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ABSTRACT

This research is divided into two major parts. First, a class
of linear, finite dimensional, continuous time systems is considered;
each system in this class is characterized by the absence of a cen-
tralized controller. The concept of decentralized control laws for
such systems is then introduced. Four specific classes of decentralized
control laws, and the corresponding control objectives are defined;
these four classes of control laws are: 1) open loop decentralized
control, 2) instantaneous time varying decentralized feedback, 3)
instantaneous constant decentralized feedback, and 4) decentralized
dynamic compensation. For each of these four control laws sufficient
conditions, and in some cases necessary and sufficient conditions, for
the controllability of a system are derived. The approach is alge-
braic in nature, concentrating wherever possible on the underlying
algebraic structure of the system in question.

The second portion of the research is motivated by the desire
to probe more deeply into the subject of system invariants under
decentralized feedback. A module-theoretic characterization of linear,
constant systems is developed. The foundation of this theory is
Kalman's module-theoretic characterization of linear systems; how-
ever, the theory unifies Kalman's work with recently developed poly-~
nomial matrix system characterizations. The principal algebraic
object in this development is the canonical polynomial matrix, which
is shown to play a role in multi-input system theory that is completely
analagous to the role played by the minimal annihilator polynomial
in single input system theory. A realization theory, based on canon-
ical matrices, is developed; this theory has definite implications
towards the realization of infinite dimensional, discrete time systems.
Next, it is shown how state feedback may be represented module-
theoretically; this representation clearly exhibits the changes in
system structure that are attainable via state feedback. Finally, by



determining equivalence classes of state feedback laws, the changes
in system structure which may be attained by a constrained class of
state feedback laws, e.g. decentralized feedback, are determined.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks and Summary of Conclusions

In recent years it has been demonstrated that abstract algebra
can play a significant role in system theory. By this statement it
is meant that algebraic notions such as equivalence relations, con-
gruence relations, partial orderings, universal elements, and canoni-
cal factorizations can be interpreted in system-thecretic terms;
moreover, such interpretations generally lead to a stronger intuitive
feeling, or a better understanding, of systems. Thus, while some
may feel that algebra merely introduces abstract nonsense into system
theory, most will concede that there is indeed scmething to be gained
by looking at systems algebraically.

It is generally recognized that particular classes of systems
may be effectively studied by relating them to particular algebraic
categories; usually, if a class of systems is highly structured, then
a highly structured algebraic category may be used in studying that
class, and quite powerful characterizations of those systems may be
expected to result. As examples, the theories of semigroups and
monoids have been effectively used in studying automata; the theories
of rings and Galois fields enter intc coding theory in a natural way;
certainly linear algebra and lattices of subspaces are essential in
treating linear systems; and it has recently been shown that the

structural properties of linear, constant, finite dimensional systems



are clearly exhibited in a module-theoretic framework. The success
that one has in gaining system-theoretic knowledge by algebraic means
is largely dependent on discovering the "right" algebraic category
for characterizing the class of systems in question; it is only by
discovering the "right" category that full use can be made of its
powerful algebraic properties.

In this dissertation we take the philosophy outlined above in
studying a particular class of systems, the class of linear, constant,
finite dimensional systems with decentralized control. This class of
systems is introduced and defined in the beginning of Chapter Two,
and our attention is restricted to four classes of decentralized
control laws:

1) cpen loop decentralized control
2) instantaneous time-varying decentralized linear
feedback
3) instantaneous constant decentralized linear feedback
4) decentralized linear dynamic compensation
For each of these classes of control laws we also define the control
objectives.

The remainder of Chapter Two is involved with determining
necessary, sufficient, and both necessary and sufficient, conditions
for these various control objectives to be attainable using control
laws of the corresponding classes. Throughout this chapter the only
algebraic methods that are used are the powerful methods of linear

algebra, methods of manipulating subspaces in a lattice of subspaces,
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and recently developed methods pertaining to (A,B)- invariant and
(A,B)- controllability subspaces. The approach that is taken in
Chapter Two is to analyze the partitioning of the system state space
induced@ by the various controllable and observable subspaces of the
decentralized control agents, and then to determine whether this
partitioning is compatible with the particular desired control objec~
tive being met. If it is not compatible, then there is still hope
+hat it can be made so by changing the structure of the various con-
trollable and observable subspaces via state feedback.

One of the control objectives that is treated in Chapter Two
is the arbitrary allocation of poles via decentralized feedback; in
this Chapter several sufficient conditions for decentralized pole
allocation are derived. In Chapter Three we continue this discussion
and introduce the concept of the invariants of a system under decen-
tralized feedback, that is, those properties of the system that cannot
be changed by applying any amount of decentralized feedback. Clearly,
if all the invariants can be identified, then it should be possible
to characterize, in terms of these invariants, the class of system
structures that are attainable via decentralized feedback.

In attempting tc identify the invariants of a system under
decentralized feedback, the follcwing approach, which is the subject
of Chapter Four, was taken. Since recent attempts at deducing the
internal structure of a linear system have been highly successful

when a module-theoretic framework has been adopted, it was felt that
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if feedback could be treated module-theoretically then the structural
invariants of a system under feedback would become evident.

Therefore, in Chapter Four a method for characterizing a
linear system module-theoretically is developed. This characterization
uses as a starting point the basic work of Kalman. However, it is
shown that each of the module~theoretic aspects of Kalman's theory
can be explicitly characterized by an element of the set of canonical

polynomial matrices. This adds concreteness to much of Kalman's

theory, and demonstrates how the structure of the system may be ex-
plicitly expressed in terms of the corresponding canonical matrix.
An unforeseen bonus that results from this method of characterizing
linear systems is an efficient algorithm for determining a realization
of a linear system; moreover, this realization theory is applicable
to infinite dimensional, as well as finite dimensional, linear systems.
The remainder of Chapter Four is concerned with determining
mcdule-theoretically the structural changes that result in a system
when feedback is applied. Since the system structure is expressible
in terms of the canonical matrix, the approach that is taken is to
determine the changes in the canonical matrix that result when feed-
back is applied. Then the invariants of the system under feedback may
be expressed in terms of those properties of the canonical matrix
that cannot be altered by state feedback. By determining eguivalence
classes of feedback laws, where two feedback laws are said to be
equivalent if they result in the same closed loop system structure, the
class of system structures attainable via decentralized feedback can

then be determined.
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Finally, Chapter Four concludes with a discussion of a
characterization of (A,B)- invariant and (A,B)- controllability

subspaces in terms of canonical matrices.

