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Machine Learning and Coresets for Automated Real-Time Video
Segmentation of Laparoscopic and Robot-Assisted Surgery

Mikhail Volkov 1 and Daniel A. Hashimoto 2 and Guy Rosman 1 and Ozanan R. Meireles 2 and Daniela Rus1

Abstract— Context-aware segmentation of laparoscopic and
robot assisted surgical video has been shown to improve
performance and perioperative workflow efficiency, and can
be used for education and time-critical consultation. Modern
pressures on productivity preclude manual video analysis, and
hospital policies and legacy infrastructure are often prohibitive
of recording and storing large amounts of data.

In this paper we present a system that automatically gen-
erates a video segmentation of laparoscopic and robot-assisted
procedures according to their underlying surgical phases using
minimal computational resources, and low amounts of training
data. Our system uses an SVM and HMM in combination
with an augmented feature space that captures the variability
of these video streams without requiring analysis of the non-
rigid and variable environment. By using the data reduction
capabilities of online k-segment coreset algorithms we can effi-
ciently produce results of approximately equal quality, in real-
time. We evaluate our system in cross-validation experiments
and propose a blueprint for piloting such a system in a real
operating room environment with minimal risk factors.

I. INTRODUCTION

Video-based coaching and debriefing of laparoscopic and
robot-assisted minimally invasive surgery (RMIS) has been
demonstrated to contribute to enhanced surgical performance
[3, 27]. These procedures are typically taught in a stepwise
fashion by identifying distinct steps or phases or an operation
[11]. Context-aware segmentation of surgical video can facil-
itate education [25], surgical coaching [9, 27], post-operative
reviews [11], time-critical consultation, and can improve
perioperative workflow efficiency [9, 17] of operating room
assignment and turnover.

While recording laparoscopic and robotic surgical proce-
dures is easy, analyzing them is a time-consuming process,
usually done manually. Modern pressures on training and
productivity preclude spending hours viewing and editing
surgical video for the purpose of routine video-based coach-
ing or performance review. Moreover, strict hospital policies
and legacy infrastructure are often prohibitive of recording
and storing large amounts of video data as a matter of
routine. Thus, a key focus of this project was a design
that performs well a minimal amount of annotation. First,
interviewing surgeons is expensive and time-consuming, so
it is important to develop a protocol that is not disruptive
to the surgeons’ work if the project is to succeed. Second,
developing such a system allows us to easily train for new
surgical procedures with little effort. Lastly, these system
requirements are applicable beyond surgical video to many
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Fig. 1: Laparoscopic cholecystectomy performed at MGH (top).
Coreset segmentation of recorded laparoscopic procedure and the
corresponding surgical phases detected by our system (bottom).

robotic systems, such as a video summary captured from au-
tonomous vehicles, modeling robotic behavior in a fixtureless
assembly operation, remotely supervised robots used in space
exploration and emergency response scenarios, etc.

In this study, we present an online phase recognition
system for automatic phase segmentation and identification
of laparoscopic surgical video in real-time. Our system is
fast, accurate, efficient and scalable, while requiring minimal
training data. We focus on laparoscopic video recorded
by surgeons instead of robotic video for several reasons.
First, human laparoscopic procedures are more common,
more highly controlled, and rely on fewer computer-assisted
variables, all of which makes them more challenging in
principle. Second, the end results of our work are directly
applicable to robot-assisted surgery (compare Fig. 4(5) vs
Fig. 4(v)), with the additional benefit of being able to rely
on multi-sensor data, such as instrument information, from
the robotic surgical unit.

We employ coreset algorithms for video segmentation [26]
and summarization [31] to reduce large amounts of raw data
to a small input to our system. A coreset for the k-segment
mean problem enables us to compute temporal segmentation
of a video stream based on a predetermined feature space
representation. The end result is a small subset of video
frames that capture the semantic content of the video. We
show how coresets allow us to process a large amount



Fig. 2: System overview (left to right) – video stream; feature extraction from video frames; descriptor representation (see Fig. 3); vector
quantization; bag-of-words representation; k-segment coreset reduction; and finally, the coreset frames presented as input to our system.

of unclassified data with minimal computational overhead,
while still providing guarantees about the classification rates.

