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Fuel selection is a strong driver of the mass fraction for many proposed lunar and Mars missions, but fuel 
technology trends have not been comprehensively evaluated for their impact on the system in literature. We 
evaluate the impact of fuel selection on overall lunar architectures. Our analysis shows that although hydrogen 
architectures have a higher wet mass cost, they provide more payload capacity to the lunar surface than non-
hydrogen architectures given the same number of campaign launches. The Moon has been viewed as a stepping 
stone for future planetary exploration, so we evaluate both Mars and lunar architectures. We functionally 
decompose architectural decisions and compare key campaign decisions across 18 notable Mars architectural 
studies. The 18 landers are classified into four groups depending on which of the four the functional capabilities 
the lander performs, namely outbound transit, mars descent, mars ascent, and inbound transit. We find that 
there is no strong relationship between the Martian landers’ wet mass and the length of crewed Martian 
surface. Furthermore, fuel type selection did not have a clear trend with the aforementioned capabilities. The 
lack of similarities across Mars architectures suggests the reference studies had a wide range of depths of 
analysis along with an array of different methods. Furthermore, they were completed at various points in 
history, some with high political pressure. 

 Introduction 

A. General objective 
The race to the moon has attracted the attention of government, academic, and commercial firms to pursue 

technical studies of proposed architectures and campaign details. These studies answer the questions of where to 
rendezvous, what should be launched, when, and what the masses of the vehicles are, which is a proxy for the cost of 
the mission. Similarly, the same types of organizations think further and develop studies for a crewed mission to Mars. 
These studies over time had different purposes, with different commercial or government funding sources that may 
drive the motives. Prior work studies how to size respective mission elements for a specific architecture, but these 
studies are not empirically driven, and insight from one mission cannot be applied broadly.  

As crewed Mars missions are still years away, it is vital to determine which mission decisions will result in 
permanent architectural elements, and which decisions leave flexibility in the overall mission design. We collected 
notable mission architecture studies: 7 proposed lunar studies that result in 10 different architectures and 15 proposed 
Martian studies that result in 17 different architectures. These studies vary in their methods and as a result their level 
of depth, but they also vary in purpose and funding source. We focus on comparing the studies’ functional 
decompositions, sizing of landers and the fuel choice of landers, all of which may take inspiration from Apollo 
missions, but which are never empirically driven in Mars missions. Comparing the outcomes of studies show the 
continuously evolving campaign ideas for both lunar and Mars missions and may drive future studies’ choice of 
rendezvous points or choice of lander fuel.  
 

 

 
1 Graduate student, Department of Aeronautical and Astronautical Engineering 
2 Graduate student, Department of Aeronautical and Astronautical Engineering 
3 Director of System Architecture Group, Department of Aeronautical and Astronautical Engineering 
4 Ford Professor of Engineering, Department of Aeronautical and Astronautical Engineering 
 
 



2 
 

B. Background 

1. Moon Architecture Tradespace Analysis 
While NASA ultimately settled on a Lunar Orbit Rendezvous (LOR) architecture for the first missions to the 

Moon, several other possible architectures were investigated. As NASA wants to return to the Moon in 2024, to begin 
colonizing it, it is opportune to analyze the different architectures. Within an architecture, decisions about system 
concepts, the entities of function and form, and their relationships are defined as architectural decisions [1]. A key 
architectural decision for a lunar mission is where the rendezvous is performed. There are four main types of 
rendezvous points, shown in Fig. 1 

1) Direct return, also known as lunar surface rendezvous (LSR): leaving from the surface of the Earth and arriving 
directly to the surface of the Moon. 
2) Libration Point Rendezvous (LPR):  rendezvousing with any of the libration points as a way to achieve a stable 
orbit away from the Earth or Moon. 
3) Lunar Orbit Rendezvous (LOR): entering the moon’s orbit before descending to the surface.  
4) Earth Orbit Rendezvous (EOR): orbiting around the Earth before leaving for the moon.  

