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Design, Modeling, and Nonlinear Model Predictive Tracking Control of
a Novel Autonomous Surface Vehicle

Wei Wang, Luis A. Mateos, Shinkyu Park, Pietro Leoni, Banti Gheneti,
Fabio Duarte, Carlo Ratti and Daniela Rus

Abstract— In this paper, we present the design, modeling,
and real-time nonlinear model predictive control (NMPC) of
an autonomous robotic boat. The robot is easy to manufacture,
highly maneuverable, and capable of accurate trajectory track-
ing in both indoor and outdoor environments. In particular,
a cross type four-thruster configuration is proposed for the
robotic boat to produce efficient holonomic motions. The robot
prototype is rapidly 3D-printed and then sealed by adher-
ing several layers of fiberglass. To achieve accurate tracking
control, we formulate an NMPC strategy for the four-control-
input boat with control input constraints, where the nonlinear
dynamic model includes a Coriolis and centripetal matrix, the
hydrodynamic added mass, and damping. By integrating “GPS”
modules and an inertial measurement unit (IMU) into the robot,
we demonstrate accurate trajectory tracking of the robotic boat
along preplanned paths in both a swimming pool and a natural
river. Furthermore, the code generation strategy employed in
our paper yields a two order of magnitude improvement in
the run time of the NMPC algorithm compared to similar
systems. The robot is designed to form the basis for surface
swarm robotics testbeds, on which collective algorithms for
surface transportation and self-assembly of dynamic floating
infrastructures can be assessed.

I. INTRODUCTION

As the demand increases for marine operations such as
environment monitoring, hydrology survey, search and res-
cue, coast defence, and scientific studies, unmanned surface
vehicles (USVs) have been drawing more and more atten-
tions in recent years [1]–[9]. Autonomous boats may also be
able to play important roles for the future of transportation
in many coastal and riverside cities such as Amsterdam, and
Venice where the existing infrastructure of roads and bridges
is always extremely busy. A fleet of eco-friendly self-driving
boats could shift the transport of goods and people to the
waterways to get people out of their cars and reduce traffic
in the city.

Our recently launched Roboat project seeks to design and
develop a fleet of autonomous boats moving throughout the
city of Amsterdam. Each water-based unit (a ‘roboat’, 4 m×2
m) is intended to be used for the transportation of goods and
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people, and for creating dynamic floating infrastructure, like
on-demand bridges and stages, that can be self-assembled
or self-disassembled in a matter of hours. For the first step,
we would like to develop a fleet of scale (approximately 1:4)
roboats that facilitate the examination of waterway autonomy
and self-assembly algorithms. To this effect, the scale roboat
must be easy to manufacture, highly maneuverable and
capable of accurate trajectory tracking to accomplish tasks
like docking, latching, and dynamic connecting. Motivated
by these functional specifications, this paper addresses the
problems of design, modeling, fabrication and trajectory
tracking control for such an autonomous boat.

Most of current USVs use kayak-like or catamaran shapes.
These streamlined profiles can help reduce USVs’ drag
from the water. However, the shape irregularity of these
USVs makes it difficult to execute holonomic motions and
latching actions, which are particularly necessary for the
transportation and self-assembly of floating structures in the
confined urban water areas such as canals. For this reason, we
consider an autonomous boat that has a regular hull shape.
By sacrificing some shape efficiency, this novel robotic boat
performs elegant holonomic motions and easily integrates a
latching system onboard. Moreover, we 3D-printed the boat
hull instead of using traditional machining technology to
improve the ease of manufacturing the robot. The 3D-printed
hull is sealed by adhering several layers of fiberglass.

