
MIT Open Access Articles

Coresets for differentially private k-means clustering 
and applications to privacy in mobile sensor networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Feldman, Dan, Xiang, Chongyuan, Zhu, Ruihao and Rus, Daniela. 2017. "Coresets for 
differentially private k-means clustering and applications to privacy in mobile sensor networks."

As Published: 10.1145/3055031.3055090

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/137234

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137234
http://creativecommons.org/licenses/by-nc-sa/4.0/


Coresets for Differentially Private K-Means Clustering and
Applications to Privacy in Mobile Sensor Networks

ABSTRACT
Mobile sensor networks are a great source of data. By col-
lecting data with mobile sensor nodes from individuals in a
user community, e.g. using their smartphones, we can learn
global information such as traffic congestion patterns in the
city, location of key community facilities, and locations of
gathering places. Can we publish and run queries on mo-
bile sensor network databases without disclosing information
about individual nodes?

Differential privacy is a strong notion of privacy which
guarantees that very little will be learned about individual
records in the database, no matter what the attackers al-
ready know or wish to learn. Still, there is no practical sys-
tem applying differential privacy algorithms for clustering
points on real databases. This paper describes the construc-
tion of small coresets for computing k-means clustering of
a set of points while preserving differential privacy. As a
result, we give the first k-means clustering algorithm that is
both differentially private, and has an approximation error
that depends sub-linearly on the data’s dimension d. Previ-
ous results introduced errors that are exponential in d.

We implemented this algorithm and used it to create dif-
ferentially private location data from GPS tracks. Specifi-
cally our algorithm allows clustering GPS databases gener-
ated from mobile nodes, while letting the user control the
introduced noise due to privacy. We provide experimental
results for the system and algorithms, and compare them to
existing techniques. To the best of our knowledge, this is
the first practical system that enables differentially private
clustering on real data.

1. INTRODUCTION
Today city planners, research institutes and individuals

are analyzing large databases of GPS data generated from
mobile devices such as smart phones. Our goal is to make
the process private so that people can publish, research, and
run queries on such databases without disclosing individu-
als’ information. Consider the data generated by a collec-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

tion of roving sensor nodes attached to human-driven cars,
smart-phone users, or self-driving cars. The GPS informa-
tion gathered collectively over time contains important in-
formation about the activity patterns of invidividuals (for
example, where they live, where they work, how they spend
their leisure time, etc) as well as city-scale patterns (for ex-
ample, how does congestion vary during the course of a day,
where are the hot spots in the city, what is the impact of
events on traffic, what is the distribution of work places,
etc.) Collecting global statistics requires large amounts of
accurate data, yet individual data may be subject to pri-
vacy considerations. For example, individual users may be
comfortable submitting their location data collected during
commute to work but may not be comfortable submitting
their location data associated with where they live or play.
We wish to create a method that allows individual mobile
nodes to tune the privacy level of their data collection and
empower them to contribute their data for global statistics
and information, without compromising privacy. In this pa-
per we present an algorithm for differential privacy in sup-
port of this goal. This algorithm allows users to tune their
privacy levels by associating privacy levels with location re-
gions. An individual user may set high privacy levels around
where they live and low privacy levels along the main high-
way they use to commute to work.

Specifically, we focus on k-means clustering queries, one
of the main tasks of machine learning, and guarantee strong
privacy properties known as differential privacy on the GPS
databases. The technique we utilize is called private core-
sets.

1.1 Differential Privacy
Differential privacy [9] is a robust, precise and mathemat-

ically rigorous notion of privacy, and it has emerged in a re-
cent line of work that seeks private data analysis (See [4, 5,
22, 23, 20, 6, 3, 21, 10, 12, 8]). Differential privacy promises
that very little about any specific individual can be learned
in the data analysis process irrespective of the attacker’s
prior knowledge, information source and other datasets. Al-
gorithm A is ε-differentially private if the following holds.
When A is applied on any two databases that differ only on
the details of one individual, the probability distributions
of the two outputs are very similar, i.e., the probability of
outputs lying in any specific single fixed set differs by a mul-
tiplicative factor exp(ε). In other words, the output is in-
sensitive to a specific individual and depends only on the
statistics of the database.

Here is an example explaining why differential privacy is
strong and useful in the scenario of a mobile sensor network.



Suppose that we have a database P of n location records
from n roving sensor nodes. Each record consists of a data
point of the corresponding node as a pair of real numbers
(latitude, longitude), i.e, the (x, y) coordinates. We wish to
apply an algorithm A on our database P that will have the
following property: an attacker will have the the algorithm’s
output A(P ), would almost not be able to learn anything
about a single node’s data (x, y). Unlike the annonimity
framework, this property must hold independently of the
existing knowledge of the attacker, e.g.: other data sources
about the users in P , non-noisy subsets of users in P , etc.

For a non-private deterministic or random algorithm A,
a sample attack is as the following. Suppose that the at-
tacker wishes to know whether a node p visited one of the
hospitals in a city. He already knows all other nodes’ records
in the database P , and concludes that the database can be
either P if the user indeed visited one of the hospitals, and
P ′ otherwise. Now, suppose that the owner of the database
publishes the output A(P ) of an algorithm A that was ap-
plied on the database. If the distribution of A(P ) is different
from the distribution ofA(P ′), the attacker can now tell that
the original database is P and not P ′, and thus p actually
visited the hospital.

We wish to develop differentially privacy algorithms for
mobile sensor networks that not only have the strong privacy
promise but also the utility property, i.e. we learned the
desired statistics about the database. For example, if P is a
location database recording tracks of sensor nodes in a city,
we may learn by applying a clustering algorithm A on P
that what are the typical tracks in the city. In this paper we
use the relaxed version of pure differential privacy, known
as (ε, δ)-differential privacy [8]. It is a relaxation of pure
differential privacy where the privacy guarantee needs to be
satisfied only for events whose probability is at least δ.

1.2 Private Coresets
Unlike k-anonymity, differential private algorithms usu-

ally do not output databases, but rather answer statistical
queries about the data. In every query call that is answered
via the algorithm (the “curator”) there is some leakage of
information. After a small number of queries, the allowed
bound on the information leakage is reached and the curator
refuses to answer additional queries. This makes differential
private algorithms impractical for people trying to analyze
the databases.

Coresets were introduced in [2]. For a set Q of possibly an
infinite number of queries, and a database P , an α-coreset C
is a database such that the answer to every query q ∈ Q on P
can be approximated up to an α-error, i.e., (1− α) · q(P ) ≤
q(C) ≤ (1 + α) · q(P ). If the coreset C is much smaller
than P , we can solve optimization problems with respect
to Q much faster, by running existing (possibly inefficient)
algorithms on the reduced set C. Coresets for different types
of queries have been the subject of many recent papers, such
as k-medians ([7, 13, 15, 16]), k-means ([13, 15, 16]), k-
centers ([18]), etc. Using the merge-and-reduce technique, it
can also be shown that such an off-line coreset construction
implies an on-line construction that can be computed using
a small amount of memory and in one pass over the data
(“streaming”) [17, 14].