1.2 Notational Conventions

In this section we briefly summarize the notational conventions
that will be adhered to throughout most of the remainder of this dis-
sertation. Additional notations that are germane to a particular
chapter or section will be introduced in that chapter or section.

First, a few words about functions, maps, and morphisms.
if X and Y are sets, then by the notation

f :X2>Y
wé mean that f is a function from X to ¥; X is called the domain of f,
and Y is called the codomain of £. To explicitly exhibit the action
of £ on X, we may also write
f:xpPy
This notation simply means that y = f(x). For example, the function
from the reals to the reals defined by "y = x2" can be represented as
f : R+R

2
T X B x

If £ : X > Y, and if S is a subset of X and T is a subset of Y, then
the image of S under f is a subset of Y defined as
£(s) = {£(s)|ses}.

and the inverse image of T under f is a subset of X defined as

£ (1) = {xex|£(x)er}

We also define the image of f as
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Im £ = £(X)

If £ : X+ Y, we say that f is surjective if Im £ = Y and that f is
injective if f is one-to-one; £ is bijective if it is both injective

and surjective.

If the sets X and Y have additional, and compatible, structure
(e.g. as groups, rings, vector spaces, etc.) then we say that £ : X > Y
is a morphism if it preserves algebraic structure (see [46] oxr [53]1).
In this case, if 0 denotes the additive identity of ¥, then the

kernel of f is defined as

Ker £ = £ L ({o})
If X and Y have the structure of K-vector specer, and also of K[A] -
modules, for some field K, then we shall usually (but not always)
say that £ : X + Y is a morphism if it preserves module structure,
and a map if it preserves only vector space structure.

By a commutative diagram we mean a diacvam of the form

X —e- X

1 f12 2

f:;\\\\\ //////ﬂ;23
X3

where fij : xi -+ xj , and where

f23(f12(x)) = f13(x) , for all xexl

A diagram with more than one "triangle" is commutative if each of the
triangular subdiagrams is commutative.
If K is an integer, and if K > 1, then we define

k= {1,2,...x}
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If X is a vector space, then the subspaces of X from a
lattice; that is, the set of subspaces of X is partially oxdered
by the inclusion relation:

R < S <> (xeR =>xeS8)
for R and S subspaces of X. Moreover, we define

Rs

{x|xeR and xeS}

and

R+ S

{x|x = r+s, for some reR and seS}

If R[-‘S = 0, the zero subspace, and if R + S = T, then we write
T=R®S

and say that R and S are independent and that T is the direct sum of

R and S. 1If X is an inner product space, with inner product <x,y>,

then the orthogonal complement of a subspace S is

st = {xeX|<x,s> = 0, for all seS}
It can be easily shown that
Seo s =X
If A : X+ X is a linear map, and if BC X is a subspace, then we define
aB = {ax|xeB}
and
{al|B} =B+ aB + a%8 + ...

Finally, the lattice of subspaces is a modular lattice, since the

modular distributive law holds:

RCT=T[)(R+S) =R + T[S




CHAPTER 2

LINEAR SYSTEMS WITH DECENTRALIZED CONTROL

2.1 1Introduction

Until fairly recently it has been traditional in system and control
theory to consider a dynamical system as being controlled by a single
control agent. In such a situation one assumes that all of the available
information about the system and its state may be utilized by the single
control agent in determining his control strategy. For rather obvious
reasons this type of control philosophy is termed "centralized control".

Often, however, it is more reasonable to model the system as being
controlled by two or more control agents, each of whom has access to an
incomplete information set (i.e. the observations on the system and its
state), and each of whom can influence only a portion of the system
through his control strategies. Clearly, if there were a higher order
control agent, or coordinator, which could receive information from, and
send commands to, each of the other control agents, then the overall
control of the system would be centralized. In the absence of such a
coordinator we shall say that the control of the system is "decentralized".

Decentralized control systems fall into two classes: cooperative
and uncooperative. In the former class the individual control agents
all strive for the same goal, or at least similar goals; in the latter
class the individual agents may be striving for conflicting goals. While
there exist several examples of the latter class, e.qg. differential
games, we shall concern ourselves only with cooperative decentralized
control systems.

Examples of cooperative decentralized control systems abound,

especially when one considers large scale dynamical systems. Typical
15
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examples are: traffic systems, both air and ground; models for
macroeconomic systems, where one may conceive of the Congress and the
Federal Reserve System as being two uncoordinated control agents [51];
and power distribution systems, where, due to geographical constraints,
there can be little coordination between control agents.

In this chapter we shall concern ourselves with a particular class
of systems with decentralized control, namely the class of linear,
finite dimensional, continuous time systems. Our rationale for
restricting attention to this class is as follows. First, due to the
powerful mathematical tools that may be applied to linear systems,
one can hope to be able to formulate and answer several interesting and
meaningful questions concerning the control of these systems. Secondly,
many systems with decentralized control ﬁay be approximately modeled as
belonging to this class. Finally, a fairly thorough theory on the
control of linear systems with decentralized control could provide us
with an intuitive feeling for the decentralized control of more general
systems.

Therefore, we define a linear, finite dimensional, constant system

with decentralized control in terms of the following equations:

e
]

Ax + % Bi ui
i€k

4

y; =¢ x ,iex= 1,2,...x}

In the above, A is nxn, Bi is nxmi and Ci is pixn; ui £ Rmidenotes the
. Pj .
control applied by, and Y; € R T the observation made by, control

agent i, for each i € K. (Consistently throughout this chapter we shall
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denote a set of integers of the form {,2,...m} by the symbol m.) In

the interests of notational brevity we shall refer to this system as
L = (a, Bi, Ci’ i € K)

with the integers n, and m, and P/ i € K, being implicit.
If we assume that the control of I is initiated at time t = O, then
the essence of the decentralization of this control is contained in the

following statement:

m.
(2.1-1) For each i € K, and each t 2> 0, the control value ui(t) ER

must be expressible as a causal function of the output signal
Y, €C l[0,°°); i.e. for each i € K there exists a family of maps

Pi .
(control laws) {Fi : C l[O,t] > le, t 2 0} such that
13

t

= 0 < 0
%&) %mwﬁﬂ, <T <t], for t 2

In order to guarantee that the incorporation of such control laws into
L will result in Y; being an element of Cpl[o,m), for each i € K, we also

require that the maps Fi & satisfy the following regularity condition:
¥

(2.1-2) The signal u, defined pointwise as
= < <
u, (t) Fi't[yi('t), 0T <t], for t 20

is at least piecewise continuous in t, for t 2 0, whenever

p.
¥; €C [040) -

Unfortunately, if one allows the control laws to be as general as
possible, subject only to (2.1-1) and (2.1-2), then an analysis of the

resulting closed loop system appears to be intractable. Therefore, we
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shall restrict our attention to the following four classes of control laws:

