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Abstract

We consider un-discounted reinforcement learn-
ing (RL) in Markov decision processes (MDPs)
under drifting non-stationarity, i.e., both the re-
ward and state transition distributions are allowed
to evolve over time, as long as their respective
total variations, quantified by suitable metrics, do
not exceed certain variation budgets. We first
develop the Sliding Window Upper-Confidence
bound for Reinforcement Learning with Confi-
dence Widening (SWUCRL2-CW) algorithm, and
establish its dynamic regret bound when the vari-
ation budgets are known. In addition, we propose
the Bandit-over-Reinforcement Learning (BORL)
algorithm to adaptively tune the SWUCRL2-CW
algorithm to achieve the same dynamic regret
bound, but in a parameter-free manner, i.e., with-
out knowing the variation budgets. Notably, learn-
ing non-stationary MDPs via the conventional op-
timistic exploration technique presents a unique
challenge absent in existing (non-stationary) ban-
dit learning settings. We overcome the challenge
by a novel confidence widening technique that
incorporates additional optimism.

1. Introduction

Consider a general sequential decision-making framework,
where a decision-maker (DM) interacts with an initially un-
known environment iteratively. At each time step, the DM
first observes the current state of the environment, and then
chooses an available action. After that, she receives an in-
stantaneous random reward, and the environment transitions
to the next state. The DM aims to design a policy that max-
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imizes its cumulative rewards, while facing the following
challenges:

• Endogeneity: At each time step, the reward follows a
reward distribution, and the subsequent state follows a
state transition distribution. Both distributions depend
(solely) on the current state and action, which are influ-
enced by the policy. Hence, the environment can be fully
characterized by a discrete time Markov decision process
(MDP).

• Exogeneity: The reward and state transition distributions
vary (independently of the policy) across time steps, but
the total variations are bounded by the respective variation
budgets.

• Uncertainty: Both the reward and state transition distri-
butions are initially unknown to the DM.

• Bandit/Partial Feedback: The DM can only observe the
reward and state transition resulted by the current state
and action in each time step.

It turns out that many applications, such as real-time bid-
ding in advertisement (ad) auctions, can be captured by this
framework (Cai et al., 2017; Flajolet & Jaillet, 2017; Bal-
seiro & Gur, 2019; Guo et al., 2019; Han et al., 2020).
Besides, this framework can be used to model sequen-
tial decision-making problems in transportation (Zhang &
Wang, 2018; Qin et al., 2019), wireless network (Zhou &
Bambos, 2015; Zhou et al., 2016), consumer choice model-
ing (Xu & Yun, 2020), ride-sharing (Taylor, 2018; Gurvich
et al., 2018; Bimpikis et al., 2019; Kanoria & Qian, 2019),
healthcare operations (Shortreed et al., 2010), epidemic con-
trol (Nowzari et al., 2016; Kiss et al., 2017), and inventory
control (Huh & Rusmevichientong, 2009; Bertsekas, 2017;
Zhang et al., 2018; Agrawal & Jia, 2019; Chen et al., 2019a).

There exists numerous works in sequential decision-making
that considered part of the four challenges. The traditional
stream of research (Auer et al., 2002a; Bubeck & Cesa-
Bianchi, 2012; Lattimore & Szepesvári, 2018) on stochastic
multi-armed bandits (MAB) focused on the interplay be-
tween uncertainty and bandit feedback (i.e., challenges 3
and 4), and (Auer et al., 2002a) proposed the classical Upper

Confidence Bound (UCB) algorithm. Starting from (Bur-
netas & Katehakis, 1997; Tewari & Bartlett, 2008; Jaksch
et al., 2010), a volume of works (see Section 3) have been
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Stationary Non-stationary

MAB OFU (Auer et al., 2002a) OFU + Forgetting (Besbes et al., 2014; Cheung et al., 2019b)

RL OFU (Jaksch et al., 2010) Extra optimism + Forgetting (This paper)

Table 1. Summary of algorithmic frameworks of stationary and non-stationary online learning settings.

devoted to reinforcement learning (RL) in MDPs (Sutton
& Barto, 2018), which further involves endogeneity. RL in
MDPs incorporate challenges 1,3,4, and stochastic MAB is
a special case of MDPs when there is only one state. In the
absence of exogeneity, the reward and state transition distri-
butions are invariant across time, and these three challenges
can be jointly solved by the Upper Confidence bound for

Reinforcement Learning (UCRL2) algorithm (Jaksch et al.,
2010).

The UCB and UCRL2 algorithms leverage the optimism

in face of uncertainty (OFU) principle to select actions it-
eratively based on the entire collections of historical data.
However, both algorithms quickly deteriorate when exo-
geneity emerge since the environment can change over time,
and the historical data becomes obsolete. To address the
challenge of exogeneity, (Garivier & Moulines, 2011b) con-
sidered the piecewise-stationary MAB environment where
the reward distributions remain unaltered over certain time
periods and change at unknown time steps. Later on, there is
a line of research initiated by (Besbes et al., 2014) that stud-
ied the general non-stationary MAB environment (Besbes
et al., 2014; Cheung et al., 2019a;b), in which the reward
distributions can change arbitrarily over time, but the total
changes (quantified by a suitable metric) is upper bounded
by a variation budget (Besbes et al., 2014). The aim is to
minimize the dynamic regret, the optimality gap compared
to the cumulative rewards of the sequence of optimal actions.
Both the (relatively restrictive) piecewise-stationary MAB
and the general non-stationary MAB settings consider the
challenges of exogeneity, uncertainty, and partial feedback
(i.e., challenges 2, 3, 4), but endogeneity (challenge 1) are
not present.