The private coresets scheme was defined in [12], as ε-
differentially private algorithms that recieve a database P
as the input and output an α-coreset C. This output is

called ε-private α-coreset, or (α, ε)-private coreset, where α
measures the utility of the output and ε denotes the privacy
leakage. The user can then answer an unbounded number
of queries on the released (sanitized) private coreset, and
solve optimization problems by applying machine learning
algorithms on the private coreset, without introducing ad-
ditional privacy leakage and without an curator.

Intuitively, there should not be a connection between core-
sets and privacy. While the main objective in (non-private)
coresets is minimizing the number of points in the coreset
C = A(P ), this is not the main objective for private core-
sets — large coresets are OK as long as differential privacy
is preserved. It is possible to construct a private coreset
scheme with a number of points that is comparable to that
of non-private schemes by first applying a private coreset
scheme on the input, and then applying on its outcome a
(regular, non-private) coreset scheme where the number of
points in the output coreset is small. The challenge and
quality measure of constructing private coresets is thus not
the size of the output coreset, but rather the added noise to
P that should be small enough to keep the approximation
error α small and large enough to provide ε-privacy of the
records in P .

The reason why coresets techniques are relevant for pri-
vacy is because they are both sensitive to outliers: in the
context of coresets, outliers should be chosen with high prob-
ability as representatives. In the context of differential pri-
vacy, outliers require more additive noise to hide them, un-
like large clusters of points with a mean that won’t change
significantly by moving of a single point. In both cases, the
challenge is to measure how much each point is isolated from
the other points and prove that the sum of this measure is
small for every given input set.

1.3 Our Contributions
Our main contributions are:

1. The first (ε, δ)-differentially private algorithm that com-
putes a provable approximation of the k-means clus-
tering problem, where the multiplicative and additive
errors are sub-linear in the dimension d of the input
points. See Theorem 3.6 for details.

2. An (ε, δ)-differentially private coreset construction that
approximates the sum of squared distances from the
input points to any k centers in Rd. An unbounded
number of k-centers queries can be evaluated on this
sanitized coreset, with no additional information leak-
age or privacy loss.

3. An implementation and experimental results for the
(ε, δ)-differentially private k-means algorithm.

4. An application enabling mobile sensor network nodes
and adminstrators control the privacy-utility trade-off
while applying the differentially private k-means clus-
tering algorithm to massive GPS databases.

This paper is organized as follows. Section 2 describes
briefly the related work. Section 3 presents our algorithm for
private k-means clustering. Section 4 discusses implementa-
tion issues and presents performance results. Sections 5 and
6 show results from experiments with data collected by the
NYC taxi cabs.



2. RELATED WORK
The algorithm in this paper builds on the work of [12].

They define the notion of private coresets and suggest such a
coreset for the k-medians clustering problem in low-dimensional
space. The advantage of the private coresets technique is
that, unlike previous solutions to differential privacy, a san-
itized database is published with some small information
leakage ε (in the formal sense of ε-differential privacy). Then
an unbounded number of queries can be applied on the
published sanitized database with no additional information
leakage. However, [12] suggests a coreset scheme with error
exponentially in dimension d, which is very noisy.

Differential Privacy Much of the work on differential
privacy is in an interactive scenario where a central author-
ity (called a curator) answers a small number of specific
queries. Since there is an ε-information leakage in each such
query, after a small number of queries, no more queries are
allowed and the curator rejects them without any answer. In
our scenario, one would like to publish a “sanitized” version
of the data, the publication of which preserves differential
privacy. Such a database could be queried infintely without
impacting privacy. A query to the sanitized database should
return (approximately) the same answer as obtained for the
same query on the original database.

Non-interactive differentially private sanitizations are stud-
ied in [10, 21, 3, 6]. The most related to our work is [6].
This paper proves the existence of differentially private“san-
itized” databases for range queries, where the range space
from which the queries are taken is of low VC dimension [24].

Differentially Private k-means Clustering The prob-
lem of differentially private k-means clustering was previ-
ously studied in [5, 22]. Their approaches are different and
more restricted compared to our solution. [5] describes a pri-
vate implementation of a specific heuristic, namely Lloyd’s
heuristic, which is not flexible enough to extend to other
heuristics. The accuracy of the output is based on an as-
sumption that the number of points in each cluster is large
enough. [22] suggests an implementation of differentially pri-
vate k-means clustering in the sample and aggregate frame-
work. Meaningful results rely on repeated executions of the
algorithm on random samples from the original database.
k-means Coresets Non-private k-means coresets have

been well studied in [13, 15, 16]. While our major objective
for private k-means coresets is to get better utility under the
same privacy leakage ε, [13, 15] focus more on minimizing
the coreset size. They show that a coreset of size that is
polynomial in the number of clusters k and α gives an (1±α)-
approximation of the k-means clustering problem.

3. DIFFERENTIALLY PRIVATE K -MEANS
CLUSTERING ALGORITHM

In this section we start with an informal overview of the
algorithm (Section 3.1), then provide some background def-
initions and theorems (Section 3.2). and finally present the
formal algorithm and its analysis (Section 3.3).

Throughout the paper, we use Xd to denote a discrete d-
dimensional domain. The domain is a real unit cube quan-
tized with grid size 1/(|X| − 1). Formally speaking,

Xd = {0, 1, 2, · · · , |X| − 1}d /(|X| − 1)

3.1 Algorithm Overview

Here we give only an informal overview. The exact defi-
nitions and claims can be found in Section 3.3.

The input to the algorithm is a set P of n points in the
d-dimensional domain Xd, an integer k ≥ 1 for the num-
ber of clusters k and privacy parameters ε and δ. We note
that it was proven in [12, Theorem 6] that private cluster-
ing of a general set of n points in Rd is impossible, even in
low dimensional space, since the additive error depends on
the diameter and number of possible distances between the
points. Hence, the restriction of input points on a grid can-
not be avoided. The output of the algorithm is a set C of
k-centers that approximates the sum of squared distances to
the optimal k-means of P with a multiplicative and additive
error that depend sub-linearly in d.

In each iteration, the algorithm computes the center c of
an approximately smallest ball that contains at least 3n/(8k)
input points. The computation of c is done using a differen-
tially private subroutine Small-Ball that is described in
Theorem 3.5.

Next, we remove the 3n/(8k) points that are closest to
the center c from the input. Intuitively, c represents these
points and thus get a weight of w = 3n/(8k). We then
continue recursively on the remaining points until there are
almost no input points. The last (small) set of remaining
points is ignored. Note that the value of n is reduced in
each iteration.

AfterO(k logn) iterations, we thus haveO(k logn) weighted
centers. This set of centers D is our private coreset. We
then compute a (regular, non-private) k-mean approxima-
tion on D. That is, we compute a set C of k centers among
the O(k logn) weighted points that minimizes the sum of
squared distances to the points.

