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Abstract

In this paper, we provide a deterministic Õ(log N)-space algorithm for estimating random
walk probabilities on undirected graphs, and more generally Eulerian directed graphs, to within
inverse polynomial additive error (ǫ = 1/poly(N)) where N is the length of the input. Previ-
ously, this problem was known to be solvable by a randomized algorithm using space O(log N)

(following Aleliunas et al., FOCS ‘79) and by a deterministic algorithm using space O(log3/2 N)
(Saks and Zhou, FOCS ‘95 and JCSS ‘99), both of which held for arbitrary directed graphs but
had not been improved even for undirected graphs. We also give improvements on the space
complexity of both of these previous algorithms for non-Eulerian directed graphs when the error
is negligible (ǫ = 1/Nω(1)), generalizing what Hoza and Zuckerman (FOCS ‘18) recently showed
for the special case of distinguishing whether a random walk probability is 0 or greater than ǫ.

We achieve these results by giving new reductions between powering Eulerian random-walk
matrices and inverting Eulerian Laplacian matrices, providing a new notion of spectral approx-
imation for Eulerian graphs that is preserved under powering, and giving the first deterministic
Õ(log N)-space algorithm for inverting Eulerian Laplacian matrices. The latter algorithm builds
on the work of Murtagh et al. (FOCS ‘17) that gave a deterministic Õ(log N)-space algorithm
for inverting undirected Laplacian matrices, and the work of Cohen et al. (FOCS ‘19) that
gave a randomized Õ(N)-time algorithm for inverting Eulerian Laplacian matrices. A running
theme throughout these contributions is an analysis of “cycle-lifted graphs,” where we take a
graph and “lift” it to a new graph whose adjacency matrix is the tensor product of the original
adjacency matrix and a directed cycle (or variants of one).

Keywords: derandomization, space complexity, random walks, Markov chains, Laplacian sys-
tems, spectral sparsification, Eulerian graphs
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1 Introduction

In this paper, we give the first deterministic, nearly logarithmic-space algorithm for accurately
estimating random walk probabilities on undirected graphs. Our algorithm extends to Eulerian
digraphs, which are directed graphs where the indegree of a vertex v is equal to its outdegree for
every vertex v. (Note that a random walk on an undirected graph is equivalent to a random walk
on the associated Eulerian digraph obtained by replacing each undirected edge {u, v} with two
directed edges (u, v) and (v, u).) In more detail, our main result is as follows:

Theorem 1.1 (informally stated (see also Theorem 8.1)). There is a deterministic, Õ(log(k ·N))-
space algorithm that given an Eulerian digraph G (or an undirected graph G), two vertices s, t, and
a positive integer k, outputs the probability that a k-step random walk in G started at s ends at t,
to within additive error of ǫ, where N is the length of the input and ǫ = 1/poly(N) is any desired
polynomial accuracy parameter.

Estimating random walk probabilities to inverse polynomial accuracy, even in general digraphs,
can easily be done by randomized algorithms running in space O(log N). Since that much space
is sufficient to simulate random walks [AKL+]. In fact, estimating random walk probabilities in
general digraphs is complete for randomized logspace.1 The best known deterministic algorithm
prior to our work was that of Saks and Zhou [SZ1], which runs in space O(log3/2 N), and works for
general digraphs. (See the excellent survey of Saks [Sak] for more discussion of the close connection
between randomized space-bounded computation and random walks, as well as the state-of-art in
derandomizing such computations up to the mid-1990’s.)

For undirected graphs, Murtagh et al. [MRSV2] recently gave a deterministic Õ(log(k·N))-space
algorithm that computes a much weaker form of approximation for random walks: given any subset
S of vertices, the algorithm estimates, to within a multiplicative factor of (1 ± 1/polylog(N)), the
conductance of the set S, namely the probability that a k-step random walk started at a random
vertex of S (with probability proportional to vertex degrees) ends outside of S. Our result is
stronger because in undirected graphs, all nonzero conductances can be shown to be of magnitude
at least 1/poly(N) and can be expressed as a sum of at most N2/4 random walk probabilities.
Consequently, with the same space bound our algorithm can estimate the conductance of any set
S to within a multiplicative factor of (1± 1/poly(N)).

Like [MRSV2], our work is part of a larger project, initiated in [MRSV1], that seeks to make
progress on the derandomization of space-bounded computation by importing ideas from the lit-
erature on time-efficient randomized algorithms for solving graph Laplacian systems [ST1, KMP1,
KMP2, KOSZ, LS, PS, CKM+, KLP+, KS, CKP+2, CKP+1, CKK+, AJSS] . While we consider
Theorem 1.1 to be a natural derandomization result in its own right, it and our analogous result
for solving Eulerian Laplacian systems (Theorem 1.2 below) can also be viewed as a step toward
handling general directed graphs and thereby having an almost-complete derandomization of ran-
domized logspace. Indeed, in recent years, nearly linear-time randomized algorithms for estimating
properties of random walks on general directed graphs (with polynomial mixing time, which also
yield complete problems for randomized logspace [RTV]) were obtained by reduction to solving
Eulerian Laplacian systems [CKP+2, CKP+1, CKK+]. A deterministic and sufficiently space-
efficient analogue of such a reduction, combined with our results, would put randomized logspace
in deterministic space Õ(log N).

1Formally, given G, s, t, k, a threshold τ , and a unary accuracy parameter 1a, the problem of deciding whether
the k-step random walk probability from s to t is larger than τ + 1/a or smaller than τ is complete for the class
BPL of promise problems having randomized logspace algorithms with two-sided error. By binary search over the
threshold τ , this problem is log-space equivalent to estimating the same probability to within error 1/a.
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To achieve our main result and prove Theorem 1.1, we provide several results that may be
of interest even outside of the space-bounded derandomization context, such as a new notion of
spectral approximation and new reductions between estimating random walk probabilities and
inverting Laplacian systems. Below we provide more details on how our work relates to both the
space-bounded derandomization and the Laplacian solving literature, and describe some of our
other contributions.

1.1 Derandomization of Space-Bounded Computation

It is widely conjectured that every problem solvable in randomized logarithmic space can also be
solved in deterministic logarithmic space (i.e. RL = L, BPL=L for the one-sided and two-sided error
versions, respectively) [Sak]. Though this is known to follow from mild assumptions in complexity
theory (e.g. that there is a Boolean function in DSPACE(n) that requires branching programs of
size 2Ω(n) [KvM]), the best known unconditional derandomization is the aforementioned, quarter-
century-old result of Saks and Zhou [SZ1], which places randomized logspace in deterministic space
O(log3/2 N).

Most of the effort on derandomizing logspace computations over the past three decades has gone
towards the design of pseudorandom generators that fool ordered branching programs. An ordered
branching program of width w and length k is given by a directed graph on vertex set [k] × [w].
which we view as consisting of k layers of w vertices. All of the edges from the ith layer go to
the (i + 1)’st layer (so there are no edges entering the first layer or exiting the last layer). We
call the first vertex of the first layer (i.e. vertex (1, 1)) the start vertex, and the first vertex of
the last layer (i.e. vertex (k, 1)) the accept vertex t. Typically, every vertex in layers 1 to k − 1
has outdegree 2, with the two edges labelled by 0 and 1. Intuitively, the vertices in the ith layer
correspond to possible states of a space-bounded algorithm before it makes its ith coin toss, and
the two edges lead to its two possible states after that coin toss. The acceptance probability of an
ordered branching program is exactly the probability that a random walk from the start vertex s of
length k−1 ends at accept vertex t. Generating such a truly random walk takes k−1 random bits,
so the goal of a pseudorandom generator for ordered branching programs is to generate a walk of
length k−1 using a much shorter random seed such that the acceptance probability is preserved up
to an additive ǫ. Given such a pseudorandom generator, we can obtain a deterministic algorithm
for estimating the acceptance probability by enumerating all seeds of the pseudorandom generator.

A general O(log N)-space computation can have w = 2O(log N) = poly(N) states and toss k =
poly(N) coins. The best known pseudorandom generator for such ordered branching programs is the
classic generator of Nisan [Nis], which has a seed length of O(log2 N) (for any error ǫ ≥ 1/poly(N))
and thus does not directly yield a derandomization of space complexity better than O(log2 N)
(due to enumerating the seeds), which can be achieved more easily by recursively multiplying the
transition matrices between layers. (Multiplying k boolean w×w matrices to within a final accuracy
of ǫ can be done recursively in space O((log k) · (log w + log log(k/ǫ))).) Nisan’s generator is also a
crucial tool in the algorithm of Saks and Zhou [SZ1].

Due to the long lack of progress in improving Nisan’s generator, effort has turned to restricted
classes of branching programs, such as those of constant width (w = O(1)), with there being
significant progress in recent years for the case of width w = 3. [SZ2, GMR+, MRT]. Another
restriction that has been studied is that of regular branching programs, where every vertex in
layers 2, . . . , k in the branching program has indegree 2. For this case, Braverman, Rao, Raz,
and Yehudayoff [BRRY] give a pseudorandom generator with seed length Õ(log N) when w ≤
polylog(N) and ǫ ≥ 1/polylog(N), which again does not yield a deterministic algorithm that
improves upon recursive matrix multiplications.
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In contrast, our algorithm for Eulerian graphs can be used to estimate the acceptance probability
of a regular branching program in space Õ(log N) even when w = poly(N) and ǫ = 1/poly(N).
Indeed, by adding edges from the kth layer back to the first layer, a regular branching program can
be made into an Eulerian graph, without changing the probability that a random walk of length
k− 1 from s ends at t. In addition, our techniques also yield an improved pseudorandom generator
for permutation branching programs (regular branching programs where the labelling is constrained
so that for each b ∈ {0, 1}, the edges labelled b form perfect matchings between the vertices in
consecutive layers). Specifically, [MPV] use our results to derive a pseudorandom generator with
seed length Õ(log N) for permutation branching programs (with a single accept vertex in layer
k) of width w = poly(N), albeit with error only ǫ = 1/polylog(N). Even for the special case
of permutation branching programs, seed length Õ(log N) was previously only achieved for width
w = polylog(N) [KNP, De, Ste].

It is also worth comparing our result with Reingold’s Theorem, which gives a deterministic
logspace algorithm for deciding s-t connectivity in undirected graphs. Reingold, Trevisan, and
Vadhan [RTV] interpreted and generalized Reingold’s methods to obtain “pseudoconverging walk
generators” for regular digraphs where each edge label forms a permutation of the vertices, as in
the permutation branching programs described above. These generators provide a way to use a
seed of O(log N) random bits to generate walks of length poly(N) that converge to the uniform
distribution on the connected component of the start vertex (just like a truly random walk would).
Such generators turn out to suffice for deciding s-t connectivity on arbitrary Eulerian digraphs.
However, these generators are not guaranteed to closely approximate the behavior of a truly random
walk at shorter walk lengths. Indeed, even the length of the walks needed for mixing is polynomially
larger than with a truly random walk. Nevertheless, one of the techniques we use, the derandomized
square, originated from an effort to simplify Reingold’s algorithm and these pseudoconverging walk
generators [RV].

Our work builds on recent papers of Murtagh et al. [MRSV1, MRSV2], which gave deterministic,
nearly logarithmic-space algorithms for estimating certain quantities associated with random walks
on undirected graphs. Specifically, the first of these papers [MRSV1] gave a “Laplacian solver”
(defined below) that implied accurate (to within 1/poly(N) error) estimates of escape probabilities
(the probability that a random walk from s visits t before visiting another vertex v); these again
refer to the long-term behavior of random walks, rather than the behavior at a given time below
mixing. The second paper [MRSV2] dealt with random walks of a fixed length k, but as discussed
earlier, only gave a weak approximation to the conductance of subsets of vertices.

1.2 Inverting Laplacian Systems

We prove Theorem 1.1 by a novel reduction from estimating k-step random walk probabilities to
solving linear systems given by graph Laplacians, and giving a small-space algorithm for the latter
in the case of Eulerian graphs.

Let G be a digraph on n vertices, and let W be the n×n transition matrix for the random walk
on G. Then we will call L = I −W the random-walk Laplacian of G.2 Solving Laplacian systems
refers to the problem of given a vector b ∈ R

n, finding a vector x ∈ R
n such that Lx = b (if one

exists). Since the matrix L is not invertible (a stationary distribution of the random walk on G is

2The standard Laplacian of G, which we simply refer to as the Laplacian of G is D − A, where D is the diagonal
matrix of outdegrees and A is the adjacency matrix (where we define (A)ij to be the number of edges from j to i in
G). Notice that I − W = (D − A)D−1. For undirected graphs, it is common to use a symmetric normalization of the
Laplacian given by D

−1/2(D − A)D−1/2 = D
−1/2(I − W)D1/2, but the I − W formulation will be more convenient

for us.
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in the kernel), a Laplacian system can be solved by instead computing its pseudoinverse L+, which
acts as an inverse on Image(L), and is zero on the orthogonal complement of Image(L).

We show that we can compute the pseudoinverse of an Eulerian Laplacian in nearly logarithmic
space.

Theorem 1.2 (informally stated (see also Theorem 7.1)). There is a deterministic, Õ(log N)-
space algorithm that given an Eulerian digraph G with random-walk transition matrix W, outputs
a matrix L̃+ whose entries differ from L+ by at most an additive ǫ, where N is the length of the
input and ǫ = 1/poly(N) is any desired polynomial accuracy parameter.

Previously, Cohen et al. [CKP+1, CKK+] showed how to solve Eulerian Laplacian systems
by randomized, nearly linear-time algorithms, and Murtagh et al. [MRSV1] showed how to solve
undirected Laplacian systems by deterministic, nearly logarithmic-space algorithms. Our proof of
Theorem 1.2 draws on all of these works.

As explained below, the extension from undirected graphs (handled by [MRSV1]) to Eulerian
graphs (as in Theorem 1.2) is crucial for obtaining our high-precision estimation of random walks
(Theorem 1.1) even for the case of undirected graphs. In addition, as discussed earlier, this exten-
sion can also be viewed as a step toward handling general directed graphs and thereby having an
almost-complete derandomization of randomized logspace. Recall that nearly linear-time random-
ized algorithms for estimating properties of random walks on general directed graphs were obtained
by reduction to solving Eulerian Laplacian systems [CKP+2, CKP+1, CKK+]. A deterministic and
sufficiently space-efficient analogue of such a reduction, combined with Theorem 1.2, would put
randomized logspace in deterministic space Õ(log N), i.e. BPL ⊆ L̃.

We will describe the ideas in the proof of Theorem 1.2 below in Section 1.3. Here we de-
scribe our reduction from powering (Theorem 1.1) to computing the pseudoinverse of a Laplacian
(Theorem 1.2).

Let G be an n-vertex digraph with random-walk transition matrix W. Let Pk be the adjacency
matrix of a k-vertex directed path. Note that Pk is not stochastic, but rather substochastic (non-
negative with column sums at most 1), since there are no edges leaving the last vertex of the path
(i.e. random walks “die off” when leaving that vertex). Then the kn × kn matrix W′ = Pk ⊗W,
i.e. the Kronecker product of Pk and W, is a k × k block matrix consisting of n × n blocks that
equal W just below the diagonal and are zero elsewhere. For example, when k = 4, we have:

W′ = Pk ⊗W =




0 0 0 0
W 0 0 0
0 W 0 0
0 0 W 0


 .

W′ is also a substochastic matrix describing random walks on a graph with k layers of n vertices
each, where there is a bipartite version of G going from the ith layer to the (i + 1)’st layer for each
i = 1, . . . , k − 1, and again there are no edges leaving the kth layer. We call this the path-lift of
G of length k, or the path-lifted graph when G and k are clear from context. (This construction is
inspired by the ordered branching programs that arise in space-bounded computation, as described
above.)

The “Laplacian” of this layered graph, L = Ikn−W′, is invertible, and noting that (W′)k = 0,
we can calculate its inverse as:

L−1 = Ink + W′ + (W′)2 + · · ·+ (W′)k−1 = Ik⊗ In + Pk⊗W + P2
k⊗W2 + · · ·Pk−1

k ⊗Wk−1. (1)

Thinking of L−1 as a block matrix, the term Pj
k ⊗Wj places a copy of Wj in each of the blocks

that are in the jth diagonal below the main diagonal. (So on the main diagonal are blocks of In,
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just below the main diagonal are blocks of W, below that W2, and so on.) For example, for k = 4,
we can write L−1 in block form as

L−1 =




I 0 0 0
W I 0 0
W2 W I 0
W3 W2 W I


 .

Thus from an accurate estimate of L−1, we can read off accurate estimates of the powers of W.
For example, entry ((ℓ, t), (1, s)) of L−1 is exactly the probability that a length ℓ− 1 random walk
in G started at s ends at t.

However, we can only apply Theorem 1.2 directly if L is the Laplacian of an Eulerian graph, and
the above W′ is not even stochastic. We can fix this by (a) starting with an Eulerian graph G and
(b) considering a cycle-lifted graph instead of a path-lifted graph, i.e. considering transition matrix
Ck ⊗W. Additionally, it is convenient to collapse all of the vertices in layer k to a single vertex v.
Then it turns out from the Laplacian pseudoinverse L+, it is possible to read off escape probabilities
— the probability that a random walk from one vertex, say (1, s), visits another vertex, say (ℓ, t),
before visiting a third vertex, say v. The condition “before visiting v” allows us to not worry about
walks that traverse all the way around the cycle, and thus we get exactly the probability that a
length ℓ− 1 random walk in G started at s ends at t.3

Note that even if G is undirected, this reduction requires inverting a Laplacian of a directed
layered graph. Thus, our extension of the small-space undirected Laplacian solver of [MRSV1]
to Eulerian graphs (Theorem 1.2) seems essential for obtaining high-precision estimates of powers
even for undirected graphs (Theorem 1.1).

The reduction above from computing powers to inverting also allows us to obtain new algorithms
for general digraphs and Markov chains:

Theorem 1.3 (informally stated (see also Theorem 8.6)). Given a Markov chain G specified by a
stochastic matrix W, two states s, t, and a positive integer k, we can compute the probability that
a k-step random walk in G started at s ends at t, to within an additive error of ǫ:

1. In randomized space O((log Nk) · log(logNk(1/ǫ))), or

2. In deterministic space O(log3/2(Nk) + (log(Nk)) · log(logNk(1/ǫ))).

where N is the length of the input.