In this paper, to address all four above-mentioned chal-
lenges, we consider RL in non-stationary MDPs where bot
the reward and state transition distributions can change over
time, but the total changes (quantified by suitable metrics)
are upper bounded by the respective variation budgets. We
note that in (Jaksch et al., 2010), the authors also consider
the intermediate RL in piecewise-stationary MDPs. Never-
theless, we first demonstrate in Section 4.1, and then rigor-
ously show in Section 6 that simply adopting the techniques
for non-stationary MAB (Besbes et al., 2014; Cheung et al.,
2019a;b) or RL in piecewise-stationary MDPs (Jaksch et al.,

2010) to RL in non-stationary MDPs may result in poor
dynamic regret bounds.

1.1. Summary of Main Contributions

Assuming that, during the T time steps, the total variations
of the reward and state transition distributions are bounded
(under suitable metrics) by the variation budgets Br (> 0)
and Bp (> 0), respectively, we design and analyze novel
algorithms for RL in non-stationary MDPs. Let Dmax, S,
and A be respectively the maximum diameter (a complexity
measure to be defined in Section 2), number of states, and
number of actions in the MDP. Our main contributions are:

• We develop the Sliding Window UCRL2 with Con-
fidence Widening (SWUCRL2-CW) algorithm. When
the variation budgets are known, we prove it attains a
Õ

!
Dmax(Br + Bp)1/4S2/3A1/2T 3/4"

dynamic regret
bound via a budget-aware analysis.

• We propose the Bandit-over-Reinforcement Learning
(BORL) algorithm that tunes the SWUCRL2-CW

algorithm adaptively, and retains the same
Õ

!
Dmax(Br + Bp)1/4S2/3A1/2T 3/4"

dynamic
regret bound without knowing the variation budgets.

• We identify an unprecedented challenge for RL in non-
stationary MDPs with conventional optimistic exploration
techniques: existing algorithmic frameworks for non-
stationary online learning (including non-stationary ban-
dit and RL in piecewise-stationary MDPs) (Jaksch et al.,
2010; Garivier & Moulines, 2011b; Cheung et al., 2019a)
typically estimate unknown parameters by averaging his-
torical data in a “forgetting” fashion, and construct the
tightest possible confidence regions/intervals accordingly.
They then optimistically search for the most favorable
model within the confidence regions, and execute the
corresponding optimal policy. However, we first demon-
strate in Section 4.1, and then rigorously show in Section
6 that in the context of RL in non-stationary MDPs, the
diameters induced by the MDPs in the confidence regions
constructed in this manner can grow wildly, and may re-
sult in unfavorable dynamic regret bound. We overcome
this with our novel proposal of extra optimism via the
confidence widening technique (alternatively, in (Cheung
et al., 2020a), an extended version of the current paper,
the authors demonstrate that one can leverage special
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structures on the state transition distributions in the con-
text of single item inventory control with fixed cost to
bypass this difficulty of exploring time-varying environ-
ments). A summary of the algorithmic frameworks for
stationary and non-stationary online learning settings are
provided in Table 1.

2. Problem Formulation

In this section, we introduce the notations to be used
throughout paper, and introduce the learning protocol for
our problem of RL in non-stationary MDPs.

2.1. Notations

Throughout the paper, all vectors are column vectors, unless
specified otherwise. We define [n] to be the set {1, 2, . . . , n}

for any positive integer n. We denote 1[·] as the indicator
function. For p œ [1, Œ], we use ÎxÎp to denote the p-norm
of a vector x œ Rd. We denote x ‚ y and x · y as the max-
imum and minimum between x, y œ R, respectively. We
adopt the asymptotic notations O(·), �(·), and �(·) (Cor-
men et al., 2009). When logarithmic factors are omitted, we
use Õ(·), �̃(·), �̃(·), respectively. With some abuse, these
notations are used when we try to avoid the clutter of writing
out constants explicitly.

2.2. Learning Protocol

Model Primitives: An instance of non-stationary MDP
is specified by the tuple (S, A, T, r, p). The set S is a fi-
nite set of states. The collection A = {As}sœS contains
a finite action set As for each state s œ S. We say that
(s, a) is a state-action pair if s œ S, a œ As. We de-
note S = |S|, A = (

q
sœS |As|)/S. We denote T as

the total number of time steps, and denote r = {rt}
T

t=1
as the sequence of mean rewards. For each t, we have
rt = {rt(s, a)}sœS,aœAs , and rt(s, a) œ [0, 1] for each
state-action pair (s, a). In addition, we denote p = {pt}

T

t=1
as the sequence of state transition distributions. For each
t, we have pt = {pt(·|s, a)}sœS,aœAs , where pt(·|s, a) is
a probability distribution over S for each state-action pair
(s, a).

Exogeneity: The quantities rt’s and pt’s vary across dif-
ferent t’s in general. Following (Besbes et al., 2014), we
quantify the variations on rt’s and pt’s in terms of their
respective variation budgets Br, Bp (> 0):

Br =
T ≠1ÿ

t=1
Br,t, Bp =

T ≠1ÿ

t=1
Bp,t, (1)

where Br,t = maxsœS,aœAs |rt+1(s, a) ≠ rt(s, a)| and
Bp,t = maxsœS,aœAs Îpt+1(·|s, a) ≠ pt(·|s, a)Î1 . We em-
phasize although Br and Bp might be used as inputs by the

DM, individual Br,t’s and Bp,t’s are unknown to the DM
throughout the current paper.

Endogeneity: The DM faces a non-stationary MDP in-
stance (S, A, T, r, p). She knows S, A, T , but not r, p.
The DM starts at an arbitrary state s1 œ S. At time t,
three events happen. First, the DM observes its current
state st. Second, she takes an action at œ Ast . Third,
given st, at, she stochastically transits to another state st+1
which is distributed as pt(·|st, at), and receives a stochas-
tic reward Rt(st, at), which is 1-sub-Gaussian with mean
rt(st, at). In the second event, the choice of at is based on
a non-anticipatory policy �. That is, the choice only de-
pends on the current state st and the previous observations
Ht≠1 := {sq, aq, Rq(sq, aq)}t≠1

q=1.