3.2 Background Definitions and Theorems
Differential privacy guarantees that no individual’s record

can be learnt from an outcome of an algorithm, indepen-
dently of what a potential intruder already knows about.

Definition 3.1 (Differential Privacy [8]). Databases S1 ∈
Um and S2 ∈ Um over a domain U are called neighboring if
they differ in exactly one entry. A randomized algorithm A
is (ε, δ)-differentially private if for all neighboring databases
S1, S2 ∈ Um, and for all sets F of outputs, the probability
that A(S1) ∈ F is at most

Pr[A(S1) ∈ F ] ≤ exp ε · Pr[A(S2) ∈ F ] + δ.

A differentially private algorithm can be constructed by
other differentially private algorithms and non-private ran-
domized computation. It is stated formally as the following
Composition theorem.

Theorem 3.2 (Composition [11]). Let A(·) be any non-
private randomized computation, let A0(·) be (ε0, δ0)-differentially
private, and let A1(·, ·) be a parameterized algorithm such
that A1(C0, ·) is (ε1, δ1)-differentially private for all C0. Then
the following hold:

(i) Algorithm B that on input P , computes C0 ← A0(P ),
then C ← A(C0) and outputs C is (ε0, δ0)-differentially pri-
vate.

(ii) Algorithm B that on input P , computes C0 ← A0(P ),
then C1 ← A1(C0, P ) and outputs (C0, C1) is (ε0 + ε1, δ0 +
δ1)-differentially private.

For a set of centers X ⊆ Rd and a point p ∈ Rd we denote
dist(p,X) = minx∈X |p − x|. For a finite set Q ⊆ Rd, the



 

 
  

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

(a)

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

  

 
 

 

 

 

   

 

 

 

 

(b)

Figure 1: (a) A set P of points (in yellow) and its 2-means Q∗ = {q1, q2} (blue squares). The distance between

the point p and its nearest center in Q∗ is denoted by D(p,Q∗). (b) A 10-approximation Q̃ = {q1, q2} (blue

squares) of the 2-means of P with additive error 5. That is, cost(P, Q̃) ≤ 10cost(P,Q∗) + 5. The sets P1 and P2

are the corresponding partition of P into two clusters: P1 contains the points that are closest to q1, and P2

contains the points that are closest to q2.

sum of squared distances is defined as

cost(Q,X) :=
∑
p∈Q

dist2(p,X).

If |X| = {x} we denote cost(Q, x) = cost(Q, {x}) for sim-
plicity.

For a weighted set D = {(p1, w1), · · · , (pn, wn)} ⊆ Rd ×
R+ ∪ {0}, the weighted cost is

cost(D,X) :=
∑

(p,w)∈D

wdist2(p,X).

Definition 3.3 (Approximated k-Means). Let P be a finite
set in Rd. A set C∗ of k centers (points) in Rd is called the
k-means of P if it minimizes cost(P,C′) over every such set
C′. A set C ⊆ Rd of k centers is a γ-approximation with an
η additive error for the k-means of P if

cost(P,C) = γ · cost(P,C∗) + η.

An illustration of the approximated k-means location data
is shown in Figure 1.

In our algorithm, we calculate the approximate k-means
(Definition 3.3) from k-means private coresets, which is de-
fined in Definition 3.4 adapted from [12].

Definition 3.4 (k-Means Private Coreset). Let P be a finite
set in Rd. Let C∗ be the k-means of P . A (γ, η, ε, δ)-private
coreset scheme for k-means clustering is an algorithm A sat-
isfying:

• Algorithm A preserves (ε, δ)-differentially privacy.

• Let CA be the k-means of the coreset A(P ). Then CA
is a γ-approximation with η additive error for k-means
of P .

Our algorithm is based on a subroutine that given a database
P ∈ Xd and an integer t, approximately returns the center
of the smallest ball that contains at least t points from P .
We use a private approximation algorithm to this problem,
that was suggested recently by K. Nissim et al. [23] as the
following.

Algorithm 1: Private-k-Mean(P, k, ε, δ, β)

Input: A set P of n points in the d-dimensional
domain Xd, a constant integer k ≥ 1, privacy
parameters ε, δ, and error parameter β.

Output: A set C of k centers

1 D ← ∅, ε′ ← 3ε
8k logn

, δ′ ← 3δ
8k logn

, β′ ← 3β
8k logn

2 tmin ←
O( k

√
d

ε′ log( 1
β′ ) log( nd

β′ε′δ′ )
√

log( 1
β′δ′ ) · 9

log∗(2|X|
√
d))

3 while |P | > tmin do
4 n← |P |
5 ∆← O( 1

ε′ log( 1
β′ ) log( n

β′ε′δ′ ) · 9
log∗(2|X|

√
d))

6 w ← 3n
8k

7 ropt ← the radius of the smallest ball that contains
3n
8k

+ ∆ points from P

8 c← the center of a ball that contains at least 3n
8k

points from P , whose radius is r ≤ αropt, where

α =
√

log(n). The step is calculated by the
(ε′, δ′)-private Small-Ball subroutine with
t = 3n

8k
+ ∆. See Theorem 3.5.

9 D ← D ∪ {(c, w)}
10 G← the union of the closest w points to c in P
11 P ← P \G
12 C ← an O(1)-approximation to the k-means of⋃

(c,w)∈D c with no additive error; See Definition 3.3

13 return C

Theorem 3.5 (Private Center [23]). Let P be a set of n
points in the d-dimensional domain Xd. Let n, t, β, ε, δ be
s.t.

t ≥ O(

√
d

ε
log(

1

β
) log(

nd

βεδ
)

√
log(

1

βδ
) · 9log∗(2|X|

√
d))1

Denote ropt as the radius of the smallest ball in Xd contain-
ing at least t points from P . Then there is an (ε, δ)-private

1Given n, log∗(n) denotes the number of times that the
function log(x) must be iteratively applied before the result
is less or equal to 1, i.e., log∗(n) = 1 + log∗(logn)



Small-Ball algorithm that runs in polynomial time and
returns a center c such that, with probability at least 1− β,
there is a ball of radius r ≤ αropt that is centered at c and
contains at least t−∆ points from P , where α = O(

√
logn)

and

∆ = O(
1

ε
log(

1

β
) log(

n

βεδ
) · 9log∗(2|X|

√
d))

3.3 Problem Statement and Proofs
In this section we give the algorithm’s pseudocode, state

the properties of the algorithm in the form of a theorem,
and then give the proofs for the correctness and privacy
guarantees of our algorithm. Algorithm 1 is the pseudocode
of Private-k-Mean.

Algorithm 1 is structured as the following. We initialize
the private coreset D to be empty (Line 1). Then we divide
input parameters β, ε, δ by the number of iterations to cal-
culate failure parameter β′, privacy parameters ε′ and δ′ for
a single iteration (Line 2). After that, we calculate a min-
imum threshold of database size tmin determining when to
stop iterating (Line 3). In every iteration (Line 4 - 11), we
call the Small-Ball subroutine (Line 9) with inputs cal-
culated from Line 5-7, and output a new data (c, w) to be
added to the private coreset D (Line 10). We then remove
the 3n/(8k) points that are closest to c from the database
(Line 11- 12). After all the iterations, we can calculate the
approximate k-means from the private coreset D (Line 13).