(2.1-3) Fi,t[y(T)' 0 xT.<t] = £ (t, y,(0))

(2.1-4) Fi't[y(’[), 0 T <t] = Fi(t) yi(t)
(2.1-5) Fi’t[y(‘l‘), 0. 5T Xt] = Fi yi(t) + Gi \ (t)
(2.1-6) Fi't[y(‘r), 0 <T <t] = Fi(yi'(t)-. zi'(t))' + Gi vi(t)

Ne
0

where z, satisfies R,z + 8, v,
i i ‘i i ¥i

The remainder of this chapter is organized in terms of these four
controcl laws. In Section 2.2 we consider the control law (2.1-3), which
is strictly an open loop control law. Our cbjective in this section
will be to establish a theory for the open loop controllability and
reachability of L. From the results in this section we shall see that
a natural objective is to decompose the state space into a direct sum
of subspaces, each of which is observed and controlled by a single control
agent.

Control law {(2.1~4) is considered in Section 2.3. Our goal in this
section will be to determine for what pairs of states (xo, xl) e R x R
there exists a T > 0 and matrices Fi(-) € Cmi ® pi[O,T] such that, when
ui(t) = Fi(t) yi(t), the state of the system is driven from x_ to x,.
It will be shown that recent results in bilinear systems are applicable

to this problem.

In Sections 2.4 and 2.5 we consider control law (2.1-5), with the
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objective being to choose the matricies Fi such that the poles of the
resulting closed lcocop system
£=((a+ £ B, F.C.,B,C.,i€K)
jeK Jj i i -~
fall at desired locations. As a special case, for example, we may wish
to choose the Fi so that g is asymptotically stable. Problems of this
nature have been studied by Aoki [2] and, in the discrete time analogue,
by McFadden [51], and Morse and Corformat [15]. Our approach will be
to consider local (i.e., perturbational) results in Section 2.4, and
global results in Section 2.5.
In Section 2.6 we define and derive “"generalized observers" that
the individual controi agents may use to increase their information sets;
these are similar to the standard Luenberger observer, with the exception
that control agent i does not need to know the controls uj, for j # i.
Finally, in Section 2.7 we combine the results of Sections 2.5 and
2.6 to consider control laws of the type (2.1-6), i.e. control laws

based on observers or dynamic compensation.

2.2 Open Loop Control of Systems with Decentralized Control

In this section we shall consider the open loop control of systems
of the form £ = (a, Bi’ Ci' i € K), as defined in Section 2.1.
Specifically, we shall introduce the concepts of controllability,
reachability, and connectedness, all in the open loop sense, as applied
to systems with decentralized control. The definitions parallel those
in b6]; however, we shall consider only the time invariant case. A

discussion of observability and state reconstruction, in the context of
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decentralized control, is deferred to Section 2.6; if one wishes to
assume that each control agent employs a "generalized state reconstructor”,
then the results of this section are trivially altered by replacing each
Ci with (Ci'; Hi')', for some appropriate H, .

As applied to ordinary linear systems, "controllability" of a system
implies the ability to find a control ux(') which will drive the system
from state x to the zero state in a finite amount of time; moreover, such
a control ux(°) must exist for every X € R'. In general, if a system is
controllable, then the class of controls which will drive the system x to
state zero is strongly dependent on the particular initial state x.
However, when the control of the system is decentralized, control agent
i cannot measure the entire initial state x, but instead measures Ci X;
thus the control ui(-), as applied by control agent i, must be a
function of this initial observation Ci X.

Similarly, reachability of a system implies the ability to find a
control ux(-) which drives the system from the zero state to state x in
a finite amount of time; moreover this must be true for all x¢ R, It
is not immediately clear how this concept changes when the control of
the system is decentralized. However, we shall adopt the following
convention. We shall assume that agent i is concerned solely with that
portion of the state space that can be "seen" through the map Ci; and
thus his control ui(-) is a function of Ci x, where x is the target
state. Admittedly, this is a somewhat restrictive convention; its
rationale is that there is no way that agent i can monitor the effects of
his control if it is selected so as to affect a portion of the state
space that cannot be seen through Ci' Clearly this restriction is

relaxed somewhat if each agent is allowed a"generalized observer."
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Finally, a system is connected if for each pair of states (xo,xl)

n . . o
€E R Xx R there exists a control u (+) which drives the system from

XorX]

1

the initial state X to the target state x. in a finite amount of time.

Again, when the control is decentralized, we shall insist that the

control ui(') be a function of (Ci xo, Ci xl), for each i € K. These

concepts are now summarized formally as

(2.2-1)

Definition: Let X = (A'Bi' Ci’ i € K) be a system with
decentralized control. Then

(i) I is controllable with open loop decentralized controls
{(or, simply, controllable) if there exists T <% and functions

Pi My .
fi : [0,T] X R~ =+ R such that the controls

. = £ (t,C.x); € [0 i <
ul (t) fl( ’Cl ): t [0,T], 1 € _Ii
are at least piecewise continuous in t for all x € Rp, and such

that

T
AT _ ‘ro A(T-t)

e iEK Bi fi(t, Ci x) dt = 0,

for all x € R
(ii) I is reachable with open loop decentralized ccntrols (or,
simply, reachable) if there exists T <x and functions
Pi Mj
gi : [0,T] x R~ - R~ such that the controls
u (L} =g, (¢, C, x); te (0,71, i e K

. . . . n
are at least piecewise continuous in t for all x € R, and

such that
T

A(T-t) _ n

IO e ) B, 9, (t, ¢; x) dt = x, for all x € R

ieKk

(iii) T is connected with open loop decentralized controls
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(or, simply, connected) if there exists T < and functions

p. Pt mc
hi : [0,7] xR . X R tagt such that the controls

ui(t) = hi(t, Ci xo, Ci xX); t € [0,T], i€ K
are at least piecewise continuous in t for all (xo, xl)e R’ x
Rn, and such that

T
eAT x + f eA(Tmt) Z B, h,(t, C, x , C.x,) dt = %
o 0 ii i“o il

ll
iex

for all (x , x.) € Rn x Rp
o 1

We shall often refer to the functions fi’ gi, and hi as control laws.