Dynamic Regret: The DM aims to maximize the cumula-
tive expected reward E[

q
T

t=1 rt(st, at)], despite the model
uncertainty on r, p and the dynamics of the learning envi-
ronment. To measure the convergence to optimality, we
consider an equivalent objective of minimizing the dynamic

regret (Besbes et al., 2014; Jaksch et al., 2010)

Dyn-Reg
T

(�) =
Tÿ

t=1
{flú

t
≠ E[rt(st, at)]} . (2)

In the oracle
q

T

t=1 flú
t
, the summand flú

t
is the optimal long-

term average reward of the stationary MDP with state tran-
sition distribution pt and mean reward rt. The optimum flú

t

can be computed by solving linear program (9) provided in
Section A.1. We note that the same oracle is used for RL in
piecewise-stationary MDPs (Jaksch et al., 2010).
Remark 1. When S = 1, (2) reduces to the definition

(Besbes et al., 2014) of dynamic regret for non-stationary

K-armed bandits. Nevertheless, different from the bandit

case, the offline benchmark
q

T

t=1 flú
t

does not equal to the

expected optimum for the non-stationary MDP problem in

general. We justify our choice in Proposition 1.

Next, we review concepts of communicating MDPs and
diameters, in order to stipulate an assumption that ensures
learnability and justifies our offline bnechmark.
Definition 1 ((Jaksch et al., 2010) Communicating

MDPs and Diameters). Consider a set of states S,

a collection A = {As}sœS of action sets, and a

transition kernel p̄ = {p̄(·|s, a)}sœS,aœAs . For any

s, sÕ
œ S and stationary policy fi, the hitting time from

s to sÕ
under fi is the random variable �(sÕ

|fi, s) :=
min {t : st+1 = sÕ, s1 = s, s·+1 ≥ p̄(·|s· , fi(s· )) ’·} ,
which can be infinite. We say that (S, A, p̄) is a

communicating MDP iff

D := max
s,sÕœS

min
stationary fi

E [�(sÕ
|fi, s)]

is finite. The quantity D is the diameter associated with

(S, A, p̄).
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We make the following assumption throughout.

Assumption 1. For each t œ {1, . . . , T}, the tuple

(S, A, pt) constitutes a communicating MDP with diam-

eter at most Dt. We denote the maximum diameter as

Dmax = maxtœ{1,...,T } Dt.

The following proposition justifies our choice of offline
benchmark

q
T

t=1 flú
t
.

Proposition 1. Consider an instance (S, A, T, p, r) that

satisfies Assumption 1 with maximum diameter Dmax,

and has variation budgets Br, Bp for the rewards and

transition kernels respectively. In addition, suppose

that T Ø Br + 2DmaxBp > 0. It holds that
q

T

t=1 flú
t

Ø max�
Ó
E

Ëq
T

t=1 rt(s�
t

, a�
t

)
ÈÔ

≠ 4(Dmax +
1)


(Br + 2DmaxBp)T . The maximum is taken over all

non-anticipatory policies �’s. We denote {(s�
t

, a�
t

)}T

t=1
as the trajectory under policy �, where a�

t
œ A

s
�
t

is

determined based on � and Ht≠1 fi {s�
t

}, and s�
t+1 ≥

pt(·|s�
t

, a�
t

) for each t.

The Proposition is proved in Section A.2 of the full ver-
sion (Cheung et al., 2020b). In fact, our dynamic re-
gret bounds are larger than the error term 4(Dmax +
1)


(Br + 2DmaxBp)T , thus justifying the choice ofq

T

t=1 flú
t

as the offline benchmark. The offline benchmarkq
T

t=1 flú
t

is more convenient for analysis than the expected
optimum, since the former can be decomposed to summa-
tions across different intervals, unlike the latter where the
summands are intertwined (since s�

t+1 ≥ pt(·|s�
t

, a�
t

)).

3. Related Works

3.1. RL in Stationary MDPs

RL in stationary (discounted and un-discounted reward)
MDPs has been widely studied in (Burnetas & Katehakis,
1997; Bartlett & Tewari, 2009; Jaksch et al., 2010; Agrawal
& Jia, 2017; Fruit et al., 2018a;b; Sidford et al., 2018b;a;
Wang, 2019; Zhang & Ji, 2019; Fruit et al., 2019; Wei et al.,
2019). For the discounted reward setting, the authors of (Sid-
ford et al., 2018b; Wang, 2019; Sidford et al., 2018a) pro-
posed (nearly) optimal algorithms in terms of sample com-
plexity. For the un-discounted reward setting, the authors
of (Jaksch et al., 2010) established a minimax lower bound
�(

Ô
DmaxSAT ) on the regret when both the reward and

state transition distributions are time-invariant. They also
designed the UCRL2 algorithm and showed that it attains a
regret bound Õ(DmaxS

Ô
AT ). The authors of (Fruit et al.,

2019) proposed the UCRL2B algorithm, which is an im-
proved version of the UCRL2 algorithm. The regret bound
of the UCRL2B algorithm is Õ(S

Ô
DmaxAT +D2

maxS2A).
The minimax optimal algorithm is provided in (Zhang & Ji,
2019) although it is not computationally efficient.

