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Abstract

We study the problem of 3D shape reconstruction from
2D landmarks extracted in a single image. We adopt the
3D deformable shape model and formulate the reconstruc-
tion as a joint optimization of the camera pose and the
linear shape parameters. Our first contribution is to ap-
ply Lasserre’s hierarchy of convex Sums-of-Squares (SOS)
relaxations to solve the shape reconstruction problem and
show that the SOS relaxation of minimum order 2 empiri-
cally solves the original non-convex problem exactly. Our
second contribution is to exploit the structure of the polyno-
mial in the objective function and find a reduced set of ba-
sis monomials for the SOS relaxation that significantly de-
creases the size of the resulting semidefinite program (SDP)
without compromising its accuracy. These two contribu-
tions, to the best of our knowledge, lead to the first certi-
fiably optimal solver for 3D shape reconstruction, that we
name Shape?. Our third contribution is to add an outlier
rejection layer to Shape? using a truncated least squares
(TLS) robust cost function and leveraging graduated non-
convexity to solve TLS without initialization. The result is a
robust reconstruction algorithm, named Shape#, that toler-
ates a large amount of outlier measurements. We evaluate
the performance of Shape? and Shape# in both simulated
and real experiments, showing that Shape? outperforms lo-
cal optimization and previous convex relaxation techniques,
while Shape# achieves state-of-the-art performance and is
robust against 70% outliers in the FG3DCar dataset.

1. Introduction

3D object detection and pose estimation from a single
image is a fundamental problem in computer vision. De-
spite the progress in semantic segmentation [12], depth es-
timation [21], and pose estimation [17, 44], reconstructing
the 3D shape and pose of an object from a single image re-
mains a challenging task [2, 50, 38, 43, 19, 36].

A typical approach for 3D shape reconstruction is to first

detect 2D landmarks in a single image, and then solve a
model-based optimization to lift the 2D landmarks to form
a 3D model [49, 50, 36, 26, 41]. For the optimization to
be well-posed, the unknown shape is assumed to be a 3D
deformable model, composed by a linear combination of
basis shapes, handcrafted or learned from a large corpus
of training data [9]. The optimization then seeks to jointly
optimize the coefficients of the linear combination (shape
parameters) and the camera pose to minimize the reprojec-
tion errors between the 3D model and the 2D landmarks.
This model-based paradigm has been successful in several
applications such as face recognition [5, 11], car model fit-
ting [26, 13], and human pose estimation [50, 36].

Despite its long history and broad range of applications,
there is still no globally optimal solver for the non-convex
optimization problem arising in 3D shape reconstruction.
Therefore, most existing solutions adopt a local optimiza-
tion strategy, which alternates between solving for the cam-
era pose and the shape parameters. These techniques, as
shown in prior works [36, 13], require an initial guess for
the solution and often get stuck in local minima. In addi-
tion, 2D landmark detectors are prone to produce outliers,
causing existing methods to be brittle [41]. Therefore, the
motivation for this paper is two-fold: (i) to develop a cer-
tifiably optimal shape reconstruction solver, and (ii) to de-
velop a robust reconstruction algorithm that is insensitive to
a large amount of outlier 2D measurements (e.g., 70%).

Contributions. Our first contribution is to formulate the
shape reconstruction problem as a polynomial optimization
problem and apply Lasserre’s hierarchy of Sums-of-Squares
(SOS) relaxations to relax the non-convex polynomial op-
timization into a convex semidefinite program (SDP). We
show the SOS relaxation of minimum order 2 empirically
solves the non-convex shape reconstruction problem exactly
and provides a global optimality certificate. The second
contribution is to apply basis reduction, a technique that ex-
ploits the sparse structure of the polynomial in the objective
function, to reduce the size of the resulting SDP. We show
that basis reduction significantly improves the efficiency of
the SOS relaxation without compromising global optimal-
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ity. To the best of our knowledge, this is the first certifi-
ably optimal solver for shape reconstruction, and we name
it Shape?. Our third contribution is to robustify Shape? by
adopting a truncated least squares (TLS) robust cost func-
tion and solving the resulting robust estimation problem us-
ing graduated non-convexity [4]. The resulting algorithm,
named Shape#, is robust against 70% outliers and does not
require an initial guess.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces notation and
preliminaries on SOS relaxations. Section 4 introduces the
shape reconstruction problem. Section 5 develops our SOS
solver (Shape?). Section 6 presents an algorithm (Shape#)
to robustify the SOS relaxation against outliers. Section 7
provides experimental results in both simulations and real
datasets, while Section 8 concludes the paper.

2. Related Work
We limit our review to optimization-based approaches

for 3D shape reconstruction from 2D landmarks. The inter-
ested reader can find a review of end-to-end shape and pose
reconstruction using deep learning in [19, 38, 18].

Local Optimization. Most existing methods resort to
local optimization to solve the non-convex joint optimiza-
tion of shape parameters and camera pose. Blanz and Vet-
ter [5] propose a method for face recognition by fitting a
morphable model of the 3D face shape and texture to a
single image using stochastic Newton’s method to escape
local minima. Gu and Kanade [11] align a deformable
point-based 3D face model by alternatively deforming the
3D model and updating the 3D pose. Using similar al-
ternating optimization, Ramakrishna et al. [36] tackle 3D
human pose estimation by finding a sparse set of basis
shapes from an over-complete human shape dictionary us-
ing projected matching pursuit; the approach is further im-
proved by Fan et al. [10] to include pose locality constraints.
Lin et al. [26] demonstrate joint 3D car model fitting and
fine-grained classification; car model fitting in cluttered im-
ages is investigated in [13]. To mitigate the impact of out-
lying 2D landmarks, Li et al. [25] propose a RANSAC-type
method for car model fitting and Wang et al. [41] replace
the least squares estimation with an `1-norm minimization.

Convex Relaxation. More recently, Zhou et al. [49] de-
velop a convex relaxation, where they first over-parametrize
the 3D deformable shape model by associating one rotation
with each basis and then relax the resulting Stiefel man-
ifold constraint to its convex envelope. Although show-
ing superior performance compared to local optimization,
the convex relaxation in [49] comes with no optimality
guarantee and is typically loose in practice. In addi-
tion, Zhou et al. [50] model outliers using a sparse matrix
and augment the optimization with an `1 regularization to
achieve robustness against 40% outliers. In contrast, we

will show that our convex relaxation comes with certifiable
optimality, and our robust reconstruction approach can han-
dle 70% outliers.

3. Notation and Preliminaries
We use Sn to denote the set of n×n symmetric matrices.

We write A ∈ Sn+ (resp. A ∈ Sn++) to denote that the ma-
trix A ∈ Sn is positive semidefinite (PSD) (resp. positive
definite (PD)). Given x = [x1, . . . , xn]T, we let R[x] (resp.
R[x]d) be the ring of polynomials in n variables with real
coefficients (resp. with degree at most d), and [x]d be the
vector of all

(
n+d
d

)
monomials with degree up to d.

We now give a brief summary of SOS relaxations for
polynomial optimization. Our review is based on [6, 31,
23]. We first introduce the notion of SOS polynomial.

Definition 1 (SOS Polynomial [6]). A polynomial p(x)∈
R[x]2d is said to be a sums-of-squares (SOS) polynomial if
there exist polynomials q1, . . . , qm∈R[x]d such that:

p(x) =

m∑
i=1

q2
i (x). (1)

We use Σn (resp. Σn,2d) to denote the set of SOS poly-
nomials in n variables (resp. with degree at most 2d). A
polynomial p(x) ∈ R[x]2d is SOS if and only if there exists
a PSD matrix Q ∈ SNQ+ with NQ =

(
n+d
d

)
, such that:

p(x) = [x]TdQ[x]d, (2)

andQ is called the Gram matrix of p(x).

Now consider the following polynomial optimization:

min
x∈Rn

f(x) (3)

s.t. hi(x) = 0, i = 1, . . . ,m,

gk(x) ≥ 0, k = 1, . . . , l,

where f, hi, gk ∈ R[x] are all polynomials and let X be
the feasible set defined by hi, gk. For convenience, denote
h := (h1, . . . , hm), g0 := 1 and g = (g0, . . . , gl). We call

〈h〉 := {h ∈ R[x] : h =
∑m
i=1 λihi, λi ∈ R[x]}, (4)

〈h〉2β := {h ∈ 〈h〉 : deg(λihi) ≤ 2β}, (5)

the ideal and the 2β-th truncated ideal of h, where deg(·)
is the degree of a polynomial. The ideal is simply a sum-
mation of polynomials with polynomial coefficients, a con-
struct that will simplify the notation later on. We call

Q(g) := {g ∈ R[x] : g =
∑m
k=0 skgk, sk ∈ Σn}, (6)

Qβ(g) := {g ∈ Q(g) : deg(skgk) ≤ 2β}, (7)

the quadratic module and the β-th truncated quadratic
module generated from g. Note that the quadratic module is



similar to the ideal, except now we require the polynomial
coefficients to be SOS. Apparently, if p(x) ∈ 〈h〉 + Q(g),
then p(x) is nonnegative on X 1. PutinarâĂŹs Positivstel-
lensatz [35] describes when the reverse is also true.