Of particular interest is the case where the control laws may be chosen

to be linear in their second variables:

(2.2-2) Definition: A control law f : [0,T] x ® + R" is said
to be linear if there exists an m x p matrix function F(-)
such that
£(t, y) = F(t)y; t € 0,71, y ¢ R
A control law £ : [0,T] x P x RF » Rm is said to be linear
if there exist two m x p matrix functions, Fl(') and F2(~),

such that

E(t, v, ¥,) = F (t) y; + Fy(t) y); te 0,71, v, € B

Just as in the centralized control case we have the following result,

which allows us to restrict our attention to controllability and reach-

ability:

(2.2-3) Proposition: I is connected (connected using linear control
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laws) (i) if and (ii) only if ¥ is both controllable and
reachable (controllable and reachable using linear control

laws).

Procof: (i) Let I be both controllable and reachable, and let Tc and
{fi, i ex}, and T, and {gi, i € K} be the respeciive values of T and
the control laws in (2.2-1) (i) and (ii). Define T = Tc + Tr and

Pi Pi m4§
hi: [O,T]lele->Rlas

<
f.(t, C. x),0<tx<rT
h,(t, c. x, C, Xl) =

gi(t-Tc. Ci xl), Tc <t T

It is then easy to see that these control laws satisfy the condition of
(2.2-1) (iii). Clearly, if both fi and gi are linear control laws, then
so is h,.
i
(ii) Clearly, connected implies controllable by considering the
= 0; similarly, connected implies reachable by taking
A

xo = 0. If the control laws hi are linear, then so are fi(t, Ci xX) =

special case X
h.(t, ¢, x, 0) and 9, (t, C x)A=h(t 0,¢c, x. B
itvtr i 7 it i itrtr vy '

We next derive a set of necessary conditions for § to be controllable.
These conditions will also be seen to be necessary for £ to be reachable;

thus they are necessary for I to be connected.

(2.2-4) Lemma: Let I = (A, Bi' Ci' i€ K) be a system with
decentralized control. Thenl is controllable (reachable)

only if
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" for all subsets I € K (of which there are 2K) , Wwherxe the
intersection of an empty set of suvbspaces is taken to ho Rn,
and the sum of an empty set of subspaces is taken to be the

zero subspace.

Proof: If I is controllable there exist T < and control laws fi :
Pn m-
[0,T] xR s R . such that

T

(2.2-5) [y & F

Z B, £,(t, C. x) dt = - x, for all x € R’
. i7i i
i€K

From this there immediately follows

T -At
{2.2-6) S e £ B, £.(t,0) dt =0
0 jex * %

by evaluating (2.2-5) at x = 0.
Now let I C K be any subset, and take
X € ﬂ Ker C.
jeI
From (2.2-5) there then follows

T

-At ,
-x=Jf e (L B, £.(t,C, %+ I B £t C %) dt
1€l 1¢I
T -ae
=fH e (I B £(,0 + L B £ (t, C %) adt
iex idr
T
_ -At B, £.(t,0) + I B, (f (t,C, x) - £, (t,0)) at
=Jfg e (iéﬁ i’i id1 iti i i
Tt
=0 +f5e 2 B (£ (t,C; x) - £ (£,0)) at

igl

the last line resulting from the use of (2.2-6). But the vector on the
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right hand side of the abiove is necessarily an element of I {a]B.}.
igI J
Thus

X € ﬂ Ker ¢, =>x e I {a[B.}
jer J 1 )

and the lemma is proved for controllability.
If the system is reachable,'there exist T <o and control laws gi :

P4 mj
[0,T] xR T R t such that

T
IS Y g, (t, C, x) at = x, for all x ¢ R
0 iek * 7 *

The only differences between this equation and (2.2-5) are the presence
of an eAT on the left, and the absence of a minus sign on the right.
Since neither of these affects the steps in the preceding proof, it is
clear that the result is also valid for reachability.

Two special cases of (2.2-4) are now stated as

(2.2-7) Corollary: The system I = (3, Bi’ Ci' i € X) is controllable
(reachable) only if

(1) 2 {AIBi} = r" (controllability of the centralized
iexk system)

and

(ii) n Ker C, = 0 (complete observations in the central-
ieK ized system)

We would now like to determine conditions which are both necessary

and sufficient for the controllability and reachability of I. Unfortunately,

it appears to be impossible to find such a set of conditions that can be
applied to any system I = (A, Bi' Ci' i € K). Thus, we shall first

derive necessary and sufficient conditions for the controllability and
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reachability of X using linear control laws; then we shall consider
classes of systems where these conditions apply without the assumption
of linear control laws.

We shall need the following result:

(2.2~8) Proposition: ILet Aben xn and B ¥ 0 be n x m, and let

r = dim @;IB}. Let G be an n X r matrix whose columns form
a basis for {o|B}. Then there exists a unique r x m matrix

function 6{t), continuous in t, such that

e Bt p - ¢ 6(t), for all t

Moreover, for each T > 0, the linear map

L : cto,T] »R*

T
u(.) » fo 8(t) u(t) at

.

is surjective.

Proof: The existence, uniqueness, and continuity of 6(t) follow from the

facts that Im (e At

B) C {a|B} = G for all t, that G is a basis matrix
for {|B}, and that e Pt {5 continuous in t. That L is surjective

follows from the facts that G is a basis matrix for {AIB}, and that L

T -At '
c"ro,m1 » @|B} : u(.) » IO e "~ B u(t) dt is surjective. B
(2.2-9) Lemma: Let I = (a, Bi' Ci' i € K) be a system with decentral-

ized control. For each i ¢ K let r; = dim {3|B;} and let G, be
an n x r, matrix whose columns form a basis for {AlBi}. Then

I is controllable (reachable) with linear control laws if and

rixpi

only if there exist matrices ¢i € R » i € XK, such that
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(2.2-10) I G, ¢, C, =1I
155

Proof: (i) (only if): Let I be controllable, and let the linear control

laws fi be given in terms of the matrices Fi(t); thus

T =At n
J e z Bi Fi (t) Ci x dt = - x, for all x € R
ieK
For each i
T -At
Im(S/ e " B, F (t) dt) © {a[B.} =0,
o i"i i i

Thus there exist ¢i such that

T
S e B F(t)at=-0c, ¢.,icekK
Then
T-At
- Iz G, ¢.C.,x=3ZI [ e B, F.(£) C, xdt = - x
. i "1 i . 0 i i i
l€_K_ 185

n
for all x € R, i.e.

I G ¢, cC =1
iex

The proof for reachability is similar, and is therefore omitted.

