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Abstract

Two theories of children’s understanding of counting are evaluated in the
first paper. The "Principles-Before" theory claims that children are born with
a concept of number that consists of a set of counting principles. These
define correct counting and so help children to improve their own counting
skills. The "Principles-After" theory claims that children must learn how to
count, and must abstract out the counting principles from examples of
correct counting. To evaluate these theories, 2- and 3-year-olds’ knowledge
of the cardinal word counting principle, which states that the last number
word used in a count indicates the number of items counted, was examined.
It was found that children learn the cardinal word principle at roughly 3-1/2
years of age, well after they have acquired considerable skill at counting.
This supports the Principles-After theory, while disconfirming the
Principles-Before theory.

Children must therefore learn that counting determines the numerosity of a
set, and must learn the meanings of the number words. The second paper
examines how children do this, and at what age they learn the way in which
the counting system represents numerosity. Results showed that at a very
early stage of counting, children already know that the counting words each
refer to a distinct, unique numerosity. The possibility that children learn this
from the syntax of the number words is discussed. Despite this early
knowledge, however, it takes children a long time (on the order of a year) to
learn how the counting system represents numerosity. This suggests that
children’s own initial concept of number is represented quite differently from
the way the counting system represents number, making it a difficult task for
them to map the one onto the other. It is proposed that humans are initially
equipped with an analogue representation of number, and the differences
between such a representation of number and that embodied by the counting
system are discussed.

Thesis Supervisor: Dr. Susan Carey
Title: Professor of Brain and Cognitive Sciences
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Preface

This dissertation is composed of two papers, or chapters, that are
independent, though very closely related, bodies of work. Since each was
designed and written to stand on its own, I have placed the relevant tables
and figures at the end of each for easy access. The second paper is built on
the first, and so refers to it in the same manner as to any independent source,
summarizing relevant results where appropriate. All references are placed

together at the end of the document.
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Children’s Understanding of Counting

Because counting is one of the very earliest number-related activities, it
may shed light on the young child’s concept of number. Much research
currently revolves around whether domain-specific knowledge of number
underlies children’s counting, or whether it is through general cognitive
capacities that children learn to count, and thus come to understand number.

The two main theories regarding this question are outlined below.

Current Theories of Children’s Counting

"Principles-Before’ Theory

There has been growing interest over the past 15 years in a
domain-specific theory of the basis of counting, developed by Gelman and
colleagues (e.g. Gelman & Gallistel, 1978; Gelman & Greeno, 1987; Gelman &
Meck, 1983; Gelman, Meck & Merkin, 1986; Greeno, Riley & Gelman, 1984).
The claim (outlined in detail in Gelman & Gallistel, 1978) is that there are
innate, number-specific principles that underlie children’s ability to count.
The following "How-to-count” principles define the counting procedure: The
One-to-one correspondence principle states that there must be a one-to-one
correspondence between things to be counted, and counting tags; the
Stable-Order principle states that the counting tags must have a fixed order in
which they are consistently used; and the Cardinality principle stipulates that
the last counting tag used in a particular count represents the numerosity, or
cardinality, of the collection of items counted.! posit two further principles

which specify a lack of constraints on the application of the counting

1Gelman & Gallistel (1978



procedure. Order-Irrelevance principle: The same result will obtain regardless
of the order in which a set of entities is counted. Abstraction principle: Any
entities can be grouped together for a count. For example, we can count the
number of eyes, sneezes, and ideas in this room between 1:00 and 2:00 pm as
a single count.) These principles exist before children have any experience
with counting, and do two main things for children. First, they allow
children to recognize different instances of counting in their environment as
counting, not just some meaningless activity, and to group them together as a
single type of activity, performed to determine the numerosity of a collection
of items. Children notice that this activity honors the counting principles,
and so view it as a counting activity, and identify the number words of the
culture as counting tags. Second, the principles serve as guidelines for
counting, so that children can initiate, monitor, and attempt to correct their
own counting, and thus improve their counting skills.

The above counting principles have also been proposed (e.g. Gallistel,
1989) as the basis of numerical abilities of nonhumans. Animals may have
some mechanism that assigns each element in a set a unique (nonverbal) tag
in a way such that the last tag is the output of the process and represents the
numerosity of the items thus "counted”. It may also be that other human
numerical abilities embody the counting principles in some form. For
example, infants are able to discriminate small numerosities (e.g., Antell &
Keating, 1983; Starkey & Cooper, 1980; Strauss & Curtis, 1981). It is possible
that the process underlying this ability is a "counting” process, assigning
stably-ordered mental tags (e.g., ordered memory bins) to items, with the last
tag representing their numerosity. These possible roles of the counting
principles are very different from the one described above, as the nature of
the activity itself is quite different in the two cases — a culturally supported,
consciously controlled activity in the one case, an automatic process in the

other case. To distinguish these different senses of the cardinality principle, I



introduce the term "Cardinal Word principle". The cardinal word principle
states that the last number word used in the culturally supported, oftentimes
overt activity that we call "counting" represents the numerosity of the set of
items counted. (We might wish to introduce the term "Cardinal Tag principle"
to refer to the form of cardinality principle that might play a role in animals’
or infants’ numerical abilities.) This paper is concerned with children’s
knowledge of the culturally supported counting activity, and so with their

knowledge of the cardinal word principle.

"Principles-After’ Theory

Briars and Siegler (1984), Fuson (1988), and Fuson and Hall (1983),
among others, are advocates of the following account of children’s counting:
Young children first learn counting as a routine activity. Counting is
modeled for them by parents, teachers, etc., and they begin to imitate it. At
this point it is an activity without special meaning, much like a game of
patty-cake. Children do not distinguish between different components of the
counting routine; all components are equally essential. They must learn
different routines for different counting contexts; counting objects arranged
in a circle, for example, entails a different procedure than counting objects in
a line. Once they have learned many such routines, children eventually
generalize over all these routines, abstracting out what all have in common -
namely, the counting principles. Only after this has happened do children
have principled knowledge.

On this view, how do children come to understand that counting is
related to numerosity? Children cannot learn why we count (to determine
numerosity) just by learning how we count. Subitization, the ability to very
quickly and accurately determine certain numerosities without having to
consciously count, may be at the root of this accomplishment. Adults and
children can subitize small numerosities, up to four or five for adults and two
or three for 3-, 4-, and 5-year-olds (Chi & Klahr, 1975; Schaeffer, Eggleston &
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Scott, 1974; Silverman & Rose, 1980). It has been suggested (Klahr & Wallace,
1973, 1976) that by applying the initially meaningless counting routine to sets
of items within the subitizing range, children come to associate words (e.g.
“one", "two", "three") with those numerosities they can recognize (e.g. one,
two, three), and thus come to relate the counting activity with the concept of
numerosity.

Subitization is often claimed to be a non-serial (and therefore
non-counting) process (e.g., Klahr & Wallace, 1973), or a canonical
pattern-recognition process rather than a number-recognition process per se
(e.g, Mandler & Shebo, 1982). However, the mechanism underlying the
ability to determine small numerosities without conscious counting has not
yet been determined. It is possible that this mechanism works by "counting”
in some fashion. In this paper, the term "subitization" is used merely to
describe this ability, without making any claim regarding the nature of its
underlying process. To emphasize this, the term shall be placed in quotation

marks whenever it is used.

Generalizability of Children’s Counting

At issue in the above debate is the very young child’s mental
representation of the counting routine. If it is represented in terms of
abstract components, such as the counting principles, as the Principles-Before
theory states, then it can potentially be generalized to a wide variety of
dissimilar tasks. If, however, it is represented as one or more context-specific
procedures, in terms of a series of precise, concrete steps as the
Principles-After theory states, then it will not be widely generalizable
because different tasks require different procedures. Examining the extent to
which children can generalize their counting to new contexts can therefore

shed light on the form of representation of the counting routine.
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It has been shown that children as young as 3-and-a-half can catch and
correct genuine errors that a puppet makes in counting, in which the puppet
violates one-to-one correspondence, fails to use the standard stably-ordered
count list, or gives a number other than the last word used when asked, after
a count, how many objects there are. More interestingly, they can distinguish
these genuine errors from unusual but correct counts by the puppet which,
while differing significantly from a ‘normal’ counting routine, remain true to
the counting principles (e.g., starting a count in the middle of an array of
objects, proceeding to the end of the array, then going back and counting the
remaining objects; or counting every alternate object, then turning around
and counting back the other way, getting the ones missed) (Gelman & Meck,
1983; Gelman et al, 1986). Thus children are applying knowledge of
counting to these apparently novel counting situations. However, these
results have not been consistently obtained (Briars & Siegler, 1984).
Furthermore, although the "correct but unusual” ways to count were chosen
to be novel to the children, it is quite possible that children may have seen
things counted out of order at one time or another. In fact, the counting
contexts in these experiments were quite similar to those children encounter
when being shown how to count; they all consisted of counting objects
arranged linearly, of roughly the same size and proximal distance, with
merely the order of counting altered. Finally, the mean or median age of the
younger children in these experiments was over 3-and-a-half. Some children
start learning to count as early as their second birthday. It is therefore
possible that these experiments reflect knowledge learned about counting
rather than knowledge underlying the learning of counting.

As a more stringent test of children’s counting abilities under novel
circumstances, consider all the types of entities other than objects that are
countable: sounds, actions, abstract entities such as thoughts or mental

representations, properties of objects, etc. There have been only a few studies



number of taps that their younger two groups of children (mean ages 3.5 and
3:8) counted to was about 6.5. In comparison, these children counted sets of 1
to 4 objects correctly about 74% of the time, and sets of 5 to 7 objects correctly

counting routine and are therefore unable to generalize their counting to
entities other than Separate objects. Alternatively, it could be that young
children have a general bias to interact with discrete physical objects that is
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neither limited to nor derived from counting. Further experiments (Shipley
& Shepperson, 1990) support the hypothesis that children have a general
discrete object bias, so children’s poor counting in these experiments is not
necessarily due to lack of an abstract, generalizable representation of the
counting routine.

It would be interesting to see whether 2- and 3-year-old children can
generalize their counting to novel situations, by comparing children’s
counting of objects (a familiar counting context) with their counting of
actions and sounds (novel counting contexts). The counting of, e.g., rings of
a bell is different from counting objects arranged in a row in several
important respects. Objects have material existence and can be seen,
touched, and pointed to, while sounds are not visually but aurally accessible.
Objects have continuous existence and are separated from each other in
space, while sounds have a momentary existence and are separated from
each other in time; one can therefore choose the order in which to count
objects in a way that one cannot for sounds, which are already temporally
ordered. Perhaps most importantly, one has perceptual access to the entire
collection of objects to be counted simultaneously, while one has perceptual
access to only one element at a time of the collection of sounds to be counted,
and cannot anticipate the final element. Thus the procedural requirements
for counting sounds (and actions) are very different from those for counting
objects. If children can count sounds, then, they must be representing the

counting routine at a relatively abstract level.

Unique Status of the Cardinal Word Principle

However, even if it turns out that young children do have an abstract
representation of the counting routine that honors principles of counting,

they may not understand the relationship between counting and numerosity.
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Children may be capable of representing some abstract components of the
counting routine, such as one-to-one correspondence, without having any
knowledge of number. Children as young as 2 years old honor one-to-one
correspondence in many situations -- they can point to each picture on a page
exactly once when asked to (Potter & Levy, 1968), can give one cookie to each
person in the room, can name each person in a photograph exactly once
while pointing, e.g., "Mummy, Daddy, me!", can put one sock on each foot or
one spoon in each dish, can learn turn-taking games, etc. In some sense it
appears that children know that they must point to each picture on the page
exactly once; that they must name everybody, and that once is enough; and
that everyone must get exactly one cookie. As these kinds of tasks vary so
widely and occur so frequently in children’s activities, it is very likely that
children have a general cognitive ability to recognize and represent a
one-to-one correspondence between two sets of entities. Similarly, children
exhibit sensitivity to a stable ordering of entities every time they recite the
alphabet, learn a stable ordering of actions such as, say, a game of patty-cake,
learn the list of the days of the week or the months of the year, or learn a
nursery rhyme. Children are capable of easily and quickly recognizing and
representing stable orderings of words or events at a very young age. Thus,
studying whether young children represent the one-to-one correspondence
and stable-order principles in counting will distinguish between the
Principles-Before theory and the Principles-After theory only if it turns out
that children do not represent them; if children do represent these principles
as part of counting, it could be either because they have unlearned
knowledge of counting, or because of their ability to recognize and represent
these principles as components of many activities.

The cardinal word principle, however, is qualitatively different from the
other two How-to-count principles. It is relevant only to counting, not to

other activities; this is true by definition of the cardinal word principle. An



15

understanding of the cardinal word principle depends on an understanding
of the significance of the counting activity, that counting determines
numerosity. Thus the ultimate test of the two theories must concentrate on
whether very young children do in fact understand the cardinal word
principle. It is entirely possible that young children mentally represent
one-to-one correspondence as part of the counting routine, and know the
correct order of the counting word list, but do not at first connect this routine
with any concept of numerosity. If children understand the cardinal word
principle, however, they must be granted number-specific knowledge of
counting, by definition of the cardinal word principle.

It has been considered evidence of possession of the cardinal word
principle (Gelman & Gallistel, 1978) if children (a) emphasize the last word
used in a count, (b) repeat the last word used in a count, (c) state the correct
numerosity of a set without counting after that set has been counted earlier,
or (d) respond with the correct number word without counting when asked
how many items there are. It has been found that most children as young as
2-and-a-half display one or more of these behaviors at least sometimes when
counting sets of 2 or 3 items (Gelman & Gallistel, 1978). However, repeating
or emphasizing the last word, or stating the correct numerosity without
counting after the set has been counted previously, could result simply from
imitating adult counters, who tend to emphasize, repeat, and otherwise
direct attention to the last word when instructing children in counting.
Emphasis of the last word could also simply be signalling the end of the
routine. Just giving the correct number word when asked how many items
there are could be the result of "subitization", which does not require an
understanding of the cardinal word principle (e.g., Fuson & Hall, 1983).
Also, children often produce wrong number words when asked how many
items there are. Given that the sets were of only 2 or 3 items, and that

children are more familiar with number words that refer to small numbers
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and are therefore more likely to produce them, if children were responding
with random number words one would expect that occasionally they would
respond with the right one. Thus none of these behaviors is a clear indication
of poésession of the cardinal word principle.

Some studies, however, do offer more conclusive evidence of children’s
possession of the cardinal word principle. In one experiment, children were
shown cards with different numbers of items on them and asked how many
things there were on each card. They used words for larger numbers to
describe larger numerosities, even if the number of items on a card was too
large (up to 19 items) or the exposure time of the card too short (as little as 1
second) for the child to accurately determine the numerosity (Gelman &
Tucker, 1975). These children thus apparently understood that a number
word’s position in the number word list is related to the number of items that
word refers to, which suggests an understanding of the cardinal word
principle. It has also been shown that children can correct a puppet who
gives a response other than the last number word used in a count when
asked, after the count, how many items there are (Gelman & Meck, 1983). In
another experiment, a puppet counted a set of items twice and was asked
"how many" after each count. Both times, the puppet gave the last word
used for that count, but in the second count it had surreptitiously made an
error, so that the last word differed in the two counts. Most of the children
said the puppet’s second response was wrong, even though they had not
caught the puppet’s surreptitious error. When asked to justify their
judgement, children often expressed the belief that the answer should still be
the same as the puppet gave the first time. This suggests that they
understand that the last word represents the cardinality (Gelman et al., 1986).
However, the youngest children in each of these three experiments was over
3 years old (median age 3:7, median age 3:7, and mean age 3:8, respectively),
so all that can safely be concluded from these studies is that by roughly age
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3-and-a-half, children understand the cardinal word principle.

As evidence for the claim that children do not start out with an
understanding of the cardinal word principle, children were asked to put 1 to
7 candies in a cup from a large pile of candies, and to tap a drum 1 to 7 times
(Schaeffer et al., 1974). It was found that the youngest two age groups (mean
ages 3:5 and 3:8) gave the correct number of candies only about 45% of the
time, and the correct number of drum taps only about 25% of the time.
Children were especially poor on the larger numbers, and did not in general
count aloud while responding on any of the trials. This suggests that they
may have been "subitizing" to obtain the correct number when giving the
correct amount, rather than using the cardinal word principle. However, it is
not clear exactly what children’s strategies were - they may have been
estimating the number of candies they took or drum taps they made, and just
not getting the exact number. Also, these same groups of children in another
task on average only recited the number word list to "five" or "six". Thus
many of the children were sometimes being asked for more candies or taps
than they could reliably count to, so one would expect them to do poorly on
these numbers. These results therefore do not clearly indicate whether or not
children possess the cardinal word principle.

Other evidence that children do not possess the cardinal word principle
comes from a study by Fuson and Mierkiewicz (1980), who found that many
children will recount a set of objects when asked "how many" following a
count, rather than repeating the last word used in the count. However,
children may simply view the question as a request to count, whether or not
they understand the cardinal word principle. After all, one way of asking a
child to count a set of things in the first place is to ask how many there are.
To test this hypothesis, Schaeffer et al. (1974) asked children "how many"
after covering up the set of objects the child had just counted, thus
preventing the child from recounting the set. They found that most
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3-year-olds did not respond with the last word used in the count, suggesting
that they lacked the cardinal word principle. However, asking a "how many”
question just after a child has counted a set may be pragmatically strange;
after all, the child has already indicated how many there are, by counting.
Children may take the question as an indication that their first result was
wrong, and change their answer. Furthermore, hiding the objects and then
asking "how many" may seem strange to the child; if the adult wants to know

how many there are, why cover them up?

Three experiments were conducted to examine the generalizability of
children’s counting and their understanding of the cardinal word principle.
Experiment 1 studies the generalizability of children’s counting routine by
comparing children’s counting of objects, actions, and sounds. Experiments
1,2, and 3 study children’s understanding of the cardinal word principle. In
Experiment 1, children’s responses to "How Many?" questions following the
counting of objects, actions, and sounds are examined. In Experiment 2, the
same children are tested for the cardinal word principle in a different way, to
rule out alternative explanations for children’s performance in Experiment 1.
Experiment 3 examines how children learn the meanings of the number
words, and the relationship between their understanding of number words
and their understanding of the cardinal word principle, using a variation of

the task given in Experiment 2.

Experiment 1: The "Novel Entities" Study

In this experiment, children’s performance in the counting of objects (a
familiar counting context) is compared to their performance in the counting
of actions and sounds (novel counting contexts). Having children count
objects, actions and sounds also allows an interesting test of their

understanding of the cardinal word principle; children cannot construe a
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"how many" question about a set of sounds or actions just counted as a
request to recount, because the set is no longer available. To reduce the
pragmatic effect of asking "how many" right after the child has just counted,
children were introduced to a puppet who "had forgotten how to count", and
were encouraged to help show the puppet how. The assumption is that the
question is more natural when the child is in the role of teacher to an

ignorant puppet.

Method

Subjects

Subjects were 8 2-and-a-half-year-olds (mean 2:7; range 2:4 - 2:8), 8
3-year-olds (mean 3:0; range 2:10 - 3:2), and 8 3-and-a-half-year-olds (mean
3:5; range 3:4 - 3:7), labelled Age I, Age II, and Age III, respectively. There
were roughly equal numbers of girls and boys in each group. They were
from day-care centers in the greater Boston area with a predominantly

middle-class population.

Procedure

There were four conditions; Object, Cave, Jump, and Sound (described
below), each with four trials, one each of set sizes 2, 3, 5, and 6. The set sizes
2 and 3 were chosen to be within young children’s "subitizing" range, those
of 5 and 6 to be outside. The two smaller set size trials were always given
first, in counterbalanced order, followed by the trials with set sizes 5 and 6,
again counterbalanced. The order of conditions was counterbalanced
between children within each age group. Roughly two-thirds of the trials in
each condition were randomly designated as "How-many" trials, in which
children were asked "how many" after counting. (It was felt that to designate

all the trials as such might make the children worry too much about having



to justify their responses.)

e Object condition: Children were asked to count objects linearly
arranged. Toy dinosaurs were used, about 4 cm long, glued to a
board with about 3 cm space between each one. A different kind
of dinosaur was used for each trial; within each trial, only one

kind of dinosaur was used.