Theorem 2 (Putinar’s Positivstellensatz [35]). Let X be
the feasible set of problem (3). Assume 〈h〉 + Q(g) is
Archimedean, i.e., M − ‖x‖22 ∈ 〈h〉2β + Qβ(g) for some
β ∈ N and M > 0. If p(x) ∈ R[x] is positive on X , then
p(x) ∈ 〈h〉+Q(g).

Based on Putinar’s Positivstellensatz, Lasserre [22] de-
rived a sequence of SOS relaxations that approximates the
global minimum of problem (3) with increasing accuracy.
The key insight behind Lasserre’s hierarchy is twofold. The
first insight is that problem (3), which we can write suc-
cinctly as minx∈X f(x), can be equivalently written as
max
x,γ

γ, s.t.f(x) − γ ≥ 0 on X (intuition: the latter pushes

the lower bound γ to reach the global minimum of f(x)).
The second intuition is that we can rewrite the condition
f(x)−γ ≥ 0 on X , using Putinar’s Positivstellensatz (The-
orem 2), leading to the following hierarchy of Sums-of-
Squares relaxations.

Theorem 3 (Lasserre’s Hierarchy [22]). Lasserre’s hierar-
chy of order β is the following SOS program:

max γ, s.t. f(x)− γ ∈ 〈h〉2β +Qβ(g), (8)

which can be written as a standard SDP. Moreover, let f?

be the global minimum of (3) and f?β be the optimal value
of (8), then f?β monotonically increases and f?β → f?

when β → ∞. More recently, Nie [31] proved that under
Archimedeanness, LasserreâĂŹs hierarchy has finite con-
vergence generically (i.e., f?β = f? for some finite β).

In computer vision, Lasserre’s hierarchy was first used
by Kahl and Henrion [16] to minimize rational functions
arising in geometric reconstruction problems, and more re-
cently by Probst et al. [34] as a framework to solve a set
of 3D vision problems. In this paper we will show that the
SOS relaxation as written in eq. (8) allows using basis re-
duction to exploit the sparsity pattern of polynomials and
leads to significantly smaller semidefinite programs.

4. Problem Statement: Shape Reconstruction
Assume we are given N pixel measurements Z =

[z1, . . . ,zN ] ∈ R2×N (the 2D landmarks), generated from
the projection of points belonging to an unknown 3D shape
S ∈ R3×N onto an image. Further assume the shape S
that can be represented as a linear combination of K pre-
defined basis shapes Bk ∈ R3×N , i.e. S =

∑K
k=1 ckBk,

1If p ∈ 〈h〉+Q(g), then p = h+g, with h ∈ 〈h〉 and g ∈ Q(g). For
any x ∈ X , since hi(x) = 0, so h(x) =

∑
λihi = 0; since gk(x) ≥ 0

and sk(x) ≥ 0, so g =
∑
skgk ≥ 0. Therefore, p = h+ g ≥ 0

where {ck}Kk=1 are (unknown) shape coefficients. Then, the
generative model of the 2D landmarks reads:

zi = ΠR

(
K∑
k=1

ckBki

)
+ t+ εi, i = 1, . . . , N, (9)

whereBki denotes the i-th 3D point on the k-th basis shape,
εi ∈ R2 models the measurement noise, and Π is the
(known) weak perspective projection matrix:

Π =

[
sx 0 0
0 sy 0

]
, (10)

with sx and sy being constants2. In eq. (9),R ∈ SO(3) and
t ∈ R2 model the (unknown) rotation and translation of the
shape S relative to the camera (only a 2D translation can be
estimated). The shape reconstruction problem consists in
the joint estimation of the shape parameters {ck}Kk=1 and
the camera pose (R, t)3.

Without loss of generality, we adopt the nonnegative
sparse coding (NNSC) convention [50] and assume all the
coefficients ck are nonnegative4. Due to the existence of
noise, we solve the following weighted least squares opti-
mization with Lasso (`1-norm) regularization:

min
ck≥0,k=1,...,K

t∈R2,R∈SO(3)

N∑
i=1

wi

∥∥∥∥∥zi−ΠR

(
K∑
k=1

ckBki

)
−t

∥∥∥∥∥
2

+α

K∑
k=1

|ck| (11)

The `1-norm regularization (controlled by a given con-
stant α) encourages the coefficients ck to be sparse when
the shape S is generated from only a subset of the ba-
sis shapes [50] (note that the `1-norm becomes redundant
when using the NNSC convention). Contrary to previous
approaches [50, 36], we explicitly associate a given weight
wi ≥ 0 to each 2D measurement zi in eq. (11). On the
one hand, this allows accommodating heterogeneous noise
in the 2D landmarks (e.g., wi = 1/σ2

i when the noise εi is
Gaussian, εi ∼ N (0, σ2

i I2)). On the other hand, as shown
in Section 6, the weighted least squares framework is useful
to robustify (11) against outliers.

5. Certifiably Optimal Shape Reconstruction
This section shows how to develop a certifiably opti-

mal solver for problem (11). Our first step is to alge-
braically eliminate the translation t and obtain a translation-
free shape reconstruction problem, as shown below.

2The weak perspective camera model is a good approximation of the
full perspective camera model when the distance from the object to the
camera is much larger than the depth of the object itself [49]. [51] showed
that the solution obtained using the weak perspective model provides a
good initialization when refining the pose for the full perspective model.

3Shape reconstruction in the case of a single 3D model, i.e., K = 1, is
called shape alignment and has been solved recently in [45].

4The general case of real coefficients is equivalent to the NNSC case
where for each basis Bk we also add the basis −Bk .



Theorem 4 (Translation-free Shape Reconstruction). The
shape reconstruction problem (11) is equivalent to the fol-
lowing translation-free optimization:

min
ck≥0,k=1,...,K

R∈SO(3)

N∑
i=1

∥∥∥∥∥z̃i−ΠR

(
K∑
k=1

ckB̃ki

)∥∥∥∥∥
2

+α

K∑
k=1

|ck| (12)

where z̃i and B̃ki can be computed as follows:

z̃i =
√
wi(zi − z̄w), with z̄w =

∑N
i=1 wizi∑N
i=1 wi

, (13)

B̃ki =
√
wi(Bki − B̄w

k ), with B̄w
k =

∑N
i=1 wiBki∑N
i=1 wi

. (14)

Further, let R? and c?k, k = 1, . . . ,K, be the global mini-
mizer of the above translation-free optimization (12), then
the optimal translation t? can be recovered as:

t? = z̄w −ΠR?

(
K∑
k=1

c?kB̄
w
k

)
. (15)

A formal proof of Theorem 4 can be found in the Sup-
plementary Material. The intuition behind Theorem 4 is
that if we express the landmark coordinates and 3D basis
shapes with respect to their (weighted) centroids z̄w and
B̄w
k , k = 1, . . . ,K, we can remove the dependence on the

translation t. This strategy is inspired by Horn’s method
for point cloud registration [15], and generalizes [50] to the
weighted and non-centered case.

5.1. SOS Relaxation

This section applies Lasserre’s hierarchy as described in
Theorem 3 to solve the translation-free shape reconstruction
problem (12). We do this in two steps: we first show prob-
lem (12) can be formulated as a polynomial optimization in
the form (3); and then we add valid constraints to make the
feasible set Archimedean.

Polynomial Optimization Formulation. Denote c =
[c1, . . . , ck]T ∈ RK , r = vec(R) = [rT1 , r

T
2 , r

T
3 ]T ∈ R9,

with ri, i = 1, 2, 3 being the i-th column of R, then x :=
[cT, rT]T ∈ RK+9 is the unknown decision vector in (3).
Consider the first term in the objective function of (12). We
can write:

qi(x):=‖z̃i−ΠR(
∑K
k=1 ckB̃ki)‖2=‖z̃i−Π

∑K
k=1 ckRB̃ki‖2, (16)

then it becomes clear that qi(x) is a polynomial function of
x with degree 4. Because the Lasso regularization is linear
in c, the objective function f(x) is a degree-4 polynomial.