(ii) (if): Pick the ¢i so that (2.2-10) is satisfied. By

. ri x mj
(2.2-8) there are unique Gi(t) €EC [0,0) such that

e-.A't B, =G, 6,(t), for all t
i i i

Let T > 0 be arbitrary. By (2.2-8) the maps
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m4 rs
¢ ‘fo,T] * R T

|

T
u(-) » [ 0.(t) u(t) 4t
0 1

are surjective; thus there exist matrices Fi(t) such that

T
fo 6;(8) F; (£) at = - ¢, i €K

using the F, (t) so obtained,

L
T _at T
S e z B, Fi(t) ci dt = ¢ [ G, 0. (t) Fi(t) c; dt
iek iex *
==~ G, ¢, C,
iE_l_(_ 1 1 1
= -1
Thus
T =At n
J e L B, F,(t) C, xdt = - x, for all x € R
0 ieK i’i i

The proof for reachability is similar, with the exception that we

define the ei(t) to satisfy

AT 5 o G, 8, (t)
i i’i

T
Then, it is easily seen that u(:) » [ Gi(t) u(t) dt is surjective; thus
0
define Gi(t) to satisfy
T

fo Gi(t) Gi(t) at = 4’5_

It is clear that the proof goes through with these minor changes. @
The result of (2.2-9) can be strengthened somewhat by making use of

Kronecker products of matrices. To be definitive, we include
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(2.2-11) Definition: Let M € R and N € RE*Y pe two arbitrary
matrices. Then by the Kronecker product, M@ N, of M and N we

shall mean the following mp x ng matrix:

11 12 1n
M N M N cen M N
M@N = 21 22 2n
Mml N Mm2 N ne e an N
(2.2-12) Theorem: Let L = (A, Bi’ Ci’ i € K) be a system with

decentralized control. Let the integers r, and the matrices Gi
be as defined in (2.2-9). Then I is controllable (reachable)

with linear control laws if and only if

- P ' . ' . 1
(2.2-13) e € Im (Cl ®G1, C2 ®G2, cee CK ®GK)

2
~ n- . .
where e € R is the vector with components

e, =

{ 1, ifi=1,n+2,2n+ 3, ... n?
i

0, otherwise
Proof: From (2.2-9) we have only to show that (2.2-13) is satisfied if
. . riXpj i e
and only if there exist ¢i € R » 1 € K, such that (2.2-10) is satisfied.

To establish this relation, let G, X, C, and ¥ be matrices of

dimensions n x ¥, r x p, p x n and n X n satisfying
Y=GXC

Also, let X and Y be partitioned as
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X = (xl; x2; e xp)
Y = (y1: Yoi e yn)

- - 2
and define X € Rrp and Y ¢ Rp as

N

Then it is a simple matter to verify that

¥=(c"®6 ¥

r.Xp.

i . \
Now let xi € R l, 1 € X, and define Y as

Y= I G, X. C,
, .. 1711
ieK

Using the notation of the previous paragraph, it follows that

¥T= I (C;'®6) X

ieK
Stl
st2
- ] - L} ° [ -~ .
= (C;' ®Gyi C,' @Gyi +ox G B G :
X
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Thus there exist xi, i € K, such that
Y= I G, X, C;
iex .

if and only if
v 3 [ . '
YeIm(C'@G ... C' ®G)

Since e is the vector representing the n x n identity matrix, i.e.
e = I, the theorem follows. B

While (2.2-12) completely solves the problem of controllability and
reachability with linear control laws, it is difficult to interpret in
system theoretic terms. That is, we would like to find a result involving
the subspaces Ker C; and {AIBi}, i € K. In particular, we would like to
determine the conditions under which the following occurs: The solution
of the controllability problem leads directly to a decomposition of the
state space into a direct sum of subspaces, each of which is observed
and controlled by a single control agent. The result that we shall prove

is the following.

(2.2-14) Theorem: Let Z = (A, Bi' Ci' i € K) be a system with

decentralized control. Then, subject to any of the following

assumptions
(2.2-15) z (ﬂ Ker C,) = R"
i€K  j#i |
(2.2-16) N (£ aB.h =0
i€k j#i J

(2.2-17) K=s2
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necessary and sufficient conditions for 7 to be controllable
(reachable) are
(2.2-18) [l ker c. ¢ & {alB.}, for all I = k
jeI 1 J -
Furthermore, in each of these three cases, if (2.2-18) is
satisfied, then I is controllable (reachable) using linear
control laws.
Proof: The necessity of (2.2-18) follows from (2.2-4). The proof for
sufficiency is divided into three parts.
Part 1: Assume that (2.2-15) and (2.2-18) are satisfied, and define
subspaces Si as
(2.2-19) S, = [ xer cjriek
i
We assert that the Si are independent. Indeed, for each j#i it follows
from the definition of Sj that Sj € Ker C;; therefore
S, n r §. ¢ S.nKer C, = n Ker C, =0
Yoo 3 E togex )

where the last equality follows from (2.2~18) with I = K. Then from

(2. 2-15) ’

n

(2.2-20) Sl 032 D ... OSK = R
Also, as was previously noted,

(2.2-21) Siﬂ Ker C; =0, i €K

and, from (2.2-18), with I = K - {i},
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(2.2-22) S, < {ajB.}, iex
1 1 i

For each i € K, determine matrices ¢i as follows. ILet di = dim.Si,
and choose a basis {eij' i e gi} for Si. From (2.2-21) it follows that
the vectors {Ci eij' j e Qi}are independent; thus there exists an n x P,

matrix Ki such that

(2.2-23) Ki Ci eij = eij' j € 91

Moreover, from (2.2-22) it follows that Ki can be chosen so that
(2.2-24) m K, C {AIBi}

Now let r, = dim {AlBi}, and let G, be an n x r, basis matrix for {AlBi}.