 
 

 
 

 
Fig. 1  A key architectural decision is the selection of rendezvous points in a lunar mission 

 
2. Mars Architecture Tradespace Analysis 

Similarly, deconstructing existing studies of proposed Mars mission architectures allows us to isolate and 
characterize the fundamental features of such a mission. We evaluate literature generated by government, academia, 
and industry organizations including NASA’s Evolvable Mars Campaign. A functional decomposition of these studies 
leads to the identification of six Mars mission phases shown in Fig. 2. 
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Fig. 2 A Mars mission is broken down into six key phases  

 

C. Overview 
This paper is structured as follows: Section II traces the architectural evolution from Apollo (LOR) to the present 

day and analyzes proposed studies. As the Moon is often proposed as a testbed for Mars missions, in Section III, we 
analyze notable Mars mission studies, ranging from NASA Design Reference Architecture (DRA) 2.0 to a SpaceX 
architecture; Section IV presents the findings based on the lunar studies and Section V presents analysis on the Mars 
architectures; In Section V we conclusions and discuss possible future work. 

 

 Lunar Human Landing System (HLS) Architectures from Apollo to the Present Day 

A key concept on how to safely land humans on the moon is the lander rendezvous. One of the first studies to 
enumerate the possible rendezvous combinations was a study performed under the Bush administration. In 1989, 
George H. W. Bush commissioned a 90 Day Space Exploration Initiative to study how to send humans back to the 
Moon. The results of the study recommended an EOR-LOR approach. The generalized concept of operations begins 
with propellent tanks and the translunar vehicle Earth Descent System (EDS) being sent and assembled in LEO. Then, 
the astronauts are sent to the space station, and then ultimately rendezvous with a pre-deployed EDS. The astronauts 
transit to lunar orbit with the EDS and take the lander down to the surface. When surface operations have been 
completed, they ascend with the lander, and rendezvous with the EDS that was parked in orbit. After the rendezvous, 
the EDS takes the crew back to Earth. 

After Dan Goldin was appointed NASA administrator in 1992, there was a shift towards making lunar architectures 
significantly cheaper, and with faster production times. The output of that emphasis was the 1996 Human Lunar Return 
Study [2]. The study presented several mission architectures for a return to the Moon. This study was very similar to 
the aforementioned 1989 study, but with an emphasis on simpler, more mature technologies.. For example, the 1996 
baseline architecture focused on an open-to-space cockpit lunar lander design, smaller crew size, and utilized a space 
station as a staging node. The general concept of operations mandated that an EDS would be sent to Earth orbit, as 
well as a lunar habitat sent to the Moon’s surface ahead of time. Then, the crew would launch to the space station and 
rendezvous with the EDS. The EDS would take the crew to lunar orbit, and the lander would break away from the 
EDS, taking the crew to the surface. After surface operations had been completed, the crew would ascend and 
rendezvous with the EDS vehicle, and then return to Earth.  

With the arrival of a new administration in 2005, NASA once again reevaluated the best methodology to go to the 
Moon. While the study continued to evaluate the same classes of mission (EOR, LOR, LPR), the desirability of an 
architecture was focused around Mars-forward technology demonstrations, and resource utilization [3]. As a result, 
the recommended architecture was an EOR-LOR type, with a concept of operations like the 1989 study. The study 
also recommended a shift to a LOX/methane architecture for the lander [2]. 

The 2005-2009 Constellation program marked another shift in NASA’s vision to return to the Moon. The Lunar 
Design Reference Mission 1 (LDRM) consisted of a seven-day surface stay in the equatorial region of the Moon [4]. 
LDRM-2 includes global lunar access with a capability to return to Earth at daytime. LDRM-2 falls under the LPR-
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LOR archetype. Phase 1 of LDRM-2 uses the Lagrange point L1 as a staging point, and Phase 2 uses LOR. LDRM-3 
provides a surface stay of 30-90 days to a polar sight and adds multiple surface elements. The study argued that 
exploration objectives involving global lunar access and extended mission duration are naturally complementary with 
a L1 rendezvous. This can be attributed to the fact that a long-term crewed sustainable mission to the Moon means 
that there is a need for a range of access times to both the surface of the Moon and Earth. Using Libration points takes 
advantage of the fixed orbital relationships of the Earth, Moon, and L1 to provide the capability of anytime Earth 
return from the lunar surface [2]. 

