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A Taxonomy for Characterizing Modes of Interactions in Goal-driven,
Human-robot Teams

Priyam Parashar1, Lindsay M. Sanneman2, Julie A. Shah2, Henrik I. Christensen1

Abstract— As robots and other autonomous agents are in-
creasingly incorporated into complex domains, characterizing
interaction within heterogeneous teams that include both hu-
mans and machines becomes more necessary. Previous liter-
ature has addressed the task of characterizing human-robot
interaction from different perspectives and in multiple contexts.
However, the numerous factors behind interaction work in
conjunction, and the insights gained from one perspective can
inadvertently affect another, creating a need for unification
of these taxonomies and frameworks within an overarching
taxonomy that systematically defines these relationships. In this
paper we review existing taxonomies related to human-robot
interaction, the behavioral sciences, and social and algorithmic
taxonomies, and propose an overarching ontology for the
factors from these works. We identify three main components
characterizing the structure of an interaction (environment,
task, and team), and structure them over two levels: contextual
factors and factors driven by local dynamics. Finally, we present
an analysis of how these factors affect decisions about levels of
robot automation and level of information abstraction in an
interaction, and discuss curent gaps in the literature that can
motivate future research.

I. INTRODUCTION

The applicability of robotics has extended beyond a sin-
gle autonomous agent interacting with a single human to
scenarios involving larger heterogeneous teams of multiple,
functionally different agents and humans working together
([1]). Furthermore, these interactions are occurring in more
dynamic and less regulated environments which fundamen-
tally impacts considerations at the design and development
level with regard to human-robot team stability. Existing
taxonomies characterize individual factors that impact inter-
action within in these increasingly complex domains ([2]–
[8]), but none comprehensively cover the characterization of
the operational space. Furthermore, each existing taxonomy
maintains its own set of assumptions, which in turn limits
the scope of a given taxonomy’s applicability. In this paper,
we combine individual taxonomies into a single overar-
ching taxonomy with the aim of standardizing the nature
of the interactions in question. This helps to methodically
characterize interactions and to highlight both the benefits
and drawbacks of an overall system. The gaps in existing
literature to characterize the various nuances of operational
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contexts in HRI are demonstrated by urban search and rescue
(USAR) and assembly line use case scenarios in Section III.

The primary aim of this paper is to propose a unified
overarching taxonomy with the dual purpose of preserving
the characterization of interactions within the surveyed tax-
onomies while also allowing for extension of their structures
for increasingly complex scenarios. Through a review of
existent taxonomies, we identified specific factors that impact
team interactions, and have grouped these factors into three
overarching themes that form the main structure of our over-
arching taxonomy. Additionally, we present an analysis of
operational contexts relevant to HRI in order to highlight the
degree of complexities introduced by the interplay and vari-
ability of these factors. The body of literature we drew from
included works exploring interaction within the behavioral
sciences ([9]–[11]) and in social contexts ([5], [12]), as well
as the algorithmic techniques driving interaction in human-
robot teams ([2], [7]). In this paper, we propose a framework
that systematically assimilates surveyed taxonomies to more
comprehensively classify factors that impact interaction in
cooperative mixed teams working toward a joint goal, and
highlight areas where this framework could be extended in
the future. However, such a discussion can envelope numer-
ous taxonomies including those which characterize affective
factors of an exchange or characterize various interfaces
between the agents. In order to scope the analysis, we limit
current discussion to the structure and content rather than the
medium and pattern of communication.

II. AN OVERVIEW OF EXISTENT TAXONOMIES IN HRI

The taxonomies we surveyed addressed distinct aspects of
a cooperative system, including various factors related to task
context and team configuration. Further, these taxonomies
differed with regard to the level of abstraction of the factors
under consideration, both over the breadth of factors, such as
task context ([2]) and team configuration ([3], [4]), and also
over depth, from macro-context ([8]) to local complexities
(or dynamics) of a specific task instantiation ([7], [13]).
Additionally, each taxonomy describes interactions within
a specific environmental context. Thus we identified a gap
in terms of characterization of the environmental context,
which is instrumental to characterizing the challenges to the
system in the operational use cases detailed in Section III. We
also identified overlapping taxonomies that analyze effects of
similar factors but from different perspectives. These can be
combined for a more comprehensive view of interaction.