From (2.2-24) there is an r; Xp; matrix ¢i satisfying

(2.2-25) K, =G, ¢,

Having determined the matrices ¢i’ we now note that

z G, ¢k Cx eij = G; ¢i Ci eij (frem (2.2-19))
kexK

= Ki Ci eij (from (2.2-25))

= eij (from (2.2-23))

for all j € Qa and i € K. But, from (2.2-20) it follows that {eij} is

. n
a basis for R, whence

]
o)

)X ¢
kegGk x Sk

and the result follows from (2.2-9).
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Part 2: Assume that (2.2-16) and (2.2-18) are satisfied, and define
subspaces Ri as
1 L
R = ¢z a]Bh* = (a8}
1 s s 1 . s 1
j#i J#i
The Ri are indeperdent because, from (2.2-18) with I = ¢ (the null set),
2 L n
N @B}y =z aBEh =& =0
jek jek
Thus, from (2.2-1€¢),
=R OR @ ... ® R
1 2 K
) 1
Defining G; as in part 1, f1 {AIB.} = 0 translates to
jeK

R.rw Ker G.' = 0
i i

and, from (2.2-18) with I = {i},

1
R. € (Kerc,) = Imc,'
1 1 1

Now, as in part 1, we define di = dim Ri (in fact di = ri) and let

- . : ' . .
{eij' je 91} be a basis for Ri. Then {Gi eij' j € gi} are independent,

so there exists Ki such that

K. G,'e,. =e,., jed.
i 71 ij ij —i

Moreover,

=RC '
Im Ki i Im Ci

Thus there exists ¢i' such that



= ' '
K, =¢;' 9y

Finally, having determined the d)i' » 1 € K, we verify that

zcl¢|Gle.-_-C'¢'Gi'e..
. . . i3
keEk k k ij i i
=K, G,' e,.
i i Tij
= e,,
1]

for all j € 4;, i € K. But, {eij} is a basis for R", so
Lo B
and the f:esult follows from (2.2-9).
Part 3: If K= 1 and (2.2-18) is satisfied, the result follows
trivially, for then {AIBl} = R" and C_is left invertible. Thus assume

1
that K = 2 and that

Ker Cl nKer C2 =0

Ker C, € {AIBZ}

Ker C, C {AIBl}

2
(2.2-26) {a|B,} + {a|B,} = R’
We shall show that there exist subspaces Nl and N2 with

(2.2-27) Ker Ci c Ni' i=1,2

and with
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and
N, € {AIBj}, i#3
To find the Ni’ write

{AIBl} = (Ker C, ® Ker C,) n {AlBl} ] Gl

~

for some appropriate Gl (not unigue, in general). We then have

Glﬂ (Ker C, @ Ker C,) (Gl ﬂ {AIBI}) r] (Ker C, & Xer C,)

A

so that Ker Cys Ker C,, and Gl are independent. Define

2'

N2 = Ker C, ® Gl

Since both Gl and Ker C_, are subspaces of {AIBI},

2

Ker C, © N2 c {AIBl}

as required.

Now write
{al8,} = ker c, @K, [N (alB,} @6,
It follows that Ker Cl ’ Nz and GZ are independent. W= define

N, = Ker C]_QG2

1

and we have

Ker C, Nl = {AIBz}
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as required,
We must now show that N, @ N:2 = R'. From (2.2-26), it is enough to

show that N, @ N, © {AIBi}, for i = i,2. But

N, @ Ny [112[B)} = xer ¢, @G, @K, [ {als,)

=6,® (xer ¢, ® N, [ {a],}

{alB,}
whence {a|B,} c N, ®N,. Also

(N, ®N,) N {AlBl} D (Rer C, @ Ker C, ® C,) N {A|Bl}

G, ® (Ker C; ® Ker C,) N {A]Bl}

{AIBl}

C L]
whence {AlBl} N, ®N,
Finally, from (2.2-27) there exist matrices Ki such that, with
~ A ~
Ci = Ki Ci' Ker Ci = Ni’ for i = 1,2. Thus the system $ = (a, Bi’ Ci' i=1,2)
satisfies (2.2-15) and (2.2-18), and it follows that § is controllable
and reachable. Letting ﬁl(t) and §2(t) be the matrices in the linear

control laws for ﬁ , it follows that
Fi(t) = Fi(t) Ki' i=1,2
give suitable control laws for L. I
(2.2-28) Remark: As was seen in the proof, (2.2~15) together with

n Ker Ci = 0 implies that the state space can be written
i€K
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as a direct sum Sl D ... D SK. For each i € K, Si consists
of those states which cannot be seen by agents j,for j # i;
thus, agent i is assigned the task of controlling Si' This

is possible if Si c {A'Bi}.

(2.2-29) Remark: It is quite easy to show that (2.2-16)implies
that the subspaces {AlBi} are independent; then, if (2.2-18)
is satisfied when I = ¢, the state space can be decomposed as
{AIBl} D... ® {AIBK}. Clearly, control agent i must control
{A!Bi}; and for this to be possible we need {AIBi}n Ker C; = 0.
But the latter is true because, from (2.2-18), Ker Ci=

{alg;}@ ... @ {a[B,_;} @ {a[B, ;1 ® ... & {a[B].

(2.2-30) Remark: It is remarkable that in general the constructive
procedure used in part 3 of the above proof will not work when
K > 2. A more general approach would be to attempt to "increase"
each Ker Ci and to "decrease" each {A|Bi}. That is; we could

seek subspaces Ni and wi satisfying

c N i
Ker C, i,leK

W, c { i
; € Bl iek

nN.C IW,, for all I € K
jer I jerd
and at least one of the following:

: (N

i€k i

n
.} =R
J
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or

Nz w)=o
i€k j#i I

However, it is easy to show that a necessary condition for
the existence of such subspaces is (2.2-13). Unfortunately,
(2.2-18) does not imply (2.2-13), as can be seen from the

example in the next remark.

(2.2-31) Remark: That (2.2-18) is not sufficient, when K > 2, for
the controllability of ¥ using linear control laws can be seen

from the following example:

;1000
0100
A=
0011
0001
1 1
-1 0
B1 = 0 ' B2 = o
0 0
0 0
1 0
B3 = o ’ B4 = .
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c, = (1 -1 0o 0), c,=1( 1 0 0)
0 0 1 o)
cy = (L o o0 0), C,=\o 0 o0 1

It is straightforward to show that (2.2-18) is satisfied;

however, (2.2-13) is not.