A study performed by researchers at MIT in 2005 systematically generate lunar architectures, displaying the 
defining characteristics of each as their number and types of vehicles, their destinations, and how they interact with 
one another [5]. They highlight one architecture that performed well that can be configured for a lunar mission or a 
Mars mission due to the generalized approach in creating architectural decisions. A study performed by ULA in 2009 
emphasizes a shift from the single purpose launcher Saturn V to a smaller, commercial launcher coupled with an 
orbital depot. They encourage lunar exploration to be thought of not as a single, disconnected mission, but as a 
continuous process.  

Next, NASA begins to partner with commercial companies through grants or contracts, and we focus on studies 
with NexGen Space and Lockheed Martin. One study was performed by NexGen Space [6] in 2015, funded by 
NASA’s Emerging Space Office. The study emphasized how commercial space capabilities and public-private-
partnerships could aid in lunar architecture development and utilized a lunar rendezvous, either LPR or LOR. It 
assumes a nuclear power plant at the lunar poles and that hydrogen will be available on the lunar surface to produce 
propellant. They attribute the highest technical risk of their study as the possibility of not finding enough accessible 
hydrogen for economic production of lunar propellant. Similarly, Lockheed Martin published a study where they 
describe their work with NASA on the Lunar Orbiting Platform – Gateway [7]. The study focuses on lunar exploration 
systems that will be solutions for not only the Moon, but also Mars missions.  

 Table 1 below compares the main features of lunar architectures from Apollo to the present day. The different 
trajectories, masses and fuel of lander, and cargo to the surface are compared to later make meaningful conclusions. 
A review of these studies indicates that all architectures use similar vehicles to Apollo: 

• Command Module (CM): Cabin for crew that usually returns to Earth 
• Service Module (SM): Supports command module with propulsion, power, consumables 
• Lunar Module (LM): Descent and ascent stage 

While most architectures list nondescriptive names for these vehicles, both the 2009 ULA report [8] and the 
2018 Lockheed Martin report [7] name their their Command Module and Service Module Orion, and the 2005 NexGen 
report names theirs Dragon V2  [6]. Similarly, the 2019 ULA report references Altair as their lunar module, the lunar 
lander of the Constellation program. The studies varied in the lander fuel choices, and this effect will be compared in 
Section IV.  
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Table 1 Summary of lunar architecture features from Apollo to the present day 
 

Apollo [9] 2005 
MIT 
Arch 
#567 
[10] 

NASA 
ESAS 

LOR [3] 

NASA 
ESAS 
EOR-

LOR [3] 

NASA 
ESAS 
EOR-
Direct 
Return 

[3] 

NASA 
ESAS 
EOR-
LOR 

CEV-to-
Surface 

[3] 

2009 
ULA [8] 

NexGen 
Space 

2015  [6] 

2018 LM 
Crewed 
Lunar 

Lander [7] 

Blue 
Origin 
[11] 

Trajectory 
Name 

LOR Direct LOR EOR-
LOR 

Direct 
Return 

EOR-
LOR 

LEO and 
L2 Depot 

LOR Gateway - 

# Launches 
from Earth 

1 4 2 2 3 3 1 8 - - 

Cargo to 
Lunar 
Surface 

440 kg  
- 

3580 kg 3580 kg 3580 kg 3580 kg 3500-
20000 kg 

7000 kg 1000 kg 3,600 
kg 

Landing 
Site 

Equator  
- 

Lunar 
South 
Pole 

Lunar 
South 
Pole 

Lunar 
South 
Pole 

Lunar 
South 
Pole 

Global 
Access 

Lunar 
poles 

Global 
Access 

Lunar 
South 
Pole 

Surface 
Stay Time 

21 hours  
- 

7 days 7 days 7 days 7 days 1496 
days 

7 days 14 days 6.5 
days 

# of Crew 
to Surface 

2 4 4 4 4 4 4 4 4 ³2 

Lander Wet 
Mass 15,103 kg 11,300 kg 27,908 kg 27,908 kg 37,000 kg 47,000 kg 58,300 kg 19,147 kg 62,000 kg - 