¢ Cave condition: Children were asked to count toy dinosaurs as
they were moved from one cardboard box into another box which
they could not see inside of, a "dinosaur cave" with a small hole in
the lid. For each trial, the experimenter moved one dinosaur at a
time from the first box into the cave, at a rate of about 2 seconds
per dinosaur. This condition is procedurally similar to the
counting of sounds. It thus controls for the possibility that
children might perform poorly on the Sound condition not
because they haven’t the correct procedures at their disposal, but
because they do not consider sounds as countable entities. Here,
children are still counting objects which they can see and which

have a permanent existence.

e Jump condition: Children were asked to count the jumps of a
puppet (Big Bird from the children’s TV show "Sesame Street").
The experimenter made the puppet jump so that each jump took
one-half to 1 second, with roughly an additional second between
jumps. This condition is more novel than the Cave condition;
although children can see the jumps, each jump exists only for an

instant in time.

e Sound condition: Children were asked to count sounds played on
a tape recorder. Four sounds, one per trial, were used: an

"elephant” roaring (actually a person’s voice); a single-chime
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doorbell ringing; a splash in a bathtub; and the beep of a
computer. Sounds occurred about 2 seconds apart. This
condition is the most novel, as children cannot even see the items

they are counting.

Two seconds was used as the time between items in the Cave, Jump, and
Sound conditions because in pilot studies it proved to be long enough to
allow children to say a number word before the next event occurs, and short
enough that children do not tend to forget their place in the list of number

words.

At the beginning of the experiment, the child was introduced to Big Bird
and told: "Big Bird has a problem. He’s forgotten how to count, and he needs
someone to show him how. Would you like to help Big Bird, and show him
how to count? Can you help him count his toys?" Then the child was
presented with the first trial, e.g.: "Look what Big Bird has, some dinosaurs!
Can you show Big Bird how to count how many there are?” Children were
frequently reminded that Big Bird did not know how to count and needed
help. A trial was started over again if a child was obviously distracted in the
middle, e.g., if the child started telling a story, ran off, or otherwise
interrupted the trial. On the "how many" trials, children were asked after
counting, "So how many dinosaurs are there/how many times did it ring?"
etc. Sometimes the puppet asked the question; sometimes the experimenter
did, often adding "can you tell Big Bird how many?". This was to make it
seem that the object of the question was to help inform the ignorant puppet.
The experiment was usually conducted over two sessions for each child
(sometimes one session); sessions were typically between 1 and 3 days apart.

Big Bird’s problem was explained at the beginning of each session.



Results and Discussion

Counting of novel entities

In the early stages of counting, many children consistently use an
idiosyncratic list of the counting words, e.g., "One, six, seven, eleven” (e.g.,
Fuson & Mierkiewicz, 1980; Gelman & Gallistel, 1978). The fact that children
have such lists is consistent with the claim that children understand the
stable-order principle. Even if children start out with the counting principles,
they must still learn the number word sequence. For this reason, children
who used a different list than the standard number word list were not
automatically considered to be counting incorrectly. The predominant list
used by a child throughout Experiments 1 and 2 was considered that child’s

stably-ordered list. A set was considered correctly counted if:

e the child started the count with the first number word in his or
her own stably-ordered list (for almost all children, the first

number word was "one");

o for sets of 3, 5, and 6 items, the trial contained no more than one
of the following mistakes: double-counting or skipping an item
(one-to-one correspondence mistakes), or skipping or repeating a
word in the child’s own stably-ordered list (stable-order

mistakes);

e for sets of 2 items, the trial contained no one-to-one
correspondence mistakes, and no more than one stable-order
mistake (e.g., if the child’s stably-ordered list was the standard
one, a count of "one, three" or "one, one" would be considered

correct; a count of "one, four" would be considered incorrect).

A 3(Age group) by 4(Condition) by 2(Set Size -- Large or Small) ANOVA



23

was performed. There was a significant Age effect, F(2, 21) =11.017, p < .001.
A contrast analysis on the three age groups showed a strong linear trend for
older age groups to count more trials correctly (mean number of correct trials
out of two was 0.67 for Age I, 1.22 for Age II, and 1.64 for Age III), t(21) =
4.681, p < .0001, one-tailed. Set Size was also significant (smaller set sizes
were easier to count -- the mean for small Set Size was 1.33 and for large Set
Size was 1.02), F(1, 21) = 13.636, p < .001. There was a Condition effect, F(3,
63) = 4.684, p < .005. It might be asked whether there was a trend for
children to perform more poorly the more novel the condition (from Objects
to the Cave condition to Jumps to Sounds). This was so. Each child had 2
trials within each set size (Large or Small) for each condition; the mean
number of successful trials (out of 2) for each condition (over all children and
both set sizes) was 1.42, 1.29, 1.10, and 0.90 respectively. A Newman-Keuls
post-hoc means comparison showed that performance in the Object condition
and performance in the Cave condition were both significantly better than
performance in the Sound condition, p < .05. There was a marginally
significant Age X Size interaction: F(2, 21) = 3.045, p = .069; for older children
there was less difference in performance on large versus small set sizes.
Figure 1 shows the percentage of correctly counted trials out of 32 (4 per

condition for 8 children) in each condition for each age group.

INSERT FIGURE 1 ABOUT HERE

The Condition effect indicates that children are worse at counting in
quite novel circumstances. However, even if children do have an abstract
counting routine, one would not expect them to perform equally in both
familiar and novel contexts. Practice in applying the counting routine in
different contexts will improve performance. For instance, children who
have counted objects but not sounds will have had practice coordinating

their words with their pointing, but will not have had practice coordinating
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their words with entities that occur one after another in time. Thus, if
children have an abstract, generalizable counting routine, they ought to
apply it in novel contexts, but not necessarily with equal facility.

Almost all of the younger children could count the non-Objects to some
extent. Only the 3 youngest children (mean age 2:5) failed to count at all in
any of the non-Object trials. They seemed not to understand what was being
asked of them, appearing bewildered, even though they counted and
appeared comfortable during the Object condition. All of the other children
counted for the non-Object trials, and all except one child counted at least
25% of the non-Object trials correctly. The percentage of correctly counted
non-Object trials increases steadily with age (the 5 Age I children who
counted on the non-Object trials had a mean of 38% correct non-Object trials
per child; Age II children’s mean was 60% per child; Age III children’s mean
was 79% per child). This suggests that very early on, children begin to
develop an abstract, generalizable representation of the counting routine that
they can apply to new counting situations. However, the fact that the 3
youngest children did not count at all for the non-Object trials suggests that
children may not start out with a generalizable counting routine. But what
about those children who counted at least some of the novel entities
correctly, thus showing that they have developed at least the beginnings of
an abstract mental representation of counting? This representation may or
may not encompass an understanding of the significance of counting - that
counting determines the numerosity of a set. The "How-many" test for the

cardinal word principle addresses this question.

"How-many" cardinal word task

If children understand the cardinal word principle, they should repeat
the last number word used in a count when asked, after counting, how many
items there are. There was no effect of set size on performance for any of the

age groups; children were equally likely to give a cardinality (last-word)
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response following the counting of a Large set size (35% overall) as a Small
set size (29% overall). Therefore all results are collapsed over set size. Table
1 shows the overall proportions of "how many" responses where children
repeated the last word used in counting, and the proportion of responses in
the Object condition where children recounted (indicated in square brackets).
The overall proportion of cardinality responses for all the non-Object
conditions combined is also given. Types of responses not represented in
Table 1 include, for example, saying another number word, saying several

number words, saying nothing, etc.

INSERT TABLE 1 ABOUT HERE

Children in the younger two age groups, when asked "how many" after
counting a set of physical objects, preferred recounting the set to saying the
last word used in the count. In the non-Object conditions, when the
opportunity to recount was not available, children gave more cardinality
responses than in the Object condition, when they could recount. This makes
sense; because the recounting response is no longer possible, the likelihood of
other responses must go up. Yet even in the non-Object conditions, the
younger two groups of children give cardinality responses only about
one-quarter to one-fifth of the time, in contrast to the Age III children, who
give cardinality responses well over half the time. This suggests that the
older children may possess the cardinal word principle while the younger
children may not.

It is helpful to look at individual data. For each child, the percentage of
responses to "how many" questions which were cardinality responses was
determined. The mean of individual children’s percentages of cardinality
responses was 20% for Age I, 21% for Age II, and 52% for Age III. There was
a significant difference between the Age I and Age II children’s mean
percentages and the Age III children’s (£(22) = 2.836, p <.005, one-tailed).
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(The same result is obtained when considering individuals’ percentages for
non-Object trials only; the means for Age I (35%) and Age II (24%) differ
significantly from that of Age III (56%), t(20) = 1.923, p <.05, one-tailed.) It
could be asked why the younger children give any cardinality responses at
all, if they do not understand the cardinal word principle. But since children
generally do know to give a number word in response to a "how many"
question, one would expect them to sometimes give the correct number by
chance, especially since the last word in the count will be the one most recent
in memory. Given this, the above results suggest that children learn the
cardinal word principle at about 3-and-a-half years of age, and therefore that
the younger children’s ability to generalize their counting routine to the
non-Object conditions is due to learned knowledge of counting rather than to
innate counting principles.

It could be objected that perhaps children learn by observing adults that
the correct response to a "how many" question is just to repeat the last word
used, without understanding that this word refers to the numerosity of the
set; older children may have just learned this better than younger children.
This account would explain the results without having to credit any of the
children with an understanding of the cardinal word principle. However,
there is a wealth of independent evidence that 3-and-a-half-year-olds do
understand the cardinal word principle (e.g., Gelman & Meck, 1983; Gelman
et al, 1986; Gelman & Tucker, 1975).

Alternatively, it may be that even the younger children understand that
counting is about determining the cardinality of a set, but simply do not
understand that the question "how many" is asking about cardinality. There
is a large body of research indicating that young children do not understand
until quite late terms such as "less", "more”, "the same", and other quantifiers
(e.g., Carey, 1982; Clark & Clark, 1977; Donaldson & Balfour, 1968; Palermo,
1973), and it is plausible that they also have trouble with "many"” and/or
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"how many". Furthermore, although the experiment was designed to reduce
the possible pragmatic effects of asking how many items there were
immediately after the children have just counted them, this might not have
been completely successful. Experiment 2 was designed to eliminate both of

these concerns.

Experiment 2: The "Give-a-Number" Study

Method

Subjects

Subjects were the same 24 children who participated in Experiment 1.
They were given the Give-a-number task at the end of their final session of
Experiment 1. Two children, one in Age I and one in Age II, did not want to

finish this task and were dropped from Experiment 2, leaving 22 subjects.

Procedure

After the final condition of Experiment 1, 15 toy dinosaurs were placed
in front of the child in a pile, and the puppet and child began to play with
them. The child was then asked to give the puppet a certain number of
dinosaurs.  Children were first asked to give 1, then 2 and 3 in
counterbalanced order, and then 5 and 6, also counterbalanced. The request
was of the form: "Could you give Big Bird two dinosaurs to play with, just
give him two and put them here (experimenter pats a place in front of Big
Bird, within easy reach of the child), can you get two dinosaurs for Big Bird?"
The request was repeated until the child responded (usually children
responded right away).

After responding, children were given "follow-up” questions. They were
asked to "check and make sure" that they’d given the correct number, and

were reminded how many had been asked for. Any child who did not
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spontaneously count the objects was prompted to count them, e.g. "Can you
count and make sure there are two?" Children who counted and obtained a
different number than what they had been asked for were then prompted,
e.g. "But Big Bird wanted two. How can we make it so there’s two? How
can we fix it so that Big Bird has two?" Children’s further responses were
followed up until the child seemed to be getting bored or uncomfortable.

Results and Discussion

Children were divided into two groups on the basis of the initial
strategies they used. "Counters” were those who, on at least four of the five

trials, responded in one of the following three ways:

e They counted the items as they gave them, using their own
stably-ordered list, and stopped at the number word asked for
(they were allowed to make a single one-to-one correspondence

mistake when counting);

e They silently gave the correct number of items one by one. What
was considered the "correct” number of items was determined by
the child’s own stably-ordered list. For example, if a child
regularly counted "one, three, four, five, six", then, when asked
for "three dinosaurs", a correct response would be to give 2 one at
a time; when asked for "six dinosaurs”, a correct response would
be to give 5 one at a time, as the word "six" is the fifth word in the
child’s list;

¢ They spontaneously counted the items they had grabbed and, if
necessary, adjusted them (within plus or minus one) to the

number asked for, according to their own stably-ordered list.
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All other children were "Grabbers", and their strategy was generally to
grab and give a handful all at once, or, occasionally, to give some other
number of items silently one at a time.

The results are divided into three sections. First, children’s initial
performance on the Give-a-number task is analyzed. Second, the Grabbers’
performance in Experiment 1 is compared with that of the Counters. Finally,

children’s responses to the follow-up questions are examined.

Initial performance on Give-a-number task

There were 4 Counters, all in Age III. All used the standard count word
list. Every Counter gave a correct response on all five trials. In three cases
Counters, when checking how many items they had given, counted a number
different than that asked for; in all of these cases they either added or took
away items as appropriate, and then counted again, repeating if necessary
until they counted the number asked for. Thus the Counters showed a clear
understanding of the cardinal word principle.

All of the children in the younger two age groups, and half those in the
oldest age group, were Grabbers, and tended either to simply grab a handful
of items and give them all, or to give an apparently random number of items
one at a time. However, it is possible that despite their poor strategy,
Grabbers could be grabbing the number asked for. Table 2 shows the
number of Grabbers who gave each number when asked for 1, 2, 3, 5, and 6
items. There were only 3 Grabbers whose stably-ordered lists differed from
the standard list. Two of them alternated between the correct word list, and
that list with one word omitted ("two" was omitted half the time in one case,
"five" in the other). On no trial did either child give a number of items that
would be correct according to their list with the omission — their responses
were either the correct number according to the standard list, or incorrect by
both lists. The third child counted correctly up to five, but had no consistent
list beyond that. He gave 5 items when asked for 6 (and 8 items when asked
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for 5). Thus, these children’s data do not distort the results in Table 2.

INSERT TABLE 2 ABOUT HERE

All Grabbers gave the correct number when asked for 1 item, while
tending not to give 1 when asked for more than 1 item. Thus one seems to be
a number readily identified by children as young as 2:4. Grabbers also gave
2 more often when asked for 2 than when asked for 3, 5, or 6. However, this
was not significant, by a Wilcoxon Signed Ranks test comparing the
percentage of time individual Grabbers gave 2 items when asked for 2, with
the percentage of time they gave 2 when asked for 3, 5, or 6 items. Grabbers
did not give 3, 5, or 6 items more often when asked for one of those numbers
than when asked for other numbers.

Furthermore, analyses reveal that the younger two groups of Grabbers
are not even approximating the number of items they grab, when asked for 2,
3, 5, or 6 items. The correlation between the number asked for (2, 3, 5, or 6)
and the number given is r = .19 (NS) for Age I, and r =-.09 (NS) for Age II. It
could be asked, however, whether these correlations mask an ability to
distinguish between the lower numbers asked for -- it may be that these
children simply fail to distinguish between 5 and 6, considering them both
"larger numbers". But this is not the case. The correlations between the
number asked for (for the numbers 2, 3, and 5 only) and the number given
are still nonsignificant (r = .23 (NS) for Age I, and r = -.03 (NS) for Age II).
Thus, these children are not even distinguishing smaller numbers asked for
from larger numbers asked for.

The Age III Grabbers’ correlation between the number asked for (2, 3, 5,
or 6) and the number given is significant, r = .61, p < .05. However, this
appears to be due primarily to their responses when asked for 2 items (3 of
the 4 Age III Grabbers gave 2 items when asked for 2; the fourth child gave 1
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item). The correlation between the number asked for (for the numbers 3, 5,
and 6) and the number given is not significant, r = .42 (NS). Table 3 shows

the mean number of items initially given by Grabbers and Counters of each

age group.

INSERT TABLE 3 ABOUT HERE

The problem is not that the children could not count this high. For each
Grabber, the largest correctly counted set of objects in the Object condition
was determined. The mean largest correct trial for Age I was 4.5 objects, for
Age II was 5.0 objects, and for Age IIl was 5.8 objects. Thus even the
youngest group of children can count to four or five accurately, yet they fail
even at giving 3 items. Thus, except for 1 and possibly 2 items, Grabbers do
not give the number asked for, nor do they appear even to be approximating
the number asked for. Even in those cases where Grabbers did give the
correct number of items when asked for 2 or 3, they never counted the items
aloud as they gave them. This suggests that they were not applying the
cardinal word principle to get the right number, but were either "subitizing"
the correct number, or getting the right number by chance. This suggests
that most children do not understand the cardinal word principle before
around 3-and-a-half years of age, contrary to what the Principles-Before

theory claims.

Grabbers’ vs Counters’ performance in Experiment 1

If it is true that the Counters possess the cardinal word principle while
Grabbers do not, this should be reflected in their performance on the
How-many task in Experiment 1 -- Counters should give more cardinality
responses than Grabbers. This is in fact the case. The mean percentage of
individual Grabbers’ cardinality responses was only 23%, while the mean

percentage of Counters’ cardinality responses was 71% (t(22) = 3.729, p <
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.001, one-tailed). (The same result obtains when considering individuals’
percentages for non-Object trials only; the Grabbers’ mean (32%) differs
significantly from that of the Counters’ (69%), t(20) = 2179, p < .05,
one-tailed.) Figure 2 shows the mean of individuals’ percentages of
cardinality responses given by Counters versus Grabbers on the How-many
task in Experiment 1, broken down by age. There is no significant increase
with age in the Grabbers’ percentages of cardinality responses to "how many"
questions. Rather, there is a sudden shift from a cardinality response rate of
about one-quarter of the time to a cardinality response rate of almost
three-quarters of the time, that coincides with the shift from Grabber to

Counter.

INSERT FIGURE 2 ABOUT HERE

Yet another prediction can be made about Grabbers’ versus Counters’
performance on the How-many task in Experiment 1. If it is indeed the case
that Counters understand the cardinal word principle while Grabbers do not,
one would predict that Counters would be less likely to give the last word
used in the count in cases where they were uncertain of the accuracy of their
counting. Thus they should give cardinality responses less often after
incorrect counts than after correct counts. Grabbers, on the other hand,
should not understand the relationship between accuracy of counting, and
likelihood that the last word in the count represents the cardinality of the set,
so there should be no difference in their rate of cardinality responses
following correct versus incorrect counts.

This prediction too is borne out by the data. Fourteen of the Grabbers
and 3 of the 4 Counters had "how many" responses following both correct
and incorrect counts. Figure 3 shows the means of these individuals’
percentages of cardinality responses following correct versus incorrect

counts, for Counters and Grabbers.
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INSERT FIGURE 3 ABOUT HERE

Grabbers were actually slightly less likely to give cardinality responses
after correct counts than after incorrect counts, though this difference is not
significant. In comparison, Counters were three times as likely to give
cardinality responses following correct counts (84% of the time) as they were
following incorrect counts (28% of the time), t(4) = 3.503, p < .05, one-tailed.
This indicates that Counters understand the relationship between accuracy of
counting, and likelihood that the last word in the count indicates the
cardinality of the set. Grabbers appear not to appreciate this relationship,
further supporting the conclusion that Grabbers do not understand the
cardinal word principle while Counters do. These findings provide a firm
basis for the claim that children do not understand the cardinal word
principle before about 3-and-a-half years of age.

Age III Grabbers and Counters were equally successful at counting the
novel entities in Experiment 1. Counters gave correct counts on 83% of the
non-Object trials, while Age III Grabbers gave correct counts on 75% of the
non-Object trials; this difference does not approach significance. Thus,
children appear to acquire considerable skill at counting before
understanding that counting determines the numerosity of a set. This is as
the Principles-After theory predicts, while going contrary to the predictions
of the Principles-Before theory.

Responses to follow-up questions

As previously stated, Counters, when prompted to check how many
items they had given, always counted them and, if necessary, added or took
away items as appropriate. Grabbers, on the other hand, revealed several
strategies that reinforce the conclusion that they do not understand the

cardinal word principle. In most cases, the experimenter succeeded in
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getting Grabbers to count what they’d given. There were several ways they
attempted to reconcile the discrepancy between what they had been asked
for, and what they counted:

1) Naming or Tagging the Last Item With the Number Asked For:
Seventeen responses by 9 Grabbers (4 Age I children, 3 Age II children, 2 Age
III children) were to count so that a number word said (usually the last one)
was the number asked for. For example, a boy who had given 2 items when
asked for 6 counted them "one, six!". A girl who gave 2 items when asked for
5 counted them, "five, five!". Three responses by 2 children clearly appeared
to be naming particular items with the number words, e.g. the following
interaction between a child and the experimenter after the child was asked to

give 5 objects, and had grabbed and given 3:

Experimenter: So how many are there?

