s)− tẑ(s)|

=

∣∣∣∣∣
∫ s

t

(hs′ − ht) ds′ +

∫ s

t

(σs′ − σt) dw(s′)

∣∣∣∣∣ (52)

≤
∫ s

t

|hs′ − ht|︸ ︷︷ ︸
≤2Mω

ds′ +

∣∣∣∣∣
∫ s

t

(σs′ − σt) dw(s′)︸ ︷︷ ︸
,ξt,s

∣∣∣∣∣ (53)

≤ 2(s− t)Mω + |ξt,s| (54)

where in (53) we’ve applied our pathwise-bound on hs. We’ve
also introduced the shortcut ξt,s to represent the Itô integral.

Note that under Assumptions 1 and 2,

‖σs − σt‖2 =
∥∥GT

s as − GT
t at

∥∥
2

(55)

=
∥∥GT

s (as − at) + (Gs − Gt)Tat
∥∥
2

(56)

≤ 2L ‖x(s)− x(t)‖22 . (57)

It follows that the second moment of ξt,s can be bounded via
the Itô isometry (42) as

E |ξt,s|2 = E

∫ s

t

‖σs − σt‖22 ds′ (58)

≤ E

∫ s

t

4L2 ‖x(s′)− x(t)‖22 ds′ (59)

≤ 4L2

∫ s

t

(s′ − t)c̄2 ds′ (60)

≤ 2(s− t)2c̄2L2 (61)

where in (60) we’ve appealed to the recently-proven (43).
We then appeal to Doob’s maximal inequality [25, Thm. 4.5]

for the martingale ξt,s, which gives for any p

P
(

sup
s′∈[t,s]

|ξt,s| > (s− t)pc̄L
)
≤ E |ξt,s|2(

(s− t)pc̄L
)2 (62)

≤ 2(s− t)2−2p. (63)

Let E ⊂ Ω refer to the event that the condition in the left-
hand-side of (63) fails. Returning to (54), it is clear that for
any ω ∈ E and p < 1,

sup
s′∈[t,s]

|z(s′)− tẑ(s′)| ≤ 2(s− t)Mω + (s− t)pc̄L (64)

≤ (s− t)pMω (65)

where we’ve assumed WLOG that Mω ≥ c̄L. Recalling from
(63) that P (Ec) ≤ 2(s− t)2−2p, we are done.

Theorem 1
Proof: Define the approximating and target events, re-

spectively, as

An ,
{
ω ∈ Ω | max

j
sup
s
z
(n)
j (s) ≤ 0

}
and

E ,
{
ω ∈ Ω | max

j
sup
s
zj(s) ≤ 0

}
.

Then εn-PUC of z(n)(s) and z(s) implies that there exist
subsets Sn ⊆ Ω such that for any ω ∈ Sn∥∥∥z(n)(s)− z(s)

∥∥∥
2
≤ εnMω (66)

and that P (Sn)→ 1. Define the joint events

Bn , An ∩ Sn and En , E ∩ Sn.

By the additivity of measure over disjoint sets, it is easy to
verify that

P (An) = P (Bn) + P (An ∩ Scn)

and because P (An ∩ Scn) ≤ P (Scn) → 0, it must follow that
|P (An) − P (Bn)| → 0. An analogous argument establishes
that P (En) → P (E). Thus, if we can simply show that
|P (Bn)− P (En)| → 0, we will be done.

Again, using the additivity of measure, we have

P (Bn) = P (Bn ∩ En) + P (Bn ∩ Ecn︸ ︷︷ ︸
,Cn

) and

P (En) = P (En ∩Bn) + P (En ∩Bcn︸ ︷︷ ︸
,Dn

)

and it will be sufficient to show that the probability of
“disagreement” P (Cn) + P (Dn)→ 0.