Fuel of 
Lander 

Hydrazine 
/UDMH 
/N2O4 Chemical LOX/CH4 LOX/CH4 LOX/CH4 LOX/CH4 LOX/H2 NTO/MMH LOX/H2 LOX/H2 

Mars Reference Architectures  

Mars architectures have been studied for decades, with NASA proposing the first detailed mission to Mars in 1993. 
This mission, called the NASA Design Reference Architecture (DRA) 1.0, focused on limiting the time the crew was 
exposed to space and utilizing local resources to reduce mission mass. The mission involved pre-deploying mission 
hardware ahead of time to the Martian surface and relied on nuclear thermal propulsion for in-space transportation, as 
well as nuclear surface power.  

In 1997, NASA iterated on their first design with Design Reference Architecture 2.0 [12], incorporating the work 
of the previous group as well as Robert Zubrin’s concept of ISRU, where propellants would be derived from the 
Martian atmosphere [13]. 

Design Reference Architecture 3.0 was a continuation of the 1997 study [14]. The study was intended to identify 
system drivers for Mars missions that could be significant sources of cost, performance, risk, and schedule variation. 
Alternate scenarios explored additional rendezvous points like exploration missions to the Moon, asteroids, or other 
targets beyond Earth’s orbit as a way to solve mission and technology challenges.  
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The development of the Design Reference Architectures, along with NASA’s organization-wide goal to return to 
Mars, inspired others to propose Mars mission architectures. Zubrin proposed a Mars Direct method, which would 
also pre-deploy cargo, but used the same vehicle for crewed transit to Mars, descent, and subsequent return [13]. 
In 2009, the NASA Design Reference Architecture was updated [15]. The architecture involved pre-deploying cargo 
to the surface and orbit of Mars. The crew is launched to a Mars orbit where they rendezvous with the orbital assets 
and then descend to the surface. After the surface mission has been completed, the crew once again rendezvous with 
orbital assets and returns to Earth.  

Building off this Design Reference Architecture, the Austere Human Missions to Mars [16] avoided the costliness 
of DRA 5.0 by avoiding high risk or high cost technology development while emphasizing development and 
production commonality. Additionally, the crew size was designed for four astronauts, rather than six. The architecture 
would also avoid a pre-deployed return vehicle, and instead use the same vehicle for descent, ascent, and subsequent 
return. 

Public interest in a mission to Mars has increased recently, with Elon Musk stating his goal is to fly cargo to Mars 
by 2024. Musk’s company SpaceX has proposed a Mars architecture that uses one of their rockets, Starship in a similar 
architecture to Zubrin’s Mars Direct, with the main difference being that Zubrin’s uses a pre-deployed ascent stage 
and return vehicle, while SpaceX’s does not. SpaceX’s utilizes a cis-lunar rendezvous to refuel the launch vehicle 
before its journey directly to Mars [17].  

Table 2 shows the phases of a Mars mission that each reference architecture uses, as well as the number of elements 
required to execute their campaign. A campaign may be comprised of many separate missions, which serve to 
accomplish the larger goal of the campaign: sustain humans on the surface of Mars. The number of elements includes 
cargo pre-deployed, initial launch vehicle, transit vehicle, lander, ascent vehicle, return vehicle, boost stages, and 
refueling depots. An architecture having many of the phases of a Mars mission is a proxy for operational complexity 
in the campaign. 

Nearly all Mars mission architectures plan for a cargo pre-deploy and a separate ascent and return vehicle, yet the 
total number of elements required varies widely. The varying relationship between the mission phases and the number 
of elements may be due to inconsistencies among length of campaigns, where some campaigns include many missions. 
Some reports may have chosen to wring out these details of how many copies of vehicles will be necessary, while 
others do not include these details and it was assumed no copies were necessary for the campaign. 