Adam: (Counting the 3 objects which are in a triangular arrangement)
One, two, five!

E: So there’s five here? (pointing towards the 3 items)

A: No, that’s five (pointing to the item he’d tagged "5"). One, two, five
(counting them in the original order).

E: So there are five altogether?

A: No, one, two, five (counting them again in the original order).

E: So does Big Bird have five?

A: Yeah, this is five (pointing to the item always tagged "5" in his
counting). One, two, five (counting again, in the same order as before).

E: What if you counted this way, one, two, five? (experimenter counts
the objects in a different order than Adam has been doing)

A: No, this is five (pointing to the one he has consistently tagged "5").

E: That one’s five? (pointing to the one Adam called "five").

A: Yes.
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E: Why is this one five?
A: Because, one, two, five (counting them once again, in the same order).

2) Denial: Eight responses by 8 Grabbers (2 Age I children, 4 Age II
children, 2 Age III children) were to count what they’d given, and deny that
there was any discrepancy. For example, one girl gave 3 when asked for 6.
When asked to "count and make sure" there were 6, she counted them
correctly, saying, "one, two, three. That’s six!" This is a direct violation of the
cardinal word principle.

3) Changing the Number of Items: Eighteen responses by 10 Grabbers (2
Age I children, 7 Age II children, 1 Age III child) were to change the number
of the items, in all but one case by adding more to what they’d given. In only
10 of these cases had the children first counted the number of items they’d
given or indicated that they believed they’d given an incorrect number (e.g.
by saying "that’s not five!"). In six of these cases the children changed the
number in the right direction; in the other four, the children changed the
number in the wrong direction (e.g. giving and counting 4 items after being
asked for 3, and then adding another item).

4) Silence/No Justification: Twenty-nine responses by 14 Grabbers (5
Age I children, 6 Age II children, 3 Age III children) were to remain silent, or
say it was the number asked for without justification, when prompted to
check what they’d given.

The first strategy is particularly interesting. It strongly suggests that
some children have a sort of "last-word rule". They understand that the last
number word is the answer to "how many" there are, but do not understand
"how many" in the same way we do. They do not yet have the cardinal word
principle, i.e., they do not yet understand that the last word indicates the
numerosity of a set, or even that the last word refers to some property of the

entire set as a whole rather than to a particular member of the set. They
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simply have the heuristic that "the last number word in a count is "how
many’ there are". Thus, if counting items the usual way does not end with
the correct number word, they ‘count’ the items in a way that does end with
the correct number word.

One would expect that if these Grabbers did have a "last-word rule”
which states that "the last number word is "how many’ items there are”, they
should apply it in the How-many task in Experiment 1. In particular, they
should respond, more often than the other Grabbers, with the last number
word used in the count when asked "how many". The 9 Grabbers who
employed Strategy 1 gave cardinality responses an average of 30% of the
time, while the other 9 Grabbers gave cardinality responses on average only
16% of the time. This difference is not significant (t(16) = 1.206, p = .12,
one-tailed), but is suggestive nonetheless.

However, these 9 Grabbers did not give cardinality responses to the
extent that the 4 Counters did. The difference between their mean of 30%
and the Counters’ mean of 71% is significant, t(11) = 2.639, P < .05, one-tailed.
This is consistent with the interpretation that these Grabbers are giving
cardinality responses for a different reason than are the Counters, who
appear to possess, rather than a meaningless "rule”, a principled reason for
stating the last word when asked "how many".

Fuson (1988) has also proposed that some children have such a
"last-word rule”, on the basis of several empirical results. For example, when
asked to count very large sets, some children gave a very small number as a
response to a "how many" question, if that number word was the last said in
the count; e.g., a child counted a set of 26 items, "one, two, three, six, seven,
eight, nine, one, two." When asked "how many", she responded, "two". In
another study, after counting n soldiers, 2- and 3-year-olds were asked to
choose between the last soldier and all the soldiers in response to either the

question "Is this the soldier where you said n?" or the question "Are these the
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n soldiers?". Children tended to choose the last soldier more often than all
the soldiers in answer to both questions, often saying things like, e.g., "This
one’s the five soldiers", while pointing to the last one.

These results indicate that before about 3-and-a-half years of age,
children do not understand the cardinal word principle. Grabbers’ responses
to the Give-a-number task show that they have no understanding that the
last number word refers to the numerosity of the set, or even to some property
of the set as a whole.

The fact that all the children gave 1 item when asked for 1, and most
gave 2 when asked for 2, suggests that children learn the meaning of the
word "one" very early, followed by the word "two". It may be that in general
children learn the meanings of smaller number words before larger ones,
even for number words well within their counting range. At some point,
children must acquire the meaning of every number word -- this is the adult
competence. But children may learn the meanings of particular number
words before making an induction about the meanings of number words in

general. Experiment 3 tests this hypothesis.

Experiment 3: "Give-a-Number" Follow-up

In this study, children are asked several times for each of a number of
animals (1, 2, 3, 5, and 6), so the consistency of individual children’s
responses for different numerosities is obtained. If children do learn the
meanings of smaller number words before those of larger number words
within their counting range, then two things should occur. First, individual
children should succeed when asked for a number of items up to a certain
numerosity, and then fail for all higher numerosities (e.g., there should be no
children who consistently succeed at 1 and 3 but not at 2). Second, different
children should have different numerosities at which they start to fail. There

should be some children who succeed consistently only when asked for 1,
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and others who succeed consistently when asked for 1 and 2. Whether there
are children who succeed when asked for 1, 2, and 3 items but not more, or
even 1, 2, 3, and 5 items but not 6, depends at what point children make the
general induction that all the counting words (within their counting range)
refer to particular numerosities. Once they make this generalization, children
should succeed at all the numerosities within their counting range.

This study also examines the relationship between children’s
understanding of the cardinal word principle and their understanding of the
meanings of number words, and tests children’s ability to perform some of

the number-irrelevant task demands of the Give-a-number task.

Method

Subjects

Subjects were 18 2- and 3-year-olds (mean age 3:3; range 2:4 - 4:0) from
schools and day care centers in the Greater Boston area. About half were
girls. Five more children were tested but not used as subjects; one had a
hearing impairment and had trouble understanding the experimenter, three
stopped before the end of the experiment, and the data from one child were

lost due to equipment failure.

Procedure

There were three tasks given to the subjects:

¢ "Give-a-number"” task: Children were asked to give 1, 2, 3, 5, and 6
animals to the puppet, and were given a sticker to put on a piece
of paper after each trial to keep them motivated (each sticker was
different). The goal was to determine the maximum numerosity
each child could succeed at, so the exact procedure differed for
different children. All children were first asked for 1 item and

then for 2 items; depending on their success, they were then asked
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for 3 items, or asked again for 1 or 2 items. What children were
asked for on a trial depended partially on their success in the
previous trial. Children who failed on a trial were next asked for
a numerosity at which they had previously succeeded. This
served two purposes; to determine the consistency of a child’s
performance on a particular numerosity, and to avoid
discouraging children. All children were asked at least twice for 2
and 3 items. The experimenter concentrated on the highest
number a child succeeded at reliably and on the next highest
number, so children got more trials for these than for other
numbers. At some point in the task, however, all children were
asked for the larger numerosities at least once (usually twice).
The exact number of trials depended largely on a child’s
willingness to keep playing. The experimenter followed up
children’s responses by asking questions such as, "Is that three?",

"Can you count and make sure?", etc.

* "Give-some-pigs” task: This task is a control for some of the
number-irrelevant task demands of the Give-a-number task.
Children were asked to give the puppet Big Bird some pigs (or
other kind of animal) from a pile containing four kinds of
animals, from 4 to 10 of each kind. The kinds of animals were
easily recognized and named even by 2-year-olds (pigs, dogs,
dinosaurs, horses). Many of the same task demands are present
in the Give-a-number task: children must (a) construct a subset of
the entire pile of animals, and (b) give that subset to the
experimenter. No particular animal need be included in the
subset for either task; for example, any three animals are okay for
the Give-a-number task, and any of the pigs are okay for the
Give-some-pigs task. Children who succeed at the
Give-some-pigs task but fail at the Give-a-number task cannot be
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failing from an inability to construct a subset and give it to
someone. They must be failing due to an inability to construct a

set of a certain numerosity.

¢ "Count/How-many" task: Children were asked to count 3, 2, 5, and
6 linearly arranged items (the same stimuli used in the Object
condition in Experiment 1), in that order. After counting each set,

children were asked how many items there were.

All children recieved the Give-a-number task last. About half the
children received the Give-some-pigs task first, half the Count/How-many
task first. When given the Count/How-many task, children were told that
Big Bird had "forgotten how to count" and were asked to help him count his
toys. At the beginning of the Give-a-number task, children were first given a
sticker to put on a piece of paper, and then told that: "The way this game
goes is that Big Bird is going to ask you for a certain number of animals, and
when you give him the right number, you get another sticker. So it will go
like this: Big Bird is going to say, ‘Can you give me one animal?”" This was
the child’s first trial. The experimenter repeated the question in different
ways until the child gave one or more animals. Though told they would be
given a sticker after giving "the right number", children were actually given a

sticker after every trial.

Results and Discussion

Only 1 child (age 2:4) failed at the Give-some-pigs task. He also failed to
count correctly on any of the four Count/How-many trials, and failed on all
numerosities in the Give-a-number task. This child is not included in the
following analyses. All of the other children carefully picked out some or all
members of the kind of animal asked for in the Give-some-pigs task; they



41

never just grabbed a handful of animals.
For each of the 17 remaining children, the numerosities at which they
succeeded consistently in the Give-a-number task were determined. The

criterion for "consistent success” on a certain numerosity was as follows:

* On at least two-thirds of a child’s trials for that numerosity, the
child’s final response was either the correct number according to
his or her own stably-ordered count list, or the correct number
plus or minus one if the child had counted aloud from the pile to
the number word asked for, but had erred in the counting by
either double-counting or skipping one item. Two-thirds was
chosen as the criterion for success because many children were
given three trials of a particular numerosity, so it is a natural
cut-off point. Children’s final responses were used rather than
their initial responses because children occasionally corrected a
wrong response, but rarely changed a response that was initially

correct.

* The child responded with that number when asked for other
numerosities no more than half as often, percentage-wise, as he or
she did when asked for that number itself. For example, a child
who gave 2 items 80% of the time when asked for 2, was scored
consistently correct on 2 only if he or she gave 2 items no more
than 40% of the time when asked for 1, 3, 5, and 6 items. This was
to prevent children who had a preference for giving, e.g., 2 items
no matter what they were asked for, from being considered to

know the meaning of the word "two".

Children fell into five groups according to the numerosities at which
they succeeded. Table 4 shows the number and ages of children in each
group, and how high the children in each group could count (determined by
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averaging children’s highest correct counts in the Count/ How-many task).
The criterion for a correct count in the Count/ How-many task was the same
as that used in Experiment 1: Children had to start the count with the first
element in their own stably-ordered list, and were allowed a single
one-to-one correspondence or stable-order mistake on sets of 3,5 and 6

items, and a single stable-order mistake on sets of 2 items.

INSERT TABLE 4 ABOUT HERE

It can be seen that each child succeeded up to a certain numerosity, and
then failed for all higher ones.2 Children’s failures are not a result of not
being able to count that high. All of the 10 children that failed at some
numerosities could correctly count set sizes larger than they could correctly
give when asked. (Only one child had a count word list differing from the
standard count list; she omitted the word "four" from her list. She did not
succeed for any of the numerosities, and when asked for "five" and "six"
items, did not give 4 and 5 respectively, which would be correct by her list,
but gave 1 item.) These results support the hypothesis that children learn the
meanings of smaller number words before those of larger ones, even when
they use those larger words capably in counting.

The pattern of children’s ages also supports this hypothesis. Children
who succeeded at larger numerosities are in general older than those who

succeeded only at smaller numerosities. The correlation between children’s

2Three children, after giving 1 item when asked for 1, were asked to "count to make
sure”. Because it is an odd request to make for 1 item, children’s responses to this question
were not included in the analysis. If responses to this question are included, then 1 child
who was successful at 2 was not consistently correct when asked for 1; for two trials she
gave 1, and upon being asked to count it she added some more items and counted them all.
On the other three trials in which she was asked for 1, her response was to give 1. If this
child is considered as going against the hypothesis, then a total of 16 out of 17 children
performed in the expected manner -- still a highly significant result.
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ages in months and the highest numerosity they succeeded at is r = .64 (t(15)
= 3.218, p < .005, one-tailed). Thus children appear to learn the meanings of
the number words one at a time, for progressively larger numbers. However,
this pattern of learning does not continue indefinitely. All 7 children who
succeeded at giving 5 items also succeeded at giving 6 items, while 4 children
succeeded at giving 3 items but not more. This suggests that by the time
children learn the meaning of the word "five", but after they have learned the
meaning of "three", they acquire the meanings of all the number words
within their counting range.

In order to further examine children’s understanding of the cardinal
word principle, and its relationship to their understanding of the meanings
of number words, children were divided into Counters and Grabbers on the
basis of their strategies in the Give-a-number task when asked for 3 or more
items. (For 2 items, many children just gave 1 in each hand, and it was
impossible to determine whether they had counted them silently or not; for 1
item, almost all children just gave 1.) "Counting strategies” were to count the
items while giving them and stop at the number word asked for, to silently
give the correct number of items (determined by children’s own
stably-ordered lists) one by one, or to spontaneously count what was given
and correct it if necessary to within plus or minus one of the correct number.

There was a bimodal distribution in children according to how often
they performed Counting strategies. Ten of the children (mean age 3:1; range
2:7 - 3:8) applied a Counting strategy on 0% to 38% of their trials (the mean
was 13%). These children were classified as Grabbers. The other 7 children
(mean age 3:7; range 2:11 - 4:0) applied Counting strategies on 86% to 100%
of their trials (the mean was 96%). These children were the Counters. A
t-test on Grabbers’ versus Counters’ individual percentages of Counting
strategies was significant, t(15) = 13.019, p < .0001, two-tailed. The difference
in the ages (in months) of children in the two groups was also significant



(t(15) = 2.366, p < .05, one-tailed).

This sharp division of children according to their strategies, with a
dramatic increase in the use of Counting strategies, indicates a sudden shift
in children’s approach to the task. This shift appears to occur at roughly
3-and-a-half years of age on average, though it varies from child to child (the
oldest Grabber was 3:8 while the youngest Counter was 2:11). The 2 children
who consistently succeeded at giving 2 items did not tend to count out items
aloud from the pile when giving 2, and the 4 children who consistently
succeeded at giving 3 items did not tend to count out items aloud from the
pile when giving 2 or 3. These children did so, on average, only 6% of the
time. This suggests that their strategy was to "subitize" in order to give the
right number. In contrast, the 7 children consistently successful at giving all
numbers of items, counted items aloud from the pile when asked for 2 or 3
items, on average, 45% of the time (t(11) = 2.666, P < .05, one-tailed). Thus,
children appear to be abandoning one successful strategy for giving 2 or 3
items in favor of another. This suggests that a major conceptual change

occurs in children’s understanding of counting at this time.3

3All the strategies employed by Grabbers in the Give-a-number task in Experiment 2
were also used by Grabbers in Experiment 3. Many children counted so that the last
number word said was the number asked for, and some children named an item the
number asked for. For example, one boy gave 2 when asked for 6. When asked to count
them, he pointed to each of them while saying, "One, this is six". The experimenter then
asked him "How many are there altogether?", to which he replied, pointing, "This is six,
and this is six. They’re both sixes!" Some children tried to "fix it" in new ways. One girl
gave 2 when asked for 6. She then counted them "six, six". When asked to count them "the
normal way", she counted them correctly, "one, two". She was then asked, "How can we fix
it so there’s six?" She picked them up, turning them around and switching their places, and
put them back down saying, "Maybe this way". Some children, when asked to "fix it" to the
correct number, used what could be called "magic" strategies. A boy who had given 4
when asked for 6, picked up a toy dog and touched each of the 4 animals with it, saying,
“There! The dog fixed it!". Another child "tickled" each of 3 animals to "make it 5'". Thus,
Grabbers again show that they do not understand that counting determines the numerosity
of a set. The children in these examples also did not appear to understand that they had
been asked for a certain number of items; hence, the number-irrelevant operations they
performed in efforts to fix what they’d given to what had been asked for.
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There was again a relationship between being a Counter, and giving
cardinality responses when asked "how many" following counting. Counters
gave cardinality responses an average of 61%% of the time on the 4
Count/How-many trials, while Grabbers gave cardinality responses an
average of 17% of the time (t(15) = 2.581, p < .05, one-tailed). Since there
were so few incorrect counts, a comparison of Grabbers’ and Counters’
responses following correct versus incorrect counts could not be made.

The 7 children who were consistently correct on all the numerosities in
the Give-a-number task, and thus appear to have learned the meanings of all
the number words within their counting range, are all Counters. They are
thus the only children who were clearly applying the cardinal word principle
to obtain the number of items asked for. This suggests that children’s
acquisition of the cardinal word principle is intimately linked with their
acquisition of the meanings of the number words beyond their "subitizing"
range. It would not have to be this way. Children could learn the cardinal
word principle first for those numerosities whose number words they know
the meanings of, before making a general induction over these instances
about the meanings of higher number words. If that were so, it would be
expected that some of the children who only succeeded on numerosities of 3
or less would have counted items out aloud from the pile to obtain the
correct number, when asked for 2 or 3 items. The fact that this did not occur
suggests that children’s acquisition of the cardinal word principle helps them

to immediately acquire the meanings of all the number words.

One of the Counters appeared not to be paying attention to the task, and gave no
cardinality responses; when retested at the end of the experiment, she gave 100%
cardinality responses. If her later responses are used in the calculation rather than her
initial ones, the Counters’ percentage of cardinality responses rises to an average of 75% of
the time.
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General Discussion

In this section I will consider two main issues. First, I discuss the results
of this paper regarding children’s understanding that counting establishes
numerosity of a set, and what this means for the Principles-Before theory.
Second, I discuss the possibility that, contrary to typical instantiations of the
Principles-After theory, there may be some unlearned abilities and concepts
underlying children’s ability to learn to count. I review findings that suggest
such abilities, and relate them to the results of this paper.

Children’s Knowledge of Counting and Numerosity

Results of the How-many and Give-a-number tasks strongly suggest that
most children do not understand the cardinal word principle, or the
relationship between counting and numerosity, until about 3-and-a-half
years of age. These results suggest that the Principles-Before theory is
incorrect - children do not start out with a set of principles which guide their
counting behavior and constitute an understanding of the significance of
counting.

The conclusion that children do not understand the cardinal word
principle until about 3-and-a-half may at first appear to conflict with
conclusions from other studies (e.g., Gelman & Gallistel, 1978; Gelman &
Meck, 1983; Gelman et al.,, 1986; Gelman & Tucker, 1975). However, the
youngest children tested in these experiments were over 3 years old (mean or
median ages were over 3-and-a-half), so their results are consistent with the
claim that most children learn the cardinal word principle at roughly
3-and-a-half years of age. Results from the Schaeffer et al. (1974) study, in
which children were asked to put 1 to 7 candies in a cup and to tap a drum 1
to 7 times, support the conclusion that children learn the cardinal word

principle some time between their third and fourth birthdays. While the first
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two groups of children (mean ages 3:5 and 3:8) succeeded on the candy
placement about 45% of the time and on the drum tapping about 25% of the
time, these numbers for the third group of children (mean age 4:2) are 87%
and 75% respectively, a dramatic improvement.

It could be argued that the poor performance of the younger children on
the Give-a-number tasks reflects performance demands, rather than
competence. There are several ways children can fail at a task. They can fail
due to lack of conceptual understanding (in this case, lack of knowledge of
the cardinal word principle). They can fail even if they have conceptual
competence, by not having learned appropriate procedures that instantiate
their conceptual competence in a particular context. Different counting
situations require different counting procedures in order to honor the
counting principles. The counting principles are not themselves procedures;
children must learn appropriate procedures for different situations. Finally,
even if children have at their disposal procedures which are appropriate to a
particular counting context, children might not know which of their
procedures to utilize, and fail at the task (see Greeno et al.,, 1984, for a
detailed discussion of what they term conceptual, procedural, and
utilizational competences; see also Gelman & Greeno, 1987).