Our main result is stated in the following theorem.

Theorem 3.6. Let P be a set of n points in the d-dimensional
domain Xd. Let n, k, β, ε, δ be s.t. n > tmin where ε′ =

3ε
8k logn

, δ′ = 3δ
8k logn

, β′ = 3β
8k logn

, and

tmin = O(
k
√
d

ε′
log(

1

β′
) log(

nd

β′ε′δ′
)

√
log(

1

β′δ′
)·9log∗(2|X|

√
d)).

Let C be the output of a call to Private-k-Mean(P, k, ε, δ, β).
Then the following hold.

(i) The algorithm Private-k-Mean is
(ε, δ)-differentially private; See Definition 3.1.

(ii) With probability at least 1−β, the set C is a γ-approximation
for the k-means of P with additive error η, where γ =
O(k logn), and η = tmin. See Definition 3.3.

The errors γ and η in Theorem 3.6 depend sub-linearly on
the data’s dimension d, which improves from exponential on
d in previous literature [12]. We provide a brief explanation
here. First, the multiplicative error γ is independent of d.
As for the additive error η, only considering parameter d, we

have η = O(C0

√
d log(C1d) · 9log∗(C2

√
d)) where C0, C1, C2

are expressions of other parameters. When d is sufficiently
large,

log∗(C2

√
d) = 1 + log∗(log(C2

√
d))

= 2 + log∗(log log(C2

√
d))

< 2 + log log(C2

√
d)

(1)

Therefore,

η = O(C0

√
d log(C1d) · 9log∗(C2

√
d))

= o(C0

√
d log(C1d) log(C2

√
d))

= o(d).

(2)

Proof. (i, Privacy Guarantee) Since |P | is reduced by a
factor of (1− 3

8k
) in each “while” iteration, there are at most

8k logn
3

iterations. Every iteration outputs a new pair (c, w)
to compose the private coreset D. Because the value of w
in each iteration is the same for each database of size n, we
only need to consider the value of c, which is the output of
the Small-Ball subroutine.

Every iteration except the first one can be regarded as a
parameterized algorithm, which takes the original database,
and all the previous pairs of (c, w) as inputs. Notice that in
each iteration, the selected removed points only depend on
the choice of c. If two neighboring database P and P ′ differ
by a single entry, after one iteration, they will differ by at
most a single entry. By induction, before every iteration,
P and P ′ are neighbors of each other. Therefore we can
claim every iteration is (ε′, δ′)-differentially private. Then
by composition theorem (Theorem 3.2(ii)), the algorithm
for outputting D (up to Line 12 of Algorithm 1) is (ε′, δ′)×
8k logn

3
= (ε, δ)-private.

Since the returned set C is computed on the “sanitized”
private coreset D. According to the composition theorem
(Theorem 3.2(i)), the entire Algoithm 1 is (ε, δ)-private.

(ii, Utility Guarantee) Table 1 is a table of notations
that are useful in the proof.

Table 1: Notations in the proof
X∗ A set of k centers that minimizes cost(P,X)

of the original database P over every such X.
Pi, ci, wi, Gi The value of P , c, w and G during the ith

iteration.
P ∗i The d3|Pi|/4e points p ∈ Pi with the smallest

value dist(p,X∗).
Pe All the eliminated points

⋃
Gi.

Pr All the remaining points in P after the last
iteration, i.e., P \ Pe.

We give the entire proof step by step by proving the fol-
lowing facts.

• Step 1: The entire algorithm has the desired output
with probability 1− β.

• Step 2: cost(Gi, ci) ≤ α2cost(P ∗i , X
∗).

• Step 3:
∑|D|
i=1 cost(Gi, ci) ≤ O(α2k) · cost(P,X∗).

• Step 4: cost(P,C) ≤ O(α2k) · cost(P,X∗) +O(tmin).

Step 1 Notice that every iteration satisfies the precondi-
tion n > tmin. Therefore, we have

3n

8k
+ ∆ >

3tmin

8k

= O(

√
d

ε′
log(

1

β′
) log(

nd

β′ε′δ′
)

√
log(

1

β′δ′
) · 9log∗(2|X|

√
d))

(3)

This exactly matches the Small-Ball subroutine’s pre-
condition with inputs ε′, δ′, β′. See Theorem 3.5. As a result,
with probability 1−β′, every iteration will output the desired
c. Because there are at most 8k logn

3
iterations, Algorithm 1

has the desired output with probability 1− 8k logn
3

β′ = 1−β.



Step 2 By the pigeonhole principle there must be a center
x ∈ X∗ that serves m ≥ |P ∗i |/k points in P ∗i , i.e., at least
1/k fraction of the points in P ∗i have x as their closest center
in X∗. Using Markov inequality, half of them have distance

of at most

√
2cost(P∗i ,X

∗)
m

to x. We conclude that there is

a ball of radius

√
2cost(P∗i ,X

∗)
m

that contains at least m/2 ≥
|P ∗i |/2k = 3|Pi|/8k points from Pi. By definition of ropt in
Line 7 of Algorithm 1,

ropt ≤
√

2cost(P ∗i , X
∗)

m
(4)

m

2
r2
opt ≤ cost(P ∗i , X

∗) (5)

Also we have

|Gi| =
3|Pi|
8k

=
|P ∗i |
2k
≤ m

2
(6)

Combining the result of (5) and (6),

cost(Gi, ci) ≤ |Gi| · (αropt)
2 ≤ α2cost(P ∗i , X

∗) (7)

Step 3 Because each iteration contributes to one pair of
(c, w) in D, |D| = O(k logn).

We order the points in P by P = {p1, · · · , pn}, such that
dist(pa, X

∗) ≤ dist(pb, X
∗) for every 1 ≤ a < b ≤ n, where

ties are broken arbitrarily. Let

Ui =
{
p1, · · · , pn−|Pi|

}
,

Vi =
{
pn−|Pi|+1, · · · , pn−|Pi|+|P∗i |

} (8)

During the first (i−1)“while” iterations, an overall of n−|Pi|
points were removed from P . Hence,

|(Ui ∪ Vi) ∩ Pi| ≥ |Ui|+ |Vi| − (n− |Pi|)
= |Vi| = |P ∗i |.