 
 
 
 
 
 

  



7 
 

 

Table 2 The mission phases of the reference architectures, number of elements and ISRU type is tabulated 
for all reference architectures. A dash represents no information found on that feature. 

 
 
Next, we focus on the lander and decompose its functionality into four functions where we evaluate if the lander holds 
crew members during that phase. A lander functionality can thus be broken down into the following four functions: 

i. Out-bound Transit: from an Earth orbit to a Mars orbit 
ii. Mars Descent: from a Mars orbit to the Martian surface 

iii. Mars Ascent: from the Martian surface to a Mars orbit 
iv. In-bound Transit: from a Mars orbit to an Earth orbit 
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Cargo Pre-
Deployed 

 X X X X X X X X X X X X X X X X 

Cis-Lunar 
Rendezvous 

    X   X    X X X  X X 

Mars 
Rendezvous 

X X      X  X X    X   

Phobos Visit         X   X  X    
Return via Pre-
Deployed 
Ascent Stage 

  X X X X X  X X   X X  X  

Pre-Deployed 
Return Vehicle 
Rendezvous 

X X X X X  X X X X  X      

Number of 
Deployed 
Elements 

2 5 7 7 4 6 3 4 6 5 4 3 5 7 5 9 4 

Months on 
Mars Surface 

1.5 18.3 17.3 16.7 20.4 18.4 18 0.7 6 16.7 16.7 16.7 0.8 10 16.3 13.3 26.3 

In-Situ 
Oxidizer Usage 

No Yes Yes Yes No Yes Yes No - No Yes Yes No No No Yes Yes 

In-Situ Fuel 
Usage 

No No Yes Yes Yes No Yes No - No No No No No No No Yes 

ISRU Life 
Support 
Oxygen 

No Yes Yes Yes Yes No No No - No No No No No No Yes No 
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Table 3 Lander functional capabilities span four main phases of the mission and result in five unique 
groupings depending on when the lander is responsible for the crew throughout the mission. 

Organization 

Lander Functional Capability  

Out-bound Transit Mars Descent Mars Ascent In-bound Transit  

JPL Minimal Mars Architecture Short      

JPL Minimal Mars Architecture Long     
 

Austere Human Mission to Mars      

Battat Architecture 2647      

Moon as a Stepping Stone      

SpaceWorks      

CalTech Mars Society      

Aldrin Cycler      

NASA's Exploration Systems Architecture Study     
 

NASA DRA 5.0 Short     
 

NASA DRA 5.0 Long      

Lockheed Martin      

Mars Society 1999      

NASA DRA 2.0     
 

NASA DRA 3.0      

Mars Direct      

NASA EMC      

SpaceX      

 

 Lunar Architecture Trends 

When contextualizing NASA’s lunar HLS architecture, there has been a clear shift towards commercial space 
involvement in the past decade. Furthermore, the general trend is that larger scale landers will be necessary to be able 
to support a sustained presence on the Moon (with the exception of NexGen Space), shown in Fig. 3. NexGen Space 
is an outlier because the study mostly focused on how to bring commercial partnerships into lunar architectures, rather 
than evaluating specific architectures, and the study makes aggressive assumptions on power and propellant already 
on the lunar surface. 

 The introduction of fuel depots in space, as presented in ULA and Lockheed’s’ architectures, allows for the 
existence of more massive landers, since the resupply of fuel allows for more dry mass to be sent to space. Therefore, 
recent lander designs may be heavier, but they are also more capable because they rely on existing infrastructure in 
their campaign.  