This theorem generalizes one of the results from recent work of Hoza and Zuckerman [HZ] that
gave the same bounds for the 1-sided version of the problem, namely distinguishing probability
0 from probability greater than ǫ. For the two-sided version of the problem that we consider, a
randomized algorithm using space O(log(Nk/ǫ)) follows from performing poly(1/ǫ) random walks
and counting how many end at t. For deterministic algorithms, the best previous algorithm is
from Saks and Zhou [SZ1], which uses space O(log(Nk/ǫ) · log1/2 k). Note that Theorem 1.3 has a
doubly-logarithmic dependence on ǫ rather than a singly-logarithmic one. In particular, Saks and
Zhou [SZ1] only achieves space O(log3/2 Nk) for ǫ = 1/poly(Nk) whereas we achieve it for a much
smaller ǫ = 1/ exp(exp(

√
log Nk)).

The proof of Theorem 1.3 begins with the observation that we can approximate L−1 = (Ink −
Pk⊗W)−1 to within accuracy 1/poly(N, k) in randomized space O(log Nk) or deterministic space

3Alternatively (and essentially equivalently), we could note that if D − A is the Laplacian of G, then Ik ⊗ D −

Pk ⊗ A = Ik ⊗ D · (Ink − Pk ⊗ W ) is a “row-column diagonally dominant matrix” and apply the reduction from
inverting such matrices to pseudo-inverting Eulerian Laplacian systems [CKP+2].
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O(log3/2 Nk). Indeed, by Equation (1), it suffices to estimate I, W, W2, . . . , Wk−1 up to accuracy
±1/poly(N, k).

We then use the fact that matrix inversion has a very efficient error reduction procedure,

equivalent to what is commonly known as “preconditioned Richardson iterations”. Let L̃−1 denote
our approximation to L−1 with error 1/poly(N, k). For an appropriate choice of the polynomial

error bound, it follows that the “error matrix” E = Ink − L̃−1L has norm at most 1/Nk (in, say,
spectral norm). Then we can obtain a more accurate estimate of L−1 by using the identity:

L−1 = (Ink −E)−1L̃−1 = (Ink + E + E2 + E3 + · · · )L̃−1.

Since E has norm at most 1/Nk, the series converges very quickly, and can be truncated at
O(logNk(1/ǫ)) terms to achieve an approximation to within ±ǫ. As noted earlier, from such an
accurate estimation of L−1 = (Ink−Pk⊗W)−1, we can accurately estimate random walks of length
k − 1.

This same error reduction procedure is also used in our proof of Theorem 1.2 (and also through-
out the literature on time-efficient Laplacian solvers), and thus is also key to the high precision
estimates we obtain in Theorem 1.1. Although we fixed error 1/poly(N) in the statement of the
theorem, we can also achieve smaller error ǫ at a price of O((log N) · log(logN (1/ǫ))) in the space
complexity.

Interestingly, early work on randomized space-bounded computation [Gil, Sim, BCP, Jun] re-
duced the problem of exactly computing hitting probabilities of Markov chains (the probability that
an infinite random walk from s ever hits t) to computing (I−W)−1 for a substochastic matrix W,
and used this to show that unbounded-error and non-halting randomized logspace is contained in
deterministic space O(log2 N). As far as we know, ours is the first application of inverting Lapla-
cian systems to estimating finite-time random-walk probabilities to within polynomially small error,
and consequently it is also the first application of inverting Laplacian systems to the commonly
accepted formulation of randomized logspace (i.e. bounded error and halting).

1.3 Complex spectral approximation, cycle-lifted graphs, and powering

We now describe the techniques underlying our space-efficient Eulerian Laplacian inverter (The-
orem 1.2). Let W be the transition matrix for the random walk on an n-vertex Eulerian graph
G, for which we want to estimate (I −W)−1. Because of (a generalization of) the error-reduction
procedure described above, it suffices to compute a rough approximation to (I −W)−1. For sym-
metric matrices (as arising from undirected graphs), a sufficient notion of approximation is spectral
approximation as introduced by Spielman and Teng [ST2]. Applying the Spielman–Teng notion
to symmetric Laplacians I −W and I − W̃, we say that W̃ is an ǫ-approximation of W (written
W̃ ≈ǫ W) if

∀x ∈ R
n

∣∣∣x⊤(W− W̃)x
∣∣∣ ≤ ǫ · x⊤(I −W)x = ǫ ·

(
‖x‖2 − x⊤Wx

)
. (2)

Cohen et al. [CKP+1] introduced a generalization of spectral approximation for asymmetric matri-
ces and directed graphs:

∀x, y ∈ R
n

∣∣∣x⊤(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − x⊤Wx− y⊤Wy

)
. (3)

In the case of symmetric matrices, their definition is equivalent to the Spielman–Teng notion, and
thus we use the same terminology ǫ-approximation and notation W̃ ≈ǫ W for their notion.
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In this paper, we introduce a stronger notion of spectral approximation. Specifically, we say W̃

is a unit-circle ǫ-approximation of W (written W̃
◦≈ǫ W) if

∀x, y ∈ C
n

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − |x∗Wx + y∗Wy|

)
, (4)

where v∗ refers to the conjugate transpose of v. Note that we now allow the vectors to range over
C

n rather than R
n. As we show (see Section 3) this in itself does not make the definition stronger as

the earlier notions of [ST1, CKP+1] have equivalent formulations using complex vectors. The more
important change is the introduction of the complex magnitude | · | in the term |x∗Wx + y∗Wy|.

The significance of this change can be seen by considering an eigenvector v of W whose eigen-
value λ ∈ C has magnitude 1. Consider what happens if we set x = y = v in both the Spielman–Teng
definition (2) and our definition (4). If λ = 1 (e.g. v is a stationary distribution of the random walk
specified by W), then the right-hand side of the inequality in both cases is zero, so we must have
exact equality on the left-hand side, i.e. v∗W̃v = v∗Wv. On the other hand, if λ is some other root
of unity (e.g. an eigenvalue of the k-cycle Ck, or in any random walk with periodicity), then only
our definition requires exact equality. This also explains our terminology unit-circle approximation.

It also can be shown that W̃
◦≈ǫ W if and only if zW̃ ≈ǫ zW for all complex z of magnitude 1.

That is, our definition amounts to demanding that all unit-circle multiples of the matrices approx-
imate each other in the previous sense. In the case of symmetric matrices (undirected graphs), it
suffices to consider z = ±1, corresponding to the fact that the eigenvalues are all real and the only
periodicity that can occur is 2.

The benefit of unit-circle approximation is that, unlike the previous notions of spectral approx-
imation, it is preserved under cycle-lifts and powers.

Lemma 1.4. Suppose W̃
◦≈ǫ W. Then for all k ∈ N, we have:

1. Ck ⊗ W̃
◦≈ǫ Ck ⊗W, and

2. W̃k ◦≈ǫ/(1−ǫ) Wk.

We note that in previous work ([CCL+, MRSV1]), it was observed that for symmetric matrices,
if W̃ ≈ǫ W and −W̃ ≈ǫ −W then we do get W̃2 ≈ǫ W2. Lemma 1.4 holds even for asymmetric
matrices and handles all powers k.

Item 1 is proven by observing that the diagonalization of Ck (using the discrete Fourier basis,
which are its eigenvectors) has all kth roots of unity along the diagonal, so approximation of the
cycle-lifted graphs Ck ⊗ W̃ and Ck ⊗W amounts to requiring that the approximation of W̃ and
W is preserved under multiplication by k’th roots of unity. Item 2 is derived from Item 1 by
observing that the kth powers can be obtained by “shortcutting” random walks through all but
one layer of the cycle-lifted graphs. This shortcutting amounts to taking the Schur complements of
the corresponding Laplacians, and we show that taking Schur complements of Eulerian Laplacians
preserves spectral approximation (generalizing analogous results for undirected and symmetrized
Schur complements [MP, CKK+]).

Now we can sketch our algorithm that we use to prove Theorem 1.2. Given an Eulerian digraph
G, we want to approximate the pseudoinverse of the Laplacian In−W. By standard reductions, we
may assume that G is regular, connected, and aperiodic, and therefore, it has polynomial mixing
time. Rather than directly approximating the inverse of the Laplacian In−W of the original graph,
we instead approximate the inverse of the Laplacian of the cycle-lifted graph, i.e. I2k·n−C2k⊗W, for
2k larger than the mixing time of W. Then the pseudoinverse of In−W can be well-approximated
by an appropriate n× n projection of the pseudoinverse of I2k·n −C2k ⊗W.
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To approximate the pseudoinverse of I2k·n−C2k⊗W, we follow the recent approach of [CKK+]
and recursively compute an LU factorization (i.e. a product of a lower-triangular and upper-
triangular matrix) that approximates I2k·n−C2k ⊗W, as LU factorizations can be easily inverted.
Each recursive step reduces the task to computing an LU factorization of the Laplacian of the
random-walk on a chosen subset S of the vertices, where we short-cut steps of the walk through
Sc. For our algorithm, we choose the set S to consist of every other layer of the cycle-lifted
graph, as opposed to using a randomly chosen and pruned set of vertices as in [CKK+]. Then
shortcutting walks through Sc yields a graph on S whose transition matrix is equal to C2k−1 ⊗W2

— a cycle-lifted version of the two-step random walk, with a cycle of half the length! Unfortunately,
we can’t just directly recurse, because repeatedly squaring W k times takes space O((k · log N)).
Thus, following [MRSV1], we utilize the “derandomized square” of [RV], which produces an explicit
sparse ǫ-approximation to W2 such that k iterated derandomized squares can be computed in space
O(log N +k ·log(1/ǫ)) = Õ(log N). (We take ǫ = 1/O(k) so that we can tolerate incurring an ǫ error
in approximation for each of the k levels of recursion.) To make the analysis work, we prove that for

regular digraphs, the derandomized square produces a graph W̃2 that is a unit-circle approximation

to W2, so that we can deduce that C2k−1⊗W̃2 approximates C2k−1⊗W2 via Lemma 1.4. Previous
work [MRSV1] only showed approximation for undirected graphs, and with respect to the original
Spielman-Teng notion of spectral approximation. (Rozenman and Vadhan [RV] showed that for
regular digraphs, the derandomized square improves spectral expansion nearly as much as the true
square, but that is weaker than spectral approximation, as it only refers to the 2nd singular value
rather than the entire spectrum.)

We remark that the n× n projection of the pseudoinverse of the approximate LU factorization
we obtain is exactly the matrix we would get if we applied the repeated-squaring-based Laplacian
inversion algorithm of Peng and Spielman [PS] (or, more accurately, its space-efficient implemen-
tation via derandomized squaring [MRSV1]) to the original Laplacian I − W. Thus, another
conceptual contribution of our paper is connecting the LU factorization approach of [CKK+] to
the squaring-based approach of [PS] via the cycle-lifted graph. (However, for technical reasons in
our analysis, we don’t do the n×n projection until after applying the error-reduction procedure to
obtain a highly accurate pseudoinverse of the cycle-lifted Laplacian.)

2 Preliminaries

In this section we introduce notation and facts we use through out the paper.

2.1 Notation

We denote by C the set of complex numbers. For w = x + yi ∈ C, we use w∗ = x − yi to denote
the conjugate of w. We use |w| =

√
x2 + y2 to denote the magnitude of w.

Matrices and vectors. We use bold capital letters to denote matrices. We use In ∈ R
n×n to

denote the identity matrix. For a matrix A ∈ C
n×n we use A∗ to denote the conjugate transpose

of A and we write UA = A+A
∗

2 to denote its symmetrization. We use ~1k ∈ R
k to denote the all

1’s vector or just ~1 when k is clear from context. We denote the conjugate transpose of a vector
similarly. We use A⊤ to denote the transpose of a real matrix.

Positive Semidefinite (PSD) matrices. For Hermitian matrices A, B ∈ C
n×n we say A is

PSD or write A � 0 if x∗Ax ≥ 0 for all x ∈ C
n. If A is real the condition is equivalent to
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x⊤Ax ≥ 0 for all x ∈ R
n. Further we use A � B to denote A −B � 0. We define �, ≺, and ≻

analogously.

Proposition 2.1. Given a PSD matrix A ∈ C
n×n and matrix B ∈ C

n×m

B∗AB � 0.

Pseudo-inverse and square root of matrices. For a matrix A, we use A+ to denote the
(Moore-Penrose) pseudo-inverse of A. For a PSD matrix B, we let B1/2 to denote the square root
of B, which is the unique PSD matrix such that B1/2B1/2 = B. Furthermore, we let B+/2 denote
the pseudo-inverse of the square root of B.

Operator norms. For any vector norm ‖ · ‖ defined on C
n we define the operator semi-norm it

induces on C
n×n by ‖A‖ = maxx 6=0

‖Ax‖
‖x‖ . For a PSD matrix H and vector x we let ‖x‖H =

√
x∗Hx,

and define the operator semi-norm ‖A‖H accordingly. We can relate the ‖ · ‖H and ‖ · ‖2 operator
norms as follows. For a matrix A, we have ‖A‖H = ‖H1/2AH+/2‖2. We use the term spectral
norm to refer to the operator norm induced by ‖·‖2. We write ‖A|V ‖2 to denote the spectral norm

restricted to a subspace V . That is, ‖A|V ‖2 = maxx∈V,x 6=0
‖Ax‖
‖x‖ .

Lemma 2.2. Let M : Rn → R
n be a linear operator and extend it to M : Cn → C

n by defining
M(u + iv) = Mu + iMv for all z = u + iv ∈ C

n. Then ‖M‖Cn→Cn = ‖M‖Rn→Rn.

Graphs Throughout this paper we work with unweighted directed multigraphs (digraphs). These
graphs can have parallel edges and self loops and can be viewed as digraphs with integer edge weighs.
We specify graphs by G = (V, E) where V is the set of vertices and E is the multiset of edges.

Adjacency and Random Walk Matrices. The adjacency matrix of a digraph G on n vertices
is the matrix A ∈ R

n×n where Aij is the number of edges from vertex j to vertex i in G.4 The
degree matrix D of a digraph G is the diagonal matrix containing the out-degrees of the vertices
in G. The random walk matrix or transition matrix of a digraph G is W = AD−1. Wij is the
probability that a random step from vertex j leads to i in G. Note that ~1⊤W = ~1⊤. A matrix
W ∈ R

n×n
≥0 is called substochastic if ~1⊤W ≤ ~1⊤ (the inequality is entry-wise).

Directed Laplacians. We follow the approach in [CKK+] to define graph Laplacians. A matrix
L ∈ R

n×n is a directed Laplacian, if its off-diagonal entries are non-positive, i.e. Lij ≤ 0 for
i 6= j, and ~1⊤L = 0. Every digraph is associated with a directed Laplacian. Occasionally we write
L = D − A to express the decomposition of L into the degree matrix and adjacency matrix of
the corresponding digraph. The random-walk Laplacian of a digraph with Laplacian D−A is the
matrix (D −A)D−1 = I −W, where W is the transition matrix of G. We will often write Ck to
denote the adjacency matrix of the k-vertex uni-directional directed cycle.

Eulerian graphs and Eulerian Laplacians. A directed graph is Eulerian if the in-degree of
every node is equal to its out-degree. A directed Laplacian L is Eulerian if L~1 = 0. A graph is
Eulerian if and only if its Laplacian is Eulerian.

4Often the adjacency matrix is defined to be A
⊤ but we find the current formulation more convenient for our

purposes.
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2.2 Kronecker Product

Given matrices A ∈ C
n×m, B ∈ C

p×q, the Kronecker product or tensor product of A and B denoted
by A⊗B ∈ C

pn×qm is

A⊗B =




A11B A12B · · · A1mB
...

...
...

...
An1B An2B · · · AnmB


 .

Proposition 2.3. Given four matrices A, B, C, and D, if the matrix dimensions make AC and
BD well-defined, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

2.3 Schur Complement

For a matrix A ∈ C
n×n and sets F, C ⊆ [n], let AF C denote the submatrix corresponding to the

rows in F and columns in C. Similarly, for a vector v ∈ C
n let vF ∈ C

|F | be the restriction of v onto
coordinates in F . If F, C partition [n] and AF F is invertible, then we denote the Schur complement
of A onto the set C by

Sc(A, C)
def
= ACC −ACF A−1

F F AF C .

When it is clear from context we may reload this notation as follows to make the Schur complement
dimension consistent with A.

Sc(A, C)
def
=

[
0F F 0F C

0CF ACC −ACF A−1
F F AF C

]
.

3 Spectral Approximation

Since its introduction by Spielman and Teng [ST2], spectral approximation of graphs and their
associated matrices [ST2] has served as a powerful tool for graph-theoretic algorithm development.
Below we review the original definition and later generalizations to directed graphs and asymmetric
matrices [CKP+1], and then present our new, stronger definition of unit-circle approximation in
several equivalent formulations.

3.1 Definitions

Definition 3.1 (Undirected Spectral Approximation [ST2]). Let W, W̃ ∈ R
n×n be symmetric

matrices. We say that W̃ is an undirected ǫ-approximation of W (written W̃ ≈ǫ W) if

∀x ∈ R
n, (1− ǫ) · x⊤(I−W)x ≤ x⊤(I− W̃)x ≤ (1 + ǫ) · x⊤(I−W)x

or equivalently,

∀x ∈ R
n,

∣∣∣x⊤(W− W̃)x
∣∣∣ ≤ ǫ · x⊤(I−W)x = ǫ ·

(
‖x‖2 − x⊤Wx

)
.

Typically Definition 3.1 is phrased in terms of Laplacian matrices of the form I − W and
approximation is denoted by I−W̃ ≈ǫ I−W to indicate the multiplicative approximation between
the quadratic forms defined by I− W̃ and I−W. However, in the more general definitions of this
paper it will be more convenient to think of spectral approximation as a measure of approximation
between W̃ and W rather than between I−W̃ and I−W. Note that the definition is asymmetric
in W̃ and W but W̃ ≈ǫ W for ǫ < 1 implies W ≈ǫ/(1−ǫ) W̃.
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Spectral approximation is a strong definition that guarantees the two matrices have similar
eigenvalues, and their corresponding graphs have similar cuts and random walk behavior [ST2,
BSST]. Below we show the generalization to directed graphs from [CKP+1].