We use priors from the relevant features and temporal
changes, and without relying on methods such as instrument
detection, 3D modeling, spatial geometry, etc. To this end
we leverage the technical knowledge of expert surgeons to
design a feature space that captures the principal axes of
variability and other visual discriminant factors for the spe-
cific surgical video domain. Using well-established machine
learning methods trained on minimal ground truth data, we
show that we can segment, summarize, and classify a surgical
video according to its constituent phases with a high level
of accuracy, on par or better than previous work.

A. Related Work
The general problem of automated video segmentation has

been researched extensively (see [26], and the references
therein). There has been a lot of research on surgical phase
recognition [2, 13, 16, 21, 28], but this work has been mostly
limited to offline video of entire procedures.

In [18, 22] labeled instrument signals from the OR were
used as low-level tasks to infer corresponding surgical high-
level tasks and showed that instruments are used for maneu-
vers other than their primary function. Similarly, [10, 22]
focused on investigating manual maneuvers and low-level
surgical tasks to infer corresponding surgical high-level tasks
by detecting specific hand and instrument maneuvers in
laparoscopic surgery

The authors in [29] used instrument signals for phase
recognition, such as those provided by da Vinci; [6, 30]
investigated instrument detection; [1] looked at instrument
pose estimation; [12, 19, 23, 24] investigated tool tracking.
Our work is agnostic to specific instruments, focusing instead
on lower-level hybrid feature spaces that are based on
annotations from experienced surgeons.

In [28] 3D models of instruments were used to train the
model. In [5, 20] tools were used as binary signals indicating
the progress of laparoscopic procedures, In [32] the authors
used metabolizable fluorescent markers attached to the target
organ to guide a 2D/3D intra-operative registration algorithm.
By contrast, we avoid relying on any ad-hoc detection
signals, in order to keep our system general and applicable
to multiple types of surgical (and robotic) contexts.

For temporal models, all of [2, 4, 8, 25] all used Hidden
Markov Models (HMMs) as the method of choice, although
[2] used canonical-correlation analysis (CCA), and [8] also

looked at Hidden Semi-Markov Models (HSMM) with Ad-
aBoost. In this work, we used the standard HMM because it
is relatively simple and has fewer parameters.

On the clinical side, the studies that motivate the opening
paragraph of this Section are comprehensive in their own
right and convey the urgent need for the kind of systems
that we present in this paper.

B. Key Contributions

The main contributions of this paper are:
1) We present a real-time algorithm for surgical phase

segmentation and identification, which requires very
little training data, and is fast and efficient.

2) We demonstrate the effectiveness and robustness of our
algorithms on real medical data. Training on a total
dataset of just over 10 hours of video, we are able to
achieve a 92.8% prediction accuracy.

3) We show that by using coresets we can reduce the data
to a small but informative subset that yields practically
identical levels of accuracy.

II. TECHNICAL APPROACH

We now describe in detail the technical approach used to
enable our end-to-end system.

A. Features.

When performing temporal segmentation, the choice of
per-frame features is crucial. Since we aim at learning from
a limited amount of data and under small computational
resource, it is important that our feature space is concise
and representative, with a balance between invariance and
expressiveness.

Instead of trying to model specific 3D objects in the
videos (see for example [23], and references therein), we
favor a more generic approach for several reasons. Foremost,
semantically important objects have an in-class variability
at the geometric level – consider the set of shapes that
form of a chair or a cup, all of which have the same
function and semantic meaning. While for some objects,
large-scale datasets allow direct learning of the appearance
space, this is prohibitive in the case of few training examples
and/or computational resources, and may result in overfitting.
Furthermore, exactly 3D geometry and pose are not always
obtainable. Consider specular, metallic, semi-transparent ob-
jects, or non-rigid objects – all of which are plentiful inside
a patient undergoing surgery. Moreover, videos such as
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Fig. 3: Construction of the augmented local descriptors (3a), augmented global descriptors (3b), and the resulting frame representation.

laparoscopic and first-person view videos as are often seen by
robots tend to have partial views – this is often encountered
in detecting of instruments and objects, as noted by [23].

For these reasons we look for and identified several visual
cues in the videos, categorized broadly as local and global
descriptors. These are motivated by the way surgeons deduce
the stage of the surgery.