From here, we can consider each of the m elements of
the vector processes z(s) and z(n)(s) independently. This is
because P (Cn) can be written

P
(
Sn
∧

max
j

sup
s
z
(n)
j (s) ≤ 0

∧
max
j

sup
s
zj(s) > 0

)
(67)

≤
m∑
l=1

P (Sn
∧

max
j

sup
s
z
(n)
j (s) ≤ 0

∧
sup
s
zl(s) > 0

)
(68)

≤
m∑
l=1

P (Sn
∧

sup
s
z
(n)
l (s) ≤ 0

∧
sup
s
zl(s) > 0

)
︸ ︷︷ ︸

P (Cn,l)

(69)

where in (68) we’ve used the union bound and in (69) we’ve
relaxed the probabilistic statement. So if we can show that if
each term P (Cn,j) decays to zero (which involves only the
j-th channel) decays to 0, then P (Cn) must also decay to 0.
Furthermore, the PUC criterion for the vector process implies
a similar criterion for each of the j elemental processes. An
analogous decomposition can be performed for Dn, so for the
remainder we consider each of the j channels independently.

Define the random variable en , sups
∥∥z(n)(s)− z(s)

∥∥
2
,

allowing en = ∞ if the supremum does not exist. Then
zj(s) ∈ [z

(n)
j (s)− en, z(n)j (s) + en] for all j, s.

First, consider Cn,j , which by construction is a subset of
Sn, implying (66) and therefore en(ω) ≤ εnMω holds in Cn,j .

P (Cn,j) = P
(
Sn
∧

sup
s
z
(n)
j (s) ≤ 0

∧
sup
s
zj(s) > 0

)
≤ P

(
Sn
∧

sup
s
zj(s) ∈ (0, en]

)
≤ P

(
sup
s
zj(s) ∈ (0, εnMω]

)
Because the interval approaches the empty set monotonically
as n→∞, it is clear that P (Cn,j)→ 0 for each j.



Similarly for Dn,j , we have

P (Dn,j) = P
(
Sn
∧

sup
s
zj(s) ≤ 0

∧
sup z

(n)
j (s) > 0

)
≤ P

(
Sn
∧

sup
s
zj(s) ∈ (−en, 0]

)
≤ P

(
sup
s
zj(s) ∈ (−εnMω, 0]

)
In this case, the latter probability converges monotonically to
P
(

sup zj(s) = 0
)
, which by assumption equals 0. Therefore,

P (Dn) also converges to 0. Altogether, we have that

|P (An)− P (E)| ≤ |P (An)− P (Bn)|
+ |P (Bn)− P (En)|
+ |P (En)− P (E)| → 0

completing the proof.

Proposition 1
Proof: From Lemma 3 we already have a similar state-

ment for each element ŷ(n)j (s) and yj(s) = gj
(
x(s)

)
. A

fundamental relation between the l1 and l2 norms in Rm gives

|ŷ(n)j (s)− yj(s)| ≤ α ∀j =⇒
∥∥∥ŷ(n)(s)− y(s)

∥∥∥
2
≤ mα

for any α > 0. For any timestep ti ∈ T , Lemma 3 states that
for any j

P
(

sup
s∈[ti,ti+1)

|ŷ(n)j (s)− yj(s)| > δpnMω︸ ︷︷ ︸
,Sc

n,i,j

)
≤ δ2−2pn . (70)

Letting Sn,i,j be the event that error is “small” for the j-th
channel at the i-th timestep, define Sn as the event that all
such errors are small

Sn ,
kn−1⋂
i=0

m⋂
j=1

Sn,i,j .

Then by the union bound the probability of Sn failing is upper-
bounded

P (Scn) ≤
kn−1∑
i=0

m∑
j=1

P (Scn,i,j) ≤ mknδ2−2pn ≤ mcTδ1−2pn .

(71)
Taking p = 1

4 , P (Scn) clearly goes to 0 as δn → 0.
Furthermore, by construction ω ∈ Sn implies that∥∥∥ŷ(n)(s)− y(s)

∥∥∥
2
≤ mδ

1
4
nMω ∀s ∈ [0, T ]. (72)

and defining εn , mδ
1
4
n the proof is complete.