Definition 3.2 (Directed Spectral Approximation [CKP+1]). Let W, W̃ ∈ R
n×n be (possibly

asymmetric) matrices. We say that W̃ is a directed ǫ-approximation of W (written W̃ ≈ǫ W) if

∀x, y ∈ R
n,

∣∣∣x⊤(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
x⊤(I−W)x + y⊤(I−W)y

)

=
ǫ

2
·
(
‖x‖2 + ‖y‖2 − x⊤Wx− y⊤Wy

)

=
ǫ

2
·
(
‖x‖2 + ‖y‖2 − x⊤UWx− y⊤UWy

)
.

The main difference between the above and Definition 3.1 is the introduction of the y vector
instead of having y = x. Indeed, using the same vector on both sides would lose the asymmetric
information in the matrices W and W̃). However, note that the last inequality shows that the
right-hand side depends only on the symmetrization UW.

We are justified using the same notation for undirected and directed spectral approximation
because of the following lemma

Lemma 3.3 ([MRSV2] Lemma 2.9). Let W, W̃ ∈ R
n×n be symmetric matrices. Then W̃ is a

directed ǫ-approximation of W if and only if it is an undirected ǫ-approximation of W.

It will be convenient for us to generalize Definition 3.2 to complex matrices. In that case, we
will quantify over x, y ∈ C

n and replace the transposes with Hermitian transposes.

Definition 3.4 (Complex Spectral Approximation). Let W, W̃ ∈ C
n×n be (possibly asymmetric)

matrices. We say that W̃ is a complex ǫ-approximation of W (written W̃ ≈ǫ W) if

∀x, y ∈ C
n,

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − x∗UWx− y∗UWy

)

=
ǫ

2
·
(
‖x‖2 + ‖y‖2 − Re (x∗Wx + y∗Wy)

)

The equality in Definition 3.4 comes from the observation that for all v ∈ C
n and all matrices

A ∈ C
n×n we have

v∗UAv =
1

2
(v∗Av + v∗A∗v) =

1

2
(v∗Av + (v∗Av)∗) = Re(v∗Av)

because the average of a complex number and its conjugate is simply its real part. Notice that the
definitions of undirected, directed, and complex spectral approximation are only achievable when
the matrix W has the property that Re(x∗Wx) ≤ ‖x‖2 for all vectors x ∈ C

n (when W is real
and symmetric as in the case of undirected spectral approximation, this requirement is equivalent
to x⊤Wx ≤ ‖x‖2 for all x ∈ R

n). When working with these types of approximation, we will often
implicitly restrain the matrices to have this property.

Again, we are justified in using the same notation for complex approximation that we use for
directed and undirected approximations because of the following lemma.

Lemma 3.5. Let W, W̃ ∈ R
n×n be (possibly asymmetric) matrices. Then W̃ is a directed ǫ-

approximation of W if and only if W̃ is a complex ǫ-approximation of W.
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A proof of Lemma 3.5 can be found in Appendix A. Now we introduce our new stronger
definition, which we call unit-circle spectral approximation.

Definition 3.6 (Unit-circle Spectral Approximation). Let W, W̃ ∈ C
n×n be (possibly asymmetric)

matrices. We say that W̃ is a unit-circle ǫ-approximation of W (written W̃
◦≈ǫ W) if

∀x, y ∈ C
n,

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − |x∗Wx + y∗Wy|

)
.

The change from Definition 3.4 is that we have replaced the real part with the complex mag-
nitude | · | on the quadratic forms x∗Wx + y∗Wy on the right-hand side. To understand what we
gain from this, suppose x = y is an eigenvector of W with eigenvalue λ such that |λ| = 1. Then
the right-hand side of the inequality equals zero and so we must have x∗W̃y = x∗Wy. In other
words, W̃ and W must behave identically on the entire unit circle of eigenvalues with magnitude
1. This is in contrast to the previous definitions, which only required exact preservation in the
case where λ = 1. For example, can an undirected bipartite graph (which has a periodicity of 2
and an eigenvalue of −1) have a non-bipartite spectral approximation? Under previous definitions,
the answer is yes but under unit-circle approximation, the answer is no because we require exact
preservation on all eigenvalues of magnitude 1, not just λ = 1.

Unit circle approximation applies to a smaller class of matrices than the previous definitions of
spectral approximation. While the previous definitions only required that Re(x∗Wx) ≤ ‖x‖2 for
all x ∈ C

n, unit circle approximation requires that |x∗Wx| ≤ ‖x‖2 for all x ∈ C
n. Again, we will

often implicitly restrict our matrices to have this property. Note that all complex matrices W such
that ‖W‖1 ≤ 1 and ‖W‖∞ ≤ 1 satisfy this property. In particular, if W is the transition matrix
of an Eulerian graph, then W satsifies the property as does z ·W for all z ∈ C such that |z| ≤ 1.

We will see in the coming sections that unit-circle approximation is preserved under powering of
W̃ and W and is useful for achieving spectral approximation of a class of graphs we call cycle-lifted
graphs, which are essential for the anlaysis of our Eulerian Laplacian solver.

3.2 Equivalent Formulations

There are many useful equivalent formulations of Definition 3.6. First we look at what our definition
gives in the case of real and symmetric matrices.

Lemma 3.7 (Real, Symmetric Equivalence). Let W, W̃ ∈ R
n×n be symmetric matrices. Then the

following are equivalent:

1. W̃
◦≈ǫ W.

2. W̃ ≈ǫ W and −W̃ ≈ǫ −W.

3. For all x ∈ R
n we have

∣∣∣x⊤(W− W̃)x
∣∣∣ ≤ ǫ ·

(
‖x‖2 − |x⊤Wx|

)
.

A proof of Lemma 3.7 can be found in Appendix A. In the original [ST2] formulation of spectral
approximation as multiplicative approximation between quadratic forms, Lemma 3.7 says that in
the real, symmetric setting, unit-circle spectral approximation is equivalent to I−W̃ approximating
I −W and I + W̃ approximating I + W. This makes intuitive sense because symmetric matrices
have real eigenvalues so the only eigenvalues that can lie on the unit circle are +1 and −1.
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This “plus and minus” approximation has been studied before in [CCL+, MRSV2], where it
was found to be useful because spectral approximation is preserved under squaring when both the
“plus” and “minus” approximations hold. We will see in Section 4 that even in the general directed,
complex case, unit-circle approximation is preserved under all powering.

We now show some convenient equivalent formulations of unit-circle spectral approximation.

Lemma 3.8. Let W, W̃ ∈ C
n×n be (possibly asymmetric) matrices. Then the following are equiv-

alent

1. W̃
◦≈ǫ W

2. For all z ∈ C such that |z| = 1, z · W̃ ≈ǫ z ·W

3. For all z ∈ C such that |z| = 1,

• ker(UI−z·W) ⊆ ker(W̃−W) ∩ ker((W̃−W)⊤) and

•
∥∥∥U+/2

I−z·W(W̃−W)U
+/2
I−z·W

∥∥∥ ≤ ǫ

A proof of Lemma 3.8 can be found in Appendix A.

4 Approximating Cycle-Lifted Graphs and Powers

In this section we discuss how unit-circle spectral approximation allows us to approximate powers
of random walk matrices of digraphs and a class of graphs we call cycle-lifted graphs, which play
an essential role in our Eulerian Laplacian solver. Preservation under powering is a useful property
for a definition of matrix approximation but even in the case of symmetric transition matrices, the
original definition of spectral approximation does not guarantee this, as is seen in the following
proposition.

Proposition 4.1. For all rational ǫ ∈ (0, 1), there exist undirected graphs with transition matrices
W̃, W such that W̃ ≈ǫ W but W̃2 6≈c W2 for any finite c > 0.

Proof. Let W be the transition matrix of a connected undirected bipartite graph and define W̃ =
(1− ǫ) ·W + ǫ · I. Fix a vector x and observe

∣∣∣x⊤(W− W̃)x
∣∣∣ = ǫ ·

∣∣∣x⊤(I−W)x
∣∣∣

= ǫ ·
(
‖x‖2 − x⊤Wx

)

where we can drop the absolute value in the second line because I −W is PSD and hence has a
non-negative quadratic form. So W̃ ≈ǫ W. However W2 has 2 connected components (because
walks of length 2 must start and end at the same side of the bipartition) while W̃2 is strongly
connected. This means that W2 has eigenvalue λ = 1 with multiplicity 2 while W̃2 has eigenvalue
λ = 1 with multiplicity 1. Hence, they cannot spectrally approximate one another (see Lemma 4.2
below).

Lemma 4.2. Fix W̃, W ∈ C
n×n. For any matrix M ∈ C

n×n, let Vλ(M) denote the eigenspace of
M of eigenvalue λ.

1. If W̃ ≈c W for a finite c > 0, then V1(W) ⊆ V1(W̃). If c < 1, then V1(W) = V1(W̃).
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2. If W̃
◦≈c W for a finite c > 0, then for all λ ∈ C such that |λ| = 1, Vλ(W) ⊆ Vλ(W̃) and if

c < 1 then Vλ(W) = Vλ(W̃).

A proof of Lemma 4.2 can be found in Appendix B. In previous work ([CCL+, MRSV1]), it was
observed that for symmetric matrices, if W̃ ≈ǫ W and −W̃ ≈ǫ −W then we do get W̃2 ≈ǫ W2.
Furthermore, when W is PSD we have that W̃ ≈ǫ W implies −W̃ ≈ǫ −W. Since W2 is trivially
PSD, the above can be applied recursively to conclude that W̃2k ≈ǫ W2k

for all positive integers
k. However, we observe that analogous approximation guarantees do not hold for Eulerian graphs
(or even regular digraphs).

Proposition 4.3. For all rational ǫ ∈ (0, 1), there exist regular digraphs with transition matrices
W̃, W such that W̃ ≈ǫ W and −W̃ ≈ǫ −W but W̃4 6≈c W4 for any finite c.

Proof. Let C4 be the transition matrix of the directed 4-cycle. Fix ǫ ∈ (0, 1) and define C̃ =
(1 − ǫ/2) · C4 + (ǫ/2) · C⊤

4 . In other words, C̃ is the directed 4-cycle with an ǫ/2 probability of
traversing backwards. We claim that C̃ ≈ǫ C4 and −C̃ ≈ǫ −C4 but C̃4 does not approximate C4

4.
First, note that each of UI±C4 has a one-dimensional kernel, namely

ker(UI−C4) = span(~1)

ker(UI+C4) = span
(
[1,−1, 1,−1]⊤

)
.

Furthermore we have,
(C̃−C4) = (ǫ/2) · (C4 −C⊤

4 ),

which has a two-dimensional kernel, span(~1, [1,−1, 1,−1]). Observe that UI±C4 each has eigenval-

ues of 2, 1, 1, and 0. Hence ‖U+/2
I±C
‖ = 1. Finally, we have that

‖C4 − C̃‖ = (ǫ/2) · ‖C4 −C⊤
4 ‖ = ǫ

Putting this together gives

‖U+/2
I−C4

(C4 − C̃)U
+/2
I−C4

‖ ≤ ‖U+/2
I−C4

‖ · ‖C4 − C̃‖ · ‖U+/2
I−C4

‖
= ǫ.

It follows that C̃ ≈ǫ C4. A similar calculation lets us conclude that −C̃ ≈ǫ −C4, as desired.
Notice that C4

4 has 4 connected components (all of the vertices become isolated with self loops)
while C̃4 has 2 connected components. So C4

4 and C̃4 have eigenvalues of 1 with different multi-
plicities and hence they fail to spectrally approximate of one another by Lemma 4.2.

Now we show that if a matrix is a unit-circle approximation of another, then all of their powers
are as well (with small loss in approximation quality). In fact, we show something stronger, namely
that their cycle-lifted graphs approximate each other.

Definition 4.4 (Cycle-Lifted Graph). Let Ck denote the transition matrix of the k-vertex directed
cycle. Given a graph G = (V, E) on n vertices with transition matrix W the cycle-lifted graph of
length k, Ck(G), is a layered graph with k layers (numbered 1 to k) of n vertices each, where for
every i ∈ [k], there is an edge from vertex u in layer i to vertex v in layer (i + 1) mod k with
multiplicity ℓ if and only if (u, v) exists with multiplicity ℓ in G. That is, Ck(G) = (V ′, E′) with
V ′ = [k] × V and E′ = {((i, u), (i + 1 mod k, v) : (u, v) ∈ E}. The transition matrix of Ck(G) is
Ck ⊗W.
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Theorem 4.5. Fix W, W̃ ∈ C
n×n and let Ck be the transition matrix for the directed cycle on k

vertices. Then Ck⊗W̃ ≈ǫ Ck⊗W if and only if for all z such that zk = 1, we have z ·W̃ ≈ǫ z ·W.

Recall that unit-circle spectral approximation requires that for all z ∈ C with |z| = 1 we
have z · W̃ ≈ǫ z ·W. Theorem 4.5 then tells us that unit-circle spectral approximation implies
approximations of the corresponding cycle-lifted graphs of every length.

Corollary 4.6. Fix W, W̃ ∈ C
n×n. If W̃

◦≈ǫW then for all positive integers k, Ck⊗W̃
◦≈ǫ Ck⊗W.

Proof. Since W̃
◦≈ǫ W, we have that for all ω ∈ C such that |ω| = 1 and all z such that zk = 1, we

have z · w · W̃ ≈ǫ z · w ·W. By Theorem 4.5, for all ω ∈ C such that |ω| = 1, we have

ω · (Ck ⊗ W̃) = Ck ⊗ (ω · W̃) ≈ǫ Ck ⊗ (ω ·W) = ω · (Ck ⊗W).

Thus, Ck ⊗ W̃
◦≈ǫ Ck ⊗W.

To prove Theorem 4.5, we use the following lemma, which simplifies calculating spectral norm
and hence spectral approximation using restrictions onto invariant subspaces.

Lemma 4.7. Let M : Cn → C
n be a linear operator and V1, . . . , Vℓ ⊆ C

n subspaces such that

1. Vj ⊥ Vk for all j 6= k

2. V1 ⊕ . . .⊕ Vℓ = C
n

3. MVj ⊆ Vj for all j ∈ [ℓ].

i.e., M is block diagonal with respect to the subspaces V1, . . . , Vℓ. Then,

‖M‖ = max
j∈[ℓ]
‖M|Vj‖

A proof of Lemma 4.7 can be found in Appendix B. Now we can prove Theorem 4.5.

Proof of Theorem 4.5. The intuition behind the proof is to observe that the diagonalization of the
directed k-cycle Ck using the discrete Fourier basis (which are its eigenvectors), has all kth roots of
unity along the diagonal. This means that approximation of cycle-lifted graphs Ck⊗W̃ and Ck⊗W
amounts to requiring that the approximation of W̃ and W is preserved under multiplication by
k’th roots of unity.

For each z ∈ C with zk = 1, define the Fourier basis vector χz = [1, z, z2, . . . , zk−1]⊤. Consider
the subspaces Vz = span(χz⊗C

n). These subspaces are orthogonal, span C
k⊗C

n and are invariant

under Ck ⊗W, Ck ⊗ W̃, (Ck ⊗W)∗ = C∗
k ⊗W∗, (Ck ⊗ W̃)∗ = C∗

k ⊗ W̃∗, and U
+/2
Ik·n−Ck⊗W

. So,
by Lemma 4.7 we have

∥∥∥U+/2
Ik·n−Ck⊗W

(
Ck ⊗ W̃−Ck ⊗W

)
U

+/2
Ik·n−Ck⊗W

∥∥∥ =

max
z : zk=1

∥∥∥U+/2
Ik·n−Ck⊗W

(
Ck ⊗ W̃−Ck ⊗W

)
U

+/2
Ik·n−Ck⊗W

|Vz

∥∥∥ .

Now observe that since Ckχz = z−1χz, we have that for any ~v ∈ C
n

(Ck ⊗W)(χz ⊗ ~v) = Ckχz ⊗W~v

= χz ⊗ (z−1 ·W~v).
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Similarly we have,

(Ck ⊗ W̃)(χz ⊗ ~v) = χz ⊗ (z−1 · W̃~v)

UIk·n−Ck ⊗W
(χz ⊗ ~v) = χz ⊗UIn−z−1·W~v.

It follows that
∥∥∥U+/2

Ik·n−Ck⊗W

(
Ck ⊗ W̃−Ck ⊗W

)
U

+/2
Ik·n−Ck⊗W

∥∥∥

= max
z : zk=1

∥∥∥U+/2
In−z−1·W

(
z−1 ·W− z−1 · W̃

)
U

+/2
In−z−1·W

∥∥∥ .

So we get that Ck ⊗ W̃ ≈ǫ Ck ⊗W if and only if for all z such that zk = 1, z−1W̃ ≈ǫ z−1W.
Since for all kth roots of unity z, z−1 is also a kth root of unity, the result follows.

Theorem 4.5 allows us to reason about approximation under powering by observing that the
kth power of a matrix can be expressed in terms of the Schur complement of its cycle-lifted graph
of length k. In [MP], they showed that undirected spectral approximation is preserved under Schur
complements. Here we show that the same is true of directed spectral approximation (with a small
loss in approximation quality).

Theorem 4.8. Fix W, W̃ ∈ C
n and suppose that W̃ ≈ǫ W for ǫ ∈ (0, 2/3). Let F ⊆ [n] such that

(I|F | −WF F ) is invertible and let C = [n] \ F . Then

I|C| − Sc(In − W̃, C) ≈ǫ/(1−3ǫ/2) I|C| − Sc(In −W, C)

A proof of Theorem 4.8 can be found in Appendix B. The expression in Theorem 4.8 has a
natural interpretation in terms of random walks. Indeed, notice that

I|C| − Sc(In −W, C) = WCC + WCF (I|F | −WF F )−1WF C .