3.2. RL in Non-Stationary MDPs

In a parallel work (Ortner et al., 2019), the authors consid-
ered a similar setting to ours by applying the “forgetting
principle” from non-stationary bandit settings (Garivier &
Moulines, 2011b; Cheung et al., 2019b) to design a learn-
ing algorithm. To achieve its dynamic regret bound, the
algorithm by (Ortner et al., 2019) partitions the entire time
horizon [T ] into time intervals I = {Ik}

K

k=1, and crucially
requires the access to

qmax Ik≠1
t=min Ik

Br,t and
qmax Ik≠1

t=min Ik
Bp,t,

i.e., the variations in both reward and state transition distribu-
tions of each interval Ik œ I (see Theorem 3 in (Ortner et al.,
2019)). In contrast, the SWUCRL2-CW algorithm and the
BORL algorithm require significantly less information on the
variations. Specifically, the SWUCRL2-CW algorithm does
not need any additional knowledge on the variations except
for Br and Bp, i.e., the variation budgets over the entire
time horizon as defined in eqn. (1), to achieve its dynamic
regret bound (see Theorem 1). This is similar to algorithms
for the non-stationary bandit settings, which only require
the access to Br (Besbes et al., 2014). More importantly,
the BORL algorithm (built upon the SWUCRL2-CW algo-
rithm) enjoys the same dynamic regret bound even without
knowing either of Br or Bp (see Theorem 2).

There also exists some settings that are closely related to,
but different than our setting (in terms of exogeneity and
feedback). (Jaksch et al., 2010; Gajane et al., 2018) pro-
posed solutions for the RL in piecewise-stationary MDPs
setting. But as discussed before, simply applying their tech-
niques to the general RL in non-stationary MDPs may result
in undesirable dynamic regret bounds (see Section 6 for
more details). In (Yu et al., 2009; Neu et al., 2010; Arora
et al., 2012; Dick et al., 2014; Jin et al., 2019; Cardoso et al.,
2019), the authors considered RL in MDPs with changing
reward distributions but fixed transition distributions. The
authors of (Even-Dar et al., 2005; Yu & Mannor, 2009; Neu
et al., 2012; Abbasi-Yadkori et al., 2013; Rosenberg & Man-
sour, 2019; Li et al., 2019) considered RL in non-stationary
MDPs with full information feedback.

3.3. Non-Stationary MAB

For online learning and bandit problems where there is
only one state, the works by (Auer et al., 2002b; Garivier
& Moulines, 2011b; Besbes et al., 2014; Keskin & Zeevi,
2016) proposed several “forgetting” strategies for different
non-stationary MAB settings. More recently, the works by
(Karnin & Anava, 2016; Luo et al., 2018; Cheung et al.,
2019a;b; Chen et al., 2019b) designed parameter-free algo-
rithms for non-stationary MAB problems. Another related
but different setting is the Markovian bandit (Kim & Lim,
2016; Ma, 2018), in which the state of the chosen action
evolve according to an independent time-invariant Markov
chain while the states of the remaining actions stay un-
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changed. In (Zhou et al., 2020), the authors also considered
the case when the states of all the actions are governed by
the same (uncontrollable) Markov chain.

4. Sliding Window UCRL2 with Confidence

Widening

In this section, we present the SWUCRL2-CW algorithm,
which incorporates sliding window estimates (Garivier &
Moulines, 2011a) and a novel confidence widening tech-
nique into UCRL2 (Jaksch et al., 2010).

4.1. Design Challenge: Failure of Naive Sliding

Window UCRL2 Algorithm

For stationary MAB problems, the UCB algorithm (Auer
et al., 2002a) suggests the DM should iteratively execute
the following two steps in each time step:

1. Estimate the mean reward of each action by taking the
time average of all observed samples.

2. Pick the action with the highest estimated mean reward
plus the confidence radius, where the radius scales in-
versely proportional with the number of observations
(Auer et al., 2002a).

The UCB algorithm has been proved to attain optimal regret
bounds for various stationary MAB settings (Auer et al.,
2002a; Kveton et al., 2015). For non-stationary problems,
(Garivier & Moulines, 2011b; Keskin & Zeevi, 2016; Che-
ung et al., 2019b) shown that the DM could further leverage
the forgetting principle by incorporating the sliding-window
estimator (Garivier & Moulines, 2011b) into the UCB algo-
rithms (Auer et al., 2002a; Kveton et al., 2015) to achieve
optimal dynamic regret bounds for a wide variety of non-
stationary MAB settings. The sliding window UCB algo-
rithm with a window size W œ R+ is similar to the UCB
algorithm except that the estimated mean rewards are com-
puted by taking the time average of the W most recent

observed samples.

As noted in Section 1, (Jaksch et al., 2010) proposed the
UCRL2 algorithm, which is a UCB-alike algorithm with
nearly optimal regret for RL in stationary MDPs. It is thus
tempting to think that one could also integrate the forgetting
principle into the UCRL2 algorithm to attain low dynamic
regret bound for RL in non-stationary MDPs. In particular,
one could easily design a naive sliding-window UCRL2
algorithm that follows exactly the same steps as the UCRL2
algorithm with the exception that it uses only the W most
recent observed samples instead of all observed samples to
estimate the mean rewards and the state transition distribu-
tions, and to compute the respective confidence radius.

Under non-stationarity and bandit feedback, however, we
show in Proposition 3 of the forthcoming Section 6 that

the diameter of the estimated MDP produced by the naive
sliding-window UCRL2 algorithm with window size W
can be as large as �(W ), which is orders of magnitude
larger than Dmax, the maximum diameter of each individ-
ual MDP encountered by the DM. Consequently, the naive
sliding-window UCRL2 algorithm may result in undesirable
dynamic regret bound. In what follows, we discuss in more
details how our novel confidence widening technique can
mitigate this issue.