However, there is strong support for the claim that children’s failure in
the Give-a-number tasks is due to lack of knowledge of the cardinal word
principle. This comes from the finding that success or failure in this task is a
good predictor of several things: (a) whether a child will respond a majority
of the time with the last number word used in a count when asked "how
many” following counting; (b) whether a child will give the last number
word more often after correct than incorrect counts when asked "how many";
and (c) whether a child will tend to count out items aloud from a pile, when
asked for a number that she or he is generally successful at giving. The

How-many task is procedurally very different from the Give-a-number task,
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so it is unlikely that there is a procedural requirement common to both tasks
with which the Grabbers were having difficulty. It is at the conceptual level
that the two tasks are similar, and therefore children’s failure is almost
certainly due to lack of conceptual competence.

The general conclusion that young children do not have unlearned
knowledge of counting at their disposal also may seem to conflict with
studies suggesting that children do represent one-to-one correspondence as a
component of the counting routine, and are sensitive to the stable ordering of
the counting words. Children will say that a puppet has counted wrong and
will often correct the puppet, when it violates one-to-one correspondence in
some way (Gelman & Meck, 1983). Again, however, the median age of the
youngest children for which this has been shown was over 3-and-a-half, so
these results could reflect knowledge learned about counting rather than
knowledge underlying counting. Furthermore, as noted above, given that
young children appear to represent one-to-one correspondence as a
component of so many of their daily tasks, it is plausible that they have a
general ability to quickly recognize when it is part of an activity. Showing
that very young children represent one-to-one correspondence as a part of
the counting routine, then, does not by itself show that they did not learn this
knowledge. It has also been found (Fuson & Mierkiewicz, 1980; Gelman &
Gallistel, 1978) that children as young as 2-and-a-half use consistently
ordered lists of number words when counting, even though these lists may
not follow the standard order of the counting words (e.g., a child may
consistently count, "one, two, six, eight, eleventeen."). This indicates that
children are sensitive to the fact that counting uses a stably ordered list of
words. However, as argued above, children of this age are sensitive to many
other stable orderings as well, such as the alphabet. There is no evidence that
children represent the (necessary) stable-ordering of the counting words any

differently than the (arbitrary and nonessential) ordering of the letters of the
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alphabet.
However, the results in this paper do not preclude there still being some

role for an innate representation of the principles, other than guiding the
acquisition of counting skills. For example, it is possible that the
"subitization” mechanism works by counting in some fashion, and it may
embody some or all of the counting principles. The ability to discriminate
small numerosities, in turn, may underlie children’s ability to learn that
counting determines numerosity. But this would be a very different kind of
role for the principles than that posited by the Principles-Before theory.
Children’s acquisition of skills in counting is not guided by the counting

principles. Rather, children learn how to count.

Unlearned Components Underlying Counting and Number

The Principles-After theory is clearly correct insofar as it claims that
knowledge of the How-to-count principles does not underlie children’s
acquisition of counting skills. I shall now discuss a weakness with typical
instantiations of this theory. With the exception of children’s ability to
‘subitize”, proponents of the Principles-After theory have typically
concentrated only on what children learn. An impressive body of data has
been gathered cataloguing the sequence of children’s acquisition of various
counting skills -- what is missing is a set of adequate explanations of how
children learn what they learn. This may be due at least in part to a failure to
investigate the very rich body of unlearned abilities and concepts children
bring with them. An understanding of what these abilities and concepts
might be could considerably enrich a theory of the development of counting,
by providing a basis on which to construct mechanisms of how children are
able to learn what they do. That is, it may help us to follow Gelman and

colleagues in spirit, if not in particulars. Below, I review some findings that.
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begin to shed light on the unlearned components that might underlie
children’s ability to count.

Children'’s discrete object bias

In the "Novel Entities" experiment, most of even the youngest children
were able to generalize their counting routine to sounds and actions,
showing that children have the ability to develop very quickly an abstract
and sophisticated mental representation of the counting routine. This is
suggestive of strong powers of abstraction in young children, and may point
to unlearned abilities more general than knowledge of counting. Findings
along the lines of those of Shipley and Shepperson (1990) could inform us on
this point. They have shown in a number of experiments that children have a
very strong bias to both count, and otherwise interact with, discrete,
physically separate entities, rather than attached parts of objects or
individual objects that have been divided into physically separate parts.
They argue from these results that the "oneness" of discrete physical objects is
highly salient to children, and that this may help them in learning to count.
More generally, they propose that other such biases, or general
predispositions, may interact in ways that facilitate mastery of the counting
principles. They have suggested that the following general cognitive abilities
may predispose children to abstract the one-to-one correspondence principle
from examples of adult counting: the above bias to operate on discrete whole
objects; a tendency to exhaust a set of things being operated on, e.g., to throw
all the toys out of the playpen (see Potter & Levy, 1968); and an ability to
match elements of one set to elements in another (see Sugarman, 1983).
Further analyses of this sort could lead to an explanation of how children are

able to so quickly develop an abstract representation of counting.

Knowledge of number independent of knowledge of counting
It has been argued by some that children must acquire the very concept
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of numerosity itself (e.g., Steffe, von Glasersfeld, Richards, & Cobb, 1983).
Yet the extent to which there is an unlearned concept of number, the
representational form it might take, and the exact role such a concept might
play in children’s learning that counting determines numerosity, are all
unanswered questions. There is some evidence that children as young as
2-and-a-half recognize at least small numerosities and can perform
inductions over them. In one experiment, children of this age were shown
two plates, one with three toy mice on it identified as the "winner" plate, and
one with two mice identified as the "loser" (Gelman, 1977). The plates were
covered and shuffled, and children had to identify which was the winner
plate. Children could do this task. Then, surreptitiously, either the number
of mice on the winner plate was reduced to two mice, or a number-irrelevant
transformation was made with the winner plate such as replacing one of the
mice with a soldier, or changing the spatial arrangement of the three mice.
When the covers were removed after shuffling, in the number-irrelevant
transformations children still chose the three-item plate as the winner, while
in the number-relevant transformations, children often declared that there
was no winner, and in some cases even fixed one or both plates to be winner
plates by adding an extra mouse. They had thus evidently represented the
number of the array. |

There is also evidence that even infants have some very basic knowledge
of the numerosities two and three. When habituated to many different
pictures of two objects, newborn infants (Antell & Keating, 1983),
5-month-olds (Starkey & Cooper, 1980), and 10-month-olds (Strauss & Curtis,
1981) will dishabituate when shown a picture of three objects, and vice-versa.
As well, when shown two pictures simultaneously, one of two objects and
one of three objects, and played a sound recording of either two knocks or
three knocks, 7-month-old infants show preferential looking at the picture

with the same number of objects as the number of knocks heard (Starkey,
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Spelke, & Gelman, 1983).

These studies suggest that young children do have some basic concept of
number, or at least of smaller numbers. This in turn suggests that the child’s
task in counting is one of mapping already existing concepts of oneness,
twoness, and threeness with the number words "one", "two", and "three", and
with the counting activity. Indeed it has been suggested that children learn
the meanings of number words by associating them with "subitized"
numerosities (Klahr & Wallace, 1973, 1976; Schaeffer et al., 1974). Results
from the Give-a-number tasks indicate that children map smaller numbers
onto their number words before achieving such a mapping for larger
numerosities. This is plausible. The word "one" occurs much more
frequently than other number words, and in many special contexts (e.g. "I
want another one", "give your brother one of those", "get me the little one",
"which one do you want", etc.). It may even be that children first learn the
word "one", not as a number word but rather as a pronoun that picks out a
single individual, similar to "he", "she", or "it". Children then map the word
“two" onto its corresponding numerosity, followed by the word "three".
Further evidence that children learn the meanings of number words
sequentially comes from the "subitization" literature; when shown small
numerosities and asked to tell "how many" there are, children’s rate of
correct response decreases as the number increases (e.g., Gelman & Tucker,
1975; Silverman & Rose, 1975). Results of the Give-a-number task in
Experiment 3 indicate that, after acquiring the meanings of the words "one",
"two", and "three" in sequence, children acquire the meanings of all the
number words within their counting range, in conjunction with their

acquisition of the cardinal word principle.

It appears that the development of children’s understanding of counting
is complex and piecemeal. Infants may have an innate concept of

numerosity, or at least of the numerosities one, two, and three, which they
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must map onto the correct number words. Children first map the word "one"
onto its numerosity, achieving this next for the word "two" and then the
word "three”. Counting starts out as a meaningless activity, something like a
game of patty-cake, from which children abstract certain properties earlier,
others later, perhaps aided by unlearned abilities such as those suggested by
Shipley & Shepperson (1990). One property that some children may learn is
that the last number word used in a count is the answer to "how many" items
there are, even though they do not at first understand that "how many" refers
to numerosity. At roughly 3-and-a-half years of age, most children come to
understand that the last number word used in a count represents the
numerosity of the items counted, and use this knowledge to learn the

meanings of all the number words in their counting range.



54

TABLE 1
Proportion of cardinality and recount responses in Experiment 1

. Total
Age Group Object Cave Jump Sound non-Object Total

Agel(2:7) 06 [.11] 25 33 .00 23 16
N 8 6 5 4 6 8
Age I1(3:0) 12[.47] 19 27 24 24 21
N 8 7 8 8 8 8
Age III (3:5) .36 [.36] 67 .53 .57 .59 55
N 8 8 8 8 8 8

Total 16 [.31] 39 37 34 37

Recount responses indicated by square brackets, N = no. children contributing to each cell
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TABLE 2
No. Grabbers giving 1, 2, 3, 5, and 6 items
in Experiment 2, by no. asked for

No. Asked For
No. Given 1 2 3 5 6

1 18 1 1 0 O
2 0 13 8 7 8
3 0 1 5 5 3
5 0 0 3 0 2
6 0O 1 0 1 O

Other 060 2 1 5 5
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TABLE 3

Mean no. objects first given by Grabbers and Counters in
Experiment 2 (standard deviations given in brackets)

Number asked for

Age Group 2 3 5 6
Age I Grabbers 26(1.5) 29(1.1) 34(21) 33(20)
Agell Grabbers  3.6(24) 29(1.2) 33(22) 29(0.9)
Agelll Grabbers  1.7(0.5) 2.7(1.7) 47(2.1) 45(2.1)
Agelll Counters  2.0(0.0) 3.0(0.0) 5.2(0.3) 6.0(0.0)
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TABLE 4

Patterns of success in Give-a-number task in Experiment 3

Success Pattern No. of Mean Counting Ability
1 2 3 5 6 Children Age Mean Range

- - - - - 1 2:8 3.00 (3-3)

+ - - - - 3 3:0 4.67 (3-6)

+ + - - - 2 2:11 450 (3-6)

+ + o+ - - 4 3:5 575 (5-6)

+ + 4+ o+ o+ 7 3.7 6.00 (6-6)

(Note: "+" indicates success on a numerosity; "-" indicates failure.)
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Percent Correct Counts in Experiment 1
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Mean % Cardinality Responses of Grabbers
vs Counters in "How many" Task
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How Children Learn the Meanings of Number Words

Introduction

It appears to be a real mystery as to how children learn the meanings of
number words. In this task children are faced with the problems inherent to
any word-learning task -- from an infinity of logically possible meanings,
they must somehow infer the correct meaning of a word. This problem is
especially acute when it comes to number words and other words not
denoting physical objects. There is no physical object, or property of a
physical object, which corresponds to, for example, the number three. When
we speak of "red apples”, each individual apple has the property "red", but
when we speak of "three apples”, none of the individual apples has the
property "three". Yet when we count, we assign a number word to each item,
so the child sees an item labelled "one", another "two", another "three", etc.

We do know that children and infants are sensitive to numerosity.
Young infants are able to discriminate small numerosities; when habituated
to pictures of three objects, they will dishabituate when shown a picture of
two objects, and vice-versa (Antell & Keating, 1983; Starkey & Cooper, 1980;
Strauss & Curtis, 1981), and under some conditions will dishabituate when
shown a picture of four objects and vice-versa (Strauss & Curtis, 1981).
Furthermore, they are able to match a number of sounds heard with a visual
display depicting the same number of items (Starkey, Spelke, & Gelman,
1983; in press). There is also evidence that children as young as 2-1/2 years
old can recognize small numerosities and perform inductions over them. In
one experiment, children of this age were shown two plates, one with three
toy mice on it identified as the "winner" plate, and one with two mice
identified as the "loser” (Gelman, 1977). Children were capable of identifying
the winner plate, and sometimes even changed a two-item plate to be a

winner plate by adding an extra mouse, showing that they had represented
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the number of the array. Given these studies, we do know that children have
the concept of numerosity that they must have in order to learn the meanings
of the number words. The problem, then, is in mapping these concepts onto
words.

This task is made more difficult for children by the fact that number
words are unmistakably assigned to individual items when counting, yet the
number words do not refer to individual items, or to properties of individual
items, but rather to properties of sets of items. Of course, children do not
only hear number words in the context of counting; they also hear number
words uttered in sentences, with all the accompanying contextual and
syntactic cues.

One helpful aspect to hearing a word used in a sentence is that the
situational cues are available. It has been shown that children can (at least
sometimes) learn about the meanings of words when those words are
contrasted with known words in the same domain. For example, when
asked to "get the tray; not the red one, the chromium one", at least some
children will infer that the word "chromium"” refers to a color (since it was
contrasted with "red", which the children already knew, or at least knew was
a color), and will sometimes even pick out the color of the opposing tray as
the referent of the word (Carey & Bartlett, 1978). But this only helps when
children already know the meaning of one of the words in a domain. It will
not explain how children learn their first word or words belonging to that
domain.

It could be that their syntactic status as quantifiers tells children that the
number words refer to properties of collections of entities, not of individual
entities. But when number words are used in sentences, their syntax, at least
at first glance, would seem to support the hypothesis that they refer to
properties of individual objects, since number words usually take the same

position as adjectives (e.g., "see the big dogs" versus "see the three dogs").
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Thus, if the syntax of the number words helps children to determine their
meanings, it must be through their possession of a unique configuration of
several syntactic properties, not of some single syntactic property, and as
such will entail sophisticated knowledge on the part of the child.

Discovering how children solve this word-learning task may inform us
about inherent word-learning and/or general learning strategies possessed
by children. It may also tell us something about the initial nature of the
concept of number, since the task children have in learning the number
words is that of mapping their own existing concept of number onto the
counting system. In this paper the child’s number-word-learning strategies
will be studied indirectly, by investigating the pattern of children’s
knowledge acquisition. By looking at children’s developing understanding
of the meanings of number words, an account can be constructed of the sorts
of inductions they make along the way, which will help suggest a mechanism
(or mechanisms) by which children attain this knowledge. This study also
addresses the question of how children’s acquisition of the number words

relates to their mental representation of number.

Some theories of number word meaning acquisition

"Counting Principles” Theory

Gelman and colleagues (e.g., Gelman & Gallistel, 1978; Gelman & Meck,
1984; Gelman, Meck, & Merkin, 1986; Gelman & Greeno, 1989) have
proposed that young children possess an innate concept of number
consisting of a set of counting principles that define correct counting. The
three "how-to-count" principles are as follows: The one-to-one correspondence
principle states that items to be counted must be put into one-to-one
correspondence with members of the set of number tags that are used to
count with (e.g., a set of number words); the stable-order principle states that

the number tags must have a fixed order in which they are consistently used;
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and the cardinality principle states that the last number tag used in a count
represents the cardinality of the items counted. Children do not possess
innate knowledge of the number words, of course; they must learn the
number words of their language, and map them onto their own innately
given mental number tags. But this task is made easy for children by the fact
that number words operate on the same principles as their mental number
tags; they have a fixed order in which they are consistently used, and they
are applied to items in one-to-one correspondence. This allows children to
very early on identify the linguistic, culturally supported counting activity as
counting (i.e., as the same kind of activity as their own innate, non-linguistic
counting activity), and so to map the number words onto their mental
number tags. Thus the meanings of the number words are acquired easily
and rapidly by children; each number word holds the same meaning as does
its corresponding number tag, namely a specific, unique numerosity
determined by its ordinal position in the number word/tag list. Once
children have mapped the number words onto their mental number tags, the
counting principles also allow children to develop their skills in the overt
counting activity, by serving as guidelines for correct counting so that
children can monitor their counting performance.

However, there is converging evidence that children do not learn the
meanings of the number words until well after they have acquired
considerable skill at counting (Fuson, 1988; Frye, Braisby, Lowe, Maroudas,
& Nicholls, 1989; see especially Chapter 1). That is, children know how to
count quite well before learning that counting determines the numerosity of
a set. It thus appears that children do not start out with unlearned counting
principles that give them the meanings of the number words and guide the
acquisition of their counting skills. Rather, children must learn how to count,
and must learn the meanings of the number words by some means other than

their correspondence to a set of mental counting tags.
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"Different Contexts"” Theory

Fuson and colleagues (e.g., Fuson, 1988; Fuson & Hall, 1983; Fuson,
Richards, & Briars, 1982; and Fuson & Mierkiewicz, 1980) have argued that
there are different contexts in which the number words have different
meanings; they further argue that children sequentially acquire these
different meanings, learning each number word at first as several different
context-dependent words. These different meanings gradually come to be
interrelated, and for the adult comprise a system of closely connected
meanings for that word. In particular, there are the sequence, counting, and
cardinal "meanings", or contexts, of number words. Sequence meanings occur
in contexts in which the number words are recited in sequence, but are not
used to count actual items or to refer to the numerosity of some set of items.
The "meaning” of a number word used in this context is that it comprises part
of this sequence; the words have no referents. The number words each take
on a counting meaning when used to count a group of items. The "meaning"
of number words used in this context is their successive assignment to items
in a one-to-one correspondence, and the referent of a number word is the
item it is paired with; thus, the referent of a particular number word differs
with each count, in the same way the referent of a pronoun differs from
sentence to sentence. A number word is used in a cardinal context when it is
used to describe the cardinality, or numerosity, of a set of discrete objects or
events; in this context, the referent of a number word is the numerosity of the
set of events.>

The claim that children first acquire the sequence meaning is supported

SFuson & Hall (1983) also posit several other contexts of number words; a measure
context, in which the number words refer to numbers of units along a dimension into
which some entity has been divided; an ordinal context, in which a number word refers to
the position of an entity in a well-defined ordered set with a specified initial point; and a
non-numerical context, in which number words are used as labels or codes, for example,
numbered players of a football team, telephone numbers, and so on.
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by Fuson and colleagues as follows: In children’s earliest productions of the
number word list, they treat the words as an unbreakable string, a sequence
of sounds with no intrinsic meaning, recited by rote. At this level, the
number words are at first not even segmented in the string (Fuson et al.,
1982). When children acquire the counting meanings of the number words, it
is claimed, the words come to have reference to the objects with which they
are paired during a count, without the child understanding that this pairing
has anything to do with determining the numerosity of the items counted.
The evidence that children go through such a stage in their understanding of
the number words is that children can count correctly (can segment the
number words and assign each one to a unique object) before knowing that
the last number word indicates the numerosity of the counted set (Fuson &
Mierkiewicz, 1980; Chapter 1). Finally, children also acquire the cardinal
meaning of a number word, in which the number word refers to the
numerosity of "a well-defined set of discrete objects or events" when used in
appropriate contexts (Fuson & Hall, 1983 p. 58).

Fuson and colleagues’ account conflates the meaning of a term with the
context in which that term is used. But there is a great difference between the
function a particular word plays in an algorithm or routine, and the meaning
of that word. The "counting meaning” level of understanding was proposed
in light of observations of children’s production of the number words, and so
is descriptive of their external behavior; but it is not sufficient to look only at
children’s production of a word to learn what they infer from the word.
What is needed is evidence concerning the role the number words play at
this stage in the child’s conceptual system. It does not follow that the
meaning imputed to a number word by children at this level of
understanding is literally the object to which it is assigned, just because in the
process of counting they do indeed assign one number word to each object.