A. Context-driven Taxonomies

We define contextual taxonomies as those describing the
“problem” and “solution” contexts of an HRI application.
In this case, the kind of task being undertaken and the
operational requirements for accomplishing the task form
the “problem” component, while the team configuration and
capabilities are identified as the “solution.”

1) Task and Environment as the Problem: Yanco and
Drury ([8]) provided a meta-survey identifying factors that
are critical to our definition of interaction “context (Section
V). However, the paper itself does not impose any structure
over these dimensions, even though they differ significantly
in the level of system characterization. For example, while
task type is a context-sensitive variable, centralized versus
decentralized modes of command consensus represents a
local factor impacted by the particular role that interactants
play within a teams hierarchy. Furthermore, many of the
variables specific to local dynamics are affected by context-
level variables, so in addition to identifying important fac-
tors for interaction, it is equally important to elucidate the
relationships between those factors. Recently, Beer, Rieth,
Tran, et al. addressed the problem of classifying mixed-
team HRI task contexts and their effects on inter-team
interactions for military and commercial applications ([2]).
While the authors maintained an explicit division between
task and team model, the environment was relegated to the
second level of categorization and only considered in the
context of the constraints (speed, stealth, et cetera) it placed
on the system. Beer, Rieth, Tran, et al. ([2]) additionally
identified six main task focuses for missions undertaken
within military and commercial HRI contexts, which we
extend and incorporate into our own overarching taxonomy
in Section V.

In the context of social robotics, Dautenhahn considered
how to evaluate the extent of social skill required for HRI
applications in different domains ([14]). The authors used
four major axes to evaluate HRI application areas: contact
with humans, degree of robot functionality, the role of the
robot, and the necessity of social skills for success given
the operational context. Our taxonomy incorporates these
insights by merging the contact-frequency and social-skill-
requirement axes. The role axis mentioned by Dautenhahn
is subsumed by the general human-robot-roles theory in
HRI ([15]), which is also included within our framework.
Further, Phillips, Schaefer, Billings, et al. took inspiration
from human-animal cooperation and characterized cooper-
ative activities as physical, emotional (or, more generally,
social), and cognitive ([16]).

2) Collective or Solution Specification: We define a col-
lective as a heterogeneous team of humans and robots. In
a collective, the team hierarchy can be flat or not, and the
robotic agents can also be heterogeneous. Heterogeneity in
agents is characterized by differences in terms of capabil-
ities, possible actions and knowledge-base ([17]), among
other factors. The team context specifies macro-dimensions,
including the size and composition of the group ([2]) and

communication constraints imposed by system design ([3],
[4]). Another important aspect of characterizing a team is the
a priori modeling of teammates in order to better understand
their needs during task execution. Different methodologies
exist like defining the belief-desire-intent of agents ([3]) or
their goals, actions, and knowledge structures ([17]).

B. Cooperation-driven Taxonomies

The humans role is one of the most important behavioral
factors shaping human-robot interaction. Scholtz ([15]) used
Norman’s seven-stage model of interaction design ([18])
to reflect upon the possible levels of failure in a robot’s
design and to typify the subsequently necessary assistance
according to the intermediate layers of intention, action, and
perception of the agent. This led to the formulation of the five
archetypal roles humans can play in order to assist the robot
during HRI: 1) supervisor, 2) operator, 3) mechanic, 4) peer,
and 5) bystander. Norman used this model to conceptualize
human-centric design such that design of an artifact supports
human understanding, but Scholtz uses the model to instead
consider a robot-focused view of the usefulness of human
knowledge such that the combined human-robot system is
usable. Scholtz’s set of roles was most recently updated with
two additional entries: “information consumer and “mentor,
the latter of which is specific to robots ([5]).

The literature explains why such roles are necessary for
a usable system and presents a detailed synopsis of what
information system designers should focus on while cre-
ating a human-robot interface to fill these roles. However,
as we move toward a more collaborative nature of HRI,
autonomous agents will increasingly be required to fluidly
move through a team hierarchy and perform different roles
in different contexts, just as we expect from a collaborative
team of humans. Therefore, it will be important to define
the expertise and knowledge required for each role and
ground them within the mission context and corresponding
team knowledge structure, enabling autonomous agents to
effectively transition between roles.