When W is the transition matrix for a random walk, the right-hand side above can be interpreted as
the transition matrix for the random walk induced by “short-cutting” walks that traverse through
the set of vertices in F . In other words, walk behavior on C remains the same (the WCC term)
and walks that go from C to F (via WF C) can instantly take arbitrary length walks in F (the
(I|F | −WF F )−1 term) before returning to C (via WCF ). The theorem above says that spectral
approximation is preserved under such “short-cutting”.

Now we get the following corollary, which says that unit-circle approximation is preserved under
powering.

Corollary 4.9. Let W, W̃ be the transition matrices of digraphs G, G̃. If W̃
◦≈ǫ W then for all

k ∈ N we have W̃k ◦≈ǫ/(1−3ǫ/2) Wk.

Proof. Fix k ∈ N and z ∈ C such that |z| = 1. Let ω be such that ωk = z. Let M = Ck ⊗ ω ·W
and M̃ = Ck⊗ω ·W̃. From Corollary 4.6 we have that M̃

◦≈ǫ M. We can think of M and M̃ as the
transition matrices of the cycle-lifted graph of graphs with transition matrices W and W̃. Define
F to be the set of vertices in the first layer of these cycle-lifted graphs. Notice that

I|F | − Sc(In −M, F ) = (ω ·W)k = z ·Wk

I|F | − Sc(In − M̃, F ) = (ω · W̃)k = z · W̃k.

It follows from Theorem 4.8 that W̃k ◦≈ǫ/(1−3ǫ/2) Wk.
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Interestingly, in the case of undirected graphs, Corollary 4.9 says that if W̃ ≈ǫ W and −W̃ ≈ǫ

−W then all kth powers approximate one another (with small loss in approximation quality). This
was not known (to the best of our knowledge) for any k other than powers of 2.

5 Derandomized Square of Regular Digraphs

In order to achieve a space-efficient and deterministic implementation of our algorithm, we need a
way to efficiently approximate high powers of regular digraphs. To do this, we use the derandomized
square graph operation of Rozenman and Vadhan [RV], which uses expander graphs to give sparse
approximations to the graph square. We define expander graphs in terms of the measure below.

Definition 5.1 ([Mih]). Let G be a regular directed multigraph with transition matrix W. We
define

λ(G) = max
v⊥~1

‖Wv‖
‖v‖ ∈ [0, 1],

where the maximum can be taken over either real or complex vectors v (equivalent by applying
Lemma 2.2 to the restriction of W to the subspace orthogonal to ~1). The spectral gap of G is
defined to be γ(G) = 1− λ(G) and when γ(G) ≥ γ, we say that G has spectral expansion γ. When
G is undirected, λ(G) equals the second largest eigenvalue of W in absolute value.

It is well known that the larger γ(G) is, the faster a random walk on G converges to the
stationary distribution. Families of graphs with λ(G) ≤ 1− Ω(1) are called expanders.

λ(G) also relates naturally to unit-circle approximation as shown in the following lemma, which
says that the smaller λ(G), the better G approximates the complete graph.

Lemma 5.2. Let G be a strongly connected, regular directed multigraph on n vertices with transition
matrix W and let J ∈ R

n×n be a matrix with 1/n in every entry (i.e. J is the transition matrix of

the complete graph with a self loop on every vertex). Then λ(G) ≤ λ if and only if W
◦≈λ J.

A proof of Lemma 5.2 can be found in Appendix C. Before defining the derandomized square
operation, we introduce two-way labelings and rotation maps.

Definition 5.3 ([RVW, RV]). A two-way labeling of a d-regular directed multigraph G is a labeling
of the edges in G such that

1. Every edge (u, v) has two labels in [d], one as an edge incident to u and one as an edge
incident to v,

2. For every vertex v the labels of the edges incident to v are distinct.

In a two-way labeling, each vertex v has its own labeling from 1 to d for the d edges leaving it
and its own labeling from 1 to d for the d edges entering it. Since every edge is incident to two
vertices, each edge receives two labels, which may or may not be the same. It is convenient to
specify a multigraph with a two-way labeling by a rotation map:

Definition 5.4 ([RVW, RTV]). Let G be a d-regular directed multigraph on n vertices with a two-
way labeling. The rotation map RotG : [n]× [d]→ [n]× [d] is defined as follows: RotG(v, i) = (w, j)
if the ith edge leaving vertex v leads to vertex w and this edge is the jth edge entering w.

Now we can define the derandomized square. Recall that the square of a graph G2 is a graph
on the same vertex set whose edges correspond to all walks of length 2 in G. The derandomized
square picks out a pseudorandom subset of the walks of length 2 by correlating the 2 steps via
edges on an expander graph.
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Definition 5.5 ([RV]). Let G be a d-regular multigraph on n vertices with a two-way labeling. Let
H be a c-regular undirected graph on d vertices. The derandomized square G s©H is a c · d-regular
graph on n vertices with rotation map RotG s©H defined as follows: For v0 ∈ [n], i0 ∈ [d], and
j0 ∈ [c], we compute RotG s©H(v0, (i0, j0)) as

1. Let (v1, i1) =RotG(v0, i0)

2. Let (i2, j1) =RotH(i1, j0)

3. Let (v2, i3) =RotG(v1, i2)

4. Output (v2, (i3, j1))

In the square of a directed graph, for each vertex v, there exists a complete, uni-directional
bipartite graph from the in-neighbors of v, to it’s out-neighbors. This corresponds to a directed
edge for every two-step walk that has v in the middle of it. A useful way to view the derandomized
square is that it replaces each of these complete bipartite graphs with a uni-directional bipartite
expander.

Definition 5.6. Let H = (V, E) be an undirected graph on d vertices. We define Bip(H) to be a
bipartite graph with d vertices on each side of the bipartition and an edge (u, v) from vertex u on
the left to vertex v on the right if and only if (u, v) ∈ E.

Note that since we’re working with multigraphs, the incoming or outgoing neighbors to/from a
vertex may form a multi-set rather than a set due to parallel edges. So when we say that a “copy”
of Bip(H) exists from the in-neighbors of v to its out-neighbors, we mean that if we were to split all
of the in-neighbors of v and out-neighbors of v into two sets of d distinct vertices, place the edges
from Bip(H) across the sets, and then re-merge vertices that correspond to a repeat neighbor of v,
then a copy of that resulting graph can be found across vertex v in G s©H. We formalize this view
of the derandomized square in the following lemma.

Lemma 5.7. Let G be a d-regular directed multigraph on n vertices with a two-way labeling and
transition matrix W. Let H be a c-regular undirected graph on d vertices with a two-way labeling
and transition matrix B. Let J be the d × d matrix with 1/d in every entry and let W̃ be the
transition matrix of G s©H. Define the 2d× 2d matrices

M =

[
0 0
J 0

]

and

M̃ =

[
0 0
B 0

]
.

Furthermore, for each v ∈ [n] define P(v), Q(v), and T(v) as follows

P
(v)
j,w =

{
1 if jth edge entering v in G comes from w

0 otherwise

Q
(v)
j,w =

{
1 if jth edge leaving v in G goes to w

0 otherwise

T(v) =

[
P(v)

Q(v)

]
.
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Then we have

W2 =
1

d
·
∑

v∈[n]

(T(v))⊤MT(v)

and

W̃ =
1

d
·
∑

v∈[n]

(T(v))⊤M̃T(v)

Proof of Lemma 5.7. First we show that in G s©H there exists a “copy” of Bip(H) from the in-
neighbors of each vertex to the out-neighbors. Fix a vertex v ∈ G. Let u1, . . . , ud be the multi-set
of incoming neighbors of v and let w1, . . . , wd be the multiset of outgoing neighbors. Without loss
of generality suppose that for each i ∈ [d], the edge from ui to v has label iin as an edge incident
to v and the edge from v to wi has label iout as an edge incident to v in G. We claim that in the
graph G s©H there exists a copy of Bip(H) from the ui’s to the wi’s such that for each i ∈ [d], ui

is the ith vertex on the left side of Bip(H) and wi is the ith vertex on the right side of Bip(H)
(where edge multiplicities correspond to merging vertices in Bip(H)).

To see this, suppose (a, b) is an edge in H with labels ℓa and ℓb, respectively. Also, let ja, jb be
the labels of edges (ua, v) and (v, wb) as edges incident to ua and wb, respectively (recall that these
are labelled a and b from v’s perspective). We will show that there is an edge corresponding to
(a, b) in H from ua to wb in G s©H, namely the one labeled (ja, ℓa), which will complete the proof.
We compute the rotation map RotG s©H(ua, (ja, ℓa)):

1. RotG(ua, ja) = (v, a)

2. RotH(a, ℓa) = (b, ℓb)

3. RotG(v, b) = (wb, jb)

4. Output (wb, (jb, ℓb))

So edge (ja, ℓa) leaving vertex ua indeed leads to vertex wb in G s©H.
Let

W(v) = (T(v))⊤MT(v)

W̃(v) = (T(v))⊤M̃T(v)

From the way we have defined T(v), we have that W(v) is exactly the transition matrix of the
uni-directional bipartite complete graph from the in-neighbors of vertex v to its out-neighbors in
G2 (with all vertices that are not neighbors of v isolated). Likewise W̃(v) is the transition matrix
of the uni-directional bipartite expander from the in-neighbors of vertex v to its out-neighbors in
G s©H (with non-neighbors of v isolated). It follows from the reasoning above that

1

d
·
∑

v∈[n]

W(v) = W2

and likewise
1

d
·
∑

v∈[n]

W̃(v) = W̃.
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Before showing that the derandomized square produces a unit-circle approximation of the true
square, we need a lemma about these uni-directional bipartite expanders. The following lemma
says that if we convert an expander H into a uni-directional bipartite graph, then it unit-circle
approximates the complete uni-directional bipartite expander, where the quality of approximation
depends on how good of an expander H is.

Lemma 5.8. Let W ∈ R
n×n be the transition matrix of a regular multigraph H with λ(H) ≤ ǫ.

Let J be the n× n matrix with 1/n in every entry. Then we have
[

0 0
W 0

]
◦≈ǫ

[
0 0
J 0

]

Proof. We want to show that for all x, y ∈ C
2n we have

∣∣∣∣∣x
∗

[
0 0

W− J 0

]
y

∣∣∣∣∣ ≤
ǫ

2
·
(
‖x‖2 + ‖y‖2 −

∣∣∣∣∣x
∗

[
0 0
J 0

]
x + y∗

[
0 0
J 0

]
y

∣∣∣∣∣

)
(5)

For a vector v ∈ C
2n, we will write v1 for the first n components of v and v2 for the last n

components. Observe that if

v ∈ V =
{

v ∈ C
2n : v1 ∈ Span(~1) and v2 ∈ Span(~1)

}

then [
0 0

(W− J) 0

]
v =

([
0 0

(W− J) 0

])⊤

v = ~0.

Notice that the right-hand side of Equation 5 is always non-negative. Thus, by decomposing x and
y into vectors in V and V ⊥, we see that it suffices to consider vectors in V ⊥ = {v ∈ C

2n : v1 ⊥
~1, v2 ⊥ ~1}. Fix x, y ∈ V ⊥. Let x1, x2 be the first (respectively last) n-coordinates of x and define
y1, y2 analogously. Since Jv = ~0 for all v ⊥ ~1 it follows that

∣∣∣∣∣x
∗

[
0 0

(W− J) 0

]
y

∣∣∣∣∣ = |x∗
2Wy1|

≤ ǫ · ‖x2‖ · ‖y1‖
≤ ǫ

2
· (‖x2‖2 + ‖y1‖2)

where the second line uses that ‖Wv‖2 ≤ ǫ · ‖v‖2 for all v ⊥ ~1, and the last line uses the AM-GM
inequality. Again since Jv = ~0 for all v ⊥ ~1, we have that the right-hand side of Equation 5 just
becomes

ǫ

2
· (‖x‖2 + ‖y‖2),

which is certainly at least ǫ
2 · (‖x2‖2 + ‖y1‖2).

Now we show that the derandomized square of a regular digraph yields a unit-circle spectral
approximation to the true square.

Theorem 5.9. Let G = (V, E) be a d-regular directed multigraph with random walk matrix W. Let
H be a c-regular expander with λ(H) ≤ ǫ and let W̃ be the random walk matrix of G s©H. Then

W̃
◦≈2·ǫ W2.
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Proof. Define M, M̃, T(v), W(v), W̃(v) as in Lemma 5.7. By Lemma 5.7 we have

1

d
·
∑

v∈[n]

W(v) = W2.

Also, by Lemma 5.8 we have that M̃
◦≈ǫ M, which means that for all x, y ∈ C

n we can consider
x′ = T(v)x and y′ = T(v)y to conclude

∣∣∣x∗(W̃(v) −W(v))y
∣∣∣ ≤ ǫ

2
·
(
x∗(T(v))⊤T(v)x + y∗(T(v))⊤T(v)y −

∣∣∣x∗W(v)x + y∗W(v)y
∣∣∣
)

Summing both sides of the inequality over all vertices v ∈ [n], gives

∑

v∈[n]

∣∣∣x∗(W̃(v) −W(v))y
∣∣∣

≤ ǫ
2 ·
(∑

v∈[n]

(
x∗(T(v))⊤T(v)x + y∗(T(v))⊤T(v)y

)
−
∣∣∣x∗W(v)x + y∗W(v)y

∣∣∣
)

(6)

Applying the triangle inequality to the left-hand side of Inequality 6 gives

∑

v∈[n]

∣∣∣x∗(W̃(v) −W(v))y
∣∣∣ ≥

∣∣∣∣∣∣

∑

v∈[n]

x∗(W̃(v) −W(v))y

∣∣∣∣∣∣

= d ·
∣∣∣x∗(W̃−W2)y

∣∣∣ .

Similarly, we can apply the triangle inequality to the sum of complex magnitudes on the right-hand
side of Inequality 6 to conclude

d ·
∣∣∣x∗(W̃−W2)y

∣∣∣ ≤ ǫ

2
·

∑

v∈[n]

(
x∗(T(v))⊤T(v)x + y∗(T(v))⊤T(v)y

)
− 2 · d ·

∣∣∣x∗W2x + y∗W2y
∣∣∣


 .

Finally, we show that ∑

v∈[n]

(T(v))⊤T(v) = 2 · d · In. (7)

This will complete the proof, because our inequality will become

d ·
∣∣∣x∗(W̃−W2)y

∣∣∣ ≤ 2 · d · ǫ

2
·
(
‖x‖2 + ‖y‖2 −

∣∣∣x∗W2x + y∗W2y
∣∣∣
)

,

which says that W̃
◦≈2·ǫ W2. Now we prove Equation 7. Fix v, i, j ∈ [n]. We can write

((
T(v)

)⊤
T(v)

)

ij
=

∑

k∈[2d]

(T(v))⊤
ikT

(v)
kj

=
∑

k∈[2d]

T
(v)
ki T

(v)
kj .

From the definition of T(v), there is exactly one 1 in every row of the matrix, so when i 6= j, the
above sum is 0. When i = j, the sum contributes a 1 for each edge connecting v and i in the
graph (in either direction). Therefore

∑
v∈[n](T

(v))⊤T(v) is always 0 off the diagonal and 2 · d on
the diagonal because every vertex has exactly 2 · d edges incident to it. This confirms Equation 7
and completes the proof.
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6 Approximate Pseudoinverse for Cycle-Lifted Graphs

Let I−W be the random-walk Laplacian of a strongly connected, aperiodic, regular digraph G. Our
goal is to compute an accurate approximation of (I −W)+. To do this we consider the Laplacian
of a cycle-lifted graph L = I2kn −C2k ⊗W for some positive integer k, and show how to compute

an accurate approximation of L+, namely L̃+. Then we show that under some conditions, an
n× n projection of L̃+ (specifically, (~12k ⊗ In)⊤L̃+(~12k ⊗ In)) gives an accurate approximation for
(I−W)+ (see Lemma 6.4).

To estimate L+ we first show how to obtain a weak approximation to it. Then we show how
to get an accurate approximation using Richardson iteration (see Lemma 6.2). The following is
the main theorem we prove in this section. In this theorem, we only give sufficient conditions
for having an approximate pseudo-inverse of the cycle-lifted graphs, and discuss an actual space-
efficient algorithm for computing such a matrix in Section 7.

Theorem 6.1. Let W be the transition matrix of a strongly connected regular digraph with n
vertices, ǫ ∈ (0, 1/2) and suppose we have a sequence of matrices W = W0, . . . , Wk, such that

Wi+1
◦≈ǫ/k W2

i ∀0 < i < k

and each Wi is a transition matrix of a strongly connected regular digraph. We use Wi’s to define a

sequence of 2kn by 2kn matrices L(i) as in Equation (11). Then for L = I2kn−C2k⊗W and L̃
def
= L(k),

there exists a PSD matrix F such that ‖I2kn−L̃+L‖F ≤ O(kǫ) and UL/O(k) � F � O(22kn2k5)UL.

In the above theorem L̃ is defined in a way so that it has a nice LU factorization. This lets us
efficiently compute L̃+. Below we describe how we use Theorem 6.1 in our solver and then we prove
the theorem in Section 6.1. We give the characterization of L̃+ in Proposition 6.6. In Section 7,
for k = O(log n), we show how to space efficiently generate the Wi’s and compute L̃+.

The following lemma shows how we can obtain an accurate solver by boosting the precision
of an approximate pseudo-inverse through the well-known method of preconditioned Richardson
iteration [CKP+1, PS].

Lemma 6.2. Given matrices A, B, F ∈ Rn×n, such that F is PSD, and ‖I−BA‖F ≤ α for some
constant α > 0. Let Pm =

∑m
i=0(I −BA)iB. Then

‖I−PmA‖F ≤ αm+1

Proof. We have I − PmA = (I − BA)m+1, and then the proof follows by the submultiplicity of
‖ · ‖F.

Since we can obtain a reasonably good approximate pseudo-inverse for L via Theorem 6.1 and
boost the quality of that approximation with Lemma 6.2, we can ultimately get a very accurate
approximate pseudo-inverse. This is stated rigorously in the following corollary.