We use these cues to compose a feature space that captures
the principal axes of variability and other discriminant factors
that determine the phase, and then train a set of classifiers
as an intermediate feature. We now describe these visual
cues, the augmented descriptor structure, and the final frame
representation using the bag-of-words (BOW) model.
(i) Color. Histogram intersection has been used in similar
work to extract color-oriented visual cues by creating a
training image database of positive and negative images
[13]. Other descriptor categories for individual RGBHSV
channels can be utilized to increase dimensionality to discern
features that depend on color in combination with some other
property. Pixel values can also be used as features directly
[2]. In this work, we use RGB/HSV components to augment
both the local descriptor (color values) and global descriptor
(color histogram).
(ii) Position. Relative position of organs and instruments is
an important visual cue. We encode the position of SURF-
detected keypoints with an 8×8 grid sampling of a Gaussian
surface centered around the keypoint (Fig. 3a). The variance
of the Gaussian defines the spatial “area of influence” of a
keypoint.
(iii) Shape. Shape is important for detecting instruments,
which are some of most obvious visual cues for identifying
the phase. Shape can be encoded with various techniques,
such as the Viola-Jones object detection framework [1], using
image segmentation to isolate the instruments and match

against artificial 3D models [28], and other methods. For
local frame descriptors we use the standard SURF descriptor
as a base, and for global frame descriptor we add grid-
sampled HOG descriptors [1] and DCT coefficients [1].
(iv) Texture. Texture is a crucial visual cue to distinguish
vital organs, which tend to exhibit a narrow variety of color.
Texture can be extracted using a co-occurrence matrix with
Haralick descriptors [14], by a sampling of representative
patches to be evaluated with a visual descriptor vector for
each patch [13], and other methods. In this work, we use the
newer SFTA texture descriptor [7], which has shown better
performance than Haralick filter banks.

Finally, we combine the augmented descriptors into a
single fixed-dimension frame descriptor. For this we use
the BOW model, which is is a simplifying representation
commonly used to standardize the dimensionality of features
[1]. We compute a representative vector quantization (VQ)
by sampling frames using local descriptors only. Any set of
local descriptors (Fig. 3a, bottom) can then be represented as
a histogram of projections in the fixed VQ dimension (d1=
500). The final combined frame descriptor is then composed
of the BOW histogram and the additional dimensions (d2=
500) of the global descriptor (Fig. 3b, top), for a combined
dimension d=1000 (Fig. 3b, bottom).

B. Coreset Computation

Coresets are compact data reduction constructs that can
efficiently produce a problem dependent compression of the
data. Specifically, in [26], k-segment coresets have been
shown to great aid efficient segmentation of large-scale,
online video stream. While in our case the segmentation cost
is slightly different, as we show in Section III, we can obtain
guarantees on the approximation accuracy afforded by the
coresets, and trade off data approximation with computa-
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Fig. 4: Phases (1–5 shown) of the laparoscopic sleeve gastrectomy (LSG) procedure: (1) port, (2) biopsy, liver retraction, (3) omentum
removal, dissection, hiatus inspection, (4) stapling, (5) bagging, (6) irrigation, (7) final inspection, withdrawal. Fig. 4(v) shows the bagging
phase from a similar surgery performed with a da Vinci Surgical System (compare with Fig. 4(5)).

tional resources. Furthermore, as in our previous work [31],
we can augment the coreset by a keyframe compression of
the video that enables fast retrieval and anytime access for
large visual stream. We therefore we use an online k-segment
coreset algorithm to compute a compact representation of the
video stream over which we can compute the segmentation.
This allows our system to run online, in real-time, using
minimal computational resources.

C. Phase prediction.

A binary classifier setup for each phase was used as
opposed to a multi-class classifier. Using this approach was
preferred in order to decouple phase transitions, which is the
main goal of the classifier layer, from phase identification,
which is the goal of the HMM temporal model.

As a first step, we train a series of support vector machines
for each phase. Each SVM classifies a phase i by outputting
a binary variable pi = 1, P\{pi} = 0. This approach was
shown to be more accurate than a single multi-class SVM
in a similar visual domain [14]. This is an iterative step
that involves interviewing surgeons, re-calibrating the feature
space, re-training the classifiers, etc. Interviewing surgeons
is expensive and time-consuming therefore it is important
to repeat this step first until we achieve the desired level
of accuracy. The first step is to ensure that the augmented
feature space presented in Section II yields an acceptable
level of accuracy for this domain with respect to the ground
truth phases. Fig. 5a shows the binary outputs produced by
the SVM. Fig. 5b shows the rate of correct classification
(accuracy) of the predictions compared against ground truth.
We note that there are two ambiguous cases: (i) multiple
SVM outputs yi(t) = 1; and (ii) all SVM outputs yi(t) = 0.