Little research has been done to determine what information children
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infer from the number words. However, there is some tentative empirical
evidence against the claim that before children possess the full adult
meanings of number words, they believe the referent of a number word is the
object to which it is assigned. This comes from a previous study conducted
by myself (in Chapter 1) on 2-1/2- to 3-1/2-year-olds. In what I called the
"Give-a-number” task (Experiments 2 and 3), children were asked to give a
puppet a certain number of items ranging from 1 to 6, from a pile of toy
animals. The structure of the questions was "Could you give Big Bird three
animals?" and variations. If children who have not yet acquired the cardinal
meanings of the number words consider the meaning of the word "three" (for
example) to be an object to which it is assigned during a count, then they
presumably should count some objects and, when they get to "three”, give
the puppet the item labelled "three". Alternatively, they might choose to give
the puppet a single animal while labelling it "three". But children did not
behave this way. Instead, the younger children tended to simply give the
puppet a handful of animals, almost never by counting them; the
3-1/2-year-olds tended to count items from the pile as they gave them and to
stop at the number word asked for, thus giving the correct number. Even
children who were just learning to count almost never gave the puppet a
single item, when more than one item was asked for (of 40 children, only 2
did this). In contrast, children always gave the puppet a single item when
asked for one item. This suggests that children impute a different meaning to
number words than their assignment to an object. It might be argued that the
syntactic cues of plurality or singularity ("Give Big Bird three animals/one
animal") were what caused children to give one when asked for one, and
more than one otherwise. However, independent studies have shown that
children of this age have not mastered the English plural markers (e.g.,
Brown, 1973). It thus appears that children are sensitive to the fact that the

number words other than "one" refer to more than a single item even before



they know singular/ plural syntax.

However, in apparent contradiction with this conclusion, when asked to
count the items they had given, about half the children in the Give-a-number
task in Experiment 2 labelled the last item in the count with the number
word asked for when that was not the next count word they should have
said. For example, when asked for 5 objects one girl gave 3; when she was
then asked to count them to make sure how many there were, she counted
them "one, two, five". This kind of response could have occurred because
children thought the referent of the number word was a single item, and
since the puppet had asked for, say, "five animals”, they knew they had to
label one of the animals "five". However, it is more likely that children
simply knew that the last number word in their count should correspond to
the word asked for, without knowing why -- this would explain why they
tended to label the last item in the count with the number word asked for,
rather than just labelling any one of the items. Two children occasionally
named one of the items they had given with the number word asked for,
clearly assigning a single item as the referent of the number word. This
would seem to suggest that, at least for these children, the meaning of the
number word was either the item to which it was assigned, or some aspect of
that item. However, these two children did so very seldom, and they always
honored the distinction between being asked for one item versus more than
one, suggesting that at some level they knew that number words (other than
"one") did not refer to a single item. Clearly, more research is needed to
resolve the question of what meaning children ascribe to a number word

before acquiring the adult understanding.

Focus of the study
Background Research
I previously showed (Chapter 1) that by roughly 3-1/2 years of age,

children understand the counting system and know the cardinal meanings of
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the number words within their counting range. They can use counting to
retrieve a specified number of objects from a pile. As well, when asked,
immediately after counting a collection of items, "how many" items there are,
they respond with the last number word they said in the count. This shows
that by roughly 3-1/2 years of age, children learn the cardinal word principle
(in contrast to the cardinality principle), which states that the last number
word in a count represents the numerosity of the items counted. But there are
several stages along the way to this knowledge. Children appear to learn the
meanings of smaller number words before those of larger ones within their
counting range -- children can give 1 item from a pile when asked before they
can give 2, can give 2 items before they can give 3, and can give 3 items
before they can give higher numbers. They then appear to make some kind
of general induction to simultaneously acquire the meanings of all the
number words beyond "three" (or possibly "four") that are within their
counting range. However, before they can give larger numbers, children
successful at giving these smaller numbers virtually never use counting to do
so; they still do not know that counting is the general solution to the task.
They appear instead to have directly mapped particular small numbers onto
their correct number words, and so can succeed at giving those numbers, but
have no general solution. As soon as they learn the way in which counting
determines the numerosity of a set of items (that is, that the last number
word used in a count represents the numerosity of the items counted — the
cardinal word principle), they acquire the meanings of the rest of the number

words within their counting range, and so can give any number of items they

- are asked for.

Two major questions arise from the above work; they are the focus of

this paper and are discussed below.
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Components of meaning of number words
First, there is the question of how children’s understanding of the
meaning of a number word develops; whether there is a stage at which
| children believe the number words refer to individual items, and if children’s
knowledge of a particular number word comes in all at once or if children
acquire different aspects of the adult’s meaning of a number word at
different times. Acquisition of the full meaning of a number word may not
come all in one piece; there may be different components of meaning (as
opposed to different usage contexts) that children acquire at different times.
There are (at least) three essential components to understanding the full

meanings of the number words:

1. The knowledge that a number word refers to a numerosity,

regardless of which numerosity it refers to;
2. The knowledge of the precise numerosity a word refers to.

3. The knowledge that it is a word’s position in the list that
determines the precise numerosity it refers to (the cardinal word

principle).

This last component specifies the way in which the number words are
assigned their meanings, rather than specifying some aspect of meaning of
individual words. One need not have knowledge of this last component in -
order to know the meaning of a particular number word; indeed, the
evidence is that children acquire knowledge of the meanings of small
number words before learning the cardinal word principle. However, at
some point every person must induce the general rule for how number
words attain their precise meanings; otherwise we could never acquire the
meanings of literally an infinite number of number words. Determining

when children learn these three different components of meaning can help us
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in understanding how children come to understand the meanings of the
number words, by suggesting a possible path of inductions by which the
child attains full knowledge.

Time span of acquisition of number words

Second, we do not know how long it takes children to learn the full
cardinal meanings of the number words. My previous findings show that
children first learn the word "one", then "two", then "three", before making a
general induction, but they do not show how stable each of these stages is
within a child, because the data are cross-sectional and there is a lot of
individual variation -- some children have acquired the cardinal word
principle before their third birthday, others nearing their fourth have yet to
learn it. The present study examines how quickly children who have
acquired the meanings of one or two of the number words come to learn the
others, and to learn the cardinal word principle. |

Understanding the full meanings of all the number words in general
comes down to understanding the way in which counting represents numerosity
-- that it is a word’s position in the count word list that determines the
numerosity it refers to. Knowing how long it takes children to understand
this can then give us an idea of how easy or difficult a task it is for children to
understand the counting system. This in turn may reflect on the nature of
young children’s initial representation of number, since the child’s task in
learning the counting system is to map her own concept of number, whatever
it may be, onto the counting system. If this entails a very long, protracted
period of learning, that will suggest that it is difficult for children to learn the
counting system. This would then suggest that the counting system may
entail a very different form of representation of number than the one the very
young child possesses. Conversely, if it's a relatively short process, that
would suggest that the counting system embodies a representation of

number similar in form to the child’s own, making it a simple task for the
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child to map her own representation of number onto the counting system.
This study investigates how long individual children know some of the

number words before going on to learn the rest and learn the cardinal word

principle, and when and how children learn different components of the

meanings of number words.

The Experiment

Subjects

Twenty 2- and 3-year-old children were tested. Fourteen (8 boys, 6 girls)
were tested over a period of about 8 months, with 5 to 8 weeks between each
session; their mean age at the start of the study was 3;2, range 2;6 - 4;2. The
remaining 6 children (3 boys, 3 girls) were tested for a period covering 2
months, with 1 month between sessions; their mean age at the start of the
study was 2;11, range 2,7 - 3;3. This second group of children was added on
late in the school year, so could not be followed up as long as the first group
of children. Seven additional children were tested at least once, but not
included as subjects; four because their attention span was too short for them
to sit through the Phase 2 task described below, two because they did not
satisfy the criteria necessary for participating in Phase 2, and one because he
was not available for testing beyond the first session and so did not

contribute to the longitudinal aspect of the study.

Procedure

There were two phases of testing for each session, typically given one to

four days apart:
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Phase 1:

"Give-a-number” task

Children were given the "Give-a-number" task, to determine which
number words they knew the meanings of. They were asked several times to
give a puppet 1 to 5 items, and the highest number word they could succeed
at consistently was determined. Children were given a sticker after each trial
to keep them motivated. The goal was to determine the maximum
numerosity each child could succeed at, so the exact procedure differed for
different children. All children were first asked for 1 item and then for 2
items; depending on their success, they were then asked for 3 items, or asked
again for 1 or 2 items. What children were asked for on a trial depended
partially on their success in the previous trial; children who failed on a trial
were next asked for a numerosity at which they had previously succeeded.
This served two purposes; to determine the consistency of a child’s
performance on a particular numerosity, and to avoid discouraging children.
The experimenter concentrated on the highest number a child succeeded at
reliably and on the next highest number, so children got more trials for these
than for other numbers. The exact number of trials a child got depended on
his or her consistency on a particular numerosity, and in some cases the
child’s willingness to keep playing. The experimenter followed up children’s
responses by asking questions such as, "Is that three?", "Can you count and
make sure?’, tc give children every opportunity to correct their responses

and exhibit knowledge of a number word.

"How-many" task

Children were asked to count sets of 2 to 6 items, once for each set size,
and were asked, immediately after counting, "how many" items there were.
This tested children’s knowledge of the cardinal word principle -- whether
they know that the last number word they used in the count indicates how

many items there are. For this task, items were plastic toy animals about 7cm
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long, glued about 3cm apart to a board in a linear arrangement. Items were

homogeneous within a set, but different across sets.

Color control task

As part of a control for Phase 2, children were also tested for knowledge
of the color words "red", "blue", "green”, and "yellow", or of the words "top"
and "bottom". They were shown 4 balls simultaneously, one of each color,
and were twice asked to point to the ball of each color (in randomized order).
Children who spontaneously named the colors correctly (as many did) were
asked to point to each of the colors only once, since production of the color
words is a more definitive indication of knowledge than simply correct
identification. Those children failing the color task were given a test of their
knowledge of the words "top” and "bottom", by being shown 4 cards, each
with 2 pictures on it, and being asked, for each one, to point to the picture on
the top, or the picture on the bottom (twice the top, twice the bottom).
Nineteen of the children knew the meanings of the four color words; the
remaining child knew "top” and "bottom". Two additional children did not
know either the four color words or both "top" and "bottom", and for this

reason were excluded from the study.

Phase 2:

Only children who could give at least 1 item when asked, and who knew
the four color words or the words "top” and "bottom", participated. Children
were given a "Point-to-x" task, in which they were shown cards, each with 2
pictures with different numbers of items on them, and were asked to point to
the picture with a particular number of items. The items on a particular card
were the same kind in both pictures, e.g., dogs in both pictures or balloons in
both pictures, but of different colors, e.g., red dogs in one picture and blue
dogs in the other. Items differed from card to card.

To test whether children knew the precise numerosity a word refers to,
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children were shown that numerosity paired with a numerosity one larger,
and asked to point to the picture with that number of items. For example, to
test if a child knew the precise meaning of the word "four”, she was shown a
picture of 4 balloons paired with one of 5 balloons and asked, "Can you show
me the four balloons?" Children will only be able to do this successfully if
they know the precise meaning of the number word "four". To test whether
they knew that a particular word refers to a numerosity, even if they did not
know which numerosity the word refers to, children were given a picture of
that numerosity, paired with a picture of 1 item. Since all the children knew
that the word "one" refers to a single item, then if they knew that, for
example, the word "five" refers to a numerosity, they should infer that it does
not refer to a single item since they already have a word for the numerosity
one.® They should therefore be able to choose the correct picture by a process
of elimination. In all of the pairs where one picture was of only a single item,
the pictures depicted either sheep or fish, which have the same singular and
plural syntax, so children were given no syntactic cues as to which picture to

choose (e.g., "Can you show me the three fish/the one fish?").

General structure of study

Children were placed into one of four groups on the basis of their
performance on the Give-a-number task. Children who could give only a
single item consistently were placed into Group 1; those who could give up
to 2 items were placed into Group 2; those who could give up to 3 items went
into Group 3; and those who could give up to 4 or more items went into
Group 4. Each group was tested on different number pairs, as shown in
Table 1. For example, if a child could give up to 2 items, she was tested on
the pairs (2, 3), (3, 4), (1, 3), (1, 4); so it was tested whether the child knew the

6This reasoning assumes that children possess the principle of contrast, which says that no
two words have the same meaning. See Clark, 1988 for discussion.
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precise meanings of the words "two" and "three", and whether the child knew
partial meanings of the words "three" and "four” (whether the child knew

they are number words).

INSERT TABLE 1 ABOUT HERE

For each number pair, the child was asked twice to point to the smaller
numerosity, twice to point to the larger (e.g., "can you show me the three
flowers?"). The child was also asked, twice for each pair, to point to the
picture of a certain color (red, yellow, green or blue), or to point to the top or
bottom picture if that child had failed the color task, e.g., "can you show me
the yellow sheep?"/"can you show me the bottom sheep?". This served three
purposes: (1) to prevent children who may not have known that, e.g., "five" is
a number word from inducing that it must be, which might happen if all the
questions were about numerosity and children were to pick up on this; (2) to
help prevent children from becoming discouraged, by giving them questions
they definitely knew the answer to; and (3) to reveal whether children were
attending to the task and performing to the best of their abilities, since if SO,
they should get all these questions right. Finally, children were asked, twice
for each number pair, a question with a nonsense word, e.g., "Can you show
me the blicket elephants?”, to measure any possible bias to point to a
particular one of the pictures in any given pair. So, altogether, children were
given 8 questions for each number pair: 4 number questions, 2 color (or
top/bottom) questions, and 2 nonsense questions, all worded identically
except for the crucial word. There were 2 cards for each number pair, each
picturing different items, for a total of 8 cards (only 6 cards for Group 1).

This was to prevent children from becoming bored, which might happen if
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there were only 4 (or 3) cards, with 8 questions for each one. Thus, for each
of the 8 (or 6) cards, children were asked to make four judgements; 2 number
questions (once for the larger number, once for the smaller), 1 nonsense
question, and 1 color (or top/bottom) question, for a total of 32 (or 24)
questions altogether.”

Each child was followed up until she could give up to 5 items when
asked in the "Give-a-number" task, succeeded on at least 75% of the questions
for each of the number pairs in the "Point-to-x" task, and gave last-word
responses a majority of the time on the How-many task, or until the end of

the school year.

Scoring criteria
For the Give-a-number task, the following criterion was used to

determine the highest number children could consistently succeed at giving:

¢ On at least two-thirds of a child’s trials for that numerosity, the

child’s response was either the correct number according to his or

"The order of presentation of cards and questions was randomized in the following
manner: For each card, the questions to be asked about that card, and the order in which
they were asked, were held constant. Cards were shuffled at the beginning of a session,
and then were gone through in a first pass, asking the child the first question for each card.
The cards were then shuffled and gone through a second time, asking the child the second
question for each card; shuffled again and gone through a third time, asking the third
question for each card; then shuffled and gone through a fourth time, during which the
final set of questions was asked. After each pass through the "deck", children were given a
sticker. Thus, although for each individual card the question order did not vary from one
session to the next, for no trial did one question predict the next question to be asked, nor
were two questions about the same card asked consecutively. Across different cards,
different question types (larger number, smaller number, color, nonsense) were
counterbalanced to be first, second, third, or fourth questions, so that for each pass through
the cards, a child was asked equal proportions of each question type. Questions for the two
cards for any given number pair were ordered such that the question for the smaller
numerosity came before that for the larger numerosity on one card, and after that for the
larger numerosity on the other.
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her own stably-ordered count list,8 or the correct number plus or
minus one if the child had counted aloud from the pile to the
number word asked for, but had erred in the counting by either
double-counting or skipping one item or by repeating or skipping

one number word; and

® The child responded with that number when asked for higher
numerosities no more than half as often, percentage-wise, as he or
she did when asked for that number itself. For example, a child
who gave 2 items 80% of the time when asked for 2, was scored
consistently correct on 2 only if he or she gave 2 items no more
than 40% of the time when asked for 3, 4, and 5 items. This was to
prevent children who had a preference for giving, e.g., 2 items no
matter what they were asked for, from being considered to know

the meaning of the word "two".

In the Point-to-x task in Phase 2, children were considered to give a
correct response if they pointed to the correct picture; or if they counted the
items in one or both pictures in order to answer a number question, but made
an error when counting the wrong picture such that the outcome of the count
was the number they had been asked to show, and then chose that picture for
their response (this only happened 10 times out of the total of 368 number
questions given of the Point-to-x task where both pictures were of more than

1 item). If a child pointed to both pictures, the experimenter asked the child

81t has been pointed out (Fuson & Mierkiewicz, 1980; Gelman & Gallistel, 1978) that
children sometimes have a stably-ordered list of the counting words that differs from the
standard list, usually in the consistent omission of one or more number words. For
example, a child may consistently count "one, two, five, six, ...". In this case, when asked to
give, for example, 5 items, he child would be considered correct if she gave 3 items, since
"five" is the third word in her stably-ordered list. As it turned out, all 20 children in this
study used the standard count word list.
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to pick only one of the pictures. Two children, on one session each, insisted
on always picking both pictures; they seemed to have a strong desire to touch
the second picture as well, after having made their response. In these cases,
children’s first choices were used, since their performance on the color
questions suggested that their first choices were their responses to the
questions (their first choices were almost always the correct answer for the
color questions). In three sessions (of a total of 58) children were
miscategorized by the Experimenter into the wrong Group level, and hence
tested with the wrong number pairs in the Point-to-x task; data for the
Point-to-x task on these sessions were thrown out.

In the How-many task, children were considered to give a "last-word"
response if they gave the last number word they had used in the count,
regardless if they had counted correctly or if that word was the correct
answer. In the Color control task, if children failed at one of the two
questions for a given color, they were asked that question a third time (after
some intervening questions). Children were considered to know the
meaning of a color word if they got two questions for that color correct out of
the two or three total questions for that word (chance was 25% since there
were 4 possible answers). They were considered to know the words "top"
and "bottom” if they got both questions for each word correct.

The experimenter scored children’s responses at the time of testing.
Children’s sessions were also videotaped, and then transcribed and scored
later by an independent judge. Inter-scorer agreement was 97% for the
Give-a-number task, 97% for the Point-to-x task, and 93% for the How-many
task.



Results and Discussion

The Results section is broken down into five general parts. A
preliminary section describes children’s performance on the control
questions in the Point-to-x task. Next, children’s acquisition of the different
components of meaning of number words is examined. Third, children’s
performance on the Give-a-number task is compared with that on the
Point-to-x task. Fourth, the time span of acquisition for individual children is
discussed.  Finally, children’s performance on the How-many task is

discussed in relation to where they stand in the acquisition process.

Table 2 shows the basic pattern of results for the Give-a-number task
over the duration of the study: The number of children that were classified
into each group in their initial session and their mean ages; the total number
of children observed at each Group level at least once during the study and
the total number of sessions for which data was obtained for each Group
level (brackets indicate the number of sessions for which there are data for
the Point-to-x task as well); and the number of children who made the
transition into each Group level and the mean ages at which the transition
was made. One child was observed at the Group 3 level in one session, but
in successive sessions was back in Group 2 (this could be either because she
obtained tentative knowledge of the word "three” but then lost it after a
month, or because she gave the correct number of items by chance when
asked for 3). For the analyses, she was considered to be in Group 3 for that
session, but was not considered to have "moved into Group 3", since she did
not stay there. Thus, her session at the Group 3 level does not contribute to
the two final columns of Table 2.
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INSERT TABLE 2 ABOUT HERE

Performance on control questions

In the nonsense questions, children showed no preference to point to a
particular one of the pictures on any given card. There were 30 cards used in
the experiment (6 for the Group 1 children, 8 for each of the other 3 groups);
a series of t-tests (one for each card), adjusted by the Bonferroni technique for
the number of t-tests performed, showed there to be no significant preference
for one of the pictures over the other in any of the cards. Nor was there any
preference on the nonsense questions to choose a particular number over the
other number in a number pair, when Bonferroni-adjusted t-tests were
conducted over number pairs rather than over individual cards. Nor, finally,
did children have any preference on the nonsense questions to point to the
larger or the smaller number of items, when a t-test was conducted on the
number of times children chose the larger numerosity as opposed to the
smaller numerosity, across all cards and all number pairs. These results
indicate that the children had no intrinsic biases affecting their responses that
might contaminate the results of the questions asked about number.