Corollary 6.3. Given a transition matrix W of a regular digraph with n vertices, and δ ∈ (0, 1/2).
Let L = I2kn−C2k ⊗W, and let L̃+ be the approximate pseudo-inverse obtained from Theorem 6.1

by setting ǫ = 1
ck for a large enough constant c. For m = O

(
k + log n + log(1

δ )
)
, and Pm =

∑m
i=0(I− L̃+L)iL̃+, we have

‖I −PmL‖UL
≤ δ

Proof. Note that with the choice of ǫ, we have ‖I− L̃+L‖F ≤ 1
2 . Therefore, by Lemma 6.2 we get

‖I−PmL‖F ≤ δ
poly(2k ,n)

. Since UL/O(k) � F � O(22kn2k5)UL, this implies ‖I−PmL‖UL
≤ δ.
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In the lemma below, we show how to obtain an approximate pseudo-inverse of the original
Laplacian system, given an approximate pseudo-inverse for the cycle-lifted graph.

Lemma 6.4. Given a matrix W ∈ R
n×n
≥0 with ‖W‖ ≤ 1 and an arbitrary integer ℓ > 0, let

LW = In −W, and LC = Iℓn −Cℓ ⊗W. Let BC ∈ R
ℓn×ℓn such that

‖Iℓn −BCLC‖ULC
≤ δ.

Let BW = 1
ℓ (~1ℓ ⊗ In)⊤BC(~1ℓ ⊗ In); then

‖In −BW LW ‖ULW
≤ δ.

Proof. ‖In −BW LW‖ULW
≤ δ is equivalent to

(In −BW LW )⊤ULW
(In −BW LW ) � δ2ULW

,

For the RHS we have δ2 · 1
ℓ (~1ℓ⊗ In)⊤ULC

(~1ℓ⊗ In) = δ2ULW
. For the LHS, let Π = 1

ℓ (~1ℓ⊗ In)(~1ℓ⊗
In)⊤ = (

~1ℓ
~1⊤

ℓ
ℓ )⊗ In, then we get

1

ℓ
(~1ℓ⊗ In)⊤(Iℓn−BCΠLC)⊤ΠULC

Π(Iℓn−BCΠLC)(~1ℓ⊗ I) = (In−BW LW )⊤ULW
(In−BW LW ).

Thus it is sufficient to show,

1

ℓ
(~1ℓ ⊗ In)⊤(Iℓn −BCΠLC)⊤ΠULC

Π(Iℓn −BCΠLC)(~1ℓ ⊗ I) � δ2 · 1

ℓ
(~1ℓ ⊗ In)⊤ULC

(~1ℓ ⊗ In).

Note that Π is an orthogonal projection, and ΠLC = LCΠ. Thus by the lemma assumption and
Lemma D.3, we have,

(Iℓn −BCLC)⊤ΠULC
(Iℓn −BCLC) � (Iℓn −BCLC)⊤ULC

(Iℓn −BCLC) � δ2ULC
.

Since Π2 = Π, and Π commutes with LC and ULC
, we get

(Iℓn −BCΠLC)⊤ΠULC
Π(Iℓn −BCΠLC) � δ2ULC

.

Now by Proposition 2.1, we get

1

ℓ
(~1ℓ ⊗ In)⊤(Iℓn −BCΠLC)⊤ΠULC

Π(Iℓn −BCΠLC)(~1ℓ ⊗ I) � δ2 · 1
ℓ

(~1ℓ ⊗ In)⊤ULC
(~1ℓ ⊗ In). (8)

which completes the proof.

6.1 Approximate Pseudoinverse of Cycle-Lifted Graphs

To get an approximate pseudo-inverse of L we first compute an approximate LU factorization of
it. For any matrix M ∈ R

n×n, if F, C partition [n] and MF F is invertible we can write M as the
product of a lower triangular matrix, a block diagonal matrix, and an upper triangular matrix:

M =

[
MF F MF C

MCF MCC

]

=

[
I 0

MCF M−1
F F I

] [
MF F 0

0 MCC −MCF M−1
F F MF C

] [
I M−1

F F MF C

0 I

]
(9)
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Note that MCC −MCF M−1
F F MF C is the Schur complement of M onto the set C. For an invertible

matrix M, the above factorization gives a formula to compute M−1:

M−1 =

[
I −M−1

F F MF C

0 I

] [
M−1

F F 0
0 Sc(M, C)−1

] [
I 0

−MCF M−1
F F I

]

The lower and upper triangular parts are easy to invert. Therefore, the above formula reduces
inverting M to inverting MF F and Sc(M, C). This approach has been used in many recent
time efficient algorithms for solving both symmetric and asymmetric diagonally dominant sys-
tems [CKK+, KLP+]. We use the same approach of LU factorization to compute an approximate
pseudo-inverse of L.

Without loss of generality we use the following ordering of rows and columns for C2k . Let
C1 = [1], and for k > 0 let

C2k =

[
0 C2k−1

I2k−1 0

]
.

Let H be the set of coordinates {2k−1n+1, 2k−1n+2, . . . , 2kn}, so that the cycle alternates between
H and Hc. We get the following nice characterization for the Schur complement of I2kn−C2k ⊗W
on to set H.

Sc(I2kn −C2k ⊗W, H) = I2k−1n − (I2k−1 ⊗W)(C2k−1 ⊗W) = I2k−1n − (C2k−1 ⊗W2).

Using the above relation, and (9) we can get the following factorization for L.

L =

[
I2k−1n 0

−I2k−1 ⊗W I2k−1n

] [
I2k−1n 0

0 I2k−1n −C2k−1 ⊗W2

] [
I2k−1n −C2k−1 ⊗W

0 I2k−1n

]
(10)

Note that the lower right block of the middle matrix is the Laplacian of cycle-lifted graph with
cycle length 2k−1 and adjacency matrix W2. Applying this recursion one more time by short-
cutting every other layer in the smaller cycle-lifted graph leads to a cycle-lifted graph of length
2k−2 and adjacency matrix W4. To get an approximate LU factorization, we repeatedly apply this
recurrence and replace all occurrences of powers of W with appropriate approximations of them
(see Theorem 6.1). For j ∈ {1, . . . , k} let Wj’s be defined as in Theorem 6.1. With L(0) = L, we
denote by L(i) the matrix obtained after applying i steps of recursion. For example, we have

L(1) =

[
I2k−1n 0

−I2k−1 ⊗W I2k−1n

] [
I2k−1n 0

0 I2k−1n −C2k−1 ⊗W1

] [
I2k−1n −C2k−1 ⊗W

0 I2k−1n

]
.

More generally, for 1 ≤ i ≤ k we get,

L(i) = X1 · · ·Xi

[
I(2k−2k−i)n 0

0 I2k−in −C2k−i ⊗Wi

]
Yi · · ·Y1 (11)

where Xj’s and Yj’s are lower and upper triangular matrices, respectively. Specifically, we have

Xj =




I(2k−2k−j+1)n 0 0

0 I2k−jn 0
0 −I2k−j ⊗Wj−1 I2k−jn


 , Yj =




I(2k−2k−j+1)n 0 0

0 I2k−jn −C2k−j ⊗Wj−1

0 0 I2k−jn


 .

(12)

Given the above factorization for L(k) it is easy to get one for L(k)+
. We use the following

lemma from [CKK+] to give a factorization of L(k)+
.
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Lemma 6.5 (CKKPPRS18 Lemma C.3). Consider real matrices A ∈ R
m×m, B ∈ R

m×n, and
C ∈ R

n×n, where A and C are invertible. Let M = ABC, then M+ = PMC−1B+A−1PM⊤ ,
where PM defines the orthogonal projection into image of M.

The following proposition gives the characterization of L(k)+
which we later use for computing

L(k)+
in small space. Note that inverting the Xj ’s, and Yj ’s is easy as they are lower and upper

triangular matrices.

Proposition 6.6. Given L(k) defined by Equation (11), we have

L(k)+
= P

L(k)Y−1
1 · · ·Y−1

k

[
I(2k−1)n 0

0 In −Wk

]+

X−1
k · · ·X−1

1 P
L(k)⊤ (13)

where

X−1
j =




I(2k−2k−j+1)n 0 0

0 I2k−jn 0
0 I2k−j ⊗Wj−1 I2k−jn


 , Y−1

j =




I(2k−2k−j+1)n 0 0

0 I2k−jn C2k−j ⊗Wj−1

0 0 I2k−jn


 .

To prove Theorem 6.1, we first show that L(k) is a good approximation of L. For that, we build
a PSD matrix F such that L and L(k) approximate each other with respect to the norm defined by
F. For 0 ≤ j ≤ k, let

S(j) =

[
0 0
0 I2k−j ·n −C2k−j ⊗Wj

]
, (14)

where the zeros are used as padding to make the dimension of S(j)’s 2kn × 2kn. Note that S(j)’s
correspond to the approximate Schur complement blocks appear in our recursive algorithm (see
Equation 11). Using Lemma 2.3 from [CKK+], we show that the average of U

S(i) ’s would be a
good choice for F. We defer the statement of the lemma from [CKK+] and the proof of Lemma 6.7
to the appendix (see Appendix D).

Lemma 6.7. Let S(0), S(1), . . . , S(k), and L(0), L(1), . . . , L(k) be defined as Equations (14) and (11)
respectively. Then for,

F =
2

k

k∑

i=0

U
S(i)

we have:

1. for each 0 ≤ i ≤ k, ∥∥∥F+/2
(
L− L(i)

)
F+/2

∥∥∥
2
≤ ǫ,

2. The final matrix L(k) satisfies

L(k)⊤F+L(k) � 1

40k2
·F.

Informally, Item 1 states that all of the L(i)’s and in particular L(k) are good approximations
of L with respect to F, or equivalently F+/2L(i)F+/2 is a good approximation of F+/2LF+/2 in
spectral norm. Item 2 states that L(k) is not too small with respect to F, or equivalently that the
spectral norm of (F+/2L(k)F+/2)+ = F1/2(L(k))+F1/2 is not too large. Together they are used to
show that for L̃ = L(k), L̃+ is a good preconditioner for L in the F norm, i.e. ‖I2kn − L̃+L‖F is
small (see Lemma D.4). Now we are ready to give a proof of Theorem 6.1.
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Proof of Theorem 6.1. By Lemma 6.7, there exists matrix F such that,

‖F+/2(L− L̃)F+/2‖ ≤ ǫ

and

L̃⊤F+L̃ � 1

40k2
F.

Therefore, by Lemma D.4, we get ‖I2kn − L̃+L‖F ≤
√

40kǫ. Note that F � UL

k by construction.
To get the upper-bound on F, we have

F � O(k2)L̃⊤F+L̃ � O(k4)L⊤F+L � O(k5)L⊤U+
L

L

where the second inequality holds by Lemma D.5, and the last inequality comes from F � UL

k . By
applying Lemma D.6 we get,

F � O(k5)L⊤U+
L

L � O(k522kn2)UL.

7 Space-Efficient Eulerian Laplacian Solver

In this section we show that the LU factorization approach to computing the pseudoinverse of an
Eulerian Laplacian described in Section 6 can be implemented space-efficiently. In particular, we
prove the following theorem.

Theorem 7.1. There is a deterministic algorithm that, given ǫ ∈ (0, 1) and an Eulerian digraph
G with random-walk Laplacian L = I−W, computes a matrix L̃+ whose entries differ from L+ by
at most ǫ. The algorithm uses space O(log N · log log(N/ǫ)) where N is the bitlength of the input.

7.1 Model of Space-Bounded Computation

We use a standard model of space bounded computation. The machine has a read-only input tape,
a constant number of read/write work tapes, and a write-only output tape. We say the machine
runs in space s if throughout the computation, it only uses s total tape cells on the work tapes. The
machine may write outputs to the output tape that are larger than s (in fact as large as 2O(s)) but
the output tape is write-only. We use the following fact about the composition of space-bounded
algorithms.

Proposition 7.2 (Composition of Space-Bounded Algorithms). Let f1 and f2 be functions that
can be computed in space s1(n), s2(n) ≥ log n, respectively, and f1 has output of length ℓ1(n) on
inputs of size n. Then f2 ◦ f1 can be computed in space

O(s2(ℓ1(n)) + s1(n)).

7.2 Reduction to Regular, Aperiodic, Strongly Connected Case

It is convenient to work with regular, aperiodic, strongly connected digraphs. In this section, we
show that this is without loss of generality.

We can find the strongly connected components of an Eulerian graph by ignoring the direc-
tionality on the edges and running Reingold’s algorithm for Undirected S-T Connectivity on
each pair of vertices using O(log N) space. Then we can solve systems in a disconnected graph
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by solving systems on each of its strongly connected components separately. So without loss of
generality, our graph is strongly connected.

Given an Eulerian digraph G with maximum degree dmax and Laplacian D−A, we can create a
d-regular, aperiodic graph of any degree d > dmax by adding d− degree(v) self loops to each vertex
v. Notice that self loops do not change the Laplacian D−A. Our solver works with random-walk
Laplacians and so is able to approximate ((D−A)/d)+ and now we want to show how to use this
to approximate ((D−A)D−1)+.

Let P be the orthogonal projection onto the column space of (D − A)D−1 and let Q be the
orthogonal projection onto the column space of D−1(D−A⊤). By Lemma 6.5 we have

((D−A)D−1)+ = PD(D −A)+Q.

Given an ǫ-approximation to ((D − A)/d)+ = d · (D − A)+, we can divide this by d to get an
ǫ-approximation to (D − A)+. Plugging this in to the formula above and making ǫ sufficiently
small says that we just need to compute the matrices P and Q in order to get an approximation to
((D−A)D−1)+. If s is the stationary distribution of G, then P is the matrix I− ss⊤/‖s‖2. Since
G is Eulerian, the kernel of D−1(D−A⊤) is simply the all ones vector and so Q = I−~1~1⊤/n. The
stationary distribution of a strongly connected Eulerian graph is proprotional to its vertex degrees
and so is easy to compute in logspace. Thus P and Q can both be computed in deterministic
logspace and we can approximate ((D−A)D−1)+ from (D−A)+.

7.3 Proof of Theorem 7.1

To prove Theorem 7.1, we follow the LU factorization approach discussed in Section 6.1. Just as in
Section 6.1, we first show that we can compute a weak approximation to the pseudoinverse space-
efficiently and then argue that we can afford to reduce the error using preconditioned Richardson
iteration. The analysis in this section is similar to the space complexity analysis from [MRSV1].

Proposition 6.6 says that in order to compute a weak approximation to a pseudoinverse of a
random-walk Laplacian I−W it suffices to compute a particular polynomial p in the matrices I, W,
and approximations to W2k

for k = {1, . . . , O(log n)}. To compute the approximations to W2k
, we

will show that the kth derandomized square can be computed in space O(log n + k · log c), where
c is the degree of the expanders used. To bottom out the recursion, we replace the random-walk
Laplacian of the final derandomized power with (I−J) = (I−~1~1⊤/n), the random-walk Laplacian
of the complete graph (with self loops), which is its own pseudoinverse ((I−J)+ = I−J). Then to
compute p, we note that p has degree O(log n) and the product of O(log n) matrices can be computed
in space O(log n · log log n). Finally, to boost the weak approximation, we use preconditioned
Richardson iteration (Lemma 6.2).

The discussion above gives the following informal outline for proving Theorem 7.1:

1. Show that the transition matrix of the kth derandomized square using c-regular expanders
can be computed in space O(log n + k · log c)

2. Show that the complete graph is a good approximation of the kth derandomized power for
sufficiently large k

3. Show that k arbitrary n× n matrices can be multiplied in space O(log n · log k)

4. Show that preconditioned Richardson can be used to boost a weak approximation to a pseu-
doinverse to an ǫ approximation in space O(log n · log log(n/ǫ)).
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5. Show that an extremely good approximation to a pseudoinverse in a spectral sense is also a
good approximation in an entrywise sense.

To show that derandomized powers can be computed in small space, we follow the proof tech-
niques of [Rei, RV, Vad]. First we note that neighbors in the sequence of expanders we use for the
iterated derandomized square can be explicitly computed space-efficiently.

Lemma 7.3. For every t ∈ N and µ > 0, there is a graph Ht,µ with a two-way labeling such that:

• H has 2t vertices and is c-regular for c being a power of 2 bounded by poly(t, 1/µ).

• λ(H) ≤ µ

• RotH can be evaluated in linear space in its input length, i.e. space O(t + log c).

A short proof sketch for Lemma 7.3 can be found in [MRSV1]. The following lemma says that
high derandomized powers can be computed space-efficiently.

Lemma 7.4. Let G0 be a d-regular, directed multigraph on n vertices with a two-way labeling and
H1, . . . , Hk be c-regular undirected graphs with two-way labelings where for each i ∈ [k], Hi has
d · ci−1 vertices. For each i ∈ [k] let

Gi = Gi−1 s©Hi.

Then given v0 ∈ [n], i0 ∈ [d · ci−1], j0 ∈ [c], RotGi(v, (i0, j0)) can be computed in space O(log(n ·d) +
k · log c) with oracle queries to RotH1 , . . . , RotHk

.

Lemma 7.4 is stated and proven in [MRSV1] for the case of undirected multigraphs, however
nothing in that proof required undirectedness. We include the proof in Appendix E.

Corollary 7.5. Let W0, . . . , Wk be the transition matrices of G0, . . . , Gk as defined in Lemma
7.4. For all ℓ ∈ [k], given coordinates i, j ∈ [n], entry i, j of Wℓ can be computed in space
O(log(n · d) + k · log c).

Proof. Lemma 7.4 shows that we can compute neighbors in the graph Gℓ in space O(log(n · d) +
k · log c). Given coordinates i, j the algorithm initiates a tally t at 0 and computes RotGℓ

(i, q)
for each q from 1 to d · cℓ−1, the degree of Gℓ. If the vertex outputted by RotGℓ

is j, then t is
incremented by 1. After the loop finishes, t contains the number of edges from i to j and the
algorithm outputs t/d · cℓ−1, which is entry i, j of Wℓ. This used space O(log(n · d) + k · log c) to
compute the rotation map of Gℓ plus space O(log(d · cℓ−1)) to store q and t. So the total space
usage is O(log(n · d) + k · log c) + O(log(d · cℓ−1)) = O(log(n · d) + k · log c).