(9)

We thus have Ui ∪ Vi ⊇ P ∗i . The set Vi contains the |Vi| =
|P ∗i | points p ∈ Ui ∪ Vi with the largest values dist(p,X∗).
Hence, cost(P ∗i , X

∗) ≤ cost(Vi, X
∗). Combining (7) with

(9) yields

cost(Gi, ci) ≤ α2cost(P ∗i , X
∗) ≤ α2cost(Vi, X

∗) (10)

Summing (10) over all the O(k logn) iterations, we obtain

|D|∑
i=1

cost(Gi, ci) ≤ α2

|D|∑
i=1

cost(Vi, X
∗) (11)

The last point index in the set Vi is n − |Pi| + |P ∗i | =
n − |Pi|/4, and the first index in Vi+4k is n − |Pi+4k| + 1.
Since

n− |Pi+4k|+ 1 ≥ n− |Pi| · (1−
3

8k
)4k

≥ n− |Pi|/4 (when k ≥ 1)
(12)

every point appears in O(k) sets in the sequence
V1, V2, · · · . Hence,

|D|∑
i=1

cost(Vi, X
∗) ≤ O(k) ·

|D|∑
i=1

cost(P,X∗). (13)

Plugging (13) in (11) yields

|D|∑
i=1

cost(Gi, ci) ≤ O(α2k) · cost(P,X∗) (14)

Step 4 We use the weak triangle inequality [14, Lemma
7.1] stating that for every p, q ∈ Rd and a closed set C ⊆ Rd
we have

|dist2(p, C)−dist2(q, C)| ≤ 12|p− q|22
λ

+
λ

2
dist2(p, C). (15)

In our case, by letting p′ denote the associated ci to p ∈ Pe

when p is eliminated, and using λ = 1/2, this implies

|cost(Pe, C)− cost(D,C)|

= |
∑
p∈Pe

dist2(p, C)−
∑
p∈Pe

dist2(p′, C)|

≤
∑
p∈Pe

(
12|p− p′|22

λ
+
λ

2
dist2(p, C))

= 24

|B|∑
i=1

cost(Gi, ci) +
1

4
cost(Pe, C).

(16)

Hence,

3cost(Pe, C)

4
≤ cost(D,C) + 24

|D|∑
i=1

cost(Gi, ci). (17)

By the optimality of C,

cost(D,C) ≤ cost(D,X∗). (18)

Similarly to (16),

|cost(Pe, X
∗)− cost(D,X∗)| ≤ 24

|D|∑
i=1

cost(Gi, ci) +
1

4
cost(Pe, X

∗).

(19)

Hence,

cost(D,X∗) ≤ 5

4
cost(Pe, X

∗) + 24

|B|∑
i=1

cost(Gi, ci) (20)

Combining (14), (17), (18) and (20), we get

cost(Pe, C) ≤ 4

3
(cost(D,C) + 24

|B|∑
i=1

cost(Gi, ci))

≤ 4

3
cost(D,X∗) + 32

|B|∑
i=1

cost(Gi, ci)

≤ 5

3
cost(Pe, X

∗) + 64

|B|∑
i=1

cost(Gi, ci)

≤ O(1)cost(Pe, X
∗) +O(α2k) · cost(P,X∗)

= O(α2k) · cost(P,X∗)

(21)

Notice that cost(P,C) = cost(Pe, C)+cost(Pr, C), and Xd is
bounded by the unit cube with diameter 1, we have cost(Pr, C) =
O(tmin). Thus combining with (21),

cost(P,C) ≤ O(α2k) · cost(P,X∗) +O(tmin) (22)



The multiplicative error is O(α2k) = O(k logn). The addi-
tive error is

O(tmin) = O(
k
√
d

ε′
log(

1

β′
) log(

nd

β′ε′δ′
)

√
log(

1

β′δ′
)·9log∗(2|X|

√
d))

4. IMPLEMENTATION AND PERFORMANCE
EVALUATION

We implement the Private-k-Mean algorithm in Python
2.7, and utilize third-party libraries including Numpy, Scipy,
Pandas, and Scikit-learn. We first briefly introduce the
Small-Ball subroutine that we use iteratively in the main
algorithm. Then we discuss our attempts of implementa-
tion and a performance optimization for d = 2 situation.
On one hand, this optimization is useful for mobile sensor
network with location information and more generally GPS
databases, because GPS data with form (latitude, longitude)
are two dimensional. On the other hand, we expect our al-
gorithm to significantly outperform the private coreset algo-
rithm in [12], because our error is nearly-linear to 1/ε (See
Section 3.3), while their error is linear to 1/εd, i.e., quadratic
to 1/ε when d = 2. Indeed, we can see the improvements
shown in the experiment results (See Section 5.5). Finally,
we analyze the time complexity of the Private-k-Mean al-
gorithm. All the time complexity expressions do not contain
the data dimension d because our implementation is based
on d = 2.

4.1 Small-Ball Subroutine
Our main Private-k-Mean algorithm calls the Small-

Ball subroutine introduced by Nissim et al. [23] iteratively,
see Line 8 of the Algorithm 1. Given a set of n points
and a target number t, the goal of Small-Ball algorithm
is to approximately find a ball of minimal radius ropt that
contains at least t input points. The algorithm contains
two steps. The first step Good-Radius finds r = O(ropt)
such that there is a ball of radius r that contains at least
t input points. The second step Good-Center locates the
ball given the radius r [23].

Nissim et al. proves the theoretical guarantees of Small-
Ball algorithm in their paper, but does not provide runtime
analysis nor implementation suggestion. Therefore, we im-
plement the subroutine from scratch. We identify the bottle-
neck in the first step Good-Radius. Algorithm 2 provides
the pseudocode of Good-Radius. Intuitively, for every ra-
dius r and every data x, we calculate how many points in P
are contained in a ball of radius r around x (Line 1). Then
for every r, we approximately calculate the maximum num-
ber of points contained in a ball of radius r (Line 2). After
that, we reduce it to a quasi-concave problem, and privately
find the smallest r such that there exists a ball of radius r
containing at least t points (Line 3-4). More details can be
found in [23].

4.2 Brute Force Implementation
The most time consuming part of Algorithm 2 is specifi-

cally line 1 and 2. First we describe a straightforward brute
force implementation. The goal here is to calculate L(r, P )
for every single r. The implementation details are the fol-
lowing.

1. For every single point xi ∈ P , and every radius r ∈

Algorithm 2: Good-Radius(P, t, β, ε, δ)[23]

Input: A set P of n points in the d-dimensional
domain Xd, parameter t, failure parameter β,
and privacy parameter ε, δ.

1 For x ∈ Xd and 0 ≤ r ∈ R let Br(x, P ) denote the
number of input points contained in a ball of radius r
around x, and let Br(x, P ) = min{Br(x, P ), t}. For
r < 0 we say that Br(x, P ) = Br(x, P ) = 0.

2 For r ∈ R define

L(r, P ) = maxdistinct x1,··· ,xt∈P {
Br(x1,P )+···+Br(xt,P )

t
}.

3 Denote

∆ = 8log∗(|X|
√
d) 144 log∗(|X|

√
d)

ε
log( 12 log∗(|X|

√
d)

βδ
), and

define the quality function
Q(r, P ) = 1

2
min{t− L(r − 1, P ), L(r, P )− t+ ∆}.

4 Choose and return z ∈ {0, 1, 2, · · · , d|X|
√
de} using

algorithm RecConcave [4] with the quality function Q,
quality promise ∆

4
, and approximation parameter 1

2
.