In addition, individual children on average asked the experimenter for
confirmation of their response (e.g., by saying "this one?" while pointing, or
by asking before responding "which one is that?", etc) on 13% of the
nonsense questions, while doing this on only 2% of the color and number
questions (there was no significant difference between color and number
questions, so they are collapsed for this analysis). For each child, the
difference between these two percentages was computed. A t-test showed

they were significantly greater than zero; the mean difference was 11
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percentage points (£19) = 4.149, p < .0001). In fact, for only 1 of the 20
children was there a higher proportion of confirmation requests on the color
and number questions than on the nonsense questions (8% versus 5%).
Children clearly distinguished between the nonsense words and the other
words, indicating firstly that they were paying attention to the
experimenter’s questions, and secondly that even number words they do not
know the full meanings of are not considered in the same light as nonsense
words are.

In the color questions, children each made at most one mistake out of the
8 (or 6, for Group 1) such questions they were asked in each session.
Altogether, only 12 color mistakes were observed on the 392 color questions
asked in the Point-to-x task. Thus, children were clearly paying attention to

the task and giving answers that reflected their knowledge.

Acquisition of components of meaning

Do children know that the number words refer to numerosities before
they know precisely which numerosities they refer to? For each of the
Groups, individual children’s percentages of correct responses on each of the
relevant number pairs (the pairs (I, n+1) and (1, n+2), where n is the Group
number of the child in that session) were determined. For this analysis, the
percentage of correct responses expected if children do not know that the
larger words are number words is 75%, because all children knew the
meaning of the word "one" and so should succeed on the "show me the one
..." questions whether or not they knew that the larger words were number
words. "Show me the one ..." questions made up half the number questions
for these pairs. If children do not know that the larger words are number
words, they should be expected to succeed on half of the larger-number
questions by chance, for a total expected success rate of 75%. As it turned

out, for both pairs in every Group children succeeded significantly more
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often than this, as shown in Figure 1. These results show that children know
that the number words refer to numerosities, before they know the precise
meanings of all the number words. For example, well before a child is able to
identify a picture of 3 items when it is paired with one of 4 items, she can

identify a picture of 3 items when it is paired with a picture of only 1 item.

INSERT FIGURE 1 ABOUT HERE

What is really surprising is just how soon children seem to have this
knowledge. Even the very youngest children, who could not successfully
give even 2 items when they were asked to, and who could not even point
out a picture of 2 items when it was paired with 3 items, could identify the
picture of 2 and 3 items, when each of these was paired with 1 item. So even
at a very early stage of counting, children know that the counting words refer
to numerosities.

It could be argued that the results from this part of the Point-to-x task
might be explained without having to credit children with knowledge that the
words other than "one" are number words. Children might know just
enough about the counting words to know that these words can only apply
in the context of a plurality of entities (Fuson, personal communication). For
example, a child might take the word "four" to refer to some property an

entity possesses when it is in the presence of other entities (something like

9The t-values are as follows: For Group 1, for the pair (I, 2), #(5) = 8.301, p < .0001,
one-tailed; for the pair (1, 3), t(5) = 2.764, p < .02, one-tailed. For Group 2, all children
performed perfectly on the pair (1, 3); for the pair (1, 4), ¢(8) = 44.000, p < .0001, one-tailed.
For Group 3, for the pair (I, 4), all children performed perfectly; for the pair (1, 5), #(2) =
5.250, p < .05, one-tailed. For Group 4, for both pairs t(10) = 21.917, p < .0001, one-tailed.
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"one in a bunch", for example). When asked to "show the four sheep”, then,
and shown a picture of 4 sheep together with a picture of 1 sheep, a child
with such an interpretation of the word "four" would be able to choose the
correct picture, but without having knowledge that "four" refers to a
numerosity.

The hypothesis that children are succeeding on this task because they
know the words are number words (the "number word" hypothesis) makes a
different prediction than does this alternative "individual-in-a-group”
hypothesis regarding how children’s acquisition of the full meaning of one
number word will affect their construal of other number words they do not
yet know the full meanings of. If children know that each of the number
words refers to a specific, unique numerosity, then they will restrict the
meanings of the number words so that no two refer to the same numerosity
(by the principle of contrast; see Clark, 1988). If a child knows the meaning
of the word "two", for example, that child will not consider the words "three",
"four”, and so on to be applicable to a set of two items, even if she doesn’t
know precisely what numerosities "three”, "four”, etc. each pick out. Such a
child will only be content to have these words describe numerosities she does
not already have a name for. Since she doesn’t know which numerosities
these words do refer to, she will be equally likely to point to the picture of 3
items as she is to point to the picture of 4 items when asked to show which of
two pictures is "the four ..."; her understanding of the word "four” places no
restrictions at this point on whether it can refer to 3 as opposed to 4 items,
since all she knows is that it must refer to some numerosity other than one or
two. But once she acquires the full meaning of the word "three", she will no
longer be willing to allow "four" to refer to 3 items. That is, her new
knowledge of the word "three" also gives her knowledge of the word "four";
she now knows one more numerosity that "four" doesn’t refer to. Similarly, a

child knowing the full meaning of only the word "one" will be equally likely
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to point to the 2 items as to the 3 items when shown a pair of pictures of 2
versus 3 items and asked to point to the picture with 3 items. But once a
child has acquired the full meaning of the word "two" she will no longer be
willing to do so -- she restricts her space of the possible candidate meanings
for "three" based on her knowledge of other number words, including "two".

In contrast, consider a child who believes that the number words she
does not yet know the full meanings of all refer to some property of an entity
in a group of items, or simply knows that these words’ satisfaction conditions
entail a plurality of entities. Again, she starts off knowing the full meaning
of only the word "one", and so will be equally likely to point to the picture of
2 items as to the picture of 3 items when asked to show the 3 items. When
she learns the full meaning of the word "two", however, there will be no
motivation for her to further restrict the space of possible meanings of the word
"three"; she will still be happy in her belief that "three" can be satisfied when
there is more than one item present. She should then still be equally likely to
point to the picture of 2 items as to the picture of 3 items when asked to show
the 3 items (though she will of course now always pick the picture of 2 items
when asked to show the 2 items).

The critical test to determine which of these hypotheses is correct is to
look at the children who only know the meaning of the words up to "two" as
determined by their performance on the Give-a-number task, and see what
they do when asked to show the 3 items of a pair of 2 versus 3 items in the
Point-to-x task. If they know that "three" is a number word, they should not
point to 2 items; if the "individual-in-a-group” hypothesis is true and they
simply believe that "three" refers to some property of an entity in a group of
entities, or that it requires a plurality of entities in order to be satisfied, they
should be equally likely to point to both pictures (recall that children have no
general bias to point to the larger picture as opposed to the smaller one).

Similarly, children who only know the meaning of the words up to "three"
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(as determined by their performance in the Give-a-number task) should
never point to the 3 items when asked to show the 4 items and shown a pair
of 3 versus 4 items, if they know that "four" refers to a specific numerosity. (It
is no use looking at the children who only know the meaning of the word
"one", since, by either hypothesis, they are presumed to know that the higher
number words only apply in a context of a plurality of entities; so they
should in any case never point to the picture of 1 item when asked to show
the 2 items.)

For this analysis, however, we cannot include all the children who were
classified into Groups 2 and 3. This is because, in the Give-a-number task,
one of the criteria for crediting a child with knowledge of the word "three"
(for example) in the first place was that a child did not generally give 3 items
when asked for more than 3. Thus a child who always gave 3 items when
asked for 3, but who also gave 3 items frequently when asked for more than
3, would not be credited with understanding the meaning of the word "three”
and would be classified into Group 2. But by the "individual-in-a-group”
hypothesis, this child could know the precise meaning of the word "three",
and simply think that the words "four" and "five" could apply to a group of
any plurality of items, including three (this could account for her
performance on the Give-a-number task). Such a child would of course
never point to the picture of 2 items when asked to show the 3 items, since
she knows the meaning of "three". Including this child in the analysis would
then spuriously make the results look more like what the "number word"
hypothesis predicts. For this analysis, then, we must only look at those
children who by any standards did not know the meaning of the word "three"
— that is, those children who were classified into Group 2 who in the
Give-a-number task never gave 3 when asked for 3. Similarly, we must
include only those children classified into Group 3 who certainly did not

know the meaning of the word "four”, that is, who never gave 4 items when
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asked for 4.
There were a total of 25 sessions with Point-to-x data (over 10 different

children) in which children were classified as belonging to Group 2 or Group
3. Six of these sessions were excluded on the basis of the above concern; that
is, children in these 6 sessions tended to give the next-higher numerosity of
items both when asked for it and also when asked for larger numbers. This
left 19 sessions (over 9 children) relevant to the analysis. Each individual
child’s percentage of correct responses was determined over all sessions
when shown the pair (1, n+1) (where n is the Group number of the child) and
asked to indicate the n+1 items (there were two such questions for each
session). A t-test was then performed on these percentages to see if they
were significantly greater than the chance rate of 50% (the "number word"
hypothesis predicts that they should be). This was indeed the case; the mean
of children’s percentages of correct responses was 88%, well above chance
(#(8) = 5.969, p < .0001). That is, children in Group 2 know not to point to a
picture of 2 items when asked to show 3 items, and children in Group 3 know
not to point to a picture of 3 items when asked to show 4 items.

This shows that children (at least by the time they understand the word
"two") must be understanding the counting words as referring to
numerosities; this explains why then children would restrict the possible
meanings of higher number words once they learn the meaning of a
particular number word. This same argument also counters another possible
interpretation of the results -- that children believe that the words other than
"one" refer simply to any plurality, like "several” or "bunch of". Again, if that
were the case, there would be no apparent motivation for children to update
the meaning of, e.g., "three" from meaning "more than one" to meaning "more
than two" once they learn the full meaning of "two". The most explanatory
interpretation is that children do not take the counting words to refer to any

plurality, nor do they take them as referring to some property of an entity in



a group of entities. By the time they have learned the meaning of the word
"two", and possibly by the time they have learned the meaning of the word
“one”, they have already determined that the counting words each refer to a
specific, unique numerosity. This knowledge is what motivates them to restrict
the reference of each number word so that it does not overlap with the
reference of any other number word for which they have determined the full

meaning.

Comparison of performance on Give-a-number and Point-to-x tasks

If both the Give-a-number task and the Point-to-x task are valid
indicators of the number words a child knows the full meaning of, children’s
performance on the first task should predict their performance on the second;
in the Point-to-x task they should be able to precisely identify the number
that they can consis‘tently succeed at giving in the Give-a-number task, but
not a higher number. For example, children who can successfully give up to
2 items in the Give-a-number task should be able to reliably identify the
picture of 2 items when it is paired with one of 3 items in the Point-to-x task,
but not the picture of 3 items when it is paired with one of 4 items.

To test if children succeeded more often than chance at identifying
pictures of the numbers they could give in the Give-a-number task, within
each Group level individual children’s percentages of correct responses for
the relevant number pairs were determined. For children in Groups 3 and
lower, the relevant pair was (n, n+1), where n is the largest number a child
could give in the Give-a-number task. For children in Group 4, the relevant
pairs were (4, 5) and (5, 6) -- since children in this Group could generally give
all the numbers asked for in the Give-a-number task, they should be expected

children’s percentages of correct responses on all the number questions was
evaluated. For example, for a child who could give only up to 2 items in the
Give-a-number task, the relevant number pair was (2, 3), and the child’s
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responses both when asked to show the 2 items and when asked to show the
3 items contributed to the percentage. It was reasoned that a child who
knows the meaning of the word "two" should be able to not only get the
questions for 2 items correct, but also the questions for 3 items by a process of
elimination, since she knows already that "three" is a number word and
should therefore know that it refers to some numerosity other than fwo. A
t-test was performed on each Group’s percentages to see if children
succeeded at identifying the number of items they could give in the
Give-a-number task more often than the chance rate of 50%. To test whether
children failed at identifying higher numbers than they could give in the
Give-a-number task, only those sessions for Groups 3 and lower are relevant,
since the children in Group 4 could give all the numbers asked for in the
Give-a-number task. For this analysis, the relevant number pair for each
Group is (n+1, n+2). Within each Group, individual children’s percentages of
correct responses for all number questions on the relevant pair were
determined, and a t-test was computed to see if these percentages differed
significantly from the chance rate of 50%.

The breakdown of these analyses by Group level is shown in Figure 2.
As can be seen, each group succeeded more often than chance on the number
pairs that tested knowledge of the highest number they could give in the
Give-a-number task, while performing at chance on the pairs testing
knowledge of higher numbers.1® Thus, children are not succeeding at
recognizing larger numbers in the Point-to-x task than they are capable of
giving in the Give-a-number task, though they are succeeding at the numbers

they can give. This correlation is assurance that both the Give-a-number task

10For Group 1’s performance on the pair (1, 2), #(5) = 18.183, p < .0001, one-tailed. For
Group 2’s performance on (2, 3), t(8) = 10.921, p < .0001, one-tailed. For Group 3's
performance on (3, 4), t(2) = 4.000, p < .05, one-tailed. For Group 4’s performance on (4, 5),
t(10) = 6.516, p < .0001, one-tailed; for their performance on (5, 6), 1(10) = 3.491, p < .005,
one-tailed.
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and the Point-to-x task really are valid indicators of the number words a

child knows the precise meanings of.

INSERT FIGURE 2 ABOUT HERE

Sequence and time span of acquisition for individual children
Table 3 shows a "time line" for each child, indicating the Group level
each child was classified into for each session tested, and for approximately

how long a child had been in the study at each session.

INSERT TABLE 3 ABOUT HERE

First of all, it can be asked if the results of the Give-a-number task
support my previous finding (Chapter 1) that children learn the meanings of
smaller number words sequentially, and then learn the meanings of the
remaining number words within their counting range all at once, when they
learn the cardinal word principle. Two predictions follow from this
hypothesis. First, that children who succeed only at giving smaller numbers
have different numbers at which they start to fail, but children who succeed
at giving larger numbers succeed at giving all the larger numbers. Second,
that children who succeed at giving only smaller numbers do not know the
cardinal word principle, while those succeeding at giving larger numbers do

know the cardinal word principle.
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1. Do children learn the meanings of larger number words all at once?

Some children knew the full meaning only of the word "one" (i.e., could
only successfully give 1 item when asked), some knew the full meaning of
"one" and "two" (could give 1 or 2 items when asked), and some knew "one”,
"two", and "three" (could give up to 3 items when asked, but not more). But
every child who could give up to 4 items when asked (there were 11 different
children observed at this stage) could also give 5 items when asked,!! even
the 5 children who had just moved into Group 4 from a lower group. That is,
every child who knew the full meaning of "four” also knew the full meaning
of "five". Furthermore, of these 11 children, 8 were also asked to give 6 items
at the end of the Give-a-number task, including 4 of the 5 children who had
just moved up to Group 4. Six of the 8 succeeded in giving 6 items, including
3 of the 4 that had just moved into Group 4 from lower Groups (these three
came from Groups 1, 2, and 2). The 2 who failed used counting in attempting
to get the correct number, but made mistakes in their counting and so gave
the wrong number, and then got lost in a swamp of recounting and adjusting
(in the correct directions) which was hindered by further mistakes in
counting, until they finally just gave up. The fact that every child who knew
the meaning of the word "four" also knew the meaning of the word "five",
and most or all (depending on one’s interpretation of the two failures) also
knew the word "six", even those who had in the previous session only known the
meanings of the words up to "one" or "two", indicates that children do learn the

full meanings of the larger number words simultaneously, while learning the

11There was one exception to this. One child (not one of the children who had just
moved into Group 4) could give up to 4 items but failed to consistently give 5 items. She
used counting to give the number asked for, and once gave 5 correctly, but on other trials
made mistakes in her counting and, though she did adjust in the right direction, failed to
adjust the final number to exactly what was asked for and so failed by the criterion of
success laid out. The fact that she consistently used counting to solve the Give-a-number
task, and adjusted in the correct direction, suggests that she did know the counting system,
and that her difficulty with giving 5 was one of performance rather than of competence.
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meanings of smaller number words sequentially.

2. Is acquisition of the larger number words due to the cardinal word principle?

If acquisition of the cardinal word principle is what gives children
knowledge of the meanings of the larger number words, then children who
know the meanings of the larger number words should know the cardinal
word principle, while the other children should not. To test this, we can
examine children’s strategies in the Give-a-number task. In particular, if the
11 children who know the meanings of all the number words (Group 4
children) know the cardinal word principle, they should use counting when
giving items from the pile, while the 14 children in the other three Groups
should not. Figure 3 shows the mean percentages of counting aloud from the
pile by children, when asked for small (2 or 3) and large (4 or more) numbers
of items. Since there were no significant differences in amount of counting
from the pile between any of the lower Groups, results are collapsed across

them.

INSERT FIGURE 3 ABOUT HERE

When asked for small numbers of items (2 or 3), Group 4 children
counted aloud on an average of 42% of their trials, while lower-Group
children on average counted aloud on only 11%, #(23) = 2.266, p < .02,
one-tailed. When asked for larger numbers (4 or more) of items, Group 4
children counted aloud on an average of 70% of their trials, while children in

the lower Groups did so only 5% of the time on average, #(21) = 6.034, p <
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.0001, one-tailed.12 In addition, on those few occasions when children in the
lower Groups did count aloud (only 5 children did so), they usually did not
stop at the number word asked for, indicating that their counting was not
due to knowledge of the cardinal word principle. On average, they stopped
at the number word asked for only 40% of the time on those few trials in
which they counted items from the pile, while the 9 children in Group 4 who
counted aloud (the tenth always gave the correct number of items silently
one at a time, perhaps counting them in his head) stopped at the number
word asked for 85% of the time, #(13) = 3.583, p < .005, one-tailed.

It thus appears, corroborating my Chapter 1 results, that it is the
acquisition of the cardinal word principle that allows the child to determine
the meanings of the larger number words. This makes sense; there is a
wealth of independent evidence that infants and children have a means,
other than consciously counting, of precisely determining the numerosities of
sets of three or fewer items, but not higher numerosities (Antell & Keating,
1983; Chi & Klahr, 1975; Silverman & Rose, 1980; Starkey & Cooper, 1980;
Strauss & Curtis, 1981). That is, the only means children could have of
determining the exact quantity of a set of more than three items is to count it;
and they do not possess this means until they acquire an understanding of
how counting determines the numerosity of a set. The only way for them
then to learn the precise meanings of the larger number words is to
understand counting.

The longitudinal data reveal that not all children appear to make this
general induction at the same point in the number word sequence,

disconfirming my conjecture in Chapter 1 that all children make it at the

12Two of the children in the lower Groups were not asked for larger numbers because
they very consistently failed to give even three items; the analysis of counting for the
larger-number questions therefore includes only 12 of the 14 children observed at these
lower Group levels.
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same point, after learning the meaning of the word "three”. Though no
children learned the full meaning of the word "four” or higher before
learning the counting system, some children apparently learned it even
sooner. Not all the children were observed to have gone through a stage in
which they were in Group 3 — that is, at which they knew the meanings of
the words up to "three” but not higher. Three children were observed at the
Group 2 level in one session, and then at the Group 4 level in the next, having
learned the cardinal word principle already. There was even one child who
went straight from Group 1 to Group 4. It appears that different children
may follow different learning paths when acquiring the cardinal word
principle. Of course, it could be that these children did go through all stages,
but that some went through entire stages between two consecutive sessions.
At the least, then, we can say that some children very quickly pass through

these stages, while others go for months at each stage.

Time span of acquisition

The time span of acquisition appears to be an extended one. Of the 6
children who were first observed at the Group 1 level, 4 were followed for up
to 8 months each; only one of these achieved an understanding of the
counting system in that time and had gone on to be classified in Group 4 (he
did so in 5 months, and was not observed at any of the intermediate Group
levels). The other 3 had in all that time moved only to Group 2, being
observed for an average of 4 months before doing so (3 months, 4 months,
and 5 months respectively; and it is unknown how long they had already
been at the Group 1 level before the study began). The 2 who were only
followed up for 2 months did not change groups. Of the 6 children who
were first observed at the Group 2 level, 4 were followed for up to 8 months
each; of these, 3 made the transition to Group 4, taking an average of 4
months each to do so (2 months, 5 months, and 5 months respectively; again,

it is not known how long they had already been at the Group 2 level before
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the study began). Interestingly, none of these 4 children was observed at the
Group 3 level. The fourth child had just made the transition to Group 3 after
8 full months at the Group 2 level. Of the 2 children initially observed at the
Group 3 level, one made the transition in the second session to Group 4,
while the other was observed for only 2 months and did not change groups
in that time.