The second step is to make use of the temporal structure
of surgical phases (monotonically increasing, mutually exclu-
sive, and collectively exhaustive) to correct SVM predictions,
resolve the ambiguous cases stated above, and compute a
single time-series of phase predictions. We achieve this using
an observation function φ(V,s,α,β ) that takes a sequence of
SVM outputs V , the current phase hypothesis s, a certainty
parameter α ∈ [0,1], and lookback parameter β ∈Z+, and re-
turns the next phase prediction. We start with an initial phase
hypothesis s = 0. Then, given the current phase hypothesis
and a matrix V where Vi is the column vector of SVM outputs
at time i, the current phase estimate p is determined by

φ(V,s,α,β ) =

{
argmaxi ∑Vi,1,...,β , if ∑Vi/∑V > α

s, otherwise
(1)

The intuition for this function is as follows. We have a
matrix consisting of several independent SVM output vectors
(with a memory trail of the last β -1 such vectors). The
observation function then updates the current phase, if and
only if the vector sum for another phase exceeds the current
one by a certainty threshold α , in which case we update our
phase hypothesis to the next phase – otherwise the current
phase persists.

The observation function combines many independent
SVM outputs into one single set of phase observations.
The values of α and β are essentially high- and low-pass
filter parameters, and it is trivial to show correctness by
considering that both α,β ∈ [0,1].

Phase transitions are modeled using an HMM with the left-
right restriction as in [13]. This function is non-restrictive in
terms of skipping phases and going backwards (thus violating
our assumptions of the phases’ temporal structure), but this
is not necessary to enforce in the classification layer, and
it is resolve by the HMM. The final observation sequence
Q = p1, . . . , pN is the emission sequence. Finally, we run the
Viterbi algorithm [1] on the emission sequence to find the
most likely sequence of hidden states (the phases).

III. ANALYSIS

While coresets have been used before for video summa-
rization [26] and loop-closure [31], there is the question
of what kind of guarantees are provided by coresets under
the SVM/HMM model that we are using. The following
theorem shows that under specific conditions, k-segment
coresets can be used in order to efficiently compute the data
log-likelihood of solutions, including the optimal solution,
subject to constraints on the number of location of the
transition boundaries between labels. This includes linear
classifiers, or classifiers whose training hinges on linear
classification, such as SVMs. We give a brief motivation and
outline for the proof, and refer the reader to [26] for more
details on the specific coreset used.

For a given coreset segment C in the k-segment coreset,
it can be shown [26] that for k-segment with segments
{x(t) = a jt + b j},x(t),a j,b j ∈ Rd , the coreset provides a
good approximation for the fitting cost:

(1− ε)6
∑ j d2 (C j,a jti +b j)

∑i d2 (x(ti) ,a jti +b j)
6 (1+ ε) , (2)

where C j denotes the sufficient statistic matrix saved for each
coreset segment j, i denotes the data points indices inside the



500 1000 1500 2000 2500 3000

S
V

M
 c

la
ss

1
2
3
4
5
6
7

500 1000 1500 2000 2500 3000

1
2
3
4
5
6
7

(a) SVM binary outputs (black = 1)

500 1000 1500 2000 2500 3000

S
V

M
 c

la
ss

1
2
3
4
5
6
7

500 1000 1500 2000 2500 3000

1
2
3
4
5
6
7

(b) SVM accuracy (red = incorrect)

Frames
500 1000 1500 2000 2500 3000

P
ha
se

1

2

3

4

5

6

7
Ground truth
HMM prediction

(1) Example 1 Frames
500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

Ground truth
HMM prediction

(2) Example 2 Frames
500 1000 1500 2000 2500

1

2

3

4

5

6

7

Ground truth
HMM prediction

(3) Example 3

Fig. 5: Typical experimental results: x = frame number, y = SVM class, i.e. phase number. 5(a–b) highlight the shortfalls of an SVM-only system with
no temporal component; red lines indicate incorrect phase predictions from (possibly conflicting) SVM outputs. 5(1–3) shows HMM-corrected predictions.

segment or over the whole time axis, and d denotes the least-
squares distance. ε is a small constant that depends on the
coreset construction parameters and can be adapted. (here we
assume the k-segments to align with the coreset segments,
although this is not required in [26].)