4.2. Design Overview

The SWUCRL2-CW algorithm first specifies a sliding win-
dow parameter W œ N and a confidence widening parame-
ter ÷ Ø 0. Parameter W specifies the number of previous
time steps to look at. Parameter ÷ quantifies the amount of
additional optimistic exploration, on top of the conventional
optimistic exploration using upper confidence bounds. The
former turns out to be necessary for handling the drifting
non-stationarity of the transition kernel.

The algorithm runs in a sequence of episodes that partitions
the T time steps. Episode m starts at time ·(m) (in partic-
ular ·(1) = 1), and ends at the end of time ·(m + 1) ≠ 1.
Throughout an episode m, the DM follows a certain station-
ary policy fĩm. The DM ceases the mth episode if at least
one of the following two criteria is met:

• The time index t is a multiple of W. Consequently, each
episode last for at most W time steps. The criterion en-
sures that the DM switches the stationary policy fĩm fre-
quently enough, in order to adapt to the non-stationarity
of rt’s and pt’s.

• There exists some state-action pair (s, a) such that
‹m(s, a), the number of time step t’s with (st, at) =
(s, a) within episode m, is at least as many as the total
number of counts for it within the W time steps prior to
·(m), i.e., from (·(m) ≠ W ) ‚ 1 to (·(m) ≠ 1). This is
similar to the doubling criterion in (Jaksch et al., 2010),
which ensures that each episode is sufficiently long so
that the DM can focus on learning.

The combined effect of these two criteria allows the DM
to learn a low dynamic regret policy with historical data
from an appropriately sized time window. One important
piece of ingredient is the construction of the policy fĩm, for
each episode m. To allow learning under non-stationarity,
the SWUCRL2-CW algorithm computes the policy fĩm based
on the history in the W time steps previous to the current
episode m, i.e., from round (·(m)≠W )‚1 to round ·(m)≠
1. The construction of fĩm involves the Extended Value
Iteration (EVI) (Jaksch et al., 2010), which requires the
confidence regions Hr,·(m), Hp,·(m)(÷) for rewards and
transition kernels as the inputs, in addition to an precision
parameter ‘. The confidence widening parameter ÷ Ø 0
is capable of ensuring the MDP output by the EVI has a
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bounded diameter most of the time.

4.3. Policy Construction

To describe SWUCRL2-CW algorithm, we define for each
state action pair (s, a) and each round t in episode m,

Nt(s, a) =
t≠1ÿ

q=(·(m)≠W )‚1
1((sq, aq) = (s, a)),

N+
t

(s, a) = max{1, Nt(s, a)}. (3)

4.3.1. CONFIDENCE REGION FOR REWARDS.

For each state action pair (s, a) and each time step t in
episode m, we consider the empirical mean estimator

r̂t(s, a) =
t≠1ÿ

q=(·(m)≠W )‚1

Rq (s, a) 1(sq = s, aq = a)
N+

t
(s, a)

,

which serves to estimate the average reward

r̄t(s, a) =
t≠1ÿ

q=(·(m)≠W )‚1

rq(s, a)1(sq = s, aq = a)
N+

t
(s, a)

.

The confidence region Hr,t = {Hr,t(s, a)}sœS,aœAs is de-
fined as

Hr,t(s, a) = {ṙ œ [0, 1] : |ṙ ≠ r̂t(s, a)| Æ radr,t(s, a)} ,
(4)

with confidence radius

radr,t(s, a) = 2


2 log(SAT/”)/N+
t

(s, a).

4.3.2. CONFIDENCE WIDENING FOR TRANSITION
KERNELS.

For each state action pair s, a and each time step t in episode
m, consider the empirical estimator

p̂t(sÕ
|s, a) =

t≠1ÿ

q=(·(m)≠W )‚1

1(sq = s, aq = a, sq+1 = sÕ)
N+

t
(s, a)

,

which serves to estimate the average transition probability

p̄t(sÕ
|s, a) =

t≠1ÿ

q=(·(m)≠W )‚1

pq(sÕ
|s, a)1(sq = s, aq = a)

N+
t

(s, a)
.

Different from the case of estimating reward, the confidence
region Hp,t(÷) = {Hp,t(s, a; ÷)}sœS,aœAs for the transi-
tion probability involves a widening parameter ÷ Ø 0:

Hp,t(s, a; ÷) (5)

={ṗ œ �S : Îṗ(·|s, a) ≠ p̂t(·|s, a)Î1 Æ radp,t(s, a) + ÷},

with confidence radius

radp,t(s, a) = 2


2S log (SAT/”)/N+
t

(s, a).

In a nutshell, the incorporation of ÷ > 0 provides an addi-
tional source of optimism, and the DM can explore transition
kernels that further deviate from the sample average. This
turns out to be crucial for learning MDPs under drifting
non-stationarity. We treat ÷ as a hyper-parameter at the mo-
ment, and provide a suitable choice of ÷ when we discuss
our main results.

4.3.3. EXTENDED VALUE ITERATION (EVI) (JAKSCH
ET AL., 2010).

The SWUCRL2-CW algorithm relies on the EVI, which
solves MDPs with optimistic exploration to near-optimality.
We extract and rephrase a description of EVI in Section A.3
of the full version (Cheung et al., 2020b). EVI inputs the
confidence regions Hr, Hp for the rewards and the transition
kernels. The algorithm outputs an “optimistic MDP model”,
which consists of reward vector r̃ and transition kernel p̃
under which the optimal average gain fl̃ is the largest among
all ṙ œ Hr, ṗ œ Hp:

• Input: Confidence regions Hr for r, Hp for p, and an
error parameter ‘ > 0.