Trajectory tracking control is one of the essential objec-
tives for autonomous vehicles. There have been a number
of studies on the control of ships, boats, and USVs [10],
using the sliding mode method, [11], integrator backstepping
method [12], [13] and adaptive control [13], [14]. It is worth
pointing out that several researchers recently attempted to use
the model predictive control (MPC) method for the control
of USVs and underwater robots [15]–[20]. Applying model
predictive control technology for USVs is a promising choice
as the combination of model dynamics and cost function
minimization allows for minimal tuning of controller gains.
However, few studies have attempted experimental imple-
mentation of MPC on real USV platforms. One example is
Shahab et al. [18] who implement a visual servoing MPC
scheme on an underactuated underwater robotic vehicle to
stabilize attitude at the desired position, but the dynamics
of the robot is not considered. Another example is Bruno
et al. [17] who demonstrate trajectory tracking control of
an underactuated surface craft by implementing a nonlinear
model predictive control (NMPC) strategy. However, more
than 40 hydrodynamic unknown parameters in the robot



dynamics require identifying and the computation of the
NMPC algorithm is time-consuming (0.1 s ∼ 0.2 s). To
the best of the authors’ knowledge, the efficient nonlinear
model predictive control problem of USVs with a simple
but effective dynamic model has not been solved, which is
one of the main contributions of this study. We demonstrate
the execution of the accurate NMPC tracking algorithm on
an USV in under 1 ms.

This paper is structured as follows. Section II presents the
design, fabrication and system implementation of the robot
prototype. Section III describes the dynamic model of the
robotic boat and the method for identifying the unknown
parameters in the model. Section IV formulates the trajectory
tracking problem and the NMPC strategy for the over-
actuated boat with input and state constraints. Simulations
and experimental results are presented in Section V. Section
VI concludes this paper.

II. ROBOT PROTOTYPE DESIGN

The scale roboat platform is used for assessing the al-
gorithms of waterway transportation and self-assembly of
floating structures, which requires that the robot be easy
to manufacture, energy-saving, and highly maneuverable.
Following these requirements, the design of our scale robotic
boat is as follows.

First, a four-thruster propulsion system is considered for
achieving high maneuverability. The “X” shaped actuator
configuration is one traditional method for over-actuated
boats [21], as shown in Fig. 1(a). However, this configuration
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Fig. 1. Comparison of traditional and proposed actuator configuration that
allows holonomic motion in the horizontal plane. (a) Traditional “X” shaped
configuration; (b) “+” shaped configuration.

is inefficient because the force efficiency index is only 0.5
[22]. We therefore propose a “+” shaped actuator configura-
tion (shown in Fig. 1(b)) whose force efficiency index is 1.0
to achieve efficient propulsion. One additional requirement
for this “+” shaped configuration is that the thrusters need
to generate both forward and backward forces.

Second, a cube-like shape is designed to facilitate aligning
multiple boats. One conceptual floating structure created by
the cube-like roboat is rendered in Fig. 2. The preconceived
full size of roboat is 4 m × 2 m. For the first iteration, an
approximatively 1:4 scale prototype (0.9 m × 0.45 m) is
realized in Fig. 3(a).

Fig. 2. Concept of creating large floating structures using cube-like roboats.
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Fig. 3. The developed robotic boat. (a) Model design; (b) robot prototype.

Third, we use 3D-printing to construct the robotic boat
since 3D-printing has proved to be a fast, efficient and
low-cost manufacturing process. In particular, we used an
Anycubic Kossel 3D printer (∼$300) to machine the hull
and sealed it by adhering several layers of fiberglass inside.
The manufacturing process is illustrated in Fig. 4. Note that
because of the volume limitation of the printer, the boat hull
is divided into 16 pieces and then spliced into one using self-
tapping screws. It only takes 60 hours to print the whole hull
of the boat. The whole fabrication process is easy and fast.
Note that a plastic O-ring is used between the cover and
robot hull to prevent water from entering. Small bolts are
distributed uniformly to fasten the cover.