Now we consider the feasible set of (12). The inequal-
ity constraints ck ≥ 0 are already in generic form (3) with
gk(x) = ck, k = 1, . . . ,K, being degree-1 polynomials.
As for theR ∈ SO(3) constraint, it has already been shown
in related work [39, 7] that enforcing R ∈ SO(3) is equiv-
alent to imposing 15 quadratic equality constraints.

Lemma 5 (Quadratic Constraints for SO(3) [39, 7]). For
a matrix R ∈ R3×3, the constraint R ∈ SO(3) (where
SO(3) := {R : RTR = I3,detR = +1} is the set of
proper rotation matrices) is equivalent to the following set
of degree-2 polynomial equality constraints (hi(x) = 0, i =
1, . . . , 15):

h1 = 1− ‖r1‖2, h2 = 1− ‖r2‖2, h3 = 1− ‖r3‖2

h4 = rT1 r2, h5 = rT2 r3, h6 = rT3 r1

h7,8,9 = r1 × r2 − r3

h10,11,12 = r2 × r3 − r1

h13,14,15 = r3 × r1 − r2

(17)

where ri ∈ R3, i = 1, 2, 3, denotes the i-th column of R
and “×” represents the vector cross product.

In eq. (17), h1,2,3 constrain the columns to be unit vec-
tors, h4,5,6 constrain the columns to be mutually orthogo-
nal, and h7−15 constrain the columns to satisfy the right-
hand rule (i.e., the determinant constraint)5.

In summary, the translation-free problem (12) is equiv-
alent to a polynomial optimization with a degree-4 objec-
tive f(x), constrained by 15 quadratic equalities hi(x)
(eq. (17)) and K linear inequalities gk(x) = ck.

Archimedean Feasible Set. The issue with the feasible
set defined by inequalities ck ≥ 0 and equalities (17) is that
〈h〉 + Q(g) is not Archimedean, which can be easily seen
from the unboundedness of the linear inequality ck ≥ 06.
However, we know the linear coefficients must be bounded
because the pixel measurement values Z lie in a bounded
set (the 2D image). Therefore, we propose to normalize the
2D measurements and the 3D basis shapes: (i) for 2D mea-
surements Z, we first divide them by sx and sy (eq. (10)),
and then scale them such that they lie inside a unit circle; (ii)
for each 3D basis shape Bk, we scale Bk such that it lies
inside a unit sphere. With this proper normalization, we can
add the following degree-2 inequality constraints (c2k ≤ 1)
that bound the linear coefficients:

gK+k(x) = 1− c2k, k = 1, . . . ,K. (18)

Now we can certify the Archimedeanness of 〈h〉+Q(g):

K + 3− ‖x‖22 =

K∑
k=1

1 · gK+k︸ ︷︷ ︸
∈Q1(g)

+h1 + h2 + h3︸ ︷︷ ︸
∈〈h〉2

, (19)

with M = K + 3 and β = 1 (cf. Theorem 2).
Apply Lasserre’s Hierarchy. With Archimedeanness,

we can now apply Lasserre’s hierarchy of SOS relaxations.
5We remark that the 15 equality constraints in (17) are redundant. For

example, h1,2,3,7,8,9 are sufficient to fully constrain R ∈ SO(3). We
also found that, empirically, choosing h1,2,3 and h7−15 yields similar
tightness results as choosing all 15 constraints.

6M − ‖x‖22 ≥ 0 requires x to have bounded `2-norm.



Proposition 6 (SOS Relaxations for Shape Reconstruction).
The SOS relaxation of order β (β ≥ 2)7 for the translation-
free shape reconstruction problem (12) is the following con-
vex semidefinite program:

max
γ∈R,S0∈S

N0
+

Sk∈SNs+ , k=1,...,2K

λi∈RNλ ,i=1,...,15

γ (20)

s.t. f(x)− γ = [x]TβS0[x]β +∑2K
k=1

(
[x]Tβ−1Sk[x]β−1

)
gk(x) +∑15

i=1

(
λT
i [x]2β−2

)
hi(x), (21)

where f(x) is the objective function defined in (12),
gk(x), k = 1, . . . , 2K are the inequality constraints ck, 1−
c2k, hi(x), i = 1, . . . , 15 are the equality constraints de-

fined in (17), and N0 :=
(
K+9+β

β

)
, Ns :=

(
K+8+β
β−1

)
,

Nλ :=
(
K+7+2β

2β−2

)
are the sizes of matrices and vectors.

While a formal proof of Proposition 6 is given in the Sup-
plementary Material, we observe that (20) immediately re-
sults from the application of Lasserre’s hierarchy to (8),
by parametrizing Qβ(g) with monomial bases [x]β−1, [x]β
and PSD matricesS0, Sk, k = 1, . . . , 2K (one for each gk),
and by parametrizing 〈h〉2β with monomial basis [x]2β−2

and coefficient vectors λi, i = 1, . . . , 15 (one for each hi).
Problem (20) can be written as an SDP and solved glob-
ally using standard convex solvers (e.g. YALMIP [27]). We
call the SDP written in (20) the primal SDP. The dual SDP
of (20) can be derived using moment relaxation [22, 24, 23],
which is readily available in GloptiPoly 3 [14].

Extract Solutions from SDP. After solving the
SDP (20), we can extract solutions to the original non-
convex problem (12), a procedure we call rounding.

Proposition 7 (Rounding and Duality Gap). Let f?β = γ?

and Sβ?0 ,Sβ?k ,λβ?i be the optimal solutions to the SDP (20)
at order β; compute vβ? as the eigenvector corresponding
to the minimum eigenvalue of Sβ?0 , and then normalize vβ?

such that the first entry is equal to 1. Then an approximate
solution to problem (12) can be obtained as:

ĉβ = projg([vβ?]c); r̂β = projh([vβ?]r), (22)

where [vβ?]c (resp. [vβ?]r) denotes the entries of vβ?

corresponding to monomials c (resp. r), and projg (resp.
projh) denotes projection to the feasible set defined by g
(resp. h). Specifically for problem (12), projg is round-
ing each coefficient ck to the [0, 1] interval, and projh is
the projection to SO(3). Moreover, let f̂β be the value of

7The minimum relaxation order is 2 because f(x) has degree 4.

the objective function evaluated at the approximate solu-
tion x̂β := [(ĉβ)T, (r̂β)T]T, then the following inequality
holds (weak duality):

f?β ≤ f? ≤ f̂β , (23)

where f? is the true (unknown) global minimum of prob-
lem (12). We define the relative duality gap ηβ as:

ηβ = (f̂β − f?β)/f̂β , (24)

which quantifies the quality of the SOS relaxation.

Certifiable Global Optimality. Besides extracting so-
lutions to the original problem, we can also verify when the
SOS relaxation solves the original problem exactly.

Theorem 8 (Certificate of Global Optimality). Let f?β =

γ? and Sβ?0 be the optimal solutions to the SDP (20) at
order β. If corank(Sβ?0 ) = 1 (the corank is the dimension
of the null space of Sβ?0 ), then f?β is the global minimum
of problem (12), and the relaxation is said to be tight at
order β. Moreover, the relative duality gap ηβ = 0 and
the solution x̂β extracted using Proposition 7 is the unique
global minimizer of problem (12).

The proof of Theorem 8 is given in the Supplementary
Material. Empirically (Section 7), we observed that the re-
laxation is always tight at the minimum relaxation order
β = 2. Note that even when the relaxation is not tight, one
can still obtain an approximate solution using Proposition 7
and quantify how suboptimal the approximate solution is
using the relative duality gap ηβ .

5.2. Basis Reduction

Despite the theoretical soundness and finite convergence
at order β = 2, the size of the SDP (20) is N0 =

(
K+9+β

β

)
,

which for β = 2 becomes
(
K+11

2

)
, implying that the size

of the SDP grows quadratically in the number of bases K.
Although there have been promising advances in improv-
ing the scalability of SDP solvers (see [29] for a thorough
review), such as exploiting sparsity [42, 40, 30] and low-
rankness [8, 37], in this section we demonstrate a simple
yet effective approach, called basis reduction, that exploits
the structure of the objective function to significantly reduce
the size of the SDP in (20).