• Output: The returned policy fĩ and the auxiliary out-
put (r̃, p̃, fl̃, “̃). In the latter, r̃, p̃, and fl̃ are the selected
“optimistic” reward vector, transition kernel, and the corre-
sponding long term average reward. The output “̃ œ RS

Ø0
is a bias vector (Jaksch et al., 2010). For each s œ S , the
quantity “̃(s) is indicative of the short term reward when
the DM starts at state s and follows the optimal policy.
By the design of EVI, for the output “̃, there exists s œ S

such that “̃(s) = 0. Altogether, we express

EVI(Hr, Hp; ‘) æ (fĩ, r̃, p̃, fl̃, “̃).

Combining the three components, a formal description of
the SWUCRL2-CW algorithm is shown in Algorithm 1.

4.4. Performance Analysis: The Blessing of More

Optimism

We now analyze the performance of the SWUCRL2-CW al-
gorithm. First, we introduce two events Er, Ep, which state
that the estimated reward and transition kernels lie in the
respective confidence regions.

Er = {r̄t(s, a) œ Hr,t(s, a) ’s, a, t},

Ep = {p̄t(·|s, a) œ Hp,t(s, a; 0) ’s, a, t}.

We prove that Er, Ep hold with high probability.

Lemma 1. We have Pr[Er] Ø 1 ≠ ”/2, Pr[Ep] Ø 1 ≠ ”/2.

The proof is provided in Section B of the full version (Che-
ung et al., 2020b). In defining Ep, the widening parameter
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Algorithm 1 SWUCRL2-CW algorithm
1: Input: Time horizon T , state space S, action space A,

window size W , widening parameter ÷.
2: Initialize t Ω 1, initial state s1.
3: for episode m = 1, 2, . . . do

4: Set ·(m) Ω t, ‹m(s, a) Ω 0, and N·(m)(s, a) ac-
cording to Eqn (3), for all s, a.

5: Compute the confidence regions Hr,·(m),
Hp,·(m)(÷) according to Eqns (4, 5).

6: Compute a 1/


·(m)-optimal optimistic policy
fĩm : EVI(Hr,·(m), Hp,·(m)(÷); 1/


·(m)) æ

(fĩm, r̃m, p̃m, fl̃m, “̃m).
7: while t is not a multiple of W and ‹m(st, fĩm(st)) <

N+
·(m)(st, fĩm(st)) do

8: Choose action at = fĩm(st), observe reward
Rt(st, at) and the next state st+1.

9: Update ‹m(st, at) Ω ‹m(st, at) + 1, t Ω t + 1.
10: if t > T then

11: The algorithm is terminated.
12: end if

13: end while

14: end for

÷ is set to be 0, since we are only concerned with the esti-
mation error on p. Next, we bound the dynamic regret of
each time step, under certain assumptions on Hp,t(÷). To
facilitate our discussion, we define the following variation
measure for each t in an episode m:

varr,t =
t≠1ÿ

q=·(m)≠W

Br,q, varp,t =
t≠1ÿ

q=·(m)≠W

Bp,q.

Proposition 2. Consider an episode m. Condition on

events Er, Ep, and suppose that there exists a transition

kernel p satisfying two properties: (1) ’s œ S ’a œ As, we

have p(·|s, a) œ Hp,·(m)(s, a; ÷), and (2) the diameter of

(S, A, p) at most D. Then, for every t œ {·(m), . . . , ·(m +
1) ≠ 1} in episode m, we have

flú
t

≠ rt(st, at) Æ

C
ÿ

sÕœS
pt(sÕ

|st, at)“̃·(m)(sÕ)
D

≠ “̃·(m)(st)

(6)

+ 1
·(m)

+ [2varr,t + 4D(varp,t + ÷)]

+
#
2radr,·(m)(st, at) + 4D · radp,·(m)(s, a)

$
. (7)

The complete proof is in Section C of the full version (Che-
ung et al., 2020b). Unlike Lemma 1, the parameter ÷ plays
an important role in the Proposition. As ÷ increases, the
confidence region Hp,·(m)(s, a; ÷) becomes larger for each
s, a, and the assumed diameter D is expected to decrease.

Our subsequent analysis shows that ÷ can be suitably cali-
brated so that D = O(Dmax). Next, we state our first main
result, which provides a dynamic regret bound assuming the
knowledge of Br, Bp to set W, ÷:
Theorem 1. Assuming S > 1, the SWUCRL2-CW algo-

rithm with window size W and confidence widening param-

eter ÷ > 0 satisfies the dynamic regret bound

Õ
1

BpW/÷ + BrW +
Ô

SAT/
Ô

W

+Dmax

Ë
BpW + S

Ô

AT/
Ô

W + T÷ + SAT/W +
Ô

T
È2

,

with probability 1 ≠ O(”). Putting W = W ú :=
3S

2
3 A

1
2 T

1
2 /(Br + Bp + 1) 1

2 and ÷ = ÷ú :=
(Bp + 1)W ú/T , the bound specializes to

Õ
1

Dmax(Br + Bp + 1) 1
4 S

2
3 A

1
2 T

3
4

2
. (8)

Proof Sketch. The complete proof is presented in Section
D of the full version (Cheung et al., 2020b). Proposition
2 states that if the confidence region Hp,·(m)(÷) contains
a transition kernel that induces a MDP with bounded di-
ameter D, the EVI supplied with Hp,·(m)(÷) can return a
policy with controllable dynamic regret bound. However,
as we show in Section 6, one in general cannot expect this
to happen. Nevertheless, we bypass this with our novel
confidence widening technique and a budget-aware analy-
sis. We consider the first time step ·(m) of each episode
m : if p·(m)(·|s, a) œ Hp,·(m)(s, a; ÷) for all (s, a), then
Proposition 2 can be leveraged; otherwise, the widened
confidence region enforces that a considerable amount of
variation budget is consumed.