To guarantee the real-time performance of current optimal
control and future obstacle avoidance and path-planning of
our autonomous boat, a Gigabyte Mini PC (Intel Core i7-
6500U) with 32 GB of memory is adopted as the main con-
troller. Moreover, a 32-bit auxiliary processor, STM32F103,
is used for basic locomotion control and multi-sensor data ac-
quisition. Diversified sensors, including a real-time kinematic
(RTK) GPS, indoor “GPS”, IMU, 3D laser scanner, voltage
sensor and a current sensor are installed on the robot. Specif-
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Fig. 4. Manufacturing process of the boat hull. (a) Printing one piece; (b)
connecting all printed pieces to form the hull; (c) sealing the hull.

ically, an RTK GPS (Emlid, Reach) is adopted to acquire
centimeter-precision position of the robot in outdoor envi-
ronments. An indoor “GPS” system (Marvelmind robotics)
is employed to provide 2 cm position precision of the robot.
An IMU (LORD Microstain, 3DM-GX5-25) is positioned
parallel to the robot body’s principal axes to monitor the
yaw, pitch, roll, linear acceleration and angular velocities of
the robot. A 3D LiDAR (Velodyne, Puck VLP-16) is installed
on the top center of the robot for future obstacle avoidance
and SLAM. LiDAR is not used in this paper. One snapshot
of the developed robotic boat is exhibited in Fig. 3(b). The
robot runs on the Robotic Operating System (ROS), and its
detailed specifications are listed in Table I.

TABLE I
TECHNICAL SPECIFICATIONS OF THE PROTOTYPE

Items Characteristics
Dimension (L×W×H) 0.90 m× 0.45 m × 0.15 m
Total mass ∼ 9.2 kg
Drive mode T100 thrusters (2.36 kgf, forward)
Onboard sensors RTK GPS, indoor “GPS”, IMU, LiDAR
Power supply 11.1 V rechargeable Li-Po battery
Operation time ∼ 2 h
Control mode Autonomous/Wireless mode
Maximum speed 1.2 BL (Body Length)/s

III. BOAT DYNAMICS

Following the notation developed by Fossen [23], the
dynamics of a USV can be generically described by the
nonlinear differential equation

Mv̇+C(v)v+D(v)v = τ (1)

where v = [u v r]T denotes the vehicle velocity, which
contains the vehicle surge velocity (u), sway velocity (v),
and yaw rate (r) in the body fixed frame, M ∈ R3×3 is
the positive-definite symmetric added mass and inertia ma-
trix, C(v) ∈ R3×3 is the skew-symmetric vehicle matrix of
Coriolis and centripetal terms, D(v) is the positive-semi-
definite drag matrix-valued function, τ ∈ R3×1 the vector
of body-frame forces and moments applied to the vehicle
in all three DOFs and τ= [τ1 τ2 τ3]

T . Fig. 1 illustrates the

two coordinate systems and the thruster forces acting on the
vehicle.
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Fig. 5. Oblique view of autonomous boat. We use two coordinate systems:
inertial coordinates ∑i, Oi-xy and body-fixed coordinates ∑b, Ob-xbyb. Green
arrows stand for positive force and blue arrows stand for negative force.

We define η= [x y ψ]T as the position and orientation of
the robot in the inertial frame, relative to the center of mass.
The kinematic equation relating velocity components in the
inertial frame to those in the body frame is described as

η̇= R(ψ)v (2)

where R(ψ) is the transformation matrix converting a state
vector from body frame to inertial frame

R(ψ) =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (3)

The decoupled symmetric mass matrix is M, where M ∈
R3×3 is the sum of the vehicle mass and added mass matrix

M = diag{m11,m22,m33} (4)

The matrix C(v) also contains the rigid-body matrix and the
added mass matrix. Considering that the origin Ob coincides
with the center of mass of the robot, i. e., xG = 0 and yG = 0,
C(v) can be expressed as

C(v) =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 (5)

Since our robot is always moving at low speeds, the drag
matrix D(v) is represented by a linear damping term. More-
over, because the platform is designed to be symmetrical
with respect to the xb and yb axes in the body-fixed frame,
the following form of the drag matrix is adopted

D(v) = diag{Xu,Yv,Nr} (6)

Further, the applied force and moment vector τ can be
written as

τ= Bu =

 1 1 0 0
0 0 1 1
a
2
−a

2
b
2
−b

2




f1
f2
f3
f4

 (7)



where B is the control matrix describing the thruster config-
uration and u is the control vector. a is the distance between
the transverse propellers and b is the distance between the
longitudinal propellers, f1, f2, f3 and f4 are the forces
generated by the corresponding propellers, as shown in Fig.
5. Each propeller is fixed and can generate forward and
backward forces. Finally, Eqn. 1 and 2 can be written as