In contexts where social interactions are interwoven with
team functionality, Fong, Nourbakhsh, and Dautenhahn, Feil-
Seifer and Matarić, and Dautenhahn presented taxonomies
identifying the basic components of a robotic system that
affect human-robot social interactions ([12], [14], [19]). We
incorporate these considerations into our own, more gener-
alized framework. We also note the inclusion of a training
phase for interactions ([12]) in prior task taxonomies, and
merge this additional aspect with the task focus list ([2]) in
our own taxonomy. Explicit user-type modeling has benefited
HRI systems but most of these observations are from contexts
where the human and robot remain fixed in a role for
the entirety of the interaction; there is still a need for
deeper discussion about the types and transitions between
roles humans and robots can afford in contexts where team
hierarchy is more fluid ([14], [19]).

1) Information requirements for cooperation: In order
to study information exchange during interactions, it is
necessary to first analyze the question of what role the



given information has, and why it must be disseminated
in the given context. Endsley introduced a framework that
defined the concept of “situational awareness” according
to the processing mechanisms, design, and knowledge of
a dynamic system ([10]). This framework delineates infor-
mation into three progressively complex levels comprising
an individual’s situational awareness (SA). Chen, Lakhmani,
Stowers, et al. formally define the components defining a
mission’s description as well as the required knowledge-
structures, and qualitatively ground the SA model using
these concepts, calling it a Situation Awareness-Based Agent
Transparency (SAT) model ([9]). The following are the levels
of SA defined by Endsley that are incorporated into the SAT
model: • Level 1 - Perception. • Level 2 - Comprehension.1

• Level 3 - Projection.
2) Task and Goal Interdependence During Cooperation:

In prior work, Gerkey and Matarić discuss constraints as
they relate directly to interdependence: task type (single-
versus multi-agent) and agent type (single versus multi-
task); these were further combined into a single scheduling-
based interdependence definition in later work ([7]). The
interdependence notion was further detailed by Phillips,
Schaefer, Billings, et al., who identified the frequency of
communication and task-flow interdependency during task
execution as critical to characterizing the level of cooperation
between them ([16]). The authors broke task-flow interdepen-
dence into three process structures: “parallel, “sequential, and
“dialog-like. Their focus was on the process by which task
execution unfolds, and the communication required between
the working agents. Together, these dimensions more com-
prehensively categorize the overall interdependence during
planning and execution stages, respectively.

Literature also elucidates a strong link between the pro-
jected criticality of a task (in terms of life-risk and impor-
tance to mission success) and the levels of robot autonomy
within a mixed system ([6], [13]). Both works defined the
level of robot autonomy as a spectrum of responsibility
toward the mission. Beer, Fisk, and Rogers analyzed this
via task breakdown and the allocation of stages to each
or both agents, and outlined 10 specific configurations of
these possible responsibility overlaps during task execution
by deconstructing the task as a sense-plan-act cycle ([22]).
Jiang and Arkin took a more goal-oriented view and used
the overlap between the agents goals to assess those agents
responsibilities. Our taxonomy includes task interdependence
and its plan- and execution-time components in order to
characterize the dynamics of an interaction. We label the
level of robot autonomy as an effect of various contextual
and local factors and discuss their interplay in Section V.

III. OPERATIONAL CONTEXTS FOR COLLABORATIVE
HRI WITH MOBILE ROBOTS

Burke et al. ([1]) presented a list of applications and
domains they deemed relevant to the HRI community; we

1In subsequent work, ([20]) comprehension was expanded to be of two
kinds: identification of elements and interpretation of events within the
current situation.

reviewed two of the listed operational contexts and observed
three macro-themes that introduce complexity in these con-
texts: 1) environmental complexity, especially in terms of the
risk involved; 2) knowledge of task goals and priorities or
the task model; and 3) the differing nature of other agents or
the team model. We chose the following scenarios in order
to illustrate the variety of challenges that exist within the
above dimensions. Though not exhaustive, they represent a
range of challenges across the task, environment, and team
dimensions.

A. Urban Search and Rescue (USAR)

The urban search and rescue (USAR) domain involves a
search and rescue procedure performed within a potentially
adversarial environment. (This domain is drawn partially
from conversations with the Army Research Lab (ARL).)