Our main motivation is linear classifiers — if we assume
a linear observation / classification model, of the form:

logP(x(ti) | H j) = wT
j x(ti)+d j, (3)

Where H j is a hypothesis on which phase we are in at time
ti, and w j,d j are the parameters of the appropriate linear
classifier. Assuming a state doesn’t change within a coreset
segment, the log-probability of the observations for all times
during the coreset segment, ti ∈ T , is also well-approximated,

(1− ε)≤
∑ j f (d(C j,w j,d j)

∑ti∈T logP(x(ti) | H j)
≤ (1+ ε). (4)

f defines here the computation of the log probability using
the linear classifier parameters and the coreset for the data
in segment j. This can be seen by substituting

wT
j x+d j = d2(x,−w j/2)−‖w j/2‖2−‖x‖2 +d j. (5)

into the guarantees in [26] and the definition of the coreset
there, as well as adding a correcting term for the norm of this
vector and the bias vector. Assuming the signal is separable
into a single class per segment with a non-zero margin gives
a straightforward result.

The same justification can be used for other methods based
on linear classification followed by non-linear operators,
such as the one shown in Subsection II.3. This allows us
to estimate the label per segment with bounded increase in
the classification error, ∑i

1
2

(
1− yi sgn

(
wT

j xi +d j

))
. For a

video whose frames are classified using the SVM, it can
be shown that by assuming a single label for each coreset
segment and using the coreset segment C to obtain the sign
leads to a bounded increase in the error. We again assume
here the number of different phases is bounded by k and that
the phase is separable.

IV. EXPERIMENTAL RESULTS

For this study we used 10 videos of the laparoscopic
vertical sleeve gastrectomy (LSG) procedure performed by
expert surgeons at the MGH. This allowed us to test the
system with enough variability between data examples, while
training the features and low-level classifier channels under
the assumption of limited training data.

For this procedure, the surgeons identified 7 basic phases:
(1) port, (2) biopsy, liver retraction, (3) omentum removal,
dissection, hiatus inspection, (4) stapling, (5) bagging, (6)
irrigation, (7) final examination, withdrawal (Fig. 4). We
note that some phases have multiple stages, and a much
finer granularity is generally possible. In-fact, some very
complicated procedures such as The Whipple Procedure
(pancreaticoduodenectomy) can have more than a hundred
identifiable phases, wherein a single misstep can result in
morbidity and mortality [17].

In the surgeries obtained in this study, phases always occur
in the specified order. We also note that not all videos contain
all the phases, which presents an additional challenge to
segment videos with missing phases. We then interviewed the
surgeons who performed the procedures, and collected two
kinds of information: (1) Qualitative annotations describing
how they identified the phase from the video; (2) Specific
timestamps of phase transitions that serve as ground truth.

The qualitative annotations are (in principle) innumerable,
consisting of natural language descriptions of the surgical
process. Conversely, we note that the timestamp annotations
are very sparse. We only have k− 1 indices as the entire
annotation for an k-phase procedure.

We assess our system with cross-validation experiments,
using both the entire video and the coreset representation,
and evaluate accuracy against ground truth segmentation.
We perform tests by training the system on each subset
of N−1= 9 videos in the dataset, using a standard 80/20
training/validation split. The system is then tested on each
remaining unseen video, and the results aggregated over the
N subsets. Fig. 5.1–5.3 shows typical results. We demonstrate
a 90.4% SVM prediction accuracy, and improve to 92.8%



when combined with HMM. These results are on par with
similar work in the surgical video domain [15], while achiev-
ing a 90+% coreset compression over the original video.

A. Discussion and Conclusions

In this work we showed how a carefully calibrated feature
space can facilitate a very high classification accuracy for
phase detection in video streams

The main focus of ongoing work is to improve the
phase prediction accuracy. We extend our system to consider
continuous likelihood models, allowing us use temporal
regularity to handle ambivalent phase predictions more ef-
fectively. We are looking into other temporal models for
non-monotonic phase sequences. With more video data we
aim to evaluate our predictive model across different surgical
procedures. Lastly, our goal is to extend the use of coresets in
this work beyond segmentation, applying the framework we
presented in [31] to generate an interactive visual summary
of laparoscopic and robot-assisted surgeries.
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