η̇= R(ψ)v (8)
v̇ = M−1Bu−M−1(C(v)+D(v))v (9)

The complete dynamic model of the surface vehicle is
reformulated by combining Eqs. (8) and (9), given by

q̇ = f (q,u) (10)

where q = [x y ψ u v r]T is the state vector of the robot.
Indeed, the formulated dynamic model is a grey-box model

with unknown hydrodynamic parameters. The parameters
which need to be determined are the mass coefficients m11,
m22, and m33, and the drag coefficients Xu, Yv and Nr. A grey-
box identification algorithm [24] is adopted for parameter
identification. Essentially, the identification process can be
regarded as an optimization problem described below

arg
λ

min ∑
t
ε(t)TWε(t),

s.t. λl ≤ λ ≤ λu
(11)

where ε(t) donates the deviation between the experimental
velocity Ue(t) and the simulated velocity Us(t) at time t

ε(t) =Ue(t)−Us(t), (12)

λ represents the set of hydrodynamic parameters where
λ = {m11, m22, m33, Xu, Yv, Nr}. λl and λu represent the
lower and upper bounds of λ , respectively. W represents
a diagonal weight matrix exerting weight on each velocity
component. The problem in (11) is numerically solved by
a nonlinear least square method based on the trust-region-
reflective algorithm.

IV. NONLINEAR MODEL PREDICTIVE TRACKING
CONTROL

To be suitable for transportation, docking and multi-boat
connecting applications, it is highly desirable that the robotic
boat is capable of accurate trajectory tracking as well as
energy-efficient. Noticeably, model predictive control can
meet the performance objectives such as minimizing the
trajectory tracking error while accommodating consideration
of control effort. In this section, a trajectory tracking problem
is posed and an NMPC scheme is developed based on the
dynamic model of the robot.

A. Trajectory Tracking Problem Formulation

A typical trajectory tracking problem is concerned with
the design of control laws that force a robot to reach and
follow a time parameterized reference. Essentially, it means
that the robot is required to track a specified position and
orientation at any given time. As η denotes the position and

orientation of the robot at time t, we define the reference
trajectory as

η̄= [xd yd ψd ]
T (13)

We define e = [xe ye ψe]
T as the difference between the

planned and actual position and orientation of the robotic
boat at time t. The trajectory tracking problem is to design
suitable control laws for the four thruster forces, to drive the
error of xe, ye and ψe to zero.

B. Nonlinear Model Predictive Control Design

Nonlinear model predictive control (NMPC) determines
the control action by solving a finite-horizon open-loop
optimal control problem online at each sampling interval for
feedback control of nonlinear systems [25]. A general form
of a nonlinear system is considered as

q̇(t) = f (q(t),u(t)), q(0) = q0,
subject to u(t) ∈U , q(t) ∈ Q, t ∈ [0,∞]

(14)

where q(t) ∈ RN , u(t) ∈ RM , respectively, are the state
vector and input vector. The superscripts N and M are the
dimensions of the state and input vector, respectively. The
set Q and U stand for the feasible states and inputs of the
system.

The input applied to the system is given by the solution
to the following open-loop optimal control problem with a
finite horizon, which is solved at every sampling instant

min
u(τ)

= J(q(τ),u(τ)) (15)

subject to

q̇(τ) = f (q(τ),u(τ)), q(0) = q0, (16)

q(τ) ∈ Q,u(τ) ∈U ,∀τ ∈ [t, t +T ] (17)

where T is the prediction horizon, and J(q(τ),u(τ)) denotes
the objective function, and is described as

J(q(t),u(t)) =
∫ t+T

t
F(q(τ),u(τ))dτ +E(q(t +T )) (18)

where F is the cost function defining the desired performance
objective and E is the terminal cost. q(·) is the predicted
state vector generated by the input signal u(·) : [t, t+T ]→U
under the initial condition q0. Note that q0 is generally the
sensor measurements of the robot’s current state in an actual
system implementation. The input applied to the robot is the
sequence of the optimal solutions obtained at every sampling
instant δ : u = u∗(·,q(δ )). The nominal closed-loop system
is then formulated as

q̇(t) = f (q(t),u = u∗(·,q(δ ))) (19)