Remark 2. When S = {s}, our problem becomes the

non-stationary bandit problem studied by (Besbes et al.,

2014), and we have Dmax = 0 and Bp = 0. By choos-

ing W = W ú = A1/3T 2/3/B2/3
r , our algorithm has dy-

namic regret Õ(B1/3
r A1/3T 2/3), matching the minimax op-

timal dynamic regret bound by (Besbes et al., 2014) when

Br œ [A≠1, A≠1T ].
Remark 3. Similar to (Cheung et al., 2019b), if Bp, Br

are not known, we can set W and ÷ obliviously as W =
S

2
3 A

1
2 T

1
2 , ÷ =


W/T = S

2
3 A

1
2 T ≠ 1

2 to obtain a dy-

namic regret bound Õ
1

Dmax(Br + Bp + 1)S 2
3 A

1
2 T

3
4

2
.

5. Bandit-over-Reinforcement Learning:

Towards Parameter-Free

As said in Remark 3, in the case of unknown Br and Bp,
the dynamic regret of SWUCRL2-CW algorithm scales lin-
early in Br and Bp, which leads to a �(T ) dynamic regret
when Br or Bp = �(T 1/4). In comparison, Theorem 1
assures us that by using (W ú, ÷ú), we can achieve a o(T )
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dynamic regret when Br, Bp = o(T ). For the bandit set-
ting, (Cheung et al., 2019b) proposes the bandit-over-bandit
framework that uses a separate copy of EXP3 algorithm
to tune the window length. Inspired by it, we develop a
novel Bandit-over-Reinforcement Learning (BORL) algo-
rithm, which is parameter free and has dynamic regret bound
equal to (8). Following (Cheung et al., 2019b), we view
the SWUCRL2-CW algorithm as a sub-routine, and “hedge”
(Bubeck & Cesa-Bianchi, 2012) against the (possibly adver-
sarial) changes of rt’s and pt’s to identify a reasonable fixed
window length and confidence widening parameter. As illus-

Figure 1. Structure of the BORL algorithm

trated in Fig. 1, the BORL algorithm divides the whole time
horizon into ÁT/HË blocks of equal length H rounds (the
length of the last block can Æ H), and specifies a set J from
which each pair of (window length, confidence widening pa-
rameter) are drawn from. For each block i œ [ÁT/HË], the
BORL algorithm first calls some master algorithm to select
a pair of (window length, confidence widening parameter)
(Wi, ÷i) œ J , and restarts the SWUCRL2-CW algorithm with
the selected parameters as a sub-routine to choose actions
for this block. Afterwards, the total reward of block i is fed
back to the master, and the “posterior” of these parameters
are updated accordingly.

One immediate challenge not presented in the bandit setting
(Cheung et al., 2019b) is that the starting state of each block
is determined by previous moves of the DM. Hence, the
master algorithm is not facing a simple oblivious environ-
ment as the case in (Cheung et al., 2019b), and we cannot
use the EXP3 (Auer et al., 2002b) algorithm as the master.
Nevertheless, the state is observed before the starting of a
block. Thus, we use the EXP3.P algorithm for multi-armed
bandit against an adaptive adversary (Auer et al., 2002b) as
the master algorithm. Owing to its similarity to the BOB
algorithm (Cheung et al., 2019b), we defer the design de-
tails and the proof of dynamic regret bound for the BORL
algorithm to Sections E and F of the full version (Cheung
et al., 2020b), respectively.

Theorem 2. Assume S > 1, with probability 1 ≠ O(”),
the dynamic regret bound of the BORL algorithm is

Õ(Dmax(Br + Bp + 1) 1
4 S

2
3 A

1
2 T

3
4 ).

6. The Perils of Drift in Learning Markov

Decision Processes

In stochastic online learning problems, one usually estimates
a latent quantity by taking the time average of observed
samples, even when the sample distribution varies across
time. This has been proved to work well in stationary and
non-stationary bandit settings (Auer et al., 2002a; Garivier
& Moulines, 2011b; Cheung et al., 2019b;a). To extend to
RL, it is natural to consider the sample average transition
distribution p̂t, which uses the data in the previous W rounds
to estimate the time average transition distribution p̄t to
within an additive error Õ(1/


N+

t
(s, a)) (see Lemma 1).

In the case of stationary MDPs, where ’ t œ [T ] pt = p,
one has p̄t = p. Thus, the un-widened confidence region
Hp,t(0) contains p with high probability (see Lemma 1).
Consequently, the UCRL2 algorithm by (Jaksch et al., 2010),
which optimistic explores Hp,t(0), has a regret that scales
linearly with the diameter of p.

The approach of optimistic exploring Hp,t(0) is further ex-
tended to RL in piecewise-stationary MDPs by (Jaksch
et al., 2010; Gajane et al., 2018). The latter establishes a
O(¸1/3D2/3

maxS2/3A1/3T 2/3) dynamic regret bounds, when
there are at most ¸ changes. Their analyses involve partition-
ing the T -round horizon into C ·T 1/3 equal-length intervals,
where C is a constant dependent on Dmax, S, A, ¸. At least
CT 1/3

≠¸ intervals enjoy stationary environments, and opti-
mistic exploring Hp,t(0) in these intervals yields a dynamic
regret bound that scales linearly with Dmax. Bounding the
dynamic regret of the remaining intervals by their lengths
and tuning C yield the desired bound.

In contrast to the stationary and piecewise-stationary set-
tings, optimistic exploration on Hp,t(0) might lead to unfa-
vorable dynamic regret bounds in non-stationary MDPs. In
the non-stationary environment where pt≠W , . . . , pt≠1 are
generally distinct, we show that it is impossible to bound the
diameter of p̄t in terms of the maximum of the diameters of
pt≠W , . . . , pt≠1. More generally, we demonstrate the pre-
vious claim not only for p̄t, but also for every p̃ œ Hp,t(0)
in the following Proposition. The Proposition showcases
the unique challenge in exploring non-stationary MDPs that
is absent in the piecewise-stationary MDPs, and motivates
our notion of confidence widening with ÷ > 0. To ease the
notation, we put t = W + 1 without loss of generality.