In the USAR scenario, a heterogeneous team of human
soldiers, unmanned aerial and ground vehicles, and au-
tonomous aides work together to navigate an urban envi-
ronment and perform a search-and-rescue operation within
a building. This domain demonstrates complexity in terms
of environment, task, and team. The environment is un-
known a priori and is unstructured; it is also dynamic and
adversarial in nature due to debris and adversarial agents
operating within the area, posing a risk to both humans
and autonomous agents. While these environmental factors
place constraints on team operation (a concept discussed in
work by Beer, Rieth, Tran, et al. [2]), explicit categorizations
that adequately inform how these factors can impact team
structure and interaction do not currently exist in the liter-
ature. Further, the USAR task is often complex and multi-
stage, requiring planning, scouting, and execution ([7], [21]).
Dynamic environmental factors can introduce constraints
on possible approaches to the task online, and task and
sub-task specifications may also require modification as
additional information is acquired during execution. Also,
team structures and hierarchies may be fluid and change
during task execution, further increasing complexity. Finally,
team members might not regularly work together, so gaps in
mutual understanding may exist.

B. Assembly Line

In traditional manufacturing settings, robots operate be-
hind fences, working apart from human beings on the manu-
facturing line and performing separate tasks. Now, manufac-
turing companies are interested in safe robots that are able
to work in close proximity with human teammates; how-
ever, integrating robots in this manner introduces complexity
in terms of both team and environmental factors. While
tasks are well-defined, the environment and team are semi-
structured, requiring greater flexibility from robot teammates.
The way in which a human-robot team approaches a given
task will be more fluid, and robots will need to adapt to
performing updated roles online if human teammates modify
the way in which they approach their tasks. Additionally, an
environment in which human workers are present is more
dynamic and uncertain than the well-defined cage setting



in which robots have previously operated. As in the USAR
example, this scenario requires characterization of environ-
mental factors, as well as a more thorough consideration of
team roles and structure.

IV. GAP ANALYSIS

In the previous section, we outlined the need for the
following:

• A structure that can encompass both contextual factors
and local dynamics while still preserving the differen-
tiation between them.

• A combined synthesis of dimensions (task scheduling
interdependence and task execution interdependence,
for example) that incorporates differing perspectives of
the surveyed taxonomies.

• Quantifiable role formulation grounded within a collec-
tive’s shared knowledge structures, such that they can be
used to assess and validate informational requirements
at different levels of abstraction.

In the next section, we address the first two issues by
proposing a reformulated upper ontology over the surveyed
taxonomies. Specifically, we include the context-driven di-
mensions discussed earlier with the overarching context
category further subdivided into three classes: task, team,
and environment. These three classes are the result of our
analysis of varying operational contexts (Section III) and
identified dimensions from the review ([2]–[4], [8], [13]).
The environment category is included as a major class despite
not being explicitly characterized by existing taxonomies, as
our analysis of operational contexts highlights environment
as an important discriminator across civil, social, military,
and commercial contexts. We also introduce an initial set of
key factors for this class. The cooperation-driven taxonomic
dimensions are included within the greater category of local
dynamics, which is further broken down into task-work and
team-work dynamics, inspired by the team- and task-work
model used by behavioral scientists to study cooperative
behaviors ([11]). We also address the second issue by placing
the reviewed factors into this taxonomy, as well as synthesiz-
ing new categories relating the non-orthogonal factors from
the surveyed papers.

V. A REFORMED UPPER ONTOLOGY FOR ANALYZING
HRI PROBLEMS

Here, we propose our reformed upper ontology over the
surveyed taxonomies. We situate these taxonomies within the
proposed structure, which includes the following high-level
categories: system context, local dynamics, and effects.

A. SYSTEM CONTEXT

Factors that fall into the system context category function
as independent variables for a given situation and are taken as
inputs to the HRI problem. Within this category, we identify
contextual factors related to task, team, and environment
and identify the additional subcategories of description and
modeling within each group.

1) Task

a) Description The following categorizations from the
literature comprise the task description subcategory
and define the task-related work that agents will
engage in.
i) Task Nature ([16])- This category describes

the type of requirement for a given task.
A) Physical, B) Cognitive, and
C) Social.

ii) Task Focus ([2])- For this category, we add a
new entry (*) to the list proposed by [2] in order
to incorporate the training and learning phase
of interactions as observed in domestic and
other social domains. A) Transit, B) Area
Coverage, C) Resource Management,
D) Target Search, E) Construction,
F) Assistance, and G) *Knowledge
Acquisition2.

iii) Criticality3 ([8], [13]) - We divide this factor into
two dimensions: criticality to mission success and
criticality to human safety. Given the current state
of robotic abilities and intelligence, the human
safety axis should take precedence over the task-
critical axis when making decisions about trade-
offs between multiple action options. We suggest
the following breakdown:
A) Low Criticality - The task is neither

mission-critical nor affecting human safety.
B) Medium Criticality - The task is

mission-critical, but does not affect human
safety.