2.3 Linear Systems with Linear, Time Varying, Decentralized Feedback

In this section we consider the control of the systemf = (A, Bi’

Ci' i € K) using control laws of the following type:
ui(t) = Fi(t) yi(t) = Fi(t) Ci x(t), i € K

The control objective will be to drive the system from state X at time

zero to state Xy at time T. Defining

A
A(t) =A+ I B, F, (t) C.
. ii i
1@5
and ¢£(t, to) as the transition matrix for the system x = ﬁ(t) X,

it is clear that x1 and xo must be related as

x1 = ¢g (T,0) X,
Thus,in particular, to avoid trivialities we must assume that both X and

X, are nonzero.
(2.3-1) Definition: Let X = (A, Bi’ Ci’ i € K) be a system with

decentralized control, and let xo, xl € r? be two nonzero

states. Then we shall say that X is reachable from X using
time varying decentralized feedback if there exist T > 0 and

{Fi(t), ie 5} such that
xl = ¢£ (T,0) xO

where ﬁ(t) = I B, F,(t) C.
. i"i i
1€@5
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The problem of determining when X, is reachable from X can be trans-
lated into the framework of some recent results in bilinear systems

([91, [10], and [11]). This is accomplished as follows. Partition each

B, and C, as
i i

Bi = (bil; biz; e bi,mi)' iek
Ci1
C‘
C, = i2 , 1 €K
1 . -
cj-lpi

Then if Fijk(t) is the j,k element of Fi(t)'

Bi Fi(t) Ci

i
™
™M

Fiae(®) byycyy

whence
(2.3-2) A(t) = A + _; .Z z Fikj(t) bij cik
iek jcmy kepy

We would now like to deteriiine the set of all transition matrices ¢g(t'0)
satisfying

d5(t,0) = A(t) ¢£(t,0), $4(0,0) =1

where A(t) is given by (2.3-2), and the Fijk(t) are allowed to be any

piecewise continuous functions. If this set contains an element of

P ={Pe R | GetP>0and P x_ = x}

then it is clear that x, is reachable from x . Note that the set P
1 o XorX]

is always nonempty if n > 2, and if both X and X, are nonzero.
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To determine the set of transition matrices, we first define the Lie

algebra generated by A and all the bij Cper {a, b }A’ to be the

i3 %ik

smallest subspace of R0 which contains A and each bij c.., and which

ik

is closed under the Lie bracket operation:
nxn
[X, Y] = XY - ¥X; X,Y €R

We also define the Lie group lexp {a, bij cik}A}G to be the multiplicative
nxn s _ N1 N2
subgroup of R consisting of all finite products of the form e € ...
Ng

e , for 4 =1,2,..., where each Ni e{a, bij cik}A' We now have the

following facts:

(2.3-3) Fact ([9]): The set of all transition matrices {¢. (T,0)}
A
is related to the group {exp {a, bij cik}A}G in the following
ways:
. ) ~ C :
(i) {¢A (T,0)} {exp {a, bij cik}A}G
for all T > 9.

ij citalg

(ii) If A =0, then {¢~ (7,00} = {exp {A, b
A
for any T > 0.
(iii) 1f eAt is periodic, then

{¢£ (Tr,0), T 20} = {exp {a, bij cwlate
We can now state the following result, which follows easily from

(2.3-3) and the preceding discussion:

(2.3-4) Proposition: Let n > 2. Then, if eAt is periodic, a

necessary and sufficient condition for X to be reachable from

i P
x, is that xo'xlr1'{exp {a, b,

ij i tale # ¢
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2.4 Local Results in Pole Allocation via Decentralized Feedback

The contents of this section will be more analytic in nature than
algebraic. Specifically, we shall determine how small feedback gains
give rise to small perturbations between the open loop and the closed loop
poles of a system. Then, if we can find a local right inverse to this
relationship, we shall be able to determine small feedback gains which
will produce desired changes in the system poles, if these changes are
"small enough". If significant changes in the system poles are desired,
then one might hope to achieve them by a series of incremental changes
in the poles, each incremental change being induced by an additional
incremental amount of feedback.

We shall always be dealing with systems defined in terms of real
matrices. Thus, we shall necessarily be concerned with changing a set
of open loop poles, A ='{ki, ie 2}, with complex conjugate symmetry
(e A=>2X € ) to a set of closed loop poles, A= {ii, i € n} with
the same type of symmetry. However, the set of differences,

E = {ei = Xi - Ai' ie 2}, need not have this symmetry. Partly for

this reason, and partly because it is difficult, if not impossible, to
functionally express the system poles in terms of the system matrices,
we shall concentrate on the changes in the coefficients of the system
characteristic polynomial which are induced by small feedback gains. We
need only bear in mind the fact that the relation between the system
poles and the coefficients of the system characteristic polynomial is

a bijection.

We now introduce the concept of local pole assignability.



44
(2.4-1) Definition: ILet I = (a, Bi' Ci' i € K) be a system with
decentralized control, and let

n-1 .
det Ar-2) =2"+ 1 A" q

i=0 n-i
be the characteristic polynomial. Then the poles of ¥ will
be said to be locally assignable via decentralized feedback if
there exists € > 0 such that for each set of real coefficients
{&i, i € n} satisfying &i - ail < €, i e n, there exists at
least one set of feedback matrices {Fi, ie §j with
n-1 .
det A - A) =A"+ £ At 3§

1=0

N
where A=A+ ¥ B, F, C..
. i1 i
iex

We shall have occasion to use the following result which relates the
coefficients of the characteristic polynomial of A to the traces of

powers of A.

(2.4-2) Fact: Let A be a real n x n matrix, and let {ai, ie n}
denote the coefficients of the characteristic polynomial of A:
n -l i
det (AT - 2) =X+ I A o _;

i=0 -

also define'{si, i € n} as
i .
si =tr (A7), i€en

Then the elements of either of these sets may be uniquely

determined from the elements of the other set as
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S - sy i=1
(2.4-3) @ =< i-1

i =1 J i
and
- al, i=1
(2.4-4) s, = i-1
- i ai - aj si—j' 2<i<fn
j=1

This result, which may be found in [28, p.87], is often referred to
as Newton's formula; the quantities s, are known as Newton's sums.
Without rigorously proving the above formulas, it is easy to connect

them with some better known results by noting that if {Xi, ie g} are

the eigenvalues of A, then s; = z X.l; and
i€n
ai = (-1)1 * (sum of all principal i x i minors of A)
= (-1)* z AjAy e A
J1<32<...<3i 1 2 i

It is then routine, albeit cumbersome, to verify (2.4-3) and (2.4-4).
It is a simple matter to verify that both transformations,
'{si} ”;{ai} and {ai} H;{si}, are everywhere differentiable to all orders
(e.g. both Jacobian matrices are lower triangular with nonzero diagyonal

elements). Therefore, we can immediately state the following

(2.4-5) Proposition: Let I = (A, Bi' Cyv i € K) be a system with

decentralized control, and let
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s;=tr ), i€n

be the Newton sums for A. Then the poles of I are locally
assignable via decentralized feedback if and only if there
exists € > 0 such that for each set of real numbers {§i, ieg E}

satisfying |§i - s < €, i € n, there exists at least one

il

set of feedback matrices {Fi’ i € K} with

tr A1) =8, ien
where A=A+ I B, F, C,.
. i"i7i
1eK
Our approach will now be to determine the derivative of the map
{Fi, iceg §}'*‘{§i, i € n}. Ther, if this derivative is surjective, it
will follow that the above map is locally surjective, and thus has a
local right inverse. This will provide us with a sufficient condition for

local pole assignability. We first prove the following lemma.