[1, |X|], we count how many other points in P are
within a ball of radius r around xi. Bounding the
result by t, we get Br(xi, P ). Calculating a single
Br(xi, P ) takes O(n) time, where n is the size of P .
Therefore, calculating for all values of xi and r takes
O(n)× n× |X| = O(n2|X|) time.

2. For every single r, we choose t biggest Br(xi, P ) among
all xi ∈ P , and take the average, which is L(r, P ).
Utilizing the order statistics algorithm, this step takes
O(n|X|) time.

To sum up, Algorithm 2 (Good-Radius(P, t, β, ε, δ)) takes
O(n2|X|) +O(n|X|) = O(n2|X|) time in total.

4.3 Performance Optimization When d = 2
Calculating Br(xi, P ) for all pairs of (xi, r) is time com-

suming. In order to improve the performance, we utilize
faster approximation algorithms that count the number of
neighbors around a point. Notice that before applying an
algorithm, we need to ensure that it does not break the con-
tract of differential privacy, i.e., the privacy guarantee in
Theorem 3.6 still holds. This criteria eliminates some ap-
proximation techniques, such as ε-net. ε-net is O( 1

ε
) points

random sampled from the original database, and has the
following property: with high probability, any ball that cov-
ers at least α fraction of input points must also cover at
least α fraction of the sample. [19] Therefore, the number of
neighbors in ε-net can be used to approximate the number
of neighbors in the original database. However, we can not
use ε-net in our implementation because random sampling
does not preserve differential privacy. Fortunately, we find
another faster implementation for d = 2 case. In this sec-
tion, we will talk about its details and prove that it preserves
differential privacy.

The idea is to use L∞ distance, or Chebyshev distance to
approximate the Euclidean distance between two points. For
any two points (x1, y1) and (x2, y2) in the two dimensional
space, the L∞ distance between them is D∞ = max(|x2 −
x1|, |y2 − y1|), and the Euclidean distance between them

is DEuclidean =
√

(x2 − x1)2 + (y2 − y1)2. It is easy to see

D∞ ≤ DEuclidean ≤
√

2D∞ so this is a constant factor ap-



proximation. Calculating the L∞ distance is faster than
calculating the Euclidean distance.

The implementation steps of Line 1 and 2 of Good-Radius pseu-
docode are as the following:

1. Create a matrix C|X|×|X|, in which C(i, j) is the num-
ber of times (i, j) appear in the database P . This takes
O(n) time.

2. Calculate an aggregation matrix A|X|×|X|, in which

A(i, j) =
∑i
a=1

∑j
b=1 C(a, b). One single elementA(i, j)

can be calculated in constant time by a recursionA(i, j) =
A(i−1, j)+A(i, j−1)−A(i−1, j−1)+C(i, j). There-
fore, this step takes O(|X| × |X|) = O(|X|2) time.

3. The aggregation matrix calculated in the previous step
can help us calculate the sum of entries in any subma-
trix of C in constant time, as illustrated in Figure 2.
Notice that the number of neighbors around a point
(i, j) within L∞ distance d can be regarded as the sum
of C’s (2d+1)×(2d+1) submatrix centered at (i, j). In
this way, we can calculate Br(xi, S) for a specific pair
of (xi, r) in constant time. Therefore, calculating for
all values of xi and r takes O(1)× n× |X| = O(n|X|)
time.

4. The same as step 2 in the brute force algorithm. For
every single r, we choose t biggest Br(xi, P ) among all
xi ∈ P , and take the average, which is L(r, S). This
step takes O(n|X|) time.

Figure 2: The sum of the submatrix can be calcu-
lated as A(d, b)−A(d, a− 1)−A(c− 1, b) +A(c− 1, a− 1).
It is a constant time computation.

To sum up, Algorithm 2 takes O(n) +O(|X|2) +O(n|X|) =
O(|X|2 + n|X|) time in total. When we run experiments,
we choose |X| such that the total number of positions in
the domain Xd approximately equals the size of database n.
Hence, in the two dimensional case, |X|2 ≈ n. Compared to
the brute force algorithm in Section 4.2, we improve from
O(n2.5) to O(n1.5).

Note that the above technique maintains differential pri-
vacy. Different from ε-net, everything we calculate so far is
deterministic. The only random bits in the Good-Radius al-
gorithm is still the RecConcave algorithm in Line 4. There-
fore, the privacy guarantee still holds.

4.4 Runtime Analysis
We identified the bottleneck of Algorithm 1 (Private-k-

Mean) in each iteration as the Good-Radius algorithm,
and Section 4.3 have shown that its running time is O(n1.5).
According to Section 3.3, there are at most O(k logn) itera-
tions, so the totally running time of calculating the private
coreset D (up to Line 21 of Algorithm 1) is O(k logn) ×
O(n1.5) = O(kn1.5 · logn). The result only holds for two
dimensional case.

5. EXPERIMENTS
We conduct experiments with a roving mobile sensor net-

work’s data with publicly available date: the New York City
cab data from January 2015 [1]. In this section, we discuss
how we set up the experiments, give the running time plots,
the coreset size and utility results, and finally compare them
to the literature.

5.1 Experiment Setup
The database records all yellow taxi trips (pickup location

and destination) in New York City from January of 2015. It
contains 12,748,986 entries. Each entry records the details
about a single trip. Among all the fields, we are interested in
pickup longitude and pickup latitude columns, which show
where the taxis are picking up passengers, for two dimen-
sional settings. We further add the dropoff longitude and
dropoff latitude columns to see the running time of our al-
gorithm in high dimensional settings. We assume that each
pick up/drop off location is independent of other pick up/drop
off locations, i.e., attackers cannot infer the information
about one single trip from other trips. Under this assump-
tion, it makes sense to apply differentially private algorithm
on this GPS dataset, because differential privacy is useful to
protect single entry.

The database is noisy, and some GPS coordinates do not
lie in the New York City area or are even invalid. Therefore,
we filter the database by letting the latitude be between
73.9◦W and 74.1◦W, the longitude be between 40.7◦N and
40.9◦N, which approximately outlines the area of New York
City. After that, there are 11,840,734 remaining entries.

As suggested in Section 3, our Private-k-Mean algo-
rithm takes input from a discrete domain, so we need to
discretize the data. Specifically, we map the 2D geographic
coordinate space into an |X| × |X| grid, where |X| × |X|
approximates the number of the locations in the database,
Every GPS point is rounded to its nearest vertex in the grid.

The Private-k-Mean algorithm’s inputs include the database
P with size n, number of clusters k, and privacy parameters
ε, δ. As Dwork and Roth [11] suggests, it is dangerous to
choose δ on the order of 1/n . Therefore, we always choose
δ to be much less than 1/n in our experiments. We adjust
the database size n by taking the first n entries out of the
original database. For every single combination of (n, k, ε),
we run the algorithm 100 times and take the average in order
to smooth out the noise created by randomness.