C) High Criticality - The task is critical
to human safety.

D) Severe Criticality - The task is both
mission- and safety-critical.

2) Team
a) Description Team description factors provide a way

to define the diversity and capabilities of a mixed
team in order to standardize the basic challenges and
strengths of the collective.
i) Interaction Composition ([3], [4], [8]) –

This characterizes the diversity and numeric
complexity of the team, aiding in the
standardization of the communication mediums
and protocols used by different compositions.
It is a product of whether the interacting
humans and robots are individuals (single) or
acting as a group (multiple), and whether the
interactants are homogeneous or heterogeneous
in terms of goals, domain knowledge, decision
functions, and possible actions ([17]). • Single
Human to Single Robot • Single

2Examples of knowledge acquisition include learning the task model
([23], [24]) and learning the environment model ([25], [26]).

3Our ontology addresses this aspect at the macro level, but note that
detailed frameworks exist ([27]) that provide a finer, more context-sensitive
assessment.



Human to Multiple-Homogeneous
Robots • Single Human to
Multi-Heterogeneous Robots
• Multi-Homogeneous Humans to
Single/Multi-Homo/Multi-Hetero
Robots • Multi-Heterogeneous Humans
to Single/Multi-Homo/Multi-Hetero
Robots

ii) Capabilities This is a sample set of possible types
of team member capabilities that can be used to
standardize robot teammate functionalities. Note
that specific categorizations for these types of
capabilities will need to be identified in future
work. ([3], [9], [17]): A) Motion B) Sensor
C) Computation D) Communication

b) Modeling ([3], [9], [17]) - The following factors com-
prise the team modeling subcategory. They describe
the models that team members have of their team-
mates’ knowledge structures and decision functions.
Specific categorizations will need to be identified in
future work.
i) Shared-Knowledge Structures ([17])

ii) Decision Functions ([9], [17])
3) Environment

a) Description Environment description factors define
the macro-aspects and byproducts of the deployment
environment (such as physical space, bystander inter-
actions, etc.).
i) Spatial Distribution ([5], [8], [12]) - Spatial re-

lationships between agents have previously been
modeled as a byproduct of the environment. For
example, modern manufacturing entails a prox-
imal configuration, while an office environment
entails a hybrid configuration where some sub-
tasks require physical proximity of teammates to
a task and others can be executed remotely. The
following are categorizations of spatial configu-
rations: A) Proximal B) Hybrid C) Remote

b) Additional Taxonomy Suggestions. Here, we identify
possible additional environment description catego-
rizations beyond the ones identified in the literature:
i) Level of Cooperation - This category defines

whether an environment is cooperative, neutral,
or adversarial in terms of how environmental
factors impact a team’s progress towards its goals.

ii) Spatial and Temporal Complexity - This cate-
gory defines whether an environment is static
or dynamic in terms of physical features
and whether the physical configuration is
structured or unstructured.

iii) Mobility and Perception Constraints - In con-
junction with an agent’s motion and perception
capabilities, this category should quantify the
environmental constraints for each agent.

B. LOCAL DYNAMICS

Local dynamics variables are factors chosen to optimize
team performance on a given task and can be broken down
into two sub-categories: task and team ([11]). These factors
impact how effectively a team can execute a task given the
constraints imposed by contextual factors.

1) Task
a) Planning ([7], [21]) - We modify the “Instantaneous

Assignment” and “Time-Extended” categorizations
from Korsah, Stentz, and Dias [7] to three more
general categories: online, hybrid and offline
task planning.

b) Plan-Time Dependencies ([7], [21]) - We adopt the
following categorizations for plan-time schedule
dependencies from the iTax taxonomy in Korsah,
Stentz, and Dias, Gerkey and Matarić [7], [21]:
i) No Dependencies ii) In-Schedule
Dependencies iii) Cross-Schedule
Dependencies iv) Complex Dependencies

c) Run-Time Dependencies ([6], [13], [16]) - We define
run-time dependencies as dependence between the
“sense”, “plan”, and “act” stages of a task, as defined
by Beer, Fisk, and Rogers [13]. Within each of these
stages, task dependence can be described as joint or
disjoint, and joint tasks can have parallel, sequential,
or dialog-like process flows.