To force the robot to follow the planned path, we use the
NMPC strategy as described above, and define the following
quadratic cost functions as the implementation of (18)

F(q,u) = eq(τ)
T Q̃eq(τ)+u(τ)T R̃u(τ) (20a)

E(q) = eq(t +T )T Q̃N(q(t +T ))eq(t +T ) (20b)



where eq(τ) = q(τ)− q̄(τ) where q̄(τ) is the refer-
ence states of the robot which takes the form q̄(τ) =
[xd(τ) yd(τ) ψd(τ) ud(τ) vd(τ) rd(τ)]

T for the robotic
boat. Q̃ and R̃ are the positive definite weight matrices
that penalize deviations from the desired values. Q̃N is the
terminal penalty matrix to improve the stability of the NMPC
algorithm. From the literature [26], it can be concluded that
the stability of the proposed algorithm can be achieved for
relatively long horizons by tuning Q̃, R̃ and T . Based on the
built dynamic model of the robot (8)-(10), we implement
the NMPC algorithm to efficiently solve the optimal control
problem in (15)-(17) in real time, thereby, achieving accurate
optimal trajectory tracking for the robotic boat.

V. EXPERIMENTS AND RESULTS

This section contains the results of model identification,
simulations, and indoor and outdoor experiments with the
developed prototype to validate the efficacy of the trajectory
tracking NMPC strategy presented in this paper.

A. Experimental Setup

The experiments for model identification and indoor tra-
jectory tracking were conducted in a 12 m× 6 m swimming
pool as shown in Fig. 6(a). The aforementioned indoor
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Fig. 6. Indoor and outdoor experimental scenes of the robotic boat. (a)
Swimming pool, and (b) Charles River.

“GPS” system contains several stationary ultrasonic beacons,
one mobile beacon and one rover. The outdoor tracking
experiments were performed in the Charles River, as shown
in Fig. 6(b). Since the GPS position is not that stable in
the river, we used extended kalman filter (EKF) to obtain a
more stable position by integrating GPS position and linear
accelerations of the robot. The update rate of all the sensors
is set to be 5 Hz.

Both the simulations and the implementation of the NMPC
strategy for the robot make use of the ACADO Model Predic-
tive Control Toolkit [27]. The controller is implemented in a
mini computer running Ubuntu 16.04 as described above.
This computer communicates with an STM32 microcon-
troller responsible for acquiring data from GPS and IMU,
sending this data to the NMPC computer, receiving the result
of the controller, and changing the actuation values of each
motor on the robotic boat accordingly. Note that the optimal
control forces are converted to the actuation values (PWM)
for each thruster according to the data chart provided by
Bule Robotics. The NMPC algorithm is running on the ROS
software framework. The reference trajectory, sampling time,
and prediction horizon used in real-time trials are exactly the
same as those used in the simulation results.

B. Results of Hydrodynamic Parameter Identification

An accurate dynamic model of robot is crucial for NMPC
to achieve accurate trajectory tracking. We therefore identify
the unknown parameters in the model experimentally. The
identification data was gathered when the robotic boat was
commanded to follow a sinusoidal path in swimming pool
under closed-loop control. This excitation resulted in coupled
motion in the surge, sway, and yaw degrees-of-freedom.
The input forces f1, f2, f3, f4 and the corresponding robot
states x, y, ψ , u, v, r were recorded at a rate of 5 Hz
in the experiments. The magnitude and frequency of the
sinusoidal profile is 0.89 m and 0.032 Hz, respectively. We
did 5 experiments to decrease the measurement errors. The
duration of each identification experiment is 50 s.