In a nutshell, basis reduction methods seek to find a
smaller, but still expressive enough, subset of the full vector
of monomials [x]β on the right-hand side (RHS) of eq. (21),
to explain the objective function f(x) on the left-hand side
(LHS). There exist standard approximation algorithms for
basis reduction, discussed in [32, 33] and implemented in
YALMIP [28]. However, in practice we found the basis
selection method in YALMIP failed to find any reduction



for the SDP (20). Therefore, here we propose a problem-
specific reduction, which follows from the examination of
which monomials appear on the LHS of (21).

Proposition 9 (SOS Relaxation with Basis Reduction). The
SOS relaxation of order β = 2 with basis reduction for the
translation-free shape reconstruction problem (12) is the
following convex semidefinite program:

max
γ∈R,S0∈S

N′
0

+

Sk∈S
N′
s

+ ,k=1,...,2K,

λi∈RN
′
λ ,i=1,...,15

γ (25)

s.t. f(x)− γ = m2(x)TS0m2(x) +∑2K
k=1([r]T1Sk[r])gk(x) +∑15

i=1(λT
i [c]2)hi(x), (26)

where N ′0 = 10K + 10, N ′s = 10, N ′λ =
(
K+2

2

)
, and

m2(x) = [1, cT, rT, cT ⊗ rT]T ∈ RN0 , and where ⊗ is the
Kronecker product.

Comparing the SDP (25) and (20), the most significant
change is replacing the full monomial basis [x]β in (20)
with a much smaller monomial basis m2(x) that excludes
degree-2 monomials purely supported in c and r. This
reduction is motivated by analyzing the monomial terms
in f(x). Although a formal proof of the equivalence be-
tween (20) and (25) remains open, we provide an intuitive
explanation in the Supplementary Material. After basis re-
duction, the size of the SDP (25) is N ′0 = 10K + 10, which
is linear inK and much smaller than the size of the original
SDP (20)Nk =

(
K+11

2

)
8. Section 7 numerically shows that

the SDP after basis reduction gives the same (tight) solution
as the original SDP.

5.3. Shape?: Algorithm Summary

To summarize the derivation in this section, our solver
for the shape reconstruction problem (11), named Shape?,
works as follows. It first solves the SDP (25) and applies
the rounding described in Proposition 7 to compute an esti-
mate of the shape parameters ck and rotation R and possi-
bly certify its optimality. Then, Shape? uses the closed-form
expression (15) to retrieve the translation estimate t.

6. Robust Outlier Rejection
Section 5 proposed a certifiably optimal solver for prob-

lem (11). However, the least squares formulation (11)
tends to be sensitive to outliers: the pixel measurements
Z in eq. (9) are typically produced by learning-based or
handcrafted detectors [50], which might produce largely in-
correct measurements (e.g. due to wrong data association

8For K = 5, 10, 20, N0 = 120, 210, 465, while N ′0 = 60, 110, 210.

zi ↔ Bki), which in turn leads to poor shape reconstruc-
tion results. This section shows how to regain robustness by
iteratively solving the weighted least squares problem (11)
and adjusting the weights wi to reject outliers.

The key insight is to substitute the least square penalty
in (11) with a robust cost function, namely the truncated
least squares (TLS) cost [47, 46, 20, 48]. Hence, we propose
the following TLS shape reconstruction formulation:

min
ck≥0,

k=1,...,K
t∈R2,R∈SO(3)

N∑
i=1

ρc̄ (ri(ck,R, t)) + α

K∑
k=1

ck (27)

where ri(ck,R, t) :=
∥∥∥zi−ΠR

(∑K
k=1 ckBki

)
−t
∥∥∥

(introduced for notational convenience), and ρc̄(r) =
min(r2, c̄2) implements a truncated least squares cost,
which is quadratic for small residuals and saturates to a con-
stant value for residuals larger than a maximum error c̄.

Our second insight is that ρc̄(r) can be written as
ρc̄(r) = minw∈{0,1} wr

2 + (1−w)c̄2, by introducing extra
slack binary variables w ∈ {0, 1}. Therefore, we can write
problem (27) equivalently as:

min
ck≥0,k=1,...,K,

wi∈{0,1},i=1,...,N

t∈R2,R∈SO(3)

N∑
i=1

wi (ri(ck,R, t))+(1−wi)c̄2+α
K∑
k=1

ck (28)

The final insight is that now we can minimize (28) by
iteratively minimizing (i) over ck,R, t (with fixed weights
wi), and (ii) over the weights wi (with fixed ck,R, t). The
rationale for this approach is that step (i) can be imple-
mented using Shape? (since in this case the weights are
fixed), and step (ii) can be implemented in closed-form. To
improve convergence of this iterative algorithm, we adopt
graduated non-convexity [4, 45], which starts with a convex
approximation of problem (28) and uses a control parame-
ter µ to gradually increase the amount of non-convexity, till
(for large µ) one solves (28). The resulting algorithm named
Shape# is given in Algorithm 1. We refer the reader to the
Supplementary Material and [45] for a complete derivation
of Algorithm 1 and for the closed-form expression of the
weight update in line 6 of the algorithm.

Shape# is deterministic and does not require an initial
guess. We remark that the graduated non-convexity scheme
in Shape# (contrarily to Shape?) is not guaranteed to con-
verge to an optimal solution of (28), but we show in the
next section that it is empirically robust to 70% outliers.

7. Experiments
Implementation details. Both Shape? and Shape# are

implemented in Matlab, with both SOS relaxations (20)
and (25) implemented using YALMIP [27] and the result-
ing SDPs solved using MOSEK [1].



Algorithm 1: Robust Shape Reconstruction.
input : measurements zi, i = 1, . . . , N ,

basis shapes Bk, k = 1, . . . ,M
maximum error c̄, regularization constant α

output: shape reconstruction: c?k,R
?, t?

/* Initialization */

1 w
(0)
i = 1, i = 1, . . . , N

2 µ(0) = 10−4

/* Iterations */
3 for τ = 1 : maxIter do

/* Variable update */

4 c
(τ)
k ,R(τ), t(τ) = Shape?(zi,Bk, α, w

(τ−1)
i , µ(τ−1))

/* Compute residual errors */

5 r
(τ)
i = ‖zi −ΠR(τ)

(∑K
k=1 c

(τ)
k Bki

)
− t(τ)‖

/* Weight update */

6 w
(τ)
i = weightUpdate(r

(τ)
i , c̄, µ(τ−1))

/* Compute objective function */

7 f (τ) = computeObjective(r
(τ)
i , w

(τ)
i , µ(τ−1), α, c̄)

/* Check convergence (τ > 1) */

8 if |f (τ) − f (τ−1)| < 10−10 then
9 break

/* Update control parameter µ */

10 µ(τ) = 2 · µ(τ−1)

11 return c(τ)
k ,R(τ), t(τ).

7.1. Efficiency Improvement by Basis Reduction

We first evaluate the efficiency improvement due to ba-
sis reduction in simulation. We fix the number of corre-
spondences N = 100, and increase the number of basis
shapes K = 5, 10, 20. At each K, we first randomly gen-
erate K basis shapes B1, . . . ,BK ∈ R3×N , with entries
sampled independently from a Normal distributionN (0, 1).
Then K linear coefficients c = [c1, . . . , cK ]T are uniformly
sampled from the interval [0, 1], and a rotation matrix R is
randomly chosen. The 2D measurements Z are computed
from the generative model (9) with t = 0, sx = sy = 1 for
Π, and additive noise εi ∼ N (0, 0.012). For shape recon-
struction, we feed the noisy Z and bases Bk to (i) the SOS
relaxation (20) without basis reduction, and (ii) the SOS re-
laxation (25) with basis reduction, both at relaxation order
β = 2 and with no Lasso regularization (α = 0).

To evaluate the effects of introducing basis reduction, we
compute the following statistics for each choice of K: (i)
solution time for the SDP; (ii) tightness of the SOS relax-
ation, including corank(S2?