B. Reduced Quadratures: Second-Order Gaussian Systems

We would like to evaluate the following nx-dimensioned
integral for each constraint j

Φŷj (ti, ti+1;µi) = (73)∫
X

1(x ∈ Xsafe)ψ
(
gj(x), hj(x), ‖σj(x)‖2 ,∆ti

)
dµi(x)

which requires some form of numeric quadrature evaluation.
Note that discrete-time direct methods based on (6) also

appeal to evaluation of a similar integral

P
(
x(ti) ∈ Xc

safe

)
=

∫
X

1(x 6∈ Xsafe) dµi(x). (74)

Upon application, the dimensionality of both (73) and (74) can
often be significantly reduced, particularly when µi refers to
a multivariate Gaussian density.

Many physical systems evolve as nonlinear “integrators”,
that is, the state space can be partitioned as x = (p, p, ?)
where ? represents “other” state, such that

dp(t) = v(t) dt+ Gp
(
p(t)

)
dw(t), (75)

where p can be interpreted as a “position” vector in a
workspace Rnp , and Gp refers to the corresponding rows of
G. It is also often the case that safety constraints depend
exclusively on this position state; that is g(x) = g(p). Note
that (75) is furthermore independent of control.

In light of (75) and the position-only dependence of gj , we
can write (74) and (73) as

P
(
x(ti) ∈ Xc

safe

)
=

∫
Rnp

1
(
g(p) 6∈ O−

)
dµi(p) (76)

and

Φŷj (ti, ti+1;µi) = (77)∫
Rnp

1
(
g(p) ∈ O−

) ∫
Rnp

ψ
(
p, hj(p, v)

)
dµi(v | p) dµi(p)

where with a slight abuse of notation µi
(
ṗ | p

)
and µi(p) rep-

resent the corresponding conditioned or marginal distributions.
Recalling from (24), hj(p, v) is affine in v

hj(p, v) =
1

2
tr
(
Gp(p)TH(p)j,pGp(p)

)
+ aT

j (p)v. (78)

When µi represents a multivariate Gaussian, we can consider
the scalar drift vj,p , aT

j (p)v ∈ R and then (77) can be
written∫

Rnp

1
(
g(p) ∈ O−

) ∫
R
ψ(p, vj,p) dµi(vj,p | p) dµi(p) (79)

which can now be evaluated in dimension np + 1.
1) The Locally-Deterministic Case: Consider the case

Gp = 0; this corresponds to the case that no noise is “injected”
directly into the p channel of the continuous dynamics. This
is in fact commonly the case for physical systems, as it is
often assumed that disturbances act in the space of forces or
torques (i.e., the v dynamics). In this case, σj = aT

j Gp = 0
uniformly, and it is straightforward to verify hj(p, v) = vj,p
and that

ψ(z, v, 0,∆t) = 1
(
z + v∆t > 0

)
. (80)

In this case (79) simplifies to∫
Rnp

1
(
g(p) ∈ O−

)
φ
( g(p)

∆t
;−v̄j(p), σj(p)

)
dµi(p) (81)

where v̄j(p), σj(p), and φ refer to the mean, standard devi-
ation, and CDF of the normal distribution µi(vj,p | p). This
implies that Φŷj (ti, ti+1;µi) can be evaluated over only np
dimensions.



C. Simulated Dubin’s System
Our experimental validation relies on a simulated second-

order Dubin’s car with state x = (p, v, θ, ω) ∈ R6, and
control u = (c, α). θ and ω capture the heading angle and
angular rate, respectively, while c refers to forward-pointing
thrust and α the angular acceleration. The time-invariant,
nonlinear dynamics are given by

f(x, u) =


ṗ
v̇

θ̇
ω̇

 =


v

cR(θ)e1
ω
α

 (82)

with constant noise matrix

G = 0.05


0 0 0
I2 0 0
0 0.1 0
0 0 1

 . (83)

Note that, for this system, we can compute P (x(ti) 6∈ Xsafe)
(required for discrete-time methods) with a quadrature of di-
mension np−1 = 1. Fortunately, because this system satisfies
the “locally-deterministic” criteria described in Appendix B1
evaluating Φŷ requires np = 2 dimensions, an increase of only
one.

To simulate output-feedback control, we introduce a simple
observation process at each timestep k

yk = x(tk) + ν (84)

where ν ∼ N (0, 0.0001I6). Then a corresponding LQG-style
controller is constructed to track a nominal trajectory that also
defines the linearization point.