2) Team
a) Roles ([5], [15]) - We adopt the role categorizations

outlined in Section II.
b) Expertise Hierarchy ([3], [4], [8], [14]) - Roles are

not always fixed in teams operating in complex
environments. To capture the possibility of dynamic
roles, we divide the expertise hierarchy category into
two dimensions:
i) Reconfigurability - Team hierarchies can either

remain fixed ([28], [29]) or be fluid ([30]).
ii) Decision-Making Protocol ([3], [4], [8]) - The

decision-making structure within a team can be
centralized with a single individual or agent,
distributed to multiple teammates, or a
hybrid of both.

c) Communication Structure ([3], [4], [17]) - Depending
upon the perception constraint context, the nature of
the task, and the communication capabilities of the
team (as addressed in the System Context category),
we adopt the following categories for communication
structures:
i) None or Environment-Based ([3], [17]) –

In this case, no direct communication occurs
between the interactants, and the agents are lim-
ited to observing changes in environment or a
connecting physical medium in order to make
inferences about other agents’ actions and states.

ii) Sensing-Based ([3]) - Interactants can only
communicate by directly sensing their teammates



and observing their actions and states.
iii) Direct-Partial ([3], [4]) - Interactants have

a communication channel, but are limited by a
spatial or temporal range of communication.

iv) Direct-Full ([3], [4], [17]) - Interactants can
communicate with any teammate located any-
where within the known environment.

C. EFFECTS

Effects are resultant factors driven by the operational
context of a team, task, and environment, and the chosen
dynamics for achieving a joint goal. Given the context and
the task and team dynamics under our taxonomy, the level
of autonomy of each teammate and the level of information
abstraction for communicating with them should be set
accordingly.

1) Level of Autonomy: We adopt the levels of automation
defined by Beer, Fisk, and Rogers ([13]). In that work,
automation levels are determined according to three
modes of operation: “sense”, “plan”, and “act”. Ten
levels are delineated, assigning sense, plan, and act
modes of operation to the human, the robot, or both.
In our upper ontology, we expand the designation of
human and robot roles in this classification to include
any two teammates (human or autonomous) or sub-
teams interacting within a larger team. Note that here,
level of autonomy can be assigned to either a human or
an autonomous agent.
Decisions about the level of autonomy are based upon
which role a given teammate has assumed, and in what
context. For example, an operator executing a task in
a fully observable and fully modeled context might
work at a higher level of autonomy than an operator
executing the same task with a partial model or partial
observability. In the latter case, the operator might
rely more heavily upon teammates in order to gather
and communicate necessary information and provide
instruction.

2) Level of Information Abstraction. Grice’s maxims [31]
provide succinct guidelines for designing cooperative
communication, and we wish to highlight two of those:
• “Maxim of Quantity – Be as informative as you can,

and no more.”
• “Maxim of Relation – Be relevant to the discussion.”
The former maxim emphasises that during communica-
tion enough information should be provided such that
the issue being discussed can be understood, however
one should beware of information overload, i.e. com-
municating extra details which are irrelevant to the
other person’s mental model and can delay the uptake
of information. The latter focuses on the relevance of
the information being communicated to the issue be-
ing discussed. This indicates a strong inter-dependence
between level of information abstraction, the issue
being discussed, and the required situated awareness,
for either agents, that support better decision-making

or discussion. Assuming that agents interact rationally
and discuss/act upon issues with the right experts, we
can use team-roles under our taxonomy to provide us
with the missing information about the mental models
and their expertise. However, as has been hinted before
in section IV, an exact informational profile of a role
would be needed to perform such assessments online,
such that the information can be tailored to the nature
of an interactant under the Maxim of Relation.
Following the thread of situational awareness ([10]),
in order to make an informed decision about an issue
it is important to know how much the interactants
know about each other’s current state and status. If
the spatial relationship between agents is proximal,
then interactants have direct access to physical situated-
ness; however, if their relationship is remote in nature,
interactants are charged with exchanging information
about both cognitive and physical situatedness. (By
physical situatedness, we mean an understanding about
each other’s perception of the environment; by cognitive
situatedness we mean understanding about each other’s
goals, plans and mission status.)
Finally, the level of information abstraction also de-
pends upon the relevance of one interactants state to that
of the other ([6], [13]). This relationship can be assessed
along the dimensions of goal and task dependency,
as outlined in our dynamics taxonomy. Our guidelines
state that the greater the degree of interdependency, the
finer the granularity of updates should be, conditioned
upon the fact that the updates should contribute to
dependency constraints in a positive or negative way.
Similarly, depending upon whether the interactants have
the same goal, the level of task abstraction should be
adjusted such that the interactants share action or goal-
level information, respectively.