0 ) and relative duality gap η2;
(iii) accuracy of reconstruction, including the coefficients
estimation error (`2 norm of the difference between esti-
mated and ground-truth coefficients) and the rotation esti-
mation error (the geodesic distance between estimated and
ground-truth rotation). Table 1 shows the resulting statis-
tics. We see that the SOS relaxation without basis reduction
quickly becomes intractable atK = 20 (mean solution time
is 2440 seconds), while the relaxation with basis reduction
can still be solved in a reasonable amount of time (107 sec-

# of Bases K K = 5 K = 10 K = 20

SDP Time [s]
3.52
0.550

47.0
5.28

2440
107

corank(S2?
0 )

1
1

1
1

1
1

Duality Gap η2
5e−6
1e−5

7e−6
2e−5

4e−5
1e−5

c Error
1.3e−3
1.3e−3

2.3e−3
2.3e−3

3.2e−3
3.2e−3

R Error [deg]
0.0690
0.0690

0.0487
0.0487

0.0298
0.0298

Table 1: Efficiency improvement by basis reduction. Bold
text represent mean values computed by solving the SOS
relaxation with basis reduction (25), while normal text rep-
resent mean values computed by solving the SOS relaxation
without basis reduction (20). Statistics are computed over
20 Monte Carlo runs.

onds)9. In addition, from the co-rank of (S2?
0 ) and the rel-

ative duality gap η2, we see basis reduction has no negative
impact on the quality of the relaxation, which remains tight
at order β = 2. This observation is further validated by the
identical accuracy of c and R estimation before and after
basis reduction (last two rows of Table 1).

7.2. Shape? for Outlier-Free Reconstruction

In this section, we compare the performance of Shape?

against state-of-art optimization techniques for shape recon-
struction. We follow the same protocol as in Section 7.1,
but only generate 2D measurements from a sparse set of
p = 2 basis shapes. This is done by only sampling p out of
K nonzero shape coefficients, i.e., cp+1, . . . , cK = 0. We
then compare the performance of Shape?, setting α = 0.01
to encourage sparseness, against three state-of-the-art op-
timization techniques: (i) the projective matching pursuit
method [36] (label: PMP), which uses principal component
analysis to first obtain a set of orthogonal bases from {Bk}
and then locally optimizes the shape parameters and cam-
era pose using the mean shape as an initial guess; (ii) the
alternative optimization method [49] (label: Altern), which
locally optimizes problem (11) by alternatively updating
c and R, initialized at the mean shape; and (iii) the con-
vex relaxation with refinement proposed in [50] (label: con-
vex+refine), which uses a convex relaxation and then refines
the solution to obtain c and R. Fig. 1 shows the boxplots
of the 3D shape estimation error (mean `2 distance between
the reconstructed shape and the ground-truth shape) and the
rotation estimation error forK = 5, 10, 20 basis shapes and
20 Monte Carlo runs. We observe that Shape? has the high-
est accuracy in estimating the 3D shape and camera pose,
though the other three methods also perform quite well. In
all the Monte Carlo runs, Shape? achieves corank(S2?

0 ) = 1

9Our basis reduction can potentially be combined with other scalability
improvement techniques reviewed in [29], such as low-rank SDP solvers.



and mean relative duality gap η2 = 6.3e−5, indicating that
Shape? was able to obtain an optimal solution.
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Figure 1: 3D shape estimation error (left) and rotation esti-
mation error (right) by Shape? compared with PMP [36], Al-
tern [49] and convex+refine [50], for increasing basis shapes
K = 5, 10, 20.

7.3. Shape# for Robust Reconstruction

This section shows that Shape# achieves state-of-the-art
performance on the FG3DCar [26] dataset. The FG3DCar
dataset contains 300 car images with ground-truth 2D land-
marks Z ∈ R2×N , N = 256. It also contains K = 15
3D mesh models of different cars {Bk}Kk=1. To generate
outliers, we randomly change 10%−70% of theN ground-
truth 2D landmarks Z to be arbitrary positions inside the
image. We then evaluate the robustness of Shape# com-
pared with two other robust methods based on the assump-
tion of sparse outliers in [50]: (i) robustified alternative
optimization (label: Altern+Robust) and (ii) robustified con-
vex optimization (label: Convex+Robust). Fig. 2 boxplots the
shape estimation and rotation estimation error10 under in-
creasing outlier rates computed over 40 randomly chosen
images in the FG3DCar dataset. We can see that Shape#

is insensitive to 70% outliers, while the accuracy of both
Altern+Robust and Convex+Robust decreases with respect to
higher outlier rates and they fail at 60% outliers. Fig. 3
shows two examples of qualitative results, where we see
Shape# gives high-quality model fitting at 70% outliers,
while the quality of Altern+Robust and Convex+Robust starts
decreasing at 40% outliers. More qualitative results are
given in the Supplementary Material.

8. Conclusions
We presented Shape?, the first certifiably optimal solver

for 3D shape reconstruction from 2D landmarks in a sin-
gle image. Shape? is developed by applying Lasserre’s hi-
erarchy of SOS relaxations combined with basis reduction
to improve efficiency. Experimental results show that the

10Although there is no ground-truth reconstruction for each image, the
original paper [26] uses local optimization (with full perspective camera
model) to reconstruct high-quality 3D shapes for all images, and we use
their reconstructions as ground-truth.
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Figure 2: 3D shape estimation error (top) and rotation
estimation error (bottom) by Shape# compared with Al-
tern+Robust [50] and Convex+Robust [50] under increasing
outlier rates.

SOS relaxation of order 2 always achieves global optimal-
ity. To handle outlying measurements, we also proposed
Shape#, which solves a truncated least squares robust esti-
mation problem by iteratively running Shape? without the
need for an initial guess. We show that Shape# achieves
robustness against 70% outliers on the FG3DCar dataset and
outperforms state-of-the-art solvers.

Supplementary Material

9. Proof of Theorem 4

Proof. Here we prove Theorem 4 in the main document.
Recall the weighted least squares optimization for shape re-
construction in eq. (11) and denote its objective function as
f(c,R, t), with c = [c1, . . . , ck]T:

f(c,R, t) =

N∑
i=1

wi

∥∥∥∥∥zi −ΠR

(
K∑
k=1

ckBki

)
− t

∥∥∥∥∥
2

+ α

K∑
k=1

|ck| .

(A1)

In order to marginalize out the translation t, we compute the
derivative of f(c,R, t) w.r.t. t:

∂f

∂t
= 2

N∑
i=1

wit− 2

N∑
i=1

wi

(
zi −ΠR

(
K∑
k=1

ckBki

))
, (A2)



Altern+Robust Convex+Robust Shape#

(a) Chevrolet Colorado LS 40% outliers.

(b) Chevrolet Colorado LS 70% outliers.

(c) BMW 5-Series 40% outliers.

(d) BMW 5-Series 70% outliers.

Figure 3: Selected qualitative results on the FG3DCar
dataset [26] under 40% and 70% outlier rates using Al-
tern+Robust [50], Convex+Robust [50], and Shape#. (a)-(b):
results on the Chevrolet Colorado LS; (c)-(d): results on the
BMW 5-Series. Green: inliers. Red: outliers. Circle: 3D
landmark. Square: 2D landmark. [Best viewed electroni-
cally.]

and set it to 0, which allows us to write t? in closed form
usingR? and c?:

t? = z̄w −ΠR?

(
K∑
k=1

c?kB̄
w
k

)
, (A3)

with z̄w and B̄w
k , k = 1, . . . ,K, being the weighted centers

of the 2D landmarks Z and the 3D basis shapesBk:

z̄w =

∑N
i=1 wizi∑N
i=1 wi

, B̄w
k =

∑N
i=1 B̄ki∑N
i=1 wi

. (A4)

Then we can substitute the expression of t? in (A3) back
into the objective function in (A1) and obtain an objective

function without translation:

f ′(c,R) =

N∑
i=1

wi

∥∥∥∥∥(zi − z̄w)−ΠR

(
K∑
k=1

ci(Bik − B̄w
k )

)∥∥∥∥∥
2

+

α

K∑
k=1

|ck| (A5)

Lastly, by defining:

z̃i =
√
wi(zi − z̄w), (A6)

B̃ki =
√
wi(Bki − B̄w), k = 1, . . . ,K (A7)

we can see the equivalence between the objective function
in eq. (A5) and the objective function in eq. (12) of Theo-
rem 4. The constraints remain unchanged because we only
marginalize out the unconstrained variable t. Therefore,
the shape reconstruction problem (11) is equivalent to the
translation-free problem (12), and the optimal translation
can be recovered using eq. (A3).

10. Proof of Proposition 6
Proof. Here we prove the SOS relaxation of order β (β ≥
2) for the translation-free shape reconstruction problem (12)
is the semidefinite program in (20). First, let us rewrite the
general form of Lasserre’s hierarchy of order β in eq. (8) in
Theorem 3 as the following:

max γ (A8)
s.t. f(x)− γ = h+ g,

h ∈ 〈h〉2β ,
g ∈ Qβ(g).