Next we show that the complete graph is a good approximation of the kth derandomized power
for sufficiently large k. We do this by noting that the derandomized square of a graph G, reduces
λ(G) and that, the smaller λ(G), the better approximation it is to the complete graph.

Lemma 7.6 ([RV]). Let G be a d-regular digraph with a two-way labeling and λ(G) ≤ λ and let H
be a c-regular graph on d vertices with a two-way labeling and λ(H) ≤ µ. Then we have

λ(G s©H) ≤ 1− (1− λ2) · (1− µ) ≤ λ2 + µ.

Noting that a d-regular digraph G on n vertices has λ(G) ≤ 1 − 1/(2 · d2 · n2) [RV], we get
that setting k = O(log n) and setting µ = O(1/polylog(n/ǫ)) (and hence c = polylog(n/ǫ)) in the
recurrence from Lemma 7.6 yields that the kth derandomized square Gk has λ(Gk) ≤ ǫ. By Lemma

5.2 this implies that the transition matrix Wk of Gk is such that Wk
◦≈ǫ J.

Next we note the space complexity of multiplying arbitrary matrices.
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Lemma 7.7. Given n×n matrices M1, . . . , Mk, their product M1 · . . . ·Mk can be computed using
O(log N · log k) space, where N is the size of the input (N = k · n2 · (bitlength of matrix entries)).

Proof. This uses the natural divide and conquer algorithm and the fact that two matrices can be
multiplied in logarithmic space. A detailed proof can be found in [MRSV1].

Fourth, we show that we can boost a weak approximation to the pseudoinverse to a strong
approximation in small space.

Lemma 7.8. There is a deterministic algorithm that, given matrices A, B, F ∈ R
n×n, such that F

is PSD, and ‖I−BA‖F ≤ α for some constant α < 1, computes a matrix P such that ‖I−PA‖F ≤ ǫ.
The algorithm uses space O(log N · log(log1/α(1/ǫ))), where N is the input size.

Proof. From Lemma 6.2 we have that

P =

O(log1/α(1/ǫ))∑

i=0

(I−BA)iB

has the desired property. Since the above polynomial has degree O(log(1/ǫ)), From Lemma 7.7, we
can compute P in space O(log N · log(log1/α(1/ǫ))) as desired.

Finally, we show any extremely good approximation of the pseudoinverse in the “spectral” sense
of the above Lemma 7.8 is also a good entrywise approximation of the true pseudoinverse.

Lemma 7.9. Suppose ‖I − PA‖F ≤ ǫ for conformable real square matrices P, A, F where F is
positive semidefinite. Suppose P, A, F all have the same left and right kernels, which are equal to
each other. Then every entry of P differs by at most ± ǫ

2 · (λmax(A⊤+FA+) + λmax(F+)) additively
from the corresponding entry of A+.

In particular, if for some parameter N , the matrices F, A have min and max nonzero singular
values between 1/poly(N) and poly(N), then every entry of P differs by at most ±ǫ ·poly(N) from
the corresponding entry of A+.

Even more specifically, if A is a regular Eulerian directed Laplacian matrix with integer edge
weights ≤ N of a graph with γ(G) ≥ 1/poly(N) for some N ≥ n and F is bounded polynomially in
UP or I, then P differs by at most ±ǫ · poly(N) from the corresponding entry of A+.

Proof. The inequality in the lemma statement is equivalent to the statement that for all real
conformable vectors x, y,

y⊤(A+ −P)x ≤ ǫ
√

(x⊤A⊤+FA+x) · (y⊤F+y).

By the AM-GM inequality,

y⊤(A+ −P)x ≤ ǫ

2

(
x⊤A⊤+FA+x + y⊤F+y

)
.

Since multiplying x by a negative number changes the sign of the LHS but not the RHS,

|y⊤(A+ −P)x| ≤ ǫ

2

(
x⊤A⊤+FA+x + y⊤F+y

)
.

Consider any entry (i, j) of P +. Set x, y to be the ith and jth standard basis vectors, respectively.
Then the inequality says that the (i, j) entries of P + and A+ differ additvely by at most ± the
RHS.
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Thus, we need only bound the RHS. We know that the x and y we have selected are unit vectors.
Thus, we may upper bound the RHS as

ǫ

2

(
x⊤A⊤+FA+x + y⊤Fy

)
≤ ǫ

2

(
max

x

x⊤A⊤+FA+x

x⊤x
+ max

x

y⊤F+y

y⊤y

)
.

The two terms inside the parentheses are the max eigenvalues of the symmetric matrices A⊤+FA+

and F+, respectively. The second part of the result follows from the fact that the operator norm is
submultiplicative.

For the final part of the result, we prove that the max and min nonzero singular values of A, F
under the additional assumptions stated are between 1/poly(N) and poly(N).

Note first that if we have a directed Eulerian graph with integer edge weights between 0 and N
that the maximum singular value of its Laplacian is at most poly(n, N) ≤ poly(N) since all entries
in the matrix are at most poly(N). It’s minimum nonzero singular value is at least 1/poly(N) by
the assumption that the spectral gap is at least 1/poly(N) and the triangle inequality. Thus, the
max and min nonzero singular values of A are between 1/poly(N) and poly(N).

For the maximum and minimum nonzero singular values of F, or equivalently, max and min
nonzero eigenvalues of F, it suffices to bound the min and max nonzero eigenvalues of UP. By
the integrality of the edge weights of P and the fact that they are at most N , we have that the
undirected Laplacian matrix UP has has nonzero eigenvalues between 1/poly(N) and poly(N).

Now we can prove Theorem 7.1

Proof of Theorem 7.1. Set k = O(log N). Let W = W0, . . . , Wk−1 be the transition matrices of
the repeated derandomized square graphs G0, . . . , Gk−1 as defined in Lemma 7.4 using expanders
{Hi} with degree c = polylog(N) and hence λ(Hi) ≤ 1/polylog(N)). Let Wk = J = ~1~1⊤/n. It

follows from Theorem 5.9 that for each i ∈ {0, . . . , k−2}, Wi+1
◦≈1/polylog(N) Wi2 and from Lemmas

7.6 and 5.2 that Wk−1
◦≈1/polylog(N) Wk = J.

Theorem 6.1 and Proposition 6.6 say that the matrix

L(k)+
= P

L(k)Y−1
1 · · ·Y−1

i

[
I(2k−1)n 0

0 In −Wk

]+

X−1
k · · ·X−1

1 P
L(k)⊤

where

X−1
j =




I(2k−2k−j+1)n 0 0

0 I2k−jn 0
0 I2k−j ⊗Wj−1 I2k−jn


 , Y−1

j =




I(2k−2k−j+1)n 0 0

0 I2k−jn C2k−j ⊗Wj−1

0 0 I2k−jn


 .

is such that there exists a PSD matrix F such that ‖I2kn − L̃+L‖F ≤ O(kǫ) and UL/O(k) � F �
O(22kn2k5)UL.

Note that L(k)+
matrix is the product of O(k) = O(log N) matrices, each of which can be

computed in space O(log N + k · log c) = O(log N · log log N) by Corollary 7.5. Multiplying them
together to compute L̃+ adds an additional O(log N · log k) = O(log N · log log N) space by Lemma
7.7 and the composition of space-bounded algorithms (Proposition 7.2). Thus the total space for

computing L(k)+
is O(log N · log log N).

Applying preconditioned Richardson to L(k)+
, Lemma 7.8 says that we can compute a matrix

L̃+ such that ‖Iim(L) − L̃+L‖F ≤ ǫ using an additional O(log N · log log(1/ǫ) space.
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Since F is bounded polynomially by U
L̃+ , we can adjust ǫ in Lemma 7.8 by a poly(N) factor

to get approximation guarantees in ‖ · ‖UL
(or spectral norm) in space O(log N · log log(N/ǫ)).

Applying Lemma 6.4 to this approximate pseudoinverse yields an approximate pseudoinverse
P for I−W0.

Applying Lemma 7.9, we get that if we redefine the value of ǫ we have been using to ǫ ←
ǫ/poly(N) from the very beginning, then P is a ±ǫ additive entrywise approximation of (I−W0)+.
This only changes the space usage by at most a constant factor.

8 Estimating Random Walk Probabilities

In this section we show that a space-efficient algorithm for Eulerian Laplacian systems can be used
to get strong approximations to k-step random walk probabilities on Eulerian digraphs, and more
generally, to approximate the product of potentially distinct Eulerian transition matrices. We then
give a new result for approximating random walk probabilities on arbitrary digraphs.

Theorem 8.1. Let W1, . . . , Wk be the transition matrices of Eulerian digraphs G1, . . . , Gk on
n vertices such that for vertex v ∈ [n], the degree of v is the same in G1, . . . , Gk. There is a
deterministic algorithm that, when given u, v ∈ [n] and ǫ > 0, computes

(W1W2 . . . Wk)uv

to within ±ǫ. The algorithm uses space O(log(N) · log log(N/ǫ)), where N is the size (bitlength) of
the input.

An important special case of Theorem 8.1 is when W1 = W2 = . . . = Wk, in which case the
algorithm computes an additive ǫ approximation to the probability that a random walk of length
k in the graph starting at v ends at u and uses space O(log(k ·N) · log log(k ·N/ǫ)) where N is the
bitlength of W1.

To prove Theorem 8.1, we first define escape probabilities.

Definition 8.2. In a graph G = (V, E), for two vertices u and v, the escape probability pw(u, v)
denotes the probability that a random walk starting at vertex w reaches u before first reaching v.

In [CKP+2], they give a useful characterization of escape probabilities on arbitrary digraphs in
terms of the pseudoinverse, which we restate below for Eulerian graphs.

Lemma 8.3 ([CKP+2] (Restated for Eulerian Graphs)). Let W be a random walk matrix associated
with a strongly connected Eulerian graph G. Let s be the stationary distribution of G and let S be
the diagonal matrix with s on the diagonal. Let u, v be two vertices. Let p be the vector of escape
probabilities, where pw represents the probability that a random walk starting at w reaches u before
v. Then

p = β(α · s + (I−W)+(eu − ev))

where
α = −e⊤

v S−1(I−W)+(eu − ev)

and

β =
1

su(eu − ev)⊤S−1(I−W)+(eu − ev)
.

Futhermore, α = poly(N) and 1/β = poly(N).
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It follows from the above lemma that we can use our algorithm to approximate escape proba-
bilities in Eulerian graphs. Now we can prove Theorem 8.1 by reducing computing certain matrix
products to computing escape probabilities.

Proof of Theorem 8.1. Note that (W1W2 . . . Wk)uv equals the probability that a random walk
starting at vertex v ends at u, if we take the first step on Gk, the second step on Gk−1 etc. and
the final step on G1.

We construct a layered graph with k + 2 layers and n vertices in layers 1, . . . , k + 1 each and a
single vertex in layer k + 2. All edges in the graph proceed from one layer to the subsequent one.
For each i ∈ [k], we place edges from layer i to layer i + 1 according to the graph Gk−i+1 (so layer
1 to 2 contains the edges from Gk and layer k to k + 1 contains the edges from G1). All vertices
from layer k + 1 send edges to the sole vertex in layer k + 2 equal to their in-degree and the vertex
in layer k + 2 sends edges back to layer 1 equal to each vertex’s out-degree. This ensures that the
resulting graph is Eulerian.

Notice that the probability that a random walk starting at vertex v in layer 1 reaches vertex
u in layer k + 1 before reaching the vertex in layer k + 2 is exactly (W1W2 . . . Wk)uv because all
walks of length greater than k pass through the vertex in layer k + 2 and no walks shorter than
k beginning in the first layer pass through it. Furthermore, this is an escape probability on an
Eulerian graph and so by Lemma 8.3, this can be computed by applying our Eulerian Laplacian
solver to the layered graph followed by some vector multiplications and arithmetic.

Applying the solver to the layered graph, uses space O(log(N) · log log(N/ǫ)) to apply the
pseudoinverse in the formula for escape probabilities given in Lemma 8.3 to error ǫ/poly(N). Since
β is at most poly(N) we can compute β times the pseudoinverse term to ǫ error in this same amount
of space. Since the stationary distribution of Eulerian graphs can be computed space efficiently,
the remaining operations of computing α times the stationary distribution only add logarithmic
space overhead.

Using perspectives developed for our space-efficient Eulerian Laplacian solver, we also obtain
improved space-efficient algorithms for computing high-quality approximations to random walk
probabilities in arbitrary digraphs or Markov chains, improving both the best known randomized
algorithms and deterministic algorithms.

Aleliunas et. al. [AKL+] observed that random walks can be easily simulated in randomized
logarithmic space, and this yields the following algorithm for estimating random walk probabilities:

Theorem 8.4. Suppose that W ∈ R
n×n is a substochastic matrix, k is a positive integer, and

ǫ > 0. There is a randomized algorithm that, with high probability, computes a matrix W̃ such that
‖W̃−Wk‖ ≤ ǫ. The algorithm runs in space O(log(k ·N/ǫ)), where N is the bitlength of the input.

Proof sketch. For each entry (Wk)uv , we simulate poly(n/ǫ) random walks of length k started at
v and count the fraction of them that end at u.

Saks and Zhou gave the best known derandomization of Theorem 8.4 [SZ1].

Theorem 8.5 ([SZ1]). Suppose that W ∈ R
n×n is a substochastic matrix, k is a positive integer,

and ǫ > 0. There is a deterministic algorithm that computes a matrix W̃ such that ‖W̃−Wk‖ ≤ ǫ.
The algorithm uses O(log(k · n/ǫ) · log1/2(k)) space.5

5Saks and Zhou state their result in terms of the L∞ matrix norm rather than the spectral norm. These are
equivalent up to polynomial changes in ǫ (and hence constant factors in the space complexity).
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We strengthen Theorems 8.4 and 8.5 when ǫ = 1/(k ·N)ω(1). This range of parameters is useful
because k-step walk probabilities can be exponentially small in k, even on undirected graphs.

Theorem 8.6. Suppose that W ∈ R
n×n is a substochastic matrix, k is a positive integer, and

ǫ > 0. Then:

1. There is a randomized algorithm that computes a matrix W̃ such that each entry of W̃ is
with ±ǫ of that of Wk additively and runs in space O(log(k ·N) · log(logk·N(1/ǫ)))

2. There is a deterministic algorithm that computes a matrix W̃ such that each entry of W̃
is with ±ǫ of that of Wk additively and runs in space O(log(k · N) · log1/2(k) + log(k · n) ·
log(logk·N (1/ǫ)))

Proof. We obtain this result by applying preconditioned Richardson iteration (which is the same
technique that gets the doubly logarithmic dependence on ǫ in Theorem 8.1) to a path-lifted (rather
than cycle-lifted) graph. Our plan is to use Theorem 8.4 or Theorem 8.5 to compute an approxi-
mation to the inverse of a path-lifted graph with quality 1/poly(k ·n). Then we use preconditioned
Richardson iteration to boost the error to ǫ using only additive O(log(k ·n) · log(logk·N(1/ǫ))) space
as in Lemma 7.8.

Let Pk denote the adjacency matrix of the directed path of length k (P is (k + 1) × (k + 1)
with all ones just below the diagonal and zeroes elsewhere). Let M = Pk ⊗W. Note that Mk+1 is
the all zeroes matrix and all eigenvalues of M are 0. Let I = I(k+1)·n. We will approximate I−M
using the following identity: for all A with eigenvalues less than 1 in magnitude, we have

(I−A)−1 =
∞∑

i=0

Ai.

This means that

(I−M)−1 =
k∑

i=0

Mi

=
k∑

i=0

(Pk)i ⊗Wi

because all powers beyond the kth are zero. Note that this matrix has Wk in the lower left block,
Wk−1 in the second diagonal from the bottom, etc.

From Theorem 8.4, there is a randomized algorithm that can compute matrices W1, . . . , Wk

such that for each i ∈ [k], we have ‖Wi −Wi‖ ≤ 1/(2 · k ·N) in space O(log(k ·N)). Likewise, by
Theorem 8.5, there is a deterministic algorithm that can compute matrices W1, . . . , Wk such that
for each i ∈ [k], we have ‖Wi −Wi‖ ≤ 1/(2 · k ·N) in space O(log(k ·N) · log1/2(k)). We can then
approximate (I−M)−1 as

N = I +
k∑

i=1

(Pk)i ⊗Wi.

Note that for each i ∈ [k] we have ‖Pi
k‖ = 1. Also, we have

‖I−M‖ = ‖I −Pk ⊗W‖
≤ ‖I‖+ ‖Pk‖ · ‖W‖
≤ 2
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because ‖W‖ ≤ 1. Putting this together gives

‖I −N(I−M)‖ = ‖((I −M)−1 −N)(I−M)‖

=

∥∥∥∥∥

k∑

i=1

(Pk)i ⊗ (Wi −Wi)(I −M)

∥∥∥∥∥

≤
k∑

i=1

‖Pi
k‖ · ‖Wi −Wi‖ · ‖I−M‖

≤ 2 ·
k∑

i=1

1/(2 · k ·N)

= 1/(k ·N)

From Lemma 7.8, we can compute a matrix Ñ such that ‖I − Ñ(I −M)‖ ≤ ǫ/‖(I −M)+‖ using
an additional space

O(log(k ·N) · log(logk·N (‖(I −M)+‖/ǫ))) = O(log(k ·N) · log(logk·N(N/ǫ)))

= O(log(k ·N) · log(logk·N(1/ǫ)))

for ǫ sufficiently small.
This implies ‖Ñ − (I −M)−1‖ ≤ ǫ. Since the norm of a matrix is an upper bound on the

norm of its submatrices, we have that the lower left n × n block of Ñ, is a matrix W̃ satisfying
‖W̃−Wk‖ ≤ ǫ.

To complete the proof, Lemma 7.9 lets us convert this guarantee to entrywise approximation
with a blowup of poly(N) in ǫ. If we reduce ǫ to compensate for this, it only affects the stated
space complexity by a constant factor.
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A Approximation Equivalences Proofs

Here we prove some lemmas from Section 3. We begin with some linear algebraic technical lemmas.