VI. DISCUSSION

In this paper, we reviewed taxonomies and frameworks
within the fields of human-robot interaction, algorithmic
robotics systems, and behavioral sciences in order to better
understand their influence on each other, to identify pre-
viously undocumented research gaps, and motivate future
work. We observed not only that the factors identified by the
surveyed taxonomies interact with each other, but that there
also exists a top-down pattern in which higher-level factors
affect the range of design choices over the factors below
them. As a result of this analysis, we proposed an extensible
taxonomy that breaks down an HRI system into three levels
of depth: the system context-model, the local dynamics model
of the interaction, and the resultant effects on leaf factors
driving HRI. These levels are then used to characterize three
major system components: task, environment and team. We
arranged the reviewed taxonomies within this framework,
using the insights gained by comparing across them to
arrange similar factors across different dimensions (figure
1).



Fig. 1. Visualization for the Overarching Taxonomy. The columns on left and right provide an overview of the reviewed factors and how they are arranged
in our taxonomy, both in terms of which component they belong to and their relative depth. The grey box in the right-bottom shows the effects and their
interactions with the identified factors.

We observed two main areas of potential focus for fu-
ture work. First, as we move toward “true” collaboration
between humans and robots, there is a demonstrated need
for enhanced communication protocols, flexible role changes,
and adaptive communication for different kinds of human
interactants (based on role, and situated context and aware-
ness). This in turn underscores the need for a situational
awareness assessment framework that is applicable to all
three of the system components within our taxonomy. While
the SAT model ([9]) grounded the principles of situational
awareness as they apply to a systems mission specification,
a space remains for the conceptualization of a framework
that extends this idea to environment and team configurations
as well. As per our survey, this would need to draw upon
existing situational awareness principles ([10]) and a more
structured understanding of potential human and robot roles
([5], [15]). Second, most of these taxonomies are formulated
by making assumptions about the kinds of environments that
they address. While this strengthens their characterizations
for the specific interactions, this also means that:
A) These specific taxonomies do not include the environ-

ment as a major factor, and
B) There is a dearth of taxonomies, in general, that char-

acterize the specific challenges of different operational
environments.

This lack of explicit environment modeling results in
an inability to capture environmental challenges that are
important to design decisions. An example is obscuration of
environment-based risk to the human operator in scenarios

III-A and III-B, which directly affects the recommended
autonomy level or responsibility of the robot to perform the
perception task. Additionally, lack of consideration about
existent knowledge of semantic and physical mapping of
the environment drastically affects the information exchange
patterns in the USAR scenario in III-A. This scenario re-
quires both task and plan information to be exchanged for
successful mission execution as well as information about
the physical environment the team is operating in.

Existent literature additionally does not model the degree
of observability of the environment or agent states, which
makes it difficult to distinguish between information or
context that is available and what additional situational data
needs to be shared. For example, in the USAR context,
teams are distributed over a large area and have limited
observability of both the space and their teammates. Such
a scenario demands that team members relate information
about spaces, events, and their own state to others during task
execution. The level of detail about the required information
that should be shared between interactants is an important
consideration according to the Maxim of Relation.

While our taxonomy serves as a first step toward defining
challenges faces by HRI teams executing tasks in complex
domains, more extensive characterization is still required.
Such an investigation could facilitate the analysis of oper-
ational contexts for HRI in a standardized manner, allowing
the insights from one taxonomy to be generalized to another.
We note that this paper’s length and scope restricted the
detailed analysis of many aspects which affect interaction



but have only been cursorily touched upon. The factors
here mainly relate to structure of interaction between two
agents or sub-teams, and do not focus on the pattern of that
interaction. Additionally, some of the categories under the
task, environment and team context do not have a complete
enumeration of factors and quantified bins. In future work, it
will be particularly important to expand upon factors related
to environment description and modeling. Further, it will
be important to expand upon the characterization of task
modeling and team capabilities, including interdependence
requirements. We hope that the insights from this survey
and the taxonomic structure will facilitate the study of these
issues in a systematic manner.
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