The lower bounds, upper bounds, and initial values of
the hydrodynamic parameters λ are listed in Table II. The

TABLE II
RESULTS OF HYDRODYNAMIC PARAMETER IDENTIFICATION

Item m11 m22 m33 Xu Yv Nr

λl 1 1 0.01 0.1 0.1 0.01
λu 30 60 10 10 20 5
λ0 8 8 2 3 8 1
λ ∗ 12.982 23.318 1.273 6.012 7.112 0.771

Note: the notation λ0 stands for the initial value of λ , and λ ∗

represents the identified parameters.

initial values are set according to the rough estimates from
[23]. Considering the nonlinearity of the problem in (11), we
restrict the range of the parameters to prevent the solution
from drifting away. We employed the nonlinear grey-box
identification tool in the system identification toolbox of
Matlab. Consequently, we obtain the identified hydrodynamic
parameters λ listed in Table II.

To validate the identified parameters, we compare the
simulated velocities with those measured from experiments,
as shown in Fig. 7. Intuitively, the simulated motion data
has a good agreement with the measured data. The small
discrepancies are probably attributed to the simplification of
the mass and drag matrices used in the model. The NRMSE
(normalized root mean square error) fitness value between
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the simulated and experimental data shown in Fig. 7 is
defined as follow (take u for instance)

ξ = 1− ‖ue−us‖
‖ue− ūe‖

(21)

where ξ is the fitness value, ue and us are the experimental
and simulated speeds, and ūe is the mean value of ue.

C. Experimental Tracking Results

Based on the above identified dynamic model, we vali-
dated the presented NMPC method for the robotic boat in
both simulations and experiments. In real applications, we
should limit the maximum speed of the robot to prevent
damage to people and goods being transported. For example,
the boat velocities are always below 10 km/h (2.78 m/s)
in Amsterdam canals. Considering the scale between the
current boat and the full size boat, we limit the maximum
speed of the robot to be 0.69 m/s, corresponding to the
maximum force of nearly 2 N. Therefore, we obtain the
following constraints on the input force matrix u: − fm ≤
fi ≤ fm, where i = 1, 2, 3, 4 and fm = 2 N. The parameters
used to implement the NMPC algorithm are listed as follows:
sampling interval: δ = 0.2 s; prediction time horizon: T = 4
s; weighting matrix: Q̃ = diag{20,20,5,0.001,0.001,0.001},
R̃ = diag{1,1,1,1}, Q̃n = diag{20,20,5,0.001,0.001,0.001}.

Two references with a constant speed Ud (0.2 m/s) along
the path are adopted to validate the presented control system.
One desired trajectory is a sine shaped path. For indoor
experiments, the desired sine path oscillates along the x axis
where the desired velocity components along the x and y axis
are designed as follows

ẋd =
Ud√

1+ cos2 xd
, ẏd =

Ud cosxd√
1+ cos2 xd

(22)

The desired control point position components xd and yd
are calculated by integration. The desired robot direction is
aligned with the tangent of the desired path, as defined below

ψd = arctan(cos(xd)) (23)

Fig. 8 and 9 shows the simulated and experimental track-
ing results of the NMPC boat with nonzero initial errors

in a swimming pool. It can be observed that the NMPC
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Fig. 8. Performance of indoor sine curve trajectory tracking using NMPC.
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Fig. 9. Optimal control actions of NMPC while tracking a sine trajectory
in the swimming pool. (a) Simulation and (b) experimental results.

method could successfully control the robotic boat along the
desired sine-shaped trajectory and orientation. The controller
is able to track the desired trajectory perfectly in simulations,
while sustaining minimal tracking error in the experiments.
Moreover, the optimal control actions in the experiments are
less smooth than in the simulations. That may be caused by
the simplified dynamic model of the robot as well as the
measurement noise in the robot state.

We did 10 sine-shaped trajectory tracking experiments
to quantify the control performance. The analysis of these
experimental results shows that the maximum errors in
position and orientation are lower than 0.302 m and 8.2◦,
respectively. The average error for the position and orienta-
tion, respectively, are 0.063 m and 3.3◦. At present, we didn’t
find any trajectory tracking results of USVs that use MPC
method in the indoor environment. Nevertheless, our tracking
errors are very close to those achieved using other model-
based controllers with a fully coupled complicated dynamic
model [28].