From this variable data, it can be estimated that children spend at least 8
to 10 months on average at the Group 1 and Group 2 levels of knowledge,
before moving on to the Group 3 and/or finally the Group 4 level, though
the time span of individual stages appears to vary extensively from child to
child. That is, it appears to take in the neighborhood of a year on average for
children, after already knowing the meaning of at least one number word, and
knowing that the number words refer to numerosities, to learn the cardinal
word principle -- that is, to understand the way in which the counting system

represents numerosity.

Performance on the How-many task

How does children’s performance on the How-many task change as their
performance on the Give-a-number and Point-to-x tasks reaches the Group 4
level? In particular, are children more likely to give the last word used in the
count when asked "how many" following counting once they have acquired
the cardinal word principle than before they have acquired it? One would
expect this to hold if the How-many task is a reliable indicator of children’s
understanding of the cardinal word principle; but there are reasons why it
might not be so. First of all, children will often recount a set of items when
asked "how many" following counting. Recounting the items in such a
situation is, in fact, one quite adequate means of indicating their numerosity
— indeed, one way of asking a child to count some items in the first place is to
ask how many there are. Thus children may perfectly well understand that

the last number word indicates the numerosity of the set, but prefer to
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indicate how many there are by counting again instead. On the other hand,
when counting is modeled for children by parents, teachers, and so on, the
last number word in the count is often emphasized and repeated. Adults
will often count items and then say "So how many are there? There are
three!" Children might then learn to give the last number word in response to
a "how many" question, but without knowing that it indicates the numerosity
of the items counted.

In Chapter 1, I found a significant difference in the percentage of
last-word responses following counting between those children who knew
the cardinal word principle, and those who had yet to learn it -- the former
gave more last-word responses than the latter. This result was first obtained
in Experiment 1, and then replicated in Experiment 3. To see if those results
replicate in this study, the relevant analysis is to look at children’s
performance on the How-many task for their initial session only, since my
previous experiments were not longitudinal -- each child was tested only
once. Individual children’s percentages of responses which were last-word

responses were computed; the means for each group are shown in Figure 4.

INSERT FIGURE 4 ABOUT HERE

As can be seen, children who understood the counting system -- those
children in Group 4 -- did give more last-word responses than did the other
children. Their mean of 57% is significantly larger than the mean for the
other three Groups combined (16%), (18) = 2.441, p < .02, one-tailed. Thus,
the finding that children who understand the counting system (as
determined by their performance on the Give-a-number task) tend to give

more last-word responses when asked "how many" following counting is a
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robust one.
However, when individual children are looked at over time, it becomes

evident that the How-many task should not be considered a defining criterion
of a child’s understanding of the counting system. Five of the 14 different
children observed in Groups 1 to 3 began giving last-word responses a
majority of the time before entering Group 4. The predominant pattern (4 of
the 5 children) was to give 0% to 20% last-word responses for the first 3 or 4
sessions, and then to suddenly start giving 60% to 100% last-word responses
in all successive sessions. These children thus appeared to have learned a
"last-word rule" (that is, to respond with the last word without
understanding its significance) at some point before acquiring an
understanding of the cardinal word principle. This accords with previous
findings (e.g., Fuson, 1988; Chapter 1) that some children learn that the last
number word is important in some way before learning how it is so.
Conversely, 4 of the 11 children observed at the Group 4 level did not give
last-word responses a majority of the time — in fact, did not give any
last-word responses, but instead consistently recounted the set when asked
"how many". So some children who have acquired an understanding of the
cardinal word principle prefer to indicate the numerosity of a set by counting
it, even if they have already just done so.

What about those children observed both at lower Group levels and then
later at the Group 4 level -- did their percentage of last-word responses on
the How-many task increase when they acquired an understanding of the
counting system? There were 5 children who were followed through their
entry into the Group 4 level of knowledge. Each of their percentages of
last-word responses immediately before and after entering the Group 4 level
was determined, and the difference between these two percentages was
calculated. A t-test was then performed on these differences to see if they

were significantly greater than zero. This was indeed the case; their mean
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percentage of last-word responses before entering Group 4 was only 8%,
while their mean percentage after entering Group 4 was 44%, for a mean
increase of 36 percentage points (#(4) = 2.250, p < .05, one-tailed. These
children on average, then, did increase their percentage of last-word
responses significantly after learning the counting system. However, this
result was due entirely to 3 of the 5 children, who followed the same pattern
as did those children not in Group 4 who had acquired a "last-word rule".
Acquiring an understanding of the counting system, then, did seem to
precipitate these three children’s increase in last-word response rates. The
other two children, however, continued to give no last-word responses at all,
preferring instead to recount the items in response to every "how many"
question, as they had done in previous sessions.13

The How-many task is therefore not as reliable an indicator of whether
individual children understand the counting system as are the
Give-a-number and Point-to-x tasks. Although a high proportion of
last-word responses is correlated with an understanding of the counting
system, and in some children does seem to be precipitated by their
acquisition of the cardinal word principle, it can also occur independently.
Strong conclusions should therefore not be made about children’s

understanding of counting on the basis of this task alone.

Summary
In sum, then, the results of this study show (a) that children learn the

number words sequentially up to the words "two" or "three”, and then

131t is possible that these two children had experienced the How-many task enough times
with the experimenter that they had made a routinized game of it, and so continued to give
the same kind of response they had given before learning the counting system; they were
each tested at lower Group levels for 3 sessions before entering Group 4. In contrast, the 3
children whose percentages increased had been tested for only 1 or 2 sessions before
reaching Group 4 and had perhaps not become as accustomed to responding in a certain
way.
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acquire the cardinal word principle, which allows them to determine the
meanings of the larger number words; (b) that children know that the
number words refer to specific numerosities at a very early stage of counting
(that is, by the time they know the meanings of the words "one" or "two");
and (c) that, despite this early knowledge, it takes children a surprisingly
long time (on the order of a year) to learn how the counting system

represents number.

General Discussion

Components of meaning of the number words

It's an interesting question how children come to know so early that the
counting words are number words. However children are managing this is
the key to how they are solving the learning problem described in the
introduction -- how they are able to learn that the number words refer to
some property of sets of entities, rather than to some property of individual
entities. Knowing that children learn this so early can help point to how
children are in fact achieving this.

One possibility is that children induce from the syntax of the number
words that they pertain to quantity. This is known as syntactic
bootstrapping, a theory developed by Gleitman and colleagues (e.g.,
Gleitman, 1990). Studies have shown (e.g., Naigles, 1990) that children as
young as 18 months can infer some semantic properties of novel words from
the syntactic frames they occur in. These studies showed that children infer a
novel verb to refer to either a transitive or intransitive action depending on
whether it is presented in a transitive or intransitive frame. Closer to home,
children have also been shown to infer the meaning of a novel noun in part
on the basis of whether it appears with a determiner (the article "a") or not
(Katz, Baker, & Macnamara, 1974). In this case, children who were shown a

doll and told "This is Wug" took the word to be the proper name of the doll,



while children told "This is a wug" took the word to refer to the kind of
doll.14 Thus it is possible that the number words’ syntactic status as
determiners may give children information about their semantics. If this is
so, it raises intriguing questions about the knowledge 2-year-olds may have
of the semantic properties of determiners. The hypothesis that young
children use syntactic properties of the number words to determine their
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semantics hinges on four assumptions:

1. There is a reliable relationship between the syntax and the

semantics of determiners -- that is, determiners must have some
group of syntactic properties not generally shared by other parts
of speech, and they must also have a common semantics at least
at some level, so that it is possible to predict (with at least a fair
degree of success -- the correlation need not be 100%) the
semantics of a word simply by knowing that it has the syntax of

determiners.

.Children are sensitive to these syntactic properties by 2-1/2

years of age -- that is, they must be able to pick out the class of

determiners from their syntax.

. Two-and-a-half-year-olds are also sensitive to the semantics of at

least some determiners, so they have the information necessary

to infer the semantics of a novel determiner from its syntax.

4. Two-and-a-half-year-olds are able to determine that number

words belong to the syntactic class of Determiner.

14The same distinction did not occur when children were shown decorated blocks
instead of dolls, however; in this case, they always took the novel word to refer to the kind
of item, showing that children are sensitive to the conditions in which proper names can

apply.



nhumerosity. Below, | briefly discuss what evidence there is to date for each

of the above four points.

1. Determiners share g common syntax and a common semantic role

This assumption seems well-founded. First of all, determiners have a
defining set of Syntactic properties. They can only come before nouns or
adjectives, not after them, Some can also appear as noun phrases in their
Own right, unlike adjectives (e.g., "I want three", " want that"). Also unlike
adjectives, a determiner (and only a determiner) muyst appear before a
singular count noun, for example, "A/the/this/that/sohze/one/another/no dog bit
the mailman" 15

Determiners are intricately linked up to quantification; the majority of
determiners obviously pertain to quantity, such as "some", "all", "both",
"many”, "much”, "little" (as in "a little bit"), "few/a few", "lots", "another", and
the number words. Furthermore, "a", one of the most common determiners
in young children’s utterances, can only be used to pick out a single
individual (similarly "another"), while "these”, "those”, "both", "all", and "3

15of course, not all determiners can fill this role — those that are limited to Plural count or
mass nouns (“all”, “poth", “many”, "much”, “thesefthose", "few/a few", "lots", etc.) obviously
cannot precede a singular count noun.
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2. Children'’s sensitivity to the syntax of determiners

This assumption too has strong independent evidence. Gordon (1987)
and Valian (1986) have shown that even 2-year-olds have knowledge of the
syntactic category Determiner. Valian (1986) analyzed speech transcripts of 6
children, and found that children as young as 24 months of age honored the
word ordering of determiners relative to nouns, adjectives, or pronouns; in
children’s utterances, determiners never followed these parts of speech.

Gordon (1987) further found that not only do children preserve the word
ordering of determiners relative to adjectives, but they also distinguish
between the two categories, contrary to the claim, proposed by Brown &
Bellugi (1964), that children consider both adjectives and determiners to
belong to a single category, "modifier".1® Gordon analyzed speech
transcripts of 2 children and found that, for children as young as 24 months,
in utterances where the noun was either a mass noun or plural count noun
(when a determiner is optional), the production of an adjective decreased the
likelihood of production of a determiner, but in utterances where the noun
was a singular count noun (when a determiner is obligatory), production of
an adjective did not decrease the likelihood of production of a determiner.
The children evidently knew that a determiner (but not an adjective) is
necessary before singular count nouns, and not before plural count or mass
nouns. If young children considered adjectives and determiners to belong to
the same category "modifier", then when they learned that singular count
nouns cannot appear alone but must be accompanied by a modifier, either an

adjective or a determiner should do the trick. But the presence of an

16Note that simply preserving an ordering between two sets of words does not mean that
they belong to different syntactic categories; among adjectives, some always come before
others. We always say "the sweet little black puppy", never "the little black sweet puppy"
or "the black little sweet puppy"; see Bever, 1970.
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adjective in the child’s utterance does not reduce likelihood of a determiner
when a determiner is obligatory; ergo, the child does not consider adjectives
to be fulfilling the same linguistic function as determiners. Thus, children

clearly are sensitive to the syntax of determiners.

3. Children’s sensitivity to the semantics of determiners

This claim too has some support. What must be shown is that there are
determiners that 2-1/2-year-olds know pertain to quantity and so could use
as a basis for inferring that other, unknown, words, possessing the same
syntactic properties, also pertain to quantity.

Gordon’s (1987) paper discussed above shows that children are sensitive
to the relationship of determiners to quantity; children knew that a
determiner was obligatory before singular count nouns, but not before plural
count or mass nouns.

In one experiment, Soja (1990) showed that children understood some of
the quantificational semantics of the determiners "a" and "some". There were
two conditions relevant to this discussion. In the "matching syntax"
condition, children were shown a novel object and told "this is a blicket". In
the "conflicting syntax" condition, children were shown the same object and
told "this is some blicket" and "this is blicket". Then, children were shown
two new displays; one of a novel object with the same shape as the original
but of a different substance, and one with three pieces of the same substance
as the original object, where the pieces had a haphazard shape. Children
were asked, in neutral syntax, "which is the blicket?" In both cases there was
a tendency to pick the individual object. However, children in the conflicting
syntax condition had a greater tendency to choose the three pieces than
children in the matching syntax condition. There are two possible
explanations for this. Either in the conflicting syntax condition the presence
of the word "some" caused them to choose the several pieces more than they

otherwise would have, in which case we can conclude that they knew that
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"some" is used when referring to pluralities or substances; or in the matching
syntax condition, the presence of the word "a" caused them to choose the
individual object more than they otherwise would have, in which case we
can conclude that they knew that "a" is used when referring to singular
individual entities. Both explanations may be true. Either way, these results
show that for one or the other or possibly both of the determiners "a" and
"some", children are aware of the aspects of quantification that apply to them.

Furthermore, data obtained by Soja in several experiments (Soja, 1990;
Soja, Carey, & Spelke,in press; Soja, personal communication) suggests even
more strongly that young children are sensitive to the singularity/plurality
restrictions of certain determiners. She elicited quasi-spontaneous utterances
of 96 2- and 2-1/2-year-olds by reading them stories during which they were
asked such questions as "what is this?" or "what is that green stuff?" about
pictures of various singular count, plural count, and mass noun items
depicted in the stories.1” It was found that when children’s replies included a
singular count noun, 32% of the time they accompanied the noun with the
determiner "a", while in their responses with a plural count or mass noun, the
determiner "a" accompanied the noun only 3.7% of the time. The children
evidently knew that "a" describes single items, not pluralities (or substances).
A similar story obtains for the words "this", "that", and "some", though they
were in general more rarely produced; in children’s utterances containing a
singular count noun, 1.5% (a total of 118 out of 7798 utterances) were
accompanied by the determiner "this" or "that", while only 0.5% (18) of the
3257 utterances containing a plural count noun or mass noun were

accompanied by either of these determiners. In addition, 5% (70 out of 1410)

171 am very grateful to Nancy Soja for sharing this data with me. Data for 72 of the
children are presented in Soja et al. (in press); data for another 12 children are presented in
Soja (1990); data for the remaining 12 children are unpublished. Data for all 96 children are
collapsed together for the discussion here.
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of their utterances containing a plural count noun were accompanied by the
determiner "some" (as well as 4% of their utterances containing a mass noun),
compared to only 0.5% of their utterences containing a singular count noun.
These percentages suggest that these 2- and 2-1/2-year-olds knew the
semantics of "a", "this", "that", and "some" — which ones are restricted to
single items, and which to pluralities of items and substances.

It might be objected that these numbers are a result of the fact that a
determiner is obligatory for singular count nouns, but not for plural count or
mass nouns. Thus, children were more likely to accompany their singular
count utterances with "a", "this", or "that" than their plural count or mass
noun utterances, not because they knew that these determiners select for
singularity, but because they know they must put some determiner there. It
must first be noted that this cannot in any case explain the results for "some”,
since they were ten times more, not less, likely to use "some" with plurals than
with singular count nouns. But there is a stronger reason to reject this
explanation, and that is that children were equally likely to use the determiner
"the" whether before a singular count, a plural count, or a mass noun. Ten
percent of children’s singular count nouns were accompanied by "the”, in
comparison to 9% of their plural count nouns and 7% of their mass nouns.
Thus, they showed no general tendency to use a neutral determiner with one
kind of noun as opposed to another kind. We must then assume that any
preference to use the selective determiners with certain kinds of nouns and

not others is due to a sensitivity to the kinds of nouns they select for.

These data indicate that children as young as 2 years of age know for
several determiners that they pertain to quantity, and so they have a basis
upon which they could infer that novel words with the same syntactic

properties as these words might also refer to quantity.
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4. Children’s knowledge that the number words are determiners

The above studies either did not include number words at all, or did not
separate out the number words from other determiners, so it cannot be
concluded at this point that young children know that the number words are
determiners. But they do know the syntactic properties of determiners, and
it is plausible that, in hearing number words produced according to all the
syntactic constraints of determiners, children categorize these words as
determiners. Like all determiners, number words always come before nouns
and adjectives, and can appear as NPs (e.g., "I want three", "I want that").
"One" can take the place of the determiner in constructions in which children
know a determiner is obligatory (e.g., "one dog"). Children may be able to
capitalize on these regularities and infer the grammatical category of the

number words.

Even once all the above points have been supported, there is still another
question -- how do children know not only that the number words pertain to
quantity, but that each one, unlike other determiners, refers to a specific,
unique numerosity? In this task, both the syntax of number words and the
contexts in which they are used may play a crucial role. They are first of all
used to describe pluralities of items, never a single item (except for the word
"one", for which the opposite holds). Second, they are never applied to mass
nouns such as substances, but only to count nouns. This could tell children
that they have something to do with discrete items. If children already know
from their syntax that they pertain to quantity, this could then tell them that
the number words relate to the quantity of discrete items. This, of course,
does not yet distinguish them from determiners such as "many”, "a few",
"fewer" and "both", all of which also apply only to the quantity of discrete
items. Here, only context will be able to distinguish them. Imagine a case
where a child is sitting at the table, and takes some cookies off a plate. A

parent then leans over and says "No, you’re not allowed to have three
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cookies, just two", while removing one cookie from the child’s plate. Here,
the child has seen one number word applied to a set of discrete entities, and
has also seen a (very salient) operation performed on the set effecting the
smallest possible change in the numerosity, followed by the application of a
different number word. Situations such as this might help the child infer that
even for very small changes in numerosity, new number words must apply,
and therefore that they do not apply to vague, indeterminate amounts as do
words such as "many", "a few", and "some". Learning this for a few of the
number words would likely allow the child to infer this about all the number
words in general; there is independent evidence that 2-1/2-year-olds know
that the counting words all belong to a single class. For example, when
asked "how many" of something there are, they will almost always respond
with a number word or words rather than with other words (e.g., Gelman &
Gallistel, 1978; Fuson, 1988; Chapter 1). Furthermore, they know the list of
number words for counting (up to some limit); the number words occur
together in this list so children might reasonably be expected to infer that
general properties of some of the number words might apply to the rest as

well.

Time span of knowledge acquisition

The findings of this study suggest that children do have difficulty
learning the counting system. It appears to take them almost a full year or
perhaps longer, after knowing that the number words refer to numerosities,
to learn which words refer to which numerosities; that is, to learn how the
counting system represents numerosity. This suggests that children may
have difficulty in mapping their own representation of numerosity onto the
counting activity, and indicates that young children’s concept of number
may take quite a different form than the way number is represented in the
counting system. Below, I discuss one possible way in which infants” and

young children’s representation of number could be different from that
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embodied by the counting system.

There is a wealth of evidence that animals represent number, and that
their representation may be embodied in an analogue form. If this is indeed
the case, it is quite likely that humans, too, are equipped with such a
representation of number. Counting, however, represents number in a
crucially different way than do analogue mechanisms; this could make it a
difficult process to map an analogue concept of number onto counting.

To fully explore this possibility, it is worth going, in some detail, into the
literature on numerical abilities of animals. I shall first summarize some of
the most intriguing and suggestive empirical results, then describe an
empirically supported model of the animals’ quantification mechanism
which embodies an analogue representation of numerosity, and finally
discuss the ways in which such a mechanism differs from counting in its
representation of number. If animals as disparate as rats, pigeons, raccoons,
parrots, canaries, and chimpanzees (the kinds in the experiments below)
possess such a representation of numerosity, it is reasonably likely that
humans also come equipped with a similar such representation. This would
then lend plausibility to the claim that children’s difficulty in learning the
counting system may be due to differences between an inherent analogue
representation of number and the explicit representation of the counting

system.