Another interesting concept to note that has emerged in the past decade is the shift away from EOR. While 
preliminary studies like the 1996 and 2006 studies suggested the EOR would be a viable option as a way to reduce 
cost through established assets in orbit, the current NASA and commercial plans have pivoted away from EOR. 
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Fig. 3. Over time, the mass of the lander generally increases, which is correlated to the number of days on the 
surface 

 Both the Lockheed Martin and ULA’s landers rely on liquid hydrogen as their propellant. Liquid hydrogen allows 
for a single stage lunar lander from Gateway, which is a proposed outpost orbiting the moon, eliminating the 
significant additional cost and complexity of a multiple stage system. [7] argues that a LOX/methane lander would 
likely require very lightweight systems, increasing technology development costs and risk and decreasing reliability 
and factors of safety. Secondly, they deem water the most essential part of human exploration. Sustainability in space 
depends on this key commodity, and thus the self-sustaining nature of easily extracting, refining, transporting, and 
storing liquid hydrogen fuel from water is critical. 

In order to compare across different mission designs, we define utility as the product of number of crew members 
and number of days on the lunar surface. Fig. 4 shows an increased utility with the choice of hydrogen fuel. Although 
the lander wet mass is highest in both the ULA and Lockheed Martin architectures, they offer more crew time on the 
lunar surface, and Fig. 4 shows that these hydrogen architectures also provide more payload capacity to the lunar 
surface than architectures using the same number of launches for the campaign.  
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Fig. 4  The Y axis shows a measure of productivity 
(the product of the number of crew members and the 
amount of days on the surface). Plotted against the 
lander wet mass, it is clear the Hydrogen 
architectures provide more productivity at a higher 
wet mass. 

 

 
Fig. 5  ULA and LM Hydrogen architectures achieve more 
payload to the surface given the same number of launches 
as other studies. NextGen Space may be an outlier due to 
the study’s focus on commercial involvement. 

 

 

 Mars Architectures: Comparing Estimates of Wet Mass 

As the number of campaign elements varies among the different architectures, one may expect that campaigns 
with more elements would allow for a decreased lander wet mass. However, Fig. 6 shows no clear relationship, 
surprisingly indicating that notable improvements of lander mass to the Martian surface is independent of the number 
of elements proposed in a Mars architecture. Even though some architectures propose more elements, they don’t see 
a decreased lander wet mass.    

 
Fig. 6 There was no clear relationship between number of deployed elements and resultant crewed lander 
mass. The labeled architectures had varying levels of complexity regarding staging and rendezvous points, 
but the accretion of those assets did not translate. 

 
It was also noted that a strong trend did not exist between the Martian lander wet mass and the length of time spent 
on the surface, most likely due to the different studies working from a wide variety of assumptions e.g., margins of 
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safety and risk tolerances, and also from a wide range of times at which point different technologies were available. 
Fig. 7 shows this comparison and also identifies the landers that are methane and hydrogen fueled. Between these two 
fuel types, we see that the lander size shows no general trend with surface stay and the lander mass is predicted to be 
around 50 mT.  

 
Fig. 7 The graph demonstrates that extended surface stay does not necessarily correlate to higher lander 
mass to the surface. Despite varying levels of surface stay, many of the architectures project a lander mass of 
around 50 M. 

 Conclusions and Future Work 

As the world is making strides towards the next crewed lunar mission and planning for the first crewed Mars 
mission, government, academic, and commercial firms are studying different architectures and evaluating essential 
mission elements.   Key decisions include rendezvous points in a lunar mission and amount of mission elements in a 
Mars mission. While trends in architectures may be shaped by politics, there has been a growing moment towards 
commercial involvement and higher productivity on the Moon. As we have less information and existing knowledge 
to pull upon about Mars, Mars mission designs are still in their nascent stages. It is difficult to draw strong conclusions 
about trends, as reports display varying levels of detail. Our conclusions here are based upon assumptions that could 
be wrung out in future studies.  

To extend the work here, tracing assumptions and modeling the studies may explain the wide discrepancies in 
masses of vehicles. Additionally, studies can explore the impact of technical decisions in greater detail by modeling 
the campaigns and switching on different architectural decisions to identify the consequences of different architectural 
decisions. Lastly, a full tradespace exploration and architectural enumeration may shed light into the key decisions. 
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