Moreover, in order to illustrate the NMPC tracking be-
havior in extreme conditions, including discontinuities in the
reference states, rectangle shaped trajectory tracking experi-
ments were conducted. The desired position and orientation
for a rectangle path are easy to express. Fig. 10 and 11 shows
the simulated and experimental tracking results of the NMPC
boat in a swimming pool. Similarly, the NMPC method
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Fig. 10. Performance of indoor rectangle trajectory tracking using NMPC.
(a) Position and (b) orientation.
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Fig. 11. Optimal control actions of NMPC while tracking rectangle
trajectory in the swimming pool. (a) Simulation and (b) experimental results.

could also successfully control the robot along the desired
rectangle-curve trajectory and orientation. Moreover, it can
be observed that the robot requires more force to follow its
four discontinuous references. The good fit between simula-
tions and experiments indicates that the identified dynamic
model is sufficient for the formulated NMPC algorithm. We
did 5 rectangle-curve tracking experiments to quantify the
control performance. The maximum position and direction
errors are, respectively, lower than 0.361 m and 18.5◦.
The average absolute error for the position and angle are,
respectively, 0.095 m and 6.3◦.

Furthermore, we conducted NMPC tracking experiments
in the Charles River where there are significant currents and
waves. The reference is a sine shaped path that oscillates
along the y axis. Fig. 12 and 13 show the simulated and

experimental sine-shaped tracking results of the boat using
NMPC. It is clear that the NMPC method still works well in
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Fig. 12. Performance of the outdoor sine trajectory tracking using NMPC.
(a) Position and (b) orientation.
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Fig. 13. Optimal control actions of NMPC while tracking sine trajectory
in the river. (a) Simulation and (b) experimental results.

natural waters in spite of acquiring slightly larger positional
divergences than in indoor environments. A more careful
inspection indicates that the control inputs in Fig. 13(b) are
larger than those in Fig. 9(b) because the robot takes more
effort to counteract the currents and waves around it. Five
tracking experiments in the river show that the maximum
position and direction errors are lower than 0.32 m and 4.8◦,
respectively. The average errors are 0.13 m and 1.2◦, respec-
tively. Although our NMPC strategy uses a simple dynamic
model, its tracking errors are much smaller than those in [29]
where the authors employ a complicated dynamic model for
their USV. We attribute this to three main reasons. First,
our experimentally identified dynamic model may be more
accurate than that in [29], which guarantees the accurate state
prediction of the NMPC algorithm. Second, the problem
reformulation in [29], from a constrained optimization to
an unconstrained optimization, may lead to performance
reduction in the optimization. Third, the measurement errors
may be much smaller here since our robotic boat is able to
localize itself with a stable centimeter-level precision.



Finally, we would like to highlight that the implemented
NMPC algorithm is extremely efficient because of C/C++
code generation based on ACADO toolkit. In particular, the
computation time needed to determine the next control action
is always below 1 ms for our algorithm, meaning that the
control frequency can reach up to 1000 Hz, which will be
very beneficial to high-speed and high-accuracy applications.
By contrast, the computation time of the NMPC method in
[29] is about 100 ms with a similar computer configuration,
a difference of almost two orders of magnitude.

VI. CONCLUSION AND FUTURE WORK

This paper presented the design, modeling, and real-
time nonlinear model predictive control (NMPC) of an
autonomous robotic boat. The novel robotic boat is easy to
manufacture, highly maneuverable, and capable of accurate
trajectory tracking in both indoor and outdoor environments.
To achieve accurate tracking control, we first formulated
a simple dynamic model for the robot with six unknown
parameters through a nonlinear least square, which ensures
the control accuracy of the NMPC strategy to some extent.
Finally, we formulated an NMPC strategy for the four-
control-input boat with control input constraints. The sim-
ulation and experimental results have validated the accuracy
and and efficiency of the proposed NMPC method for
autonomous surface vehicles, which will be paramount in
accomplishing advanced autonomy tasks such as moving
obstacle avoidance.

In the future, our work will be extended in the following
directions. First, the mass and drag of the robotic boat
may change drastically when transporting people and goods.
Therefore, incorporating an online model identification sys-
tem and adaptive controllers will be one of our next steps.
Second, wave disturbances always exist in natural waters,
which will be addressed in our future controller design.
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