Lemma A.1 ([CKP+1] Lemma B.2). For all A ∈ R
n×n and symmetric PSD M, N ∈ R

n×n, the
following are equivalent:

1. For all x, y ∈ R
n

|x⊤Ay| ≤ ǫ

2
·
(
x⊤Mx + y⊤Ny

)

2. For all x, y ∈ C
n

|x⊤Ay| ≤ ǫ ·
√

(x⊤Mx) · (y⊤Ny)

3. ‖M+/2AN+/2‖Rn→Rn ≤ ǫ and ker(M) ⊆ ker(A⊤) and ker(N) ⊆ ker(A)

where the notation ‖ · ‖Rn→Rn denotes the 2-norm on a linear operator that maps R
n to R

n.

Lemma A.1 was used in [CKP+1] to give equivalent formulations of directed spectral approxima-
tion. Below, we extend the lemma to complex space, which allows us to give even more equivalent
formulations of directed spectral approximation as well as unit-circle spectral approximation.

Lemma A.2 (Extension of [CKP+1] Lemma B.2). For all A ∈ C
n×n and Hermitian PSD M, N ∈

C
n×n, the following are equivalent:

1. For all x, y ∈ C
n

|x∗Ay| ≤ ǫ

2
· (x∗Mx + y∗Ny)

2. For all x, y ∈ C
n

|x∗Ay| ≤ ǫ ·
√

(x∗Mx) · (y∗Ny)

3. ‖M+/2AN+/2‖Cn→Cn ≤ ǫ and ker(M) ⊆ ker(A∗) and ker(N) ⊆ ker(A)

where the notation ‖ · ‖Cn→Cn denotes the 2-norm on a linear operator that maps C
n to C

n.

Proof. Let L = ‖M+/2AN+/2‖2. Since ‖x‖2 = max‖y‖2=1 |y∗x| we have that

L = max
‖x‖=‖y‖=1

|x∗M+/2AN+/2y|.

Performing the mapping x : M+/2x and y : M+/2y we have

L = max
x∗Mx=y∗Ny=1

|x∗Ay| = max
x 6∈ker(M),y 6∈ker(N)

|x∗Ay|√
x∗Mx · y∗Ny

.

It follows that if L ≤ ǫ and ker(M) ⊆ ker(A∗) and ker(N) ⊆ ker(A) then

|x∗Ay| ≤ ǫ ·
√

(x∗Mx) · (y∗Ny).

The kernel constraints guarantee that whenever the right-hand side is zero, the left-hand side must
also be zero. Finally, by the AM-GM inequality we get

√
x∗Mx · y∗Ny ≤ (x∗Mx + y∗Ny)/2 and

this inequality is tight when x∗Mx = y∗Ny = 1, so for all x, y ∈ Cn we have

|x∗Ay| ≤ ǫ

2
· (x∗Mx + y∗Ny)
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If follows from Lemma 2.2 that in fact all six formulations in Lemmas A.1 and A.2 are equivalent
because the spectral norm of a matrix is the same whether one defines it in terms of real or complex
vectors.

Now we can prove the equivalences from Section 3.

Lemma 3.5 restated. Let W, W̃ ∈ R
n×n be (possibly asymmetric) matrices. Then W̃ is a

directed ǫ-approximation of W if and only if W̃ is a complex ǫ-approximation of W.

Proof. Set A = (W − W̃) and M = N = UI−W. Note that UI−W is PSD. Observe that for all
v ∈ C

n

v∗UI−Wv = ‖v‖2 − v∗UWv.

Lemmas A.1,A.2, and 2.2 tell us that the following are equivalent:

1. For all x, y ∈ R
n

|x⊤Ay| ≤ ǫ

2
·
(
x⊤Mx + y⊤Ny

)

2. For all x, y ∈ C
n

|x∗Ay| ≤ ǫ

2
· (x∗Mx + y∗Ny)

Plugging in our settings for A, M, and N completes the proof.

Lemma 3.7 restated. Let W, W̃ ∈ R
n×n be symmetric matrices. Then the following are equiva-

lent:

1. W̃
◦≈ǫ W

2. W̃ ≈ǫ W and −W̃ ≈ǫ −W

3. For all x ∈ R
n we have

∣∣∣x⊤(W− W̃)x
∣∣∣ ≤ ǫ ·

(
‖x‖2 − |x⊤W x|

)
.

Proof. First we show that items 2 and 3 are equivalent. From Definition 3.1, we have W̃ ≈ǫ W
and −W̃ ≈ǫ −W if and only if for all x ∈ R

n we have
∣∣∣x⊤(W− W̃)x

∣∣∣ ≤ ǫ ·
(
‖x‖2 − x⊤W x

)

and for all x ∈ Rn we have
∣∣∣x⊤(W− W̃)x

∣∣∣ ≤ ǫ ·
(
‖x‖2 + x⊤W x

)
.

This is equivalent to: for all x ∈ R
n

∣∣∣x⊤(W− W̃)x
∣∣∣ ≤ min

{
ǫ ·
(
‖x‖2 − x⊤W x

)
, ǫ ·

(
‖x‖2 + x⊤W x

)}

= ǫ ·
(
‖x‖2 − |x⊤W x|

)
,

which establishes the equivalence between items 2 and 3. Now we show that items 1 and 2 are
equivalent, which will complete the proof. From Lemma 3.5, we have that item 2 is equivalent to:
for all x, y ∈ C

n ∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − x∗UWx− y∗UWy

)
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and for all x, y ∈ C
n

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 + x∗UWx + y∗UWy

)
.

Since W is real and symmetric we have UW = W and we have that for all v ∈ C
n, v∗Wv is real.

Therefore the above is equivalent to: for all x, y ∈ C
n

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ min

{
ǫ

2
·
(
‖x‖2 + ‖y‖2 − x∗Wx− y∗Wy

)
,

ǫ

2
·
(
‖x‖2 + ‖y‖2 + x∗Wx + y∗Wy

)}

=
ǫ

2
·
(
‖x‖2 + ‖y‖2 − |x∗Wx + y∗Wy|

)
,

which is the requirement for unit-circle spectral approximation.

Lemma 3.8 restated. Let W, W̃ ∈ C
n×n be (possibly asymmetric) matrices. Then the following

are equivalent

1. W̃
◦≈ǫ W

2. For all z ∈ C such that |z| = 1, z · W̃ ≈ǫ z ·W

3. For all z ∈ C such that |z| = 1,

• ker(UI−z·W) ⊆ ker(W̃−W) ∩ ker((W̃−W)⊤) and

•
∥∥∥U+/2

I−z·W(W̃−W)U
+/2
I−z·W

∥∥∥ ≤ ǫ

Proof. Using the definition of directed spectral approximation (Definition 3.2) and its extenstion
to complex space from Lemma 3.5 lets us write item 2 as: for all x, y ∈ C

n

∣∣∣x∗(z ·W− z · W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − x∗Uz·Wx− y∗Uz·Wy

)
(15)

=
ǫ

2
·
(
‖x‖2 + ‖y‖2 − Re(x∗(z ·W)x + y∗(z ·W)y)

)
. (16)

Lemma A.2 immediately implies the equivalence between line 15 and item 3 in the lemma statement
by setting A = (W̃−W) and M = N = UI−z·W.

Now we will show the equivalence between items 1 and 2. Since |z| = 1, it does not affect the
left-hand side of Inequality 15 and we can drop it.

Item 2 in the lemma statement says that line 16 holds for all z ∈ C such that |z| = 1. This
is equivalent to it holding for the worst case z (for each pair of vectors, x, y). For every complex
number ω, we have maxz : |z|=1 Re(zω) = |ω| by setting Re(z) = Re(ω)/|ω| and Im(z) = −Im(ω)/|ω|.
Therefore the inequality becomes

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(
‖x‖2 + ‖y‖2 − |x∗Wx− y∗Wy|

)
,

which is exactly the condition we require for W̃
◦≈ǫ W.
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B Omitted Proofs from Section 4

Lemma 4.2 restated. Fix W̃, W ∈ C
n×n. For any matrix M ∈ C

n×n, let Vλ(M) denote the
eigenspace of M of eigenvalue λ.

1. If W̃ ≈c W for a finite c > 0, then V1(W) ⊆ V1(W̃). If c < 1, then V1(W) = V1(W̃).

2. If W̃
◦≈c W for a finite c > 0, then for all λ ∈ C such that |λ| = 1, Vλ(W) ⊆ Vλ(W̃) and if

c < 1 then Vλ(W) = Vλ(W̃).

Proof. Suppose W̃ ≈c W for a finite c. Applying the equivalence of Lemma A.2, this means that
for all x, y ∈ C

n,

|x∗(W− W̃)y| ≤ c ·
√

(x∗(I−W)x) · (y∗(I−W)y).

Let v be an eigenvector of W with eigenvalue 1. Then setting y = v above makes the right-hand
side equal 0. Therefore we have that for all x ∈ C

n,

|x∗(W− W̃)v| = |x∗(I− W̃)v| = 0

which can only occur if (I − W̃)v = 0. Suppose now that c < 1 and let v be an eigenvector of W̃
with eigenvalue 1. Then we have

|v∗(W− W̃)v| = v∗(I −W)v ≤ c

2
· (v∗(I−W)v + v∗(I−W)v) = c · v∗(I −W)v.

Since c < 1 and UI−W is PSD, the above inequality can only be true when both sides equal zero.
Applying the equivalence of Lemma A.2, we have that for all x ∈ C

n

|x∗(W− W̃)v| = |x∗(I−W)v| ≤ c ·
√

(x∗(I −W)x) · (v∗(I−W)v) = 0.

The above can only happen for all vectors x if (I−W)v = 0.

For the second claim, suppose W̃
◦≈c W for finite c. Then for all z such that |z| = 1 we have

z · W̃ ≈c z ·W. Let v be an eigenvector of W with eigenvalue λ such that |λ| = 1. Set z = λ−1 so
z ·Wv = v. From the first part of the lemma, we have V1(z ·W) ⊆ V1(z ·W̃) and hence z ·W̃v = v,
which implies W̃v = λ · v. A similar argument applies when c < 1.

Lemma 4.7 restated. Let M : Cn → C
n be a linear operator and V1, . . . , Vℓ ⊆ C

n subspaces such
that

1. Vj ⊥ Vk for all j 6= k

2. V1 ⊕ . . .⊕ Vℓ = C
n

3. MVj ⊆ Vj for all j ∈ [ℓ].

I.E., M is block diagonal with respect to the subspaces V1, . . . , Vℓ. Then,

‖M‖ = max
j∈[ℓ]
‖M|Vj‖
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Proof. For v ∈ C
n, by property 2 we can write v = v1 + . . . + vℓ where vj ∈ Vj for all j ∈ [ℓ]. Using

this as well as properties 1 and 3, we get

‖Mv‖2 =

∥∥∥∥∥∥

∑

j∈[ℓ]

Mvj

∥∥∥∥∥∥

2

=
∑

j∈[ℓ]

‖Mvj‖2

≤
∑

j∈[ℓ]

‖M|Vj‖2 · ‖vj‖2

≤
(

max
j∈[ℓ]
‖M|Vj‖2

)
· ‖v‖2.

So ‖M‖ ≤ maxj∈[ℓ]‖M|Vj
‖. The other direction, ‖M‖ ≥ ‖M|Vj‖ for all j ∈ [ℓ] is immediate.

Theorem 4.8 restated. Fix W, W̃ ∈ C
n and suppose that W̃ ≈ǫ W for ǫ ∈ (0, 2/3). Let F ⊆ [n]

such that (I|F | −WF F ) is invertible and let C = [n] \ F . Then

I|C| − Sc(In − W̃, C) ≈ǫ/(1−3ǫ/2) I|C| − Sc(In −W, C)

Proof. Let A = In − W̃, B = In −W. Note that since W̃ ≈ǫ W, we have for all x, y ∈ C
n

|x∗(B−A)y| ≤ ǫ

2
(x∗UBx + y∗UBy) , (17)

our goal is to show that I|C| − Sc(A, C) ≈ǫ/(1−3ǫ/2) I|C| − Sc(B, C), which is equivalent to

∣∣∣[xℓ]∗ (Sc(A, C)− Sc(B, C)) xr
∣∣∣ ≤ ǫ

2− 3ǫ

[
[xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(B,C)[x
r]
]

.

for all xℓ, xr ∈ C
|C|.

Let xr, xℓ ∈ C
C be arbitrary. Now define yr ∈ C

n by yr
C = xr and yr

F = −A−1
F F AF Cxr. Further,

define yℓ ∈ C
n by yℓ

C = xℓ, yℓ
F = −[B∗

F F ]−1[B∗
CF ]xℓ. Note that yr and yℓ are defined so that

Ayr =

(
AF F AF C

ACF ACC

)(
−A−1

F F AF Cxr

xr

)
=

(
~0F

Sc(A, C)xr

)

and

[yℓ]∗B =

(
−[B∗

F F ]−1[B∗
CF ]xℓ

xℓ

)∗(
BF F BF C

BCF BCC

)
=

(
~0F

Sc(B, C)∗xℓ

)∗

.

Consequently [yℓ]∗Ayr = [xℓ]∗Sc(A, C)xr and [yℓ]∗Byr = [xℓ]∗Sc(B, C)xr. Therefore, by Equa-
tion (17) we have that

∣∣∣[xℓ]∗Sc(A, C)xr − [xℓ]∗Sc(B, C)xr
∣∣∣ =

∣∣∣[yℓ]∗ (A−B) yr
∣∣∣ ≤ ǫ

2

[
[yℓ]∗UByℓ + [yr]∗UByr

]
. (18)

Now,

[yℓ]∗UByℓ = [yℓ]∗
(

B + B∗

2

)
yℓ = [xℓ]∗USc(B,C)x

ℓ

43



and since we know that (1− ǫ)UB � UA � (1 + ǫ)UB we have that

[yr]∗UB [yr] � 1

1− ǫ
· [yr]∗UA[yr] =

1

1− ǫ
· [xr]∗USc(A,C)[x

r] .

Substituting these into Equation 18 gives

∣∣∣[xℓ]∗(Sc(A, C)− Sc(B, C))xr
∣∣∣ ≤ ǫ

2

[
[xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(A,C)[x
r]/(1 − ǫ)

]
.

Plugging in xℓ = xr above,

[xr]∗
(
USc(A,C) −USc(B,C)

)
xr ≤ |[xr]∗ (Sc(A, C)− Sc(B, C)) xr|

≤ ǫ

2

[
[xr]∗USc(B,C)x

r + [xr]∗USc(A,C)[x
r]/(1 − ǫ)

]
.

and rearranging terms gives

[xr]∗USc(A,C)[x
r] ≤ 1 + ǫ/2

1− ǫ/(2 · (1− ǫ))
· [xr]∗USc(B,C)[x

r],

which implies

∣∣∣[xℓ]∗ (Sc(A, C)− Sc(B, C)) xr
∣∣∣ ≤ ǫ

2

[
[xℓ]∗USc(B,C)x

ℓ +
1 + ǫ/2

1− ǫ/(2 · (1− ǫ))
· 1

1− ǫ
· [xr]∗USc(B,C)[x

r]

]

=
ǫ

2

[
[xℓ]∗USc(B,C)x

ℓ +
1 + ǫ/2

1− 3ǫ/2
· [xr]∗USc(B,C)[x

r]

]

By symmetry, i.e. repeating the above argument on the conjugate transposes of the matrices we
also have that

∣∣∣[xℓ]∗ (Sc(A, C)− Sc(B, C)) xr
∣∣∣ ≤ ǫ

2
· 1 + ǫ/2

1− 3ǫ/2
·
[
xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(B,C)[x
r]
]

.

Taking the average of these two equations then yields that

∣∣∣[xℓ]∗ (Sc(A, C)− Sc(B, C)) xr
∣∣∣ ≤ ǫ

4
· 2− ǫ

1− 3ǫ/2
·
[
[xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(B,C)[x
r]
]

.

Since
ǫ

4
· 2− ǫ

1− 3ǫ/2
≤ 1

2
· ǫ

2− 3ǫ

and xℓ and xr were arbitrary, the result follows.

The loss of 1/(1− 3ǫ/2) in the approximation quality in Theorem 4.8 is avoidable with a small
change to the notion of approximation.

Definition B.1 (Min Spectral Approximation). Let W, W̃ ∈ C
n×n be (possibly asymmetric)

matrices. We say that W̃ is a min ǫ-approximation of W (written W̃
min≈ ǫ W) if for all x, y ∈ C

n

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·min

{
x∗UI−Wx + y∗U

I−W̃
y, y∗UI−Wy + x∗U

I−W̃
x
}
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In min spectral approximation, the error on the right-hand side is measured with respect to both
matrices rather than just one of them. Min spectral approximation is equivalent to the original
notion of spectral approximation up to a small loss in approximation quality, as seen in the following
lemma.

Lemma B.2. Let W, W̃ ∈ C
n×n be (possibly asymmetric) matrices and suppose ǫ ∈ (0, 1).

1. If W̃
min≈ ǫ W then W̃ ≈ǫ/(1−ǫ/2) W

2. If W̃ ≈ǫ W then W̃
min≈ ǫ/(1−ǫ) W.

Proof. Suppose W̃
min≈ ǫ W and fix x ∈ C

n. Then we can write

x∗
(
U

I−W̃
−UI−W

)
x = Re

(
x∗(W− W̃)x

)

≤
∣∣∣x∗(W− W̃)x

∣∣∣

≤ ǫ

2
·
(
x∗UI−Wx + x∗U

I−W̃
x
)

.

Rearranging the above gives

x∗U
I−W̃

x ≤ 1 + ǫ/2

1− ǫ/2
· x∗UI−Wx

which implies
∣∣∣x∗(W− W̃)y

∣∣∣ ≤ ǫ

2
·
(
y∗UI−Wy + x∗U

I−W̃
x
)

≤ ǫ

2
·
(

y∗UI−Wy +
1 + ǫ/2

1− ǫ/2
· x∗UI−Wx

)
.

A similar calculation gives

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
·
(

1 + ǫ/2

1− ǫ/2
· y∗UI−Wy + x∗UI−Wx

)
.