In words, the constraints of (A8) ask the polynomial f(x)−
γ to be written as a sum of two polynomials h and g, with h
in the 2β-th truncated ideal of h, and g in the β-th truncated
quadratic module of g.

Next, we use the definition of the 2β-th truncated ideal
and the β-th truncated quadratic module to explicitly repre-
sent h and g. First recall the definition of the 2β-th trun-
cated ideal in eq. (5), which states that h must be written
as a sum of polynomial products between the equality con-
straints hi’s and the polynomial multipliers λi’s:

h =

15∑
i=1

λihi, (A9)

and the degree of each polynomial product λihi must be
no greater than 2β, i.e., deg(λihi) ≤ 2β. In the translation-
free shape reconstruction problem, because all the 15 equal-
ity constraints in eq. (17) (arising from R ∈ SO(3)) have



degree 2, the degree of the polynomial multipliers must be
at most 2β − 2, i.e., deg(λi) ≤ 2β − 2. Therefore, we can
parametrize each λi using [x]2β−2, the vector of monomials
up to degree 2β − 2:

λi = λT
i [x]2β−2, λi ∈ RNλ , Nλ =

(
K+7+2β

2β−2

)
, (A10)

with λi being the vector of unknown coefficients associated
with the monomial basis [x]2β−2. The size of λi is equal
to the length of [x]2β−2, which can be computed by

(
n+d
d

)
,

with n = K + 9 being the number of variables in x, and
d = 2β − 2 being the maximum degree of the monomial
basis. Similarly for g, we recall the definition of the β-th
truncated quadratic module in eq. (7), which states that g
must be written as a sum of polynomial products between
the inequality constraints gk’s and the SOS polynomial mul-
tipliers sk’s:

g =

2K∑
k=0

skgk, (A11)

and the degree of each polynomial product skgk must be
no greater than 2β, i.e., deg(skgk) ≤ 2β. For our spe-
cific shape reconstruction problem, we have g0 := 1, gk =
ck, k = 1, . . . ,K, and gK+k = 1 − c2k, k = 1, . . . ,K.
Since g0 has degree 0, s0 can have degree up to 2β. All
gk, k = 1, . . . ,K, have degree 1, so sk, k = 1, . . . ,K, can
have degree up to 2β − 1. However, because SOS polyno-
mials can only have even degree, sk, k = 1, . . . ,K can only
have degree up to 2β − 2. For gK+k, k = 1, . . . ,K, they
have degree 2, so their corresponding SOS polynomial mul-
tipliers sK+k, k = 1, . . . ,K can have degree up to 2β − 2.
Now for each SOS polynomial sk, k = 0, . . . , 2K, from
the Gram matrix representation in eq. (2), we can associate
a PSD matrix Sk with it using corresponding monomial
bases:

s0 = [x]TβS0[x]β S0 ∈ SN0
+ , N0 =

(
K+9+β

β

)
sk 6=0 = [x]Tβ−1Sk[x]β−1 Sk ∈ SNλ+ , Nλ =

(
K+8+β
β−1

)(A12)

Finally, by inserting the expressions of sk in (A12) back
to the expression of g in (A11), and inserting the expres-
sion of λi in (A10) back to the expression of h in (A9), we
can convert the SOS relaxation of general form (A8) to the
semidefinite program (20).

11. Proof of Theorem 8
Proof. According to [23], the dual SDP of (20) is the fol-
lowing SDP:

min
y

Ly(f) (A13)

s.t. Mβ(y) � 0, (A14)
Mβ−vk(gky) � 0, (A15)
Mβ−ui(hiy) = 0, (A16)

y0 = 1, (A17)

where y ∈ RN2β , N2β =
(
K+9+2β

2β

)
is a vector of mo-

ments for a probability measure supported on X defined by
the equalities hi and inequalities gk; Ly(f) =

∑
α fαyα

is a linear function of y, where fα is the coefficient of
f(x) associated with monomial xα, and yα is the mo-
ment of the monomial xα w.r.t. the probability measure;
Mβ(y) ∈ RNβ , Nβ =

(
K+9+β

β

)
is the moment ma-

trix of degree β that assembles all the moments in y;
Mβ−vk(gky), vk = ddeg(gk)/2e, is the localizing matrix
that takes some moments from the moment matrix Mβ(y)
and entry-wise multiply them with the inequality gk (cf. [23]
for more details); Mβ−ui(hiy), ui = ddeg(hi)/2e is the
localizing matrix that takes some moments from the mo-
ment matrix and entry-wise multiply them with the equality
hi. Due to strong duality of the primal-dual SDP, we have
complementary slackness:

Sβ?0 M
?
β = 0, (A18)

at global optimality of the SDP pair. Since corank(Sβ?0 ) =
1, then according to Theorem 5.7 of [23], we have
rank

(
M?

β

)
= 1 and f?β is the global minimum of the

original shape reconstruction problem (12). Further, as
rank

(
M?

β

)
= 1, M?

β = v?(v?)T where v? = [x?]β

and x? is the unique global minimizer of the original prob-
lem (12). However, the fact that Sβ?0 M

?
β = 0 and M?

β =

v?(v?)T implies:

Sβ?0 v
? = 0, (A19)

and v? is in the null-space of Sβ?0 . Therefore, the solution
extracted using Proposition 7 is also the unique global min-
imizer of problem (12).

12. Derivation of Proposition 9
Here we show the intuition for using the basis reduc-

tion in Proposition 9. In the original SOS relaxation (20),
the parametrization of the SOS polynomial multipliers
sk, k = 0, . . . , 2K, and the polynomial multipliers λi, i =
1, . . . , 15, uses the vector of all monomials up to their cor-
responding degrees (cf. (A10) and (A12)), which leads to an



SDP of size N0 =
(
K+9+β

β

)
that grows quadratically with

the number of basis shapesK. In basis reduction, we do not
limit ourselves to the vector of full monomials, but rather
parametrize s0, sk and λi with unknown monomials bases
v0[x], vs[x] and vλ[x], which allows us to rewrite (21) as:

f(x)− γ =

s0︷ ︸︸ ︷
v0[x]TS0v0[x] +

2K∑
k=1

sk︷ ︸︸ ︷(
vs[x]TSkvk[x]

)
gk(x)+

15∑
i=1

λi︷ ︸︸ ︷(
λT
i vλ[x]

)
hi(x), (A20)

with the hope that v0[x] ⊆ [x]2, vs[x] ⊆ [x]1 and vλ[x] ⊆
[x]2 have much smaller sizes (we limit ourselves to the case
of β = 2, at which level the relaxation is empirically tight).

As described, one can see that the problem of finding
smaller v0[x], vs[x] and vλ[x], while keeping the relaxation
empirically tight, is highly combinatorial in general. There-
fore, our strategy is to only consider the following case:

(i) Expressive: choose v0[x] such that s0 contains all the
monomials in f(x)− γ,

(ii) Balanced: choose vs[x] and vλ[x] such that the sum
s0 +

∑
skgk+

∑
λihi can only have monomials from

f(x)− γ.

In words, condition (i) ensures that the right-hand side
(RHS) of (A20) contains all the monomials of the left-
hand side (LHS). Condition (ii) asks the three terms of the
RHS, i.e., s0,

∑
skgk and

∑
λihi, to be self-balanced in

the types of monomials. For example, if s0 contains extra
monomials that are not in the LHS, then those extra mono-
mials better appear also in

∑
skgk and/or

∑
λihi so that

they could be canceled by summation. Under these two
conditions, it is possible to have equation (A20) hold11.

The choices in both conditions depend on analyzing the
monomials in f(x) − γ. Recall the expression of f(x)
in (12) and the expression qi(x) in (16) for each term in-
side the summation, it can be seen that f(x) only contains
the following types of monomials:

1 (A21)
ck, 1 ≤ k ≤ K (A22)

ckrj , 1 ≤ k ≤ K, 1 ≤ j ≤ 9 (A23)
ck1ck2rj1rj2 , 1 ≤ k1 ≤ k2 ≤ K, 1 ≤ j1 ≤ j2 ≤ 9 (A24)

11Whether or not these are sufficient or necessary conditions remains
open. However, leveraging Theorem 8 we can still check optimality a pos-
teriori.

and the key observation is that f(x) does not contain
degree-4 monomials purely in c or r, i.e., ck1ck2ck3ck4
and rj1rj2rj3rj4 , or any degree-3 monomials in c and r.
Therefore, when choosing v0[x], we can exclude degree-2
monomials purely in c and r from [x]2, and set v0[x] =
m2(x) = [1, cT, rT, cT ⊗ rT]T12 as stated in Proposi-
tion 9. This will satisfy the expressive condition (i), because
s0 = m2[x]TS0m2[x] can have the following monomials:

1, ck, ckrj , ck1ck2rj1rj2 (A25)
rj , ck1ck2 , rj1rj2 , ck1ck2rj , ckrj1rj2 (A26)

and those in (A25) cover the monomials in f(x). Replacing
[x]2 with v0[x] = m2(x) is the key step in reducing the
size of the SDP, because it reduces the size of the SDP from(
K+11

2

)
to 10K + 10, i.e., from quadratic to linear in K.