Animals’ numerical abilities

Many fascinating results have been obtained in studies of animals’
sensitivity to number (for a stimulating and detailed overview and
discussion of the literature, see chapter 10 of Gallistel, 1990; see also Davis &
Perusse, 1988). First of all, rats are able to determine the number of presses
they have pressed on a lever, up to at least 24 presses, as in the following
experiment: In a paradigm developed by Mechner (1958), rats were trained to

press two levers in order to obtain a food reward, with the following reward



109

schedule. On some percentage of the trials, after n presses on Lever A occur,
a press on Lever B will yield a food reward, with a fixed penalty for pressing
Lever B too early (the counter on Lever A is reset to zero). On the remaining
trials, the n+1th press on Lever A will yield the reward. The rat, of course,
does not know which kind of trial it is running on any given trial. By
varying the percentage of trials on which switching to Lever B is necessary to
obtain the reward, one can vary the extent to which the rat is willing to
gamble that it might be pressing Lever B too early (when nearly all the
rewards come by making an n+1th press on Lever A, the rat will make quite
certain that it has pressed more than n times on Lever A before switching to
Lever B; when the reward is always obtained by pressing Lever B after n
presses on Lever A, the rat will be more willing to risk an early switch to
Lever B in the hope of avoiding useless presses on Lever A). Of most interest
to us are the rats’ responses on the trials when they must switch to Lever B in
order to obtain the reward, because these trials reveal their judgements about
when they have pressed a sufficient number of times on Lever A. On these
trials, it turns out that the rats’ median number of presses on A is n plus
some constant number of presses, independent of the value of n. The
percentage of the time they must switch levers to get the reward determines
how many extra presses they give; when they must switch to Lever B 50% of
the time, rats’ median number of presses on A were 3 more than n, regardless
of whether n was 4 or 24 (a higher percentage of rewards on Lever B yielded
a lower number of presses on A, and vice-versa). This shows that rats can
determine quite accurately when n presses have been achieved.
Furthermore, the results show that the rats are not simply timing how long
they press on Lever A, and then going for Lever B after a fixed amount of
time has passed. When rats are trained to press for a specific amount of time
on Lever A before going to Lever B, their response is to press some extra

proportion of the required time interval. That is, they will press, say, 10%
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longer than necessary (the actual percentage will vary with the percantage of
time they must switch levers to obtain the reward); if the required time is 10
seconds they will press for 1 additional second on Lever A, whereas if the
required time is 50 seconds they will press for an additional 5 seconds. If,
then, the rats were using a timing strategy when rewarded for a specified
number of presses on A before going to B, their responses should tend to be
(roughly) some proportionate number greater than n, not a constant number
greater. As well, when rats’ deprivation before being run was varied, rats
pressed much more quickly with increased deprivation, significantly
decreasing the time spent on a trial under these conditions, but making no
appreciable change in the number of presses (Mechner & Guevrekian, 1962).

Rats have also been trained (Davis & Bradford, 1986) to turn down the
third, fourth, or fifth tunnel on the left in a maze, and will do so even when
the spatial configuration of the maze is different each time, where the
distance between the tunnels, and the number of corners that must be turned
before the 5th tunnel on the left is reached, is varied. Again, rats could not
simply be running for a fixed length of time before turning left, or
determining the extent to which they felt fatigued by the run, etc. They must
have been encoding the numerosity of the tunnels on the left in order to
succeed at the task. Furthermore, training effects were extremely robust -
following inactive periods of 12 or in some cases even 18 months, successful
performance was still found.

Pigeons have been trained to determine the number of pecks given to a
key, for up to 50 pecks (the most tested). In this experiment, there were three
keys, and the pigeon was to peck at the center key until its light went out and
the other two keys lit up. The experimenter determined when this happened
— either after 50 pecks, or after some smaller number of pecks that varied. To
obtain a reward, the pigeon had to peck the right key if it had given 50 pecks

at the center key, and the left key if it had given a smaller number of pecks at
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the center key. It was found that the pigeons did not fall below 60% correct
in their choice of key until the alternate number reached 47; that is, they were
capable of discriminating 47 pecks from 50 pecks just under 60% of the time.
They discriminated 40 pecks from 50 pecks about 90% of the time (Rilling &
McDiarmid, 1965). Further experiments (Rilling, 1967) revealed that the
pigeons were using number of pecks as the determinant, not time interval of
pecking that elapsed before the center key’s light went off.

Raccoons have been shown to discriminate between small numerosities
of objects, as in the following experiment (Davis, 1984): A raccoon was
repeatedly presented with as many as 5 plexiglass cubes, each containing
between 1 and 5 objects. In the training phase, these objects were first grapes,
then raisins, and finally toy bells. The raccoon was trained to always identify
and open the cube containing 3 such items. Non-numerical cues such as size,
stimulus density, odor, and location of the target cube were controlled for.
The raccoon was able to learn this task, and the results easily transferred to
novel stimuli (small metal balls). This study is interesting because it involves
an animal quantifying over a set of simultaneously presented discrete objects,
rather than over events. There are two main differences that fall out from
this. First, the pigeons’ pecks and the rats’ bar-presses are all temporally
sequential, physical events of the animal; similarly, in the Davis and
Bradford (1986) experiment where the rats had to always turn down, say, the
5th tunnel, it could have been the 5th "reaching-a-tunnel-on-the-left" event
that was the relevant one. But the ability to reliably distinguish a group of 3
objects from groups of 1 to 5 objects cannot rest in any way on some internal
event-state of the raccoon itself; it must rest solely on the properties of the
groups of items (their numerosities in particular). Second, the pigeon and rat
experiments described above may have tapped a sensitivity to the ordinality
of an event - its position in a sequence of events -- while this experiment

showed a sensitivity to the cardinality of a set of entities. At any rate, this
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experiment shows that animals’ ability to determine numerosity applies to
more than just a single form of presentation of entities.

Animals other than raccoons have also been shown to distinguish
different numerosities of simultaneously presented objects. Matsuzawa
(1985) trained a chimpanzee to associate Arabic number symbols with
discrete numerosities of objects, for the numbers 1 through 6. When
presented with a set of a certain numerosity, the chimp had to pick out the
correct symbol. The chimp was trained on red pencils, and the results
generalized to several other items, blue gloves being one example.

An ability to discriminate different numerosities of objects has been
shown in birds as well as in mammals. Pepperberg (1987) trained an African
Grey Parrot to say the appropriate number word when presented with up to
5 objects; the parrot was shown to succeed when presented with novel
objects as well as trained objects. In a most interesting experiment, Pastore
(1961) trained canaries to select an object based on its ordinal position in an
array. Out of 10 partitioned cubicles along a runway, the canaries had to
walk along the runway and choose the cubicle that held either the fourth or
the fifth aspirin. The ordinal position of the cubicle containing the relevant
aspirin varied from trial to trial, to rule out any regularity of distance from
the starting point as the basis of the birds’ choices. Even more impressively,
to control for the possibility of the birds’ using rythm as the basis of their
judgements rather than ordinal position, different numbers of aspirins were
placed into each cubicle on different trials as well. Thus, both the space
between baited cubicles and the number of baits per cubicle varied. The
birds were clearly succeeding on the basis of ordinal position in a visual
series.

Humans, too, have some automatic, unconscious means of determining
the absolute and relative frequencies of events. Studies have shown this for

different entities, including letters, words, colors, and even different kinds of
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lethal events (e.g., Attneave, 1951; Hasher & Zacks, 1979; Hintzman, 1969;
Lichtenstein, Slovic, Fischoff, Layman, & Combs, 1978; Lund, Hall, Wilson, &
Humphreys, 1983; Shapiro, 1969). It seems likely that we are born with a
mechanism that computes event frequency (Hasher & Zacks, 1979). If so, this
would plausibly be the same kind of mechanism that underlies other

animals’ numerical abilities.

An analogue model of the mechanism underlying animals’ numerical abilities

These results indicate that all manner of vertebrates have some
mechanism that determines numerosity. For rats and pigeons in particular,
an ability to determine quite high numerosities (up to at least 24) has been
shown. There is some very interesting data indicating that this quantification
mechanism may embody an analogue representation of number. Meck &
Church (1983) suggest that the same mechanism underlies both animals’
ability to determine numerosity, and their abilify to measure duration.
Briefly, their proposed mechanism (based on on a model for measurement of
temporal intervals developed by Gibbon, 1981) works as follows: a
pacemaker puts out pulses at a constant rate, which can be passed into an
accumulator by the closing of a mode switch. In its counting mode, every
time an entity is experienced that is to be counted, the mode switch closes for
a fixed interval, passing energy into the accumulator. Thus the accumulator
fills up in equal increments, one for each entity counted. In its timing mode,
the switch remains closed for the duration of the temporal interval, passing
energy into the accumulator continuously at a constant rate. The final value
in the accumulator can be passed into working memory, and there compared
with previously stored accumulator values. In this way the animal can
evaluate whether a number of events (e.g., runs through a maze, presses of a
lever, tunnels on the left side of a maze, etc.) or the duration of an interval is
more, less, or the same as a previously stored number or duration that is

associated with some outcome, such as a reward. The mechanism has several
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switches and accumulators, and so can operate in both modes
simultaneously, and time or count several temporal durations or sets of
stimuli simultaneously.

Evidence that the same mechanism underlies both animals’ timing
processes and their counting processes comes from several sources. First of
all, there is a striking similarity in the psychophysical functions for the
discrimination of duration and the discrimination of numerosity. Second,
amphetamine, known to increase rats’ estimates of duration, increases their
measure of numerosity by the same factor, strongly suggesting that it is the
same mechanism being affected. The effect would be caused in the model by
amphetamine causing an increase in the rate of pulse generation by the
pacemaker, leading to a proportionate increase in the final value of the
accumulator regardless of the mode in which it was operating. Third, both
numerical and duration discriminations transferred to novel stimuli equally
strongly, when rats were trained on auditory stimuli and then tested on
mixed auditory and cutaneous stimuli. Finally, there are results from an
elegant experiment which directly tested the claim that both numerical
discriminations and duration discriminations are based on the same variable
- the output value of the accumulator.

The reasoning for this experiment went as follows: if the animal's
decision is based on the result of a comparison of the final value of the
accumulator with a previously stored value of the accumulator, then, since
the accumulator simply spits out a "fullness value”, regardless of whether it
is in timing or counting mode, one might expect there to be immediate
transfer from making an evaluation on the basis of the output of the timing
process, to making an evaluation on the basis of the output of the counting
process, so long as the final output value of the accumulator in the two cases
is identical. For example, a count that yielded the same final value in the

accumulator as a previously trained duration might be responded to as if it
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were that duration. Their previous results had shown that rats habitually
both counted and timed the stimuli they were exposed to. Rats were initially
trained to press one of two levers when the shorter of two sounds (2 seconds)
was heard, and the other lever when the longer (4 seconds) sound was heard.
On previous pilot studies, Meck and Church had determined that the length
of time for which the switch was closed for each entity when in the counting
mode was 200 milliseconds. This should mean then that the value of the
accumulator after counting 10 events should equal the value resulting from
timing 2 seconds (10 events times 200msec per event = 2sec); and the value
after counting 20 events should equal that resulting from timing 4 seconds
(20 times 200msec = 4sec). Accordingly, in the test phase they gave rats,
instead of a single sound stimulus of either 2 or 4 seconds’ duration, a series
of either 10 or 20 sound stimuli of 1 second’s duration each (for a total of
either 20 or 40 seconds’ duration). The prediction held; when exposed to the
sequence of 10 sounds, the rats chose the lever for the 2-second duration,
while preferring the other lever in response to the sequence of 20 sounds.
(Note that for both these sequences, the total duration was closer to that of
the 4-second sound than that of the 2-second sound, so if the rats were
choosing on the basis of duration, they should have chosen the 4-second
lever for both sequences.) Meck and Church concluded that it was indeed

the same mechanism underlying both counting and timing processes in rats.

The data supporting the proposed animal mechanism strongly suggest
that at least rats, and most plausibly mammals or vertebrates in general (we
know pigeons, chimpanzees, raccoons, parrots, and canaries must also have
some representation of number) are innately equipped with some kind of
analogue representation of number. So too may infants be equipped with an
analogue "counting” mechanism. One might ask why, if infants possess a
similar mechanism for determining numerosity, can they discriminate only

up to 3 versus 4 at most, while in many of the experiments reviewed above
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animals showed an ability to determine much higher numerosities. This
could well be due to the different nature of the experiments, rather than to
any difference in infants’ versus animals’ representation of number. In the
infant experiments, infants were presented with a simultaneous visual
display of objects (Antell & Keating, 1983; Starkey & Cooper, 1980; Strauss &
Curtis, 1981). In experiments in which animals were presented with similar
stimuli, notably the experiments with the chimpanzee (Matsuzawa, 1985), the
canaries (Pastore, 1961), the parrot (Pepperberg, 1987), and the raccoon
(Davis, 1984), the numbers involved were quite small, going up to four or
five at most. Infants have not been tested on their ability to encode precise
numerosities of sequential events, other than for very small sets of sounds
(Starkey et al., 1983, in press) -- it is in experiments involving such events that
animals’ impressive sensitivity to larger numbers has been shown.

Thus there is no conflict between the results found with human infants
and those found with animals; humans may well initially possess the same
kind of representation for number as do the animals in the above
experiments. Below, I will discuss the ways in which such a representation
of number differs from the way in which counting represents number, and
therefore why it could be so difficult for children to learn the counting

system.

Differences between analogue representation of number and counting

When in the counting mode, Meck and Church’s (1983) proposed
mechaninsm embodies the counting principles in the following way: there is
a one-to-one correspondence between entities to be counted and increments
of the accumulator; the states of the accumulator are arrived at in a stable
order from count to count (the accumulator always reaches the level of two
increments before it does that of three increments); and the final state of the
accumulator represents the numerosity of the items counted. In this sense, it

is a counting mechanism.
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Nonetheless, this mechanism represents numerosity in a very different
way than do the number words in linguistic counting. The final increment of
the analogue mechanism cannot by itself represent a numerosity; it is the
entire fullness of the accumulator that represents the numerosity of the items
counted. In linguistic counting, the final word alone represents the
numerosity of the items counted; it can do this because it is distinguishable
from the other words.18 Thus, in the proposed animal mechanism, number is
inherently embodied in the structure of the representation, which is itself a
magnitude value (the output value of the accumulator), while in counting
number is not inherently represented in the structure of each individual
symbol.

Each number word obtains its precise meaning by virtue of its ordinal
position in the number word list. Thus the ordinality of the number words is
the key to the system of their representation of number. They represent
cardinalities with a system that does not directly reproduce, but is analogous
to, the inherent relationships among the numerosities. The numerosities bear
relationships to each other in their cardinality that are exactly analogous to
the relationships their linguistic symbols bear to each other in their ordinality.
The numerosity ten is five times larger than the numerosity two; its linguistic
symbol occurs five times later in the number word list than does that for the
numerosity two. The numerosity seven is three units larger than the

numerosity four; the linguistic symbol for seven occurs three positions later in

180f course, all the words together could also represent the numerosity of the items
counted; we can also use linguistic counting as an analogue machine — but then there
would be no need to order the words stably from count to count, or to have them differ
from each other. Consider the story of the ancient Mesopotamian shepherds who kept a
pile of pebbles, as many pebbles as sheep, and put one pebble aside for each sheep that
came into the fold at night to determine if all the sheep were there or if some were missing.
There was no need to order the pebbles in a consistent fashion; the entire pile together
represented the number of sheep in the flock. Similarly, no individual pebble represented
any particular numerosity (other than the numerosity 1).
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the number word list than the linguistic symbol for four. In an analogue
representation, the symbols for the numerosities bear exactly the same
relationship to each other as do the numbers themselves; the representation
for ten is itself five times larger than the representation for two; the
representation for seven is three units larger than the representation for four.
What children must learn when they learn the counting system is that
specific quantities are represented by symbols that do not themselves bear
the same magnitudinal relations to each other as do the quantities they
represent. Children must implicitly make the analogy between the
magnitudinal relationships of their own representations of numerosities, and
the positional relationships of the number words. Discovering an analogical
relationship between two sets of symbols is surely not a trivial process. The
only wonder is that it takes children only a year to achieve this.

It is crucial to note that this proposal is quite distinct from claims that
have been made (Cooper, 1984; Strauss & Curtis, 1984) that infants do not
know that the numerosities themselves are ordered (e.g., they do not know
that one is smaller than two, two smaller than three). They may know all this
perfectly well. In fact, if infants represent each numerosity in a way that
preserves that numerosity’s own magnitude relative to other numerosities, as
the proposed animal mechanism does, then there is strong reason to think
that they do possess ordinal knowledge of numbers, since their
representation of number inherently encodes the information that one is less
than fwo, and so on. But just knowing the precise numerical relationships
that numerosities bear to each other, and hence knowing that they can be
ordered in terms of their sizes, is very different from representing or defining
each numerosity by a system that works on an analogy to ordering the
numerosities in terms of their sizes. Indeed, knowing that the numbers can
be ordered would seem to be a prerequisite to coming to grips with such a

system.
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Summary: The learning story

So how do children learn the meanings of the number words, and learn
the counting system? Very early on, children learn that the counting words
refer to numerosities. I have attempted to sketch out how the syntax of the
number words could help children achieve this; children know the syntax of
determiners, and know that at least some determiners pertain to quantity.
This gives them a basis on which to infer that novel words possessing the
syntax of determiners, such as the number words, might also pertain to
quantity. Because we appear to either be born with, or else develop very
early on, the ability to discriminate numerosities up to 3 or 4 (Antell &
Keating, 1983; Starkey & Cooper, 1980; Starkey et al., 1983, in press; Strauss &
Curtis, 1981), children have a means, other than linguistically counting, of
precisely quantifying small sets of items. This means could well be an
analogue mechanism for determining numerosity. Because they already
know that the words "one", "two", and "three" refer to numerosities, having an
independent, precise quantification mechanism for small numbers makes it
possible for children to directly map these words onto their correct
numerosities. It is "simply” a matter of observing the environment in order
to make the correct mapping; they learn to associate each word with their
mental representation of its numerosity. But it takes a long while (about a
year) for the child to recognize the pattern behind this mapping -- that each
successive word in the number word list goes with a value of the
quantification mechanism resulting from one successive increment. This
could be due to the differences between the two kinds of representations --
children must discover the analogy between the cardinal relationships of
their own initial representations of numerosities, and the ordinal
relationships of the number words.

As to precisely how this is accomplished, the results of this experiment

did not shed new light beyond what was hypothesized in Chapter 1 (also by
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Klahr & Wallace, 1973; Schaeffer, Eggleston, & Scott, 1974); namely that once
children have some of the smaller numerosities mapped onto the correct
number words, when counting sets of items with these numerosities, they
come to notice that the last word in the count is reliably the word for the
numerosity of the set. Once they notice this regularity, they understand the
cardinal word principle, and so learn how the counting system represents
numerosity. This gives them a means of precisely quantifying larger
numerosities, and so allows them to determine the meanings of the other

number words within their counting range.
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TABLE 1

Pairs children were tested on

Phase 1: Phase 2:
Number Can Give Pairs Tested On
In Give-a-Number task In Point-to-x task
1 (1,2) 23 (13)

2 23) B4 (13) 1,4
3 34) 45 (14 a5

4+ 45 6,6 (15 (1)
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TABLE 2
Results of Give-a-number Task

# Kids Who
Group Initial # Mean Total # No. of Moved Mean
# Children Ages Children Sessions Into Group Ages
1 6 2,9 6 13(12)
2 6 211 9 24 (21) 3 31
3 2 32 4 5(4) 1 31
4 6 36 11 16 (15) 5 33

Bracketed numbers indicate the numbers of sessions for which there is also data for the Point-to-x

task.



Initial

Age

TABLE 3
Time line: Group levels of each child for each session

Months Along in Study

3

123

4

5

Dana
Max
Dennis
Allison
Alasdair
Michael
Oliver
Geordie
Lawrence
Johanna
Lydia
David

Yukako

2;6
2;7
2;8
2;10
2;10
3;0
2;6
2;9
2;11
2;11
3;0
3;3
3;1
3;3
3;0
3;0
3;7
3;8
3;10

4;2

N N B =

2%

2%

7 8

2

2%

2 2

2 3

4 4

4 4*

*Asterisks indicate sessions without data for the Point-to-x task.
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Mean % correct responses on number questions
in Point-to-x task on (1, n+1) and (1, n+2) pairs

100 99

60 -

40 1

20 1

Group 1
N=6

100

124

Chance (75%)
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Mean % correct responses on number questions
in Point-to-x task on (n, n+1) and (n+1, n+2) pairs

- 96."'
100 92' w

83"

79".

80

60

40

20

Group 1 Group 2 Group 3 Group 4
N=6 N=9 N=3 N=11

*significantly greater than chance (50%) at .05 level, one-talled
**significant at .005 level, one-tailed
***significant at .0001 level, one-tailed
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Mean % of trials on which children counted
aloud from pile in Give-a-number task

80 1

60 -

40 A

20 -

11

70

Asked for2or 3

B Asked for 4 or more

Groups 1, 2, 3
N=14

Group 4
N=11
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Mean % last-word responses on
How-many task in Initial session

Group 1 Group 2 Group 3 Group 4
N=6 N=6 N=2 N=6
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