5.2 Running Time
We measure the algorithm’s running time on a virtual ma-

chine in our OpenStack cloud. The virtual machine has 12
cores, 12GB of RAMs, and 16GB of root disk. The result
for two dimensions is shown in Figure 3. Our algorithm
processes 106 data points in about 40 seconds, and 107 data



Figure 3: Running time vs. database size N under
different number of clusters k in two dimensions.
The privacy parameter ε = 0.8.

Figure 4: Running time vs. database size N under
different number of clusters k in four dimensions.
The privacy parameter ε = 1.

points in about one hour. The log of running time is ap-
proximately linear to the log of database size. By linear
regression, the slope is 1.6 for k = 1 case, and 1.7 for k = 5
case. Therefore, the running time t ∝ n1.6−1.7. Another
fact from the plot is that the running time for k = 5 case is
larger than the k = 1 case, especially when database size n
gets larger and there are more iterations. The results match
the theoretical estimation of t = O(kn1.5 · logn) in Section
4.4.

We conducted experiments for higher dimensional datasets.
The results for four-dimensional data is shown in Figure 4.
For high dimensional datasets, the optimization framework
proposed in Section 4 is no longer applicable. We thus make
use of a divide-and-conquer style approach by splitting the
entire dataset into smaller sub-datasets, and running our
algo- rithm on each sub-dataset. More specifi- cally, we set
the privacy parameter ε = 1, and for a dataset of size N ,
we divide it into a total of N

10000
sub-datasets of size 10000,

and take the union of the outputs generated by each of the
sub-datasets. Figure 4 shows that the log-scale plot of the
running time is approximately linear in the log of database
size, and the running time for k = 1 is comparable with the
one in two dimensional case.

In Section 5.1, we discretize the data into an |X|×|X| grid.
For convenience of implementation, we choose |X| to be the
minimum power of 2 such that |X| × |X| > n. Therefore,
|X| will stay constant while n increases and this results in
a relatively slow increase of the overall running time. How-
ever when n reaches a threshold that requires a larger |X|,
the overall running time sees a jump. This phenomenon is
illustrated in Figure 3.

5.3 Coreset Size
The relationship between the coreset size and the privacy

parameter ε is shown in the right side of Figure 5. The
coreset size is positively correlated to database size n, the
privacy parameter ε and the number of clusters k. Also,
under the same database and k, the coreset size has a linear
relationaship with respective to log ε.

There is an interesting staging phenomenon in the plot,
i.e., as ε increases, the coreset size sometimes remains the
same for a while before starting to increase again. This is
especially clear in the k = 1 plot. The result matches our
Private-k-Mean pseudocode. According to line 9 of Al-
gorithm 1, each iteration contributes to one point to the
coreset. Hence the coreset size equals the number of itera-
tions. If k is smaller, during each iteration, a larger portion
of points are removed from the database (Line 6). As a re-
sult, when ε changes slightly (which causes the threshold
tmin to change slightly (Line 2)), the number of iterations
for the database size to reach that threshold is not affected.

5.4 Utility
In Theorem 3.6, we claim that the returned set C has

both multiplicative and additive error. However, in practical
setting, it is infeasible to measure both of them concurrently.
Using the notation in Definition 3.3, we treat the difference
between the cost of private clustering cost(P,C) and the
minimum cost cost(P,C∗) as a multiplicative error, which is
calculated by

error =
cost(P,C)− cost(P,C∗)

cost(P,C∗)
.

Because finding the absolute minimum cost, cost(P,C∗), is
an NP-hard problem, we use the k-means clustering module
in the Scikit-learn library to approximately calculate it.

The experiment results are shown in the left side of Figure
5. For fixed values of N and k, the error becomes smaller
when ε increases, which demonstrates the tradeoff between
utility and privacy. However in the k = 1 plot, the negatively
correlated relationship does not always hold in every small
neighborhood. The error is the same or might fluctuate a
bit when ε increases. One cause is that coreset size stays
the same while ε increases (known as staging phenomenon
mentioned in Section 5.3). The other reason is that when
k = 1, the coreset size is very small (less than 10), which
introduces large randomness.

For different combination of (k,N), we pick different ε to
start with. Those are not arbitrary options. In fact, when
ε is below a threshold, the code does not output meaningful
results. We approximately pick those thresholds as the low-
est values to start the experiments. Here are the problems
when ε is too small:

• The size of the original database is already below tmin,
so there will be no iterations. See Line 4 of Algorithm
1 (Private-k-Mean).



Figure 5: The top three subplots show the relationship between error and privacy parameter ε. The bottom
three subplots show the relationships between coreset size and ε. The three rows represent 1-center, 5-
centers and 10-centers clustering respectively. In every subplot, different lines represent different database
sizes. Notice that the x-axes are log scale.

• RecConcave algorithm in Line 4 of the Algorithm 2
(Good-Radius) halts because the noise is too big [4].

Table 2: Minimum feasible ε for different (k,N)
HHH

HHk
N

100,000 500,000 1,000,000

1 0.02 0.01 0.007
5 0.8 0.3 0.15
10 3.5 1.0 0.6

Table 2 shows the minimum feasible ε for different combi-
nations of (k,N). It suggests that in practice, we prefer large
database size N and a small number of clusters k because
in that case, the mimimum ε is smaller, and there is less
information leakage. However, our code will barely protect
privacy if N is too small and k is too large. For example,
when (k,N) = (10, 105), the minimum ε equals 3.5, which
is too large.

Figure 6 shows the relationship between error and the
number of clusters k. As there are more clusters, the error
becomes larger. Also, the increasing rate of error is larger
for smaller privacy parameter ε.

5.5 Comparison with Previous Literature
There is no practical evaluation or benchmark on a dif-

ferentially private k-means clustering algorithm in the aca-
demic literature. Gilad from University of Haifa provided
us an implementation of Feldman et al.’s k-medians cluster-
ing private coreset algorithm [12]. It is not a perfectly fair
comparison because their main objective is k-medians clus-
tering instead of k-means clustering. However, k-medians
clustering approximates k-means clustering in the lower di-
mensional case, which justifies the comparison.

We pick the same privacy parameter ε and number of
clusters k to do the comparison. The result is shown in

Figure 6: Error vs. the number of clusters k under
different privacy parameter ε. The database size n
is 1,000,000.

Figure 7. The error of our code is clearly smaller, which
means we improve the utility under the same amount of
information leakage. As for coreset sizes, the algorithm of
[12] produces coresets that are 20× to 40× larger than the
coresets computed in this paper. Furthermore, some of the
coresets in [12] include negative weights; our coresets have
only positive weights. Negative weights could be confusing
to application end users.