In order to satisfy condition (ii), when choosing vs[x]
and vλ[x], the goal is to have the product between sk, λi
and gk, hi result in monomials that appear in f(x) − γ,
and ensure that monomials that do not appear in the latter
can simplify our in the summation. For example, as stated
in Proposition 9, we choose vs[x] = [r]1 = [1, rT]T and
sk will contain monomials 1, rj and rj1rj2 . Because gk’s
have monomials 1, ck and c2k, we can see that

∑
skgk will

contain the following monomials:

1, ck, rj1rj2c
2
k, (A27)

c2k, rj , rjc
2
k, rj1rj2 , rj1rj2ck, (A28)

This still satisfies the balanced condition, because mono-
mials of

∑
skgk in (A27) balance with monomials of s0

in (A25), and monomials of
∑
skgk in (A27) balance with

monomials of s0 in (A26). Similarly, choosing vλ[x] = [c]2
makes λi have monomials 1, ck and ck1ck2 , and because
hi’s have monomials 1, rj and rj1rj2 , we see that

∑
λihi

contains the following monomials:

1, ck, ckrj , ck1ck2rj1rj2 , (A29)
rj , rj1rj2 , ckrj1rj2 , ck1ck2 , ck1ck2rj , (A30)

which balance with monomials in s0 from (A25) and (A26).
We remark that we cannot guarantee that the SOS relax-

ation resulting from basis reduction can achieve the same
performance as the original SOS relaxation and we can-
not guarantee our choice of basis is “optimal” in any sense.
Therefore, in practice, one needs to check the solution and
compute corank(S2?

0 ) and η2 to check the optimality of the
solution produced by (25). Moreover, it remains an open
problem to find a better set of monomials bases to achieve
better reduction (e.g., knowing more about the algebraic ge-
ometry of gk and hi could possibly enable using the stan-
dard monomials as a set of bases [6]).

12A more rigorous analysis should follow the rules of Newton Poly-
tope [6], but the intuition is the same as what we describe here.



13. Derivation of Algorithm 1
For a complete discussion of graduated non-convexity

and its applications for robust spatial perception, please
see [45].

In the main document, for robust shape reconstruction,
we adopt the TLS shape reconstruction formulation:

min
ck≥0,

k=1,...,K
t∈R2,R∈SO(3)

N∑
i=1

ρc̄ (ri(ck,R, t)) + α

K∑
k=1

ck (A31)

where ri(ck,R, t) :=
∥∥∥zi−ΠR

(∑K
k=1 ckBki

)
−t
∥∥∥ is

called the residual, and ρc̄(r) = min(r2, c̄2) implements
a truncated least squares cost. Recalling that ρc̄(r) =
min(r2, c̄2) = minw∈{0,1} wr

2 +(1−w)c̄2, we can rewrite
the TLS shape reconstruction as a joint optimization of
(c,R, t) and the binary variables wi’s, as in eq. (28) in
the main document. However, as hinted in the main doc-
ument, due to the non-convexity of the TLS cost, directly
solving the joint problem or alternating between solving for
(c,R, t) and binary variables wi’s would require an initial
guess and is prone to bad local optima.

The idea of graduated non-convexity (GNC) [4] is to in-
troduce a surrogate function ρµc̄ (r), governed by a control
parameter µ, such that changing µ allows ρµc̄ (r) to start from
a convex proxy of ρc̄(r), and gradually increase the amount
of non-convexity till the original TLS function ρc̄(r) is re-
covered. The surrogate function for TLS is stated below.

Proposition A1 (Truncated Least Squares (TLS) and GNC).
The truncated least squares function is defined as:

ρc̄(r) =

{
r2 if r2∈[0,c̄2]

c̄2 if r2∈[c̄2,+∞)
, (A32)

where c̄ is a given truncation threshold. The GNC surrogate
function with control parameter µ is:

ρµc̄ (r) =


r2 if r2∈[0, µ

µ+1 c̄
2]

2c̄|r|
√
µ(µ+1)−µ(c̄2+r2) if r2∈[ µ

µ+1 c̄
2,µ+1

µ c̄2]

c̄2 if r2∈[µ+1
µ c̄2,+∞)

.(A33)

By inspection, one can verify ρµc̄ (r) is convex for µ ap-
proaching zero ((ρµc̄ (r))′′ = −2µ→ 0) and retrieves ρc̄(r)
in (A32) for µ → +∞. An illustration of ρµc̄ (r) is given in
Fig. A1.

The nice property of the GNC surrogate function is that
when µ is close to zero, ρµc̄ is convex, which means the only
non-convexity of problem (A31) comes from the constraints
and can be relaxed using the SOS relaxations.

For the GNC surrogate function ρµc̄ , the simple trick of in-
troducing binary variables (ρc̄(r) = minw∈{0,1} wr

2 +(1−

w)c̄2) would not work. However, Black and Rangarajan [3]
showed that this idea of introducing an outlier variable13

can be generalized to many robust cost functions. In partic-
ular, for the GNC surrogate function, we have the following.

Theorem A2 (Black-Rangarajan Duality for GNC surrogate
TLS). The GNC surrogate TLS shape reconstruction:

min
ck≥0,

k=1,...,K
t∈R2,R∈SO(3)

N∑
i=1

ρµc̄ (ri(ck,R, t)) + α

K∑
k=1

ck (A34)

with ρµc̄ (r) defined in (A33), is equivalent to the following
optimization with outlier variables wi’s:

min
ck≥0,

k=1,...,K
t∈R2,R∈SO(3)
wi∈[0,1],i=1,...,N

N∑
i=1

[
wir

2
i (ck,R, t) + Φµc̄ (wi)

]
+ α

K∑
k=1

ck (A35)

where Φµc̄ (wi) is the following outlier process:

Φµc̄ (wi) =
µ(1− wi)
µ+ wi

c̄2. (A36)

Proof. The derivation of Φµc̄ (wi) in (A36) follows the
Black-Rangarajan procedure in Fig. 10 of [3].

In words, the Black-Rangarajan duality allows us to
rewrite the non-convex shape reconstruction problem as a
joint optimization in (c,R, t) and outlier variables wi’s.
The interested readers can find closed-form outlier pro-
cesses for many other robust cost functions in the original
paper [3].

Leveraging the Black-Rangarajan duality, for any given
choice of the control parameter µ, we can solve prob-
lem (A35) in two steps: first we solve (c,R, t) using Shape?

with fixed weights wi’s, and then we update the weights
with fixed (c,R, t). In particular, at each iteration τ (cor-
responding to a given control parameter µ), we perform the
following:

1. Variable update: minimize (A35) with respect to
(c,R, t), with fixed weights w(τ−1)

i :

c
(τ)
k ,R(τ), t(τ) =

arg min
ck≥0,

k=1,...,K
t∈R2,R∈SO(3)

N∑
i=1

w
(τ−1)
i r2

i (ck,R, t) + α

K∑
k=1

ck, (A37)

where we have dropped the term
∑N
i=1 Φµc̄ (wi) be-

cause it is independent from (c,R, t). This problem
13w can be thought of an outlier variable: when w = 1, the measure-

ment is an inlier, when w = 1, the measurement is an outlier.



is exactly the weighted least squares problem (11) and
can be solved using Shape? (cf. line 4 in Algorithm 1).
Using the solutions (c

(τ)
k ,R(τ), t(τ)), we can compute

the residuals r(τ)
i (cf. line 5 in Algorithm 1).