Averaging these two inequalities and noting that

1

2
· ǫ

2
·
(

1 +
1 + ǫ/2

1− ǫ/2

)
=

ǫ

2 · (1− ǫ/2)

gives ∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2 · (1− ǫ/2)
· (x∗UI−Wx + y∗UI−Wy) ,

or equivalently W̃ ≈ǫ/(1−ǫ/2) W.

Now suppose W̃ ≈ǫ W. It follows that U
W̃
≈ǫ UW and hence

(1− ǫ) ·UI−W � U
I−W̃

� (1 + ǫ) ·UI−W,

which implies that UI−W � (1/(1 − ǫ)) ·U
I−W̃

. Now we can write that for all x, y ∈ C
n

∣∣∣x∗(W− W̃)y
∣∣∣ ≤ ǫ

2
· (x∗UI−Wx + y∗UI−Wy)

≤ ǫ

2
·
(

1

1− ǫ
· x∗U

I−W̃
x + y∗UI−Wy

)

≤ ǫ

2 · (1− ǫ)
·
(
x∗U

I−W̃
x + y∗UI−Wy

)
.
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A similar calculation shows
∣∣∣x∗(W− W̃)y

∣∣∣ ≤ ǫ

2 · (1− ǫ)
·
(
x∗UI−Wx + y∗U

I−W̃
y
)

and hence W̃
min≈ ǫ/(1−ǫ) W.

Now we show that min spectral approximation is preserved under schur complements with no
loss in approximation quality.

Theorem B.3. Let W, W̃ ∈ C
n and suppose that W̃

min≈ ǫ W for ǫ ∈ (0, 1). Let F ⊆ [n] such that
(I|F | −WF F ) is invertible and let C = [n] \ F . Then

I|C| − Sc(In − W̃, C)
min≈ ǫ I|C| − Sc(In −W, C)

Proof. Let A = In − W̃, B = In −W. Note that since W̃
min≈ ǫ W, we have for all x, y ∈ C

n

|x∗(B−A)y| ≤ ǫ

2
min {x∗UBx + y∗UAy, y∗UBy + x∗UAx} , (19)

Our goal is to show that I|C| − Sc(A, C)
min≈ ǫ I|C| − Sc(B, C), which is equivalent to

∣∣∣[xℓ]∗ (Sc(A, C)− Sc(B, C)) xr
∣∣∣

≤ ǫ

2
·min

{
[xℓ]∗USc(A,C)x

ℓ + [xr]∗USc(B,C)[x
r], [xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(A,C)[x
r]
}

.

for all xℓ, xr ∈ C
|C|.

Let xr, xℓ ∈ C
C be arbitrary. Now define yr ∈ C

n by yr
C = xr and yr

F = −A−1
F F AF Cxr. Further,

define yℓ ∈ C
n by yℓ

C = xℓ, yℓ
F = −[B∗

F F ]−1[B∗
CF ]xℓ. Note that yr and yℓ are defined so that

Ayr =

(
AF F AF C

ACF ACC

)(
−A−1

F F AF Cxr

xr

)
=

(
~0F

Sc(A, C)xr

)

and

[yℓ]∗B =

(
−[B∗

F F ]−1[B∗
CF ]xℓ

xℓ

)∗(
BF F BF C

BCF BCC

)
=

(
~0F

Sc(B, C)∗xℓ

)∗

.

Consequently [yℓ]∗Ayr = [xℓ]∗Sc(A, C)xr and [yℓ]∗Byr = [xℓ]∗Sc(B, C)xr. We also have [yℓ]∗UByℓ =
[xℓ]∗USc(B,C)x

ℓ and [yr]∗UAyr = [xr]∗USc(A,C)x
r. Therefore, by Equation (19) we get

∣∣∣[xℓ]∗Sc(A, C)xr − [xℓ]∗Sc(B, C)xr
∣∣∣ =

∣∣∣[yℓ]∗ (A−B) yr
∣∣∣

≤ ǫ

2
·
(
[yℓ]∗UByℓ + [yr]∗UAyr

)

=
ǫ

2
·
(
[xℓ]∗USc(B,C)x

ℓ + [xr]∗USc(A,C)x
r
)

.

Redefining yℓ and yr, we can get the analogous inequality

∣∣∣[xℓ]∗Sc(A, C)xr − [xℓ]∗Sc(B, C)xr
∣∣∣ ≤ ǫ

2
·
(
[xℓ]∗USc(A,C)x

ℓ + [xr]∗USc(B,C)x
r
)

.

Therefore I|C| − Sc(A, C)
min≈ ǫ I|C| − Sc(B, C).

46



C Proof of Lemma 5.2

Lemma 5.2 restated. Let G be a strongly connected, regular directed multigraph on n vertices
with transition matrix W and let J ∈ R

n×n be a matrix with 1/n in every entry (i.e. J is the
transition matrix of the complete graph with a self loop on every vertex). Then λ(G) ≤ λ if and

only if W
◦≈λ J.

Proof. First we will show that if W
◦≈λ J then λ(G) ≤ λ. By the equivalence of items 1 and 2 in

Lemma A.1, we have that for all x, y ∈ C
n

x∗(W− J)y ≤ λ ·
√

x∗(I − J)x · y∗(I− J)y.

Note that we can write

λ(G) = max
u⊥1,v⊥1

u∗Wv

‖u‖‖v‖ .

Let ū and v̄ be vectors that achieve the maximization above. Setting x = ū and y = v̄, and noting
that Jv̄ = Jū = 0 because ū and v̄ are perpendicular to 1, our inequality becomes

ū∗Wv̄ ≤ λ ·
√
‖ū‖2 · ‖v̄‖2 = ‖ū‖ · ‖v̄‖.

Dividing by ‖ū‖ · ‖v̄‖ completes the proof.
For the other direction, assume λ(G) ≤ λ and we will show that for all x, y ∈ C

n and all z ∈ C

such that |z| = 1,

|x∗(W− J)y| ≤ λ ·
√
|x∗(I− zJ)x| · |y∗(I− zJ)y| (20)

Note that for all constant vectors v (i.e. v has the same entry in every coordinate) we have by
the regularity of W and J,

Wv = W⊤v = Jv = J⊤v = v.

So when x or y is constant, the left-hand side of Inequality (20) is zero and the inequality is true
(because the right-hand side is always non-negative). Furthermore, orthogonality to ~1 is preserved
under I, J, W, and W⊤ so it suffices to consider vectors x, y ⊥ ~1. Fix two such vectors. For v ⊥ ~1,
we have Jv = ~0. So Inequality (20) becomes

|x∗Wy| ≤ λ ·
√

x∗x · y∗y

= λ · ‖x‖ · ‖y‖.

Applying Cauchy-Schwarz, we have

|x⊤Wy| ≤ ‖x‖ · ‖Wy‖
≤ λ · ‖x‖ · ‖y‖

where the last line follows from the assumption that λ(G) ≤ λ.

D Omitted Proofs from Section 6

Below is the statement of Lemma 2.3 from [CKK+]. we give a proof of Lemma 6.7 using this
lemma.

Lemma D.1 (CKKPPRS18 Lemma 2.3). Consider a sequence of m-by-m matrices S(0),S(1),. . .,
S(m) such that

47



1. S(i) has non-zero entries only on the indices [i + 1, m],

2. The left/right kernels of S(i) are equal, and after restricting S(i) to the indices [i + 1, m], the
kernel of the resulting matrix equals the coordinate restriction of the vectors in the kernel of
S. Formally, ker

(
S

(i)
[i+1,m],[i+1,m]

)
= {b[i+1,m] : b ∈ ker(S(0))}.

3. The symmetrization of each S(i), U
S(i) = 1

2 (S(i) + (S(i))⊤), is positive semi-definite.

Let M = M(0) = S(0), and define matrices M(1), M(2), . . . , M(m) iteratively by

M(i+1) def
= M(i) +

(
S(i+1) − Sc

(
M(i), [i + 1, m]

))
∀ 0 ≤ i < pmax.

If for a subsequence of indices 1 = i0 < i1 < i2 < . . . < ipmax associated scaling parameters
0 < θ0, θ1, . . . , θpmax−1 < 1/2 such that

∑pmax−1
p=0 θp = 1, and some global error 0 < ǫ < 1/2, we have

for every 0 ≤ p < pmax: ∥∥∥U+/2

S(ip)

(
M(ip) −M(ip+1)

)
U

+/2

S(ip)

∥∥∥ ≤ θpǫ,

then for a matrix-norm defined from the symmetrization of the S(ip) matrices and the scaling pa-
rameters:

F =
∑

0≤p<pmax

θpU
S

(ip),

we have:

1. for each 0 ≤ i ≤ pmax, ∥∥∥F+/2
(
M−M(i)

)
F+/2

∥∥∥
2
≤ ǫ,

2. The final matrix M(pmax) satisfies

M(pmax)⊤F+M(pmax) � 1

10p2
max

·F.

Lemma D.2. Let L(i)’s be 2kn by 2kn matrices defined as Equation (11), then

L(i+1) − L(i) =

[
0 0
0 I2k−i−1n −C2k−i−1 ⊗Wi+1

]
−
[
0 0
0 I2k−i−1n −C2k−i−1 ⊗W2

i

]
.

Proof. From Equation (11), we have

L(i+1) = X1 · · ·Xi+1

[
I(2k−2k−i−1)n 0

0 I2k−i−1n −C2k−i−1 ⊗Wi+1

]
Yi+1 · · ·Y1,

applying Xi+1, and Yi+1 to the middle matrix we get,

L(i+1) = X1 · · ·Xi




I(2k−2k−i)n 0 0

0 I 2kn
2i+1

−C 2kn
2i+1

⊗Wi+1

0 −I 2kn

2i+1

⊗Wi+1 I 2kn

2i+1

−C 2kn

2i+1

⊗Wi+1 + C 2kn

2i+1

⊗W2
i


Yi · · ·Y1.

Therefore,

L(i+1) − L(i) = X1 · · ·Xi

[
0 0
0 −C2k−i−1 ⊗Wi+1 + C2k−i−1 ⊗W2

i

]
Yi · · ·Y1.
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Note that the error only resides on the lower right block of the middle matrix. It is easy to verify
that hitting the middle matrix by X(i)’s from left and Y(i)’s from right does not change the matrix
(as the non-zero part is only multiplied by identity blocks). Therefore,

L(i+1) − L(i) =

[
0 0
0 −C2k−i−1 ⊗Wi+1 + C2k−i−1 ⊗W2

i

]
.

Now we are ready to give a proof of Lemma 6.7.

Proof of Lemma 6.7. From S(i)’s and L(i)’s, we build a sequence of Ŝ(j)’s and M̂(j)’s that satisfy
the conditions of Lemma D.1, and using that we derive the statement of Lemma 6.7. For 0 ≤ i < k,

and 0 ≤ j < 2k−i−1n, let ai
def
= (2k − 2k−i)n, Ŝ(ak) = S(k), and

Ŝ(ai+j) =

{
S(i), if j = 0

Sc(M̂ai+j−1, [ai + j, 2kn]) otherwise.

and
M̂(h+1) def

= M̂(h) +
(
Ŝ(h+1) − Sc

(
M̂(h),

[
h + 1, 2kn

]))
∀ 0 ≤ h < (2k − 1)n.

Note that Ŝ’s satisfy all the three premises in Lemma D.1. First Ŝ(i) has non-zero entries only
on the indices [i + 1, 2kn]. Further as all Ŝ(i)’s are random-walk Laplacian of Eulerian connected
aperiodic regular digraphs, the left and right kernels are the same, all have the same kernel up to
the restriction to non-zero entries, and all U

S(i) ’s are PSD. Therefore all the three premises of the
lemma are satisfied.

Next we show that for all i’s L(i+1) approximates L(i) in the norm defined by U
S(i) . By

Lemma D.2,

L(i+1) − L(i) =

[
0 0
0 C2k−i−1 ⊗W2

i −C2k−i−1 ⊗Wi+1.

]

Now, given Wi+1
◦≈ǫ/k W2

i , by Theorem 4.5 we get

‖U+/2
Sc(Si,Hi)

(
L(i+1) − L(i)

)
U

+/2
Sc(Si,Hi)

‖ ≤ ǫ/k.

Since USc(Si,Hi) � 2U
S(i) ,

‖U+/2

S(i)

(
L(i+1) − L(i)

)
U

+/2

S(i) ‖ ≤ 2ǫ/k.

By construction, we have Ŝ(ai) = S(i) and M̂(ai) = L(i) for all 0 ≤ i ≤ k. Therefore, we get

∥∥∥U+/2

Ŝ
(ai)

(
M̂(ai) − M̂(ai+1)

)
U

+/2

Ŝ
(ai)

∥∥∥ ≤ 2ǫ/k,

Thus by Lemma D.1, for F = 2
k

∑k
i=0 U

S(i) ,

‖F+/2(L− L(i))F+/2‖ ≤ ǫ ∀0 ≤ i ≤ k

and

L(k)⊤
F+L(k) � 1

40k2
F.
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Lemma D.3. Given a PSD matrix U ∈ R
n×n, and an orthogonal projection Π ∈ R

n×n such that
UΠ = ΠU we have

UΠ � U

Proof. Let x ∈ R
n be an arbitrary vector, and let x1 denote the projection of x into im(Π) and x2

be the projection to the subspace orthogonal to im(Π), such that x = x1 +x2. Note that Πx1 = x1,
and Πx2 = 0. Therefore we have,

(x1 + x2)⊤U(x1 + x2) = (Πx1 + x2)⊤U(Πx1 + x2) = x⊤
1 Ux1 + x⊤

2 Ux2,

and

(x1 + x2)⊤UΠ(x1 + x2) = (x1 + x2)⊤UΠx1 = (x1 + x2)⊤ΠUx1 = x⊤
1 ΠUΠx1 = x⊤

1 Ux1.

Therefore,
x⊤UΠx = x⊤

1 Ux1 ≤ x⊤
1 Ux1 + x⊤

2 Ux2 = x⊤Ux.

Since the choice of x was arbitrary this completes the proof.

Lemma D.4 (Lemma 2.6 in [CKK+]). Suppose we are given matrices L, L̃ and a positive semi-
definite matrix F such that ker(F) ⊆ ker(L) = ker(L⊤) = ker(L̃) = ker(L̃⊤) and

1. ‖F+/2(L− L̃)F+/2‖ ≤ ǫ

2. L̃⊤F+L̃ � γF,

then ‖Iim(L) − L̃+L‖F ≤ ǫ
√

γ−1.

Lemma D.5 (Lemma B.3 in [CKK+]). Let L, L̃, F be arbitrary matrices with ker(F) = ker(F⊤) =
ker(L) = ker(L⊤) = ker(L̃) = ker(L̃⊤). If ‖F+/2(L − L̃)F+/2‖ ≤ ǫ and L̃⊤F+L̃ � γF, then
L⊤F +L ≈

O( ǫ√
γ

+ ǫ2

γ
)

L̃⊤F +L̃.

Lemma D.6 (Lemma 13 in [CKP+2]). Let L be an Eulerian directed Laplacian, tr(U+/2L⊤U+LU+/2) ≤
2(n − 1)2.

E Proof of Lemma 7.4

Lemma 7.4 restated. Let G0 be a d-regular, directed multigraph on n vertices with a two-way
labeling and H1, . . . , Hk be c-regular undirected graphs with two-way labelings where for each i ∈ [k],
Hi has d · ci−1 vertices. For each i ∈ [k] let

Gi = Gi−1 s©Hi.

Then given v0 ∈ [n], i0 ∈ [d · ci−1], j0 ∈ [c], RotGi(v, (i0, j0)) can be computed in space O(log(n ·d) +
k · log c) with oracle queries to RotH1 , . . . , RotHk

.

Proof. When c is subpolynomial we are reasoning about sublogarithmic space complexity, which
can depend on the model. So we will be explicit about the model we are using. We compute the
rotation map of Gi on a multi-tape Turing machine with the following input/output conventions:

• Input Description:
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– Tape 1 (read-only): Contains the initial input graph G0, with the head at the leftmost
position of the tape.

– Tape 2 (read-write): Contains the input triple (v0, (i0, j0)), where v0 is a vertex of Gi,
i0 ∈ [d · ci−1] is an edge label in Gi, and j0 ∈ [c] is an edge label in Hi on a read-write
tape, with the head at the rightmost position of j0. The rest of the tape may contain
additional data.

– Tapes 3+ (read-write): Blank worktapes with the head at the leftmost position.

• Output Description:

– Tape 1: The head should be returned to the leftmost position.

– Tape 2: In place of (v0, (i0, j0)), it should contain the output (v2, (i3, j1)) = RotGi(v0, (i0, j0))
as described in Definition 5.5. The head should be at the rightmost position of j1 and
the rest of the tape should remain unchanged from its state at the beginning of the
computation.

– Tapes 3+ (read-write): Are returned to the blank state with the heads at the leftmost
position.

Let Space(Gi) be the amount of space required to compute the rotation map of graph Gi. We will
show that for all i ∈ [k], Space(Gi) = Space(Gi−1) + O(log c). Note that Space(G0) = O(log(nd)).

Fix i ∈ [k]. We begin with v0 ∈ [n], i0 ∈ [d · ci−1] and j0 ∈ [c] on tape 2 with the head on the
rightmost position of j0 and we want to compute RotGi(v0, (i0, j0)). We move the head left to the
rightmost position of i0, recursively compute RotGi−1(v0, i0) so that tape 2 now contains (v1, i1, j0).
Then we move the head to the rightmost position of j0 and compute RotHi(i1, j0) so that tape 2
now contains (v1, i2, j1). Finally, we move the head to the rightmost position of i2 and compute
RotGi−1(v1, i2) so that tape 2 contains (v2, i3, j1).

This requires 2 evaluations of the rotation map of Gi−1 and one evaluation of the rotation map
of Hi. Note that we can reuse the same space for each of these evaluations because they happen
in succession. The space needed on top of Space(Gi−1) is the space to store edge label j0, which
uses O(log c) space. So Space(Gi) = Space(Gi−1) + O(log c). Since i can be as large as k and
Space(G0) = O(log(n · d)) we get that for all i ∈ [k], Space(Gi) = O(log n · d + k · log c).
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