6. DIFFERENTIALLY PRIVATE LOCATION
FROM MOBILE SENSOR NETWORKS

We use our Private-k-Mean algorithm in the context of
mobile/roving sensor networks to hide the location of every
single sensor node. Suppose a raw GPS database is con-
structed at the base station by collecting GPS tracks from
every sensor node, and the administrator wants to gener-



Figure 7: Comparison between our Private-k-
Mean implementation and Gilad’s implementation
of Feldman et al’s STOC’09 paper[12]. In the exper-
iments, the number of clusters k = 5, and the privacy
parameter ε = 0.5. The first graph shows the rela-
tionship between error and database size N , and the
second graph shows the relationship between coreset
size and database size N .

ate the k-means private coreset as a useful private sanitized
database from original raw database. The objective is to
allow the administrator to set the privacy parameters. Low
privacy parameters result in more accurate date sanitization
while higher privacy parameters result in more uncertainty
in the sanitized data. The administrator would adaptively
select the privacy level.

We implement the idea using the New York city yellow
taxi data from January 2015 [1]. It visualizes the privacy
and utility trade-off to non-technical end users to help them
make decisions on which privacy level works the best for
them. Some screenshots of the application applied to New
York City cab data are shown in Figure 8.

Since it is hard for the administrator to get the intuition
behind the ε and δ in the (ε, δ)-privacy guarantees, we do
not expose those privacy parameters to them. Instead, we
create discrete privacy levels corresponding to different in-
formation leakage parameters ε. Users use a scroll bar to
choose between those different levels. The left most level is
the most dangerous and has the most information leakage,
and the right most level has the least information leakage.
The GPS points in the resulting private coresets, private k-
means cluster centers and non-private k-means cluster cen-
ters are shown on a map. When the privacy level increases,
we can explicitly see that the coreset contains less points,
and some information is hidden. For example, in Figure 8,
in the lowest level, there are GPS points outside of Manhat-
tan island in the coreset, while in the highest level, all GPS
points in the coreset are inside the Manhattan island. This
idea can be used by base station administrator to choose the
desired privacy level based on what location data should be
hidden. After that, they can publicize the private sanitized
database (k-means private coreset) for further publicizations

and investigations.
The application can also easily be extended to let a single

sensor node manage the privacy of its own data. For ex-
ample, say a sensor node (a person, a robot, or a vehicle)
logs continuously its GPS tracks for further processing and
historical logging, but there is a particular region where the
activity of the node should be subjected to strong privacy
considerations. Our algorithm can be triggered for data col-
lection and display in that area, resulting in a similar private
feedback as shown in Figure 8.

7. CONCLUSION
In this paper we provide an efficient algorithm for k-means

clustering with privacy guarantees that are based on differ-
ential privacy. Our algorithm constructs sanitized databases
of statistics for such problems while preserving the privacy of
the individuals whose data generated them. These databases
called private coresets provide: (i) approximation for the
sum of squared distances of k-means to the original data.
(ii) differential privacy. We designed and implemented the
algorithm in two dimensional case and describe the exper-
imental results. Finally, we present an application that is
based on this algorithm that allows the roving mobile sen-
sor nodes and sensor network administrators to collectively
select the trade-off between privacy and utility/accuracy of
the data.

We believe this work provides first steps towards the exi-
citing vision of protecting every individual’s privacy in real
life data analysis. Our goal for the near future is to apply
the differentially private k-means algorithm to higher di-
mensional database and implement private coresets for other
types of query classes.

8. REFERENCES
[1] New york city cab data. http://www.nyc.gov/html/

tlc/html/about/trip record data.shtml. Online;
accessed: 6-April-2016.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. Journal of
the ACM, 51(4):606–635, 2004.

[3] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,
F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency
table release. In Proc. 26th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems (PODS), pages 273–282, 2007.

[4] A. Beimel, K. Nissim, and U. Stemmer. Private
learning and sanitization: Pure vs. approximate
differential privacy. CoRR, abs/1407.2674, 2014.

[5] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: the sulq framework. In Proceedings
of the Twenty-fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 13-15, 2005, Baltimore,
Maryland, USA, pages 128–138, 2005.

[6] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In Proc.
40th Annu. ACM Symp. on Theory of Computing
(STOC), pages 609–618, 2008.

[7] K. Chen. On k -median clustering in high dimensions.
In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006,



Figure 8: Application screenshots for New York City
cab data on different privacy levels. The top one has
the lowest privacy, and the bottom one has the high-
est privacy. Black dots represent the points in the
private coresets. Red markers represent the non-
private k-means clustering centers. Blue markers
represent the private k-means clustering centers. In
the screenshots, k = 5.

Miami, Florida, USA, January 22-26, 2006, pages
1177–1185, 2006.

[8] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Advances in
Cryptology-EUROCRYPT 2006, pages 486–503.
Springer, 2006.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Proc. 3rd Theory of Cryptography Conf.
(TCC), pages 265–284, 2006.

[10] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
Proc. 24th Annu. Int. Cryptology Conf. (CRYPTO),
volume 3152 of Lecture Notes in Computer Science,
pages 528–544. Springer, 2004.

[11] C. Dwork and A. Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[12] D. Feldman, A. Fiat, H. Kaplan, and K. Nissim.
Private coresets. In Proc. 41st Annu. ACM Symp. on
Theory of Computing (STOC), pages 361–370, 2009.

[13] D. Feldman, M. Monemizadeh, and C. Sohler. A
PTAS for k-means clustering based on weak coresets.
In Proceedings of the 23rd ACM Symposium on
Computational Geometry, Gyeongju, South Korea,
June 6-8, 2007, pages 11–18, 2007.

[14] D. Feldman, M. Schmidt, and C. Sohler. Turning big
data into tiny data: Constant-size coresets for
k -means, PCA and projective clustering. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages
1434–1453, 2013.

[15] S. Har-Peled and A. Kushal. Smaller coresets for
k-median and k-means clustering. Discrete &
Computational Geometry, 37(1):3–19, 2007.

[16] S. Har-Peled and S. Mazumdar. On coresets for
k-means and k-median clustering. In Proceedings of
the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004,
pages 291–300, 2004.

[17] S. Har-Peled and S. Mazumdar. On coresets for
k-means and k-median clustering. In Proc. 36th Annu.
ACM Symp. on Theory of Computing (STOC), pages
291–300, 2004.

[18] S. Har-Peled and K. R. Varadarajan.
High-dimensional shape fitting in linear time. Discrete
& Computational Geometry, 32(2):269–288, 2004.

[19] D. Haussler and E. Welzl. Epsilon-nets and simplex
range queries. In Proceedings of the Second Annual
ACM SIGACT/SIGGRAPH Symposium on
Computational Geometry, Yorktown Heights, NY,
USA, June 2-4, 1986, pages 61–71, 1986.

[20] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proc. 48th IEEE Symp. on
Foundations of Computer Science (FOCS), pages
94–103, 2007.

[21] N. Mishra and M. Sandler. Privacy via pseudorandom
sketches. In Proc. 25th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems (PODS), pages 143–152, 2006.

[22] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA,
June 11-13, 2007, pages 75–84, 2007.

[23] K. Nissim, U. Stemmer, and S. Vadhan. Locating a
small cluster privately. 2016. To appear.

[24] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Prob. Appl., 16:264–280, 1971.