Proposition 3. There exists a sequence of non-stationary

MDP transition distributions p1, . . . , pW such that 1) The

diameter of (S, A, pn) is 1 for each n œ [W ]. 2) The total

variations in state transition distributions is O(1). Never-

theless, under some deterministic policy,

• The empirical MDP (S, A, p̂W +1) has diameter �(W )
• Further, for every p̃ œ Hp,W +1(0), the MDP (S, A, p̃)

has diameter �(


W/ log W )
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Proof. The sequence p1, . . . , pW alternates between the fol-
lowing 2 instances p1, p2. Now, define the common state
space S = {1, 2} and action collection A = {A1, A2},
where A1 = {a1, a2}, {A2} = {b1, b2}. We assume all
the state transitions are deterministic, and a graphical illus-
tration is presented in Fig. 2. Clearly, we see that both
instances have diameter 1.

Figure 2. Example MDPs (with deterministic transitions).

Now, consider the following two deterministic and station-
ary policies fi1 and fi2 : fi1(1) = a1, fi1(2) = b2, fi2(1) =
a2, fi2(2) = b1. Since the MDP is deterministic, we have
p̂W +1 = p̄W +1.

In the following, we construct a trajectory where the DM
alternates between policies fi1, fi2 during time {1, . . . , W}

while the underlying transition kernel alternates between
p1, p2. In the construction, the DM is almost always at the
self-loop at state 1 (or 2) throughout the horizon, no matter
what action a1, a2 (or b1, b2) she takes. Consequently, it
will trick the DM into thinking that p̂W +1(1|1, ai) ¥ 1 for
each i œ {1, 2}, and likewise p̂W +1(2|2, bi) ¥ 1 for each
i œ {1, 2}. Altogether, this will lead the DM to conclude
that (S, A, p̂W +1) constitute a high diameter MDP, since
the probability of transiting from state 1 to 2 (and 2 to 1)
are close to 0.

The construction is detailed as follows. Let W = 4· . In
addition, let the state transition kernels be p1 from time 1
to · and from time step 2· + 1 to 3· and be p2 for the
remaining time steps. The DM starts at state 1. She follows
policy fi1 from time 1 to time 2· , and policy fi2 from 2· + 1
to 4· . Under the specified instance and policies, it can be
readily verified that the DM takes

• action a1 from time 1 to · + 1,
• action b2 from time · + 2 to 2· ,
• action b1 from time 2· + 1 to 3· + 1,
• action a2 from time 3· + 2 to 4· .

As a result, the DM is at state 1 from time 1 to · + 1, and
time 3· + 2 to 4· ; while she is at state 2 from time · + 2 to
3· + 1, as depicted in Fig. 3. We have:

p̂W +1(1|1, a1) = ·

· + 1 , p̂W +1(2|1, a1) = 1
· + 1

p̂W +1(1|1, a2) = 1, p̂W +1(2|1, a2) = 0

p̂W +1(2|2, b1) = ·

· + 1 , p̂W +1(1|2, b1) = 1
· + 1

p̂W +1(2|2, b2) = 1, p̂W +1(1|2, b2) = 0.

Figure 3. (From top to bottom) Underlying policies, transition ker-
nels, time steps, and state visits.

Finally, for the confidence region Hp,W +1(0) =
{Hp,W +1(s, a; 0)}s,a constructed without confidence
widening, for any p̃ œ Hp,W +1(0) we have p̃(2|1, a1) =
p̃(1|2, b1) = O

1Ò
log W

·+1

2
and p̃(2|1, a2) = p̃(1|2, b2) =

O
1Ò

log W

·≠1

2
respectively, since the stochastic confidence

radii �
1Ò

log W

·+1

2
and �

1Ò
log W

·≠1

2
dominate the sample

mean 1
·+1 and 0. Therefore, for any p̃ œ Hp,W +1(0), the

diameter of the MDP constructed by (S, A, p̃) is at least
�

1Ò
W

log W

2
.

Remark 4. Inspecting the prevalent OFU guided approach

for stochastic MAB and RL in MDPs settings (Auer et al.,

2002a; Abbasi-Yadkori et al., 2011; Jaksch et al., 2010;

Bubeck & Cesa-Bianchi, 2012; Lattimore & Szepesvári,

2018), one usually concludes that a tighter design of confi-

dence region can result in a lower (dynamic) regret bound.

In (Abernethy et al., 2016), this insights has been formal-

ized in stochastic K-armed bandit settings via a potential

function type argument. Nevertheless, Proposition 3 (to-

gether with Theorem 1) demonstrates that using the tightest

confidence region in learning algorithm design may not

be enough to ensure low dynamic regret bound for RL in

non-stationary MDPs.

7. Conclusion

In this paper, we studied the problem of non-stationary re-
inforcement learning where the unknown reward and state
transition distributions can be different from time to time
as long as the total changes are bounded by some variation
budgets, respectively. We first incorporated the sliding win-
dow estimator and the novel confidence widening technique
into the UCRL2 algorithm to propose the SWUCRL2-CW
algorithm with low dynamic regret when the variation bud-
gets are known. We then designed the parameter-free BORL
algorithm that allows us to enjoy this dynamic regret bound
without knowing the variation budgets. The main ingredient
of the proposed algorithms is the novel confidence widening
technique, which injects extra optimism into the design of
learning algorithms. This is in contrast to the widely held
believe that optimistic exploration algorithms for (station-
ary and non-stationary) stochastic online learning settings
should employ the lowest possible level of optimism.
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