2. Weight update: minimize (A35) with respect to wi,
with fixed residuals r(τ)

i :

w
(τ)
i = arg min

wi∈[0,1],i=1,...,N

N∑
i=1

(r
(τ)
i )2wi + Φµc̄ (wi), (A38)

where we have dropped
∑K
k=1 c

(τ)
k because it is a con-

stant for the optimization. This optimization, fortu-
nately, can be solved in closed-form. We take the gra-
dient of the objective function with respect to wi:

∇wi = (r
(τ)
i )2 +∇wiΦ

µ
c̄ (wi)

= (r
(τ)
i )2 − µ(µ+1)

(µ+wi)2
c̄2 (A39)

and observe that∇wi = (r
(τ)
i )2−µ+1

µ c̄2 whenwi = 0,

and∇wi = (r
(τ)
i )2 − µ

µ+1 c̄
2 when wi = 1. Therefore,

the global minimizer w?i := w
(τ)
i is:

w
(τ)
i =


0 if (r

(τ)
i )2 ∈

[
µ+1
µ
c̄2,+∞

]
c̄

r
(τ)
i

√
µ(µ+ 1)− µ if (r

(τ)
i )2 ∈

[
µ
µ+1

c̄2, µ+1
µ
c̄2
]

1 if (r
(τ)
i )2 ∈

[
0, µ
µ+1

c̄2
] . (A40)

and this is the weight update rule in line 6 of Algo-
rithm 1.

After both the variables and weights are updated using
the shaperobust approach described above, we increase the
control parameter µ to increase the non-convexity of the
surrogate function ρµc̄ (cf. line 10 of Algorithm 1). At the
next iteration τ + 1, the updated weights are used to per-
form the variable update. The iterations terminate when
the change in the objective function becomes negligible
(cf. line 8 of Algorithm 1) or after a maximum number of
iterations (cf. line 3 of Algorithm 1). Note that all weights
are initialized to 1 (cf. line 1 in Algorithm 1), which means
that initially all measurements are tentatively accepted as
inliers, therefore no prior information about inlier/outlier is
required.

14. FG3DCar Qualitative Results
Fig. A2 shows 9 full qualitative results comparing the

performances of Altern+Robust [50], Convex+Robust [50] and
Shape# on the FG3DCar [26] dataset under 10% to 70%
outlier rates. One can further see that the performance
of Shape# is sensitive to 70% outliers, while the perfor-
mances of Altern+Robust and Convex+Robust gradually de-
grade and fail at 50% to 60% outliers.

c̄

c̄2

Figure A1: Graduated Non-Convexity (GNC) with control
parameter µ for the Truncated Least Squares (TLS) cost.
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Figure A2: Qualitative results on the FG3DCar dataset [26] under 10 − 70% outlier rates using Altern+Robust [50], Con-
vex+Robust [50], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. [Best viewed electronically.]
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Figure A2: Qualitative results on the FG3DCar dataset [26] under 10 − 70% outlier rates using Altern+Robust [50], Con-
vex+Robust [50], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. (cont.) [Best viewed electronically.]
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Figure A2: Qualitative results on the FG3DCar dataset [26] under 10 − 70% outlier rates using Altern+Robust [50], Con-
vex+Robust [50], and Shape#. Yellow: shape reconstruction result projected onto the image. Green: inliers. Red: outliers.
Circle: 3D landmark. Square: 2D landmark. (cont.) [Best viewed electronically.]



References
[1] MOSEK ApS. The MOSEK optimization toolbox for MAT-

LAB manual. Version 8.1., 2017. 6
[2] Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C

Russell, and Josef Sivic. Seeing 3D chairs: exemplar part-
based 2D-3D alignment using a large dataset of CAD mod-
els. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 3762–3769, 2014. 1

[3] Michael J. Black and Anand Rangarajan. On the unifica-
tion of line processes, outlier rejection, and robust statistics
with applications in early vision. Intl. J. of Computer Vision,
19(1):57–91, 1996. 12

[4] Andrew Blake and Andrew Zisserman. Visual reconstruc-
tion. MIT Press, 1987. 2, 6, 12

[5] Volker Blanz and Thomas Vetter. Face recognition based on
fitting a 3D morphable model. IEEE Trans. Pattern Anal.
Machine Intell., 25(9):1063–1074, 2003. 1, 2

[6] Grigoriy Blekherman, Pablo A Parrilo, and Rekha R
Thomas. Semidefinite optimization and convex algebraic ge-
ometry. SIAM, 2012. 2, 11

[7] Jesus Briales and Javier Gonzalez-Jimenez. Convex Global
3D Registration with Lagrangian Duality. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017. 4

[8] Burer, Samuel and Monteiro, Renato D C. A nonlinear
programming algorithm for solving semidefinite programs
via low-rank factorization. Mathematical Programming,
95(2):329–357, 2003. 5

[9] Timothy F. Cootes, Christopher J. Taylor, David H. Cooper,
and Jim Graham. Active shape models - their training and
application. Comput. Vis. Image Underst., 61(1):38–59, Jan-
uary 1995. 1

[10] Xiaochuan Fan, Kang Zheng, Youjie Zhou, and Song Wang.
Pose locality constrained representation for 3D human pose
reconstruction. In European Conf. on Computer Vision
(ECCV), pages 174–188. Springer, 2014. 2

[11] Lie Gu and Takeo Kanade. 3D alignment of face in a sin-
gle image. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 1305–1312, 2006. 1,
2

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In Intl. Conf. on Computer Vision
(ICCV), pages 2980–2988, 2017. 1

[13] Mohsen Hejrati and Deva Ramanan. Analyzing 3D Objects
in Cluttered Images. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 593–601, 2012. 1, 2

[14] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg.
GloptiPoly 3: moments, optimization and semidefinite pro-
gramming. Optim. Methods. Softw., 24(4-5):761–779, 2009.
5

[15] Berthold K. P. Horn. Closed-form solution of absolute orien-
tation using unit quaternions. J. Opt. Soc. Amer., 4(4):629–
642, Apr 1987. 4

[16] Fredrik Kahl and Didier Henrion. Globally optimal estimates
for geometric reconstruction problems. Intl. J. of Computer
Vision, 74(1):3–15, 2007. 3

[17] Laurent Kneip, Hongdong Li, and Yongduek Seo. UPnP: An
optimal o(n) solution to the absolute pose problem with uni-
versal applicability. In European Conf. on Computer Vision
(ECCV), pages 127–142. Springer, 2014. 1

[18] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In Intl. Conf. on
Computer Vision (ICCV), pages 2252–2261, 2019. 2

[19] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2019. 1, 2

[20] Pierre-Yves Lajoie, Siyi Hu, Giovanni Beltrame, and Luca
Carlone. Modeling perceptual aliasing in SLAM via
discrete-continuous graphical models. IEEE Robotics and
Automation Letters (RA-L), 2019. 6

[21] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen
Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. arXiv preprint
arXiv:1907.01341, 2019. 1

[22] Jean B. Lasserre. Global optimization with polynomials and
the problem of moments. SIAM J. Optim., 11(3):796–817,
2001. 3, 5

[23] Jean-Bernard Lasserre. Moments, positive polynomials and
their applications, volume 1. World Scientific, 2010. 2, 5,
10

[24] Monique Laurent. Sums of squares, moment matrices and
optimization over polynomials. In Emerging applications of
algebraic geometry, pages 157–270. Springer, 2009. 5

[25] Yan Li, Leon Gu, and Takeo Kanade. Robustly aligning a
shape model and its application to car alignment of unknown
pose. IEEE transactions on pattern analysis and machine
intelligence, 33(9):1860–1876, 2011. 2

[26] Yen-Liang Lin, Vlad I. Morariu, Winston H. Hsu, and
Larry S. Davis. Jointly optimizing 3D model fitting and fine-
grained classification. In European Conf. on Computer Vi-
sion (ECCV), 2014. 1, 2, 8, 9, 13, 14, 15, 16

[27] Johan Löfberg. YALMIP: A toolbox for modeling and opti-
mization in MATLAB. In Proceedings of the CACSD Con-
ference, volume 3. Taipei, Taiwan, 2004. 5, 6

[28] Johan Lofberg. Pre-and post-processing sum-of-squares pro-
grams in practice. IEEE Transactions on Automatic Control,
54(5):1007–1011, 2009. 5

[29] Anirudha Majumdar, Georgina Hall, and Amir Ali Ahmadi.
A survey of recent scalability improvements for semidefinite
programming with applications in machine learning, control,
and robotics. arXiv preprint arXiv:1908.05209, 2019. 5, 7

[30] Joshua G Mangelson, Jinsun Liu, Ryan M Eustice, and Ram
Vasudevan. Guaranteed globally optimal planar pose graph
and landmark SLAM via sparse-bounded sums-of-squares
programming. In IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA), pages 9306–9312. IEEE, 2019. 5

[31] Jiawang Nie. Optimality conditions and finite convergence
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