(2.4-6) Lemma: Let A and X both be n x n real matrices and define
5, () =tr [(A+X"), ien

Then

8, +itr @ xR +om,ien

si(x)

where o(X) is the small order function with respect to any

convenient norm on X.

Proof: Expanding (A + X)l we get
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. . i1 L i-2 i-3-2 . .
—- k k=2
a+x)t=aty z adxatIty g r  ad x af x atvI7k-?
j=0 j=0 k=0

+ terms in X of order > 3

Taking the trace,

i L j o i-j-1
tr AN + ¥ tr a2 x2a777TYY + o)
j=0

tr [(A + X)i]

i it i-1
tr (A7) + £ tr (A X) + o(X)
3=0

tr (Ai) + i tr (Ai-l %) + o(X)

which establishes the lemma. B
In order to conveniently represent the derivative of the map
{Fi, i€ _Ig} | 2d {§i, ie _n_}, we shall express each Fi (which, recall, is of

dimensions m, X Pi) as

12; cee fi,pi)

?

and define the vector f € Rq, qg= I mi p,, as

ieK

K;p
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Then {Fi' i€ _l_(_} " {§i} induces a map £ ¥ {é\i} in an obvious way. We

shall find the derivative of the map ¥ » §, where § = (§l, é‘n)’ e R
(2.4-7) Lemma: Let ¢ : RE+ 8" : £ v & be the map induced by the
maps

i .
§i—tr[(A+ZBkaCk)],1€_rl
keK

Then the derivative of this map, when evaluated at f = 0, is

represented, with respect to the standard bases in rY and Rn,

by the matrix D:

B.; ¢..B.; ... C
Py 1 2172 K,pK K
c AB
K;PK
CK An-l
'pK
11
C
12 .
Ci = : y 1 € _IS
€5
Ipi
Proof: From (2.4-6) it follows that
§. = tr (Ai)+itr (Ai-l Y B, F, C)+o0(X B F C)
i k 'k k keK "k 'k k
kek —_—
Thus
8. =tr ) +1 I tr(c a' B F) + o(f)
i % x Fx

keX
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But

tr(CkAlwlB F)= & o . A “ B f .

and thus

¢6(f) =¢(0) +DE +o(f) =\

An immediate application of the inverse function theorem, e.g.

63, p.35], now provides us with

(2.4-8) Theorem: A sufficient condition for the noles of

L= (a, B, Ci' i € X) to be locally assignable via decentralized
feedback is that
rank D = n

where D is as given in (2.4-7).

Proof: As established in (2.4-5), local pole assignability is equivalent
to the local right invertibility of ¢ : &Y > r®. That is, we must be able
itc find an € > 0 and a function y : U ~» R such that ¢dop : U > R" is

the identity function when its codomain is restricted to U, where

v={er| |5 -sl| < e ienl

But, by the inverse function theorem, a sufficient condition for ¢ to have
a local right inverse is that D have a right inverse. Clearly the latter
is true if and only if the rows of D are independent; since there are n
rows in D, the theorem follows. B

As a direct consequence of (2.4-8), we arrive at our first semi-

useful resualt of this section:
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(2.4-9) Corollary: Suppose that I = (a, Bi' Ci’ i € K) is stable,
but not asymptotically stable. Then a sufficient condition
for the existence of feedback matrices {Fi’ i ¢ K} which
render I asymptotically stable via decentralized feedback is

rank D = n

where D is as given in (2,4-7)

Proof: The hypothesis simply states that A has some eigenvalues on the
imaginary axis, but none in the (open) right half plane. Thus, to make
I asymptotically stable, we merely have to move those eigenvalues that
lie on the imaginary axis slightly into the (open) left half plane. This
requires only local pole assignability. @

It should be clear that, since the inverse function theorem does
not provide a necessary condition for the existence of a local right
inverse to ¢, the condition rank D = n may fail, and yet the poles of
Z may be locally assignable. We shall attempt shortly to strengthen
(2.4-8); however, first we state some necessary conditions for local, and

in fact for global, pole assignability via decentralized feedback.

(2.4-10) Proposition: Necessary conditions for the poles of

I = (a, Bi' Ci’ ieg K) to be either locally or globally

assignable via decentralized feedback are

(1) 9= Z m, p. 2n
iek * %

(ii) (A, B, C) is both reachable and observable, where

B = (Bl; B2; . BK)

and
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(iii) For at least one i € K, Ci Bi #0

Proof: (i) is obvious when one notes that in order to arbitrarily change
the n coefficients of the characteristic polvnomial, even if these
changes are bounded by an arbitrary € > 0, one needs at least n elements

~

in the vector f; i.e. there must be at least n "degrees of freedom" in

the matrix A + .%, B, F

. . C.. (ii) follows by noting that decentralized
ieK 1 i 1

feedback is a special case of state feedback. Since reachability is
necessary for arbitrary pole reallocation, even if by arbitrarily small,
but nonzero, amounts ([66, Thm. 4}, [71]), the reachability part
follows; the observability part then follows by duality. Finally, for
(iii), we note that if Ci Bi = 0 for all i g K, then

tr (A+ £ B, F, C.) =traAa

icK i"iTi

which simply says that the center of mass of the system poles is

invariant under decentralized feedback.

12.4-11) Corollary: If I = (A, Bi' Ci' i € K) is not stable
{asymptotically stable) and if Ci Bi = 0 for all i ¢ X, then
¥ cannot be made stable (asymptotically stable) by decentralized

feedback.

Proof: This result follows from the "center of mass" concept in the
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preceding proof. B
Finally, if rank D < n, it does not necessarily follow that local
assignment of poles via decentralized feedback is impossible. That is,

it is quite possible that while the derivative of ¢ : R®

-+ Rn may bhe
singular when evaluated at E = 0, this derivative may be xright invertible
when evaluated at a small value of E. Thus, perturbing the system with a
small amount of feedback may result in a full rank D (when calculated from
the perturbed system parameters), and thus (2.4-8) may be applied to

conclude local pcle assignability for the resulting system.

This phenomenon is illustrated by the following example.

1 1 o
A= 0 1 1
0 0 1
1 0
Bl = 0 ’ B2 = 0
0 1
0 1 0
C2 =
Cl = (1 0 0) ’ 0 0 1

It is easy to check that the necessary conditions of (2.4-10) are all
satisfied. Moreover, it is easily seen that for this system any set of
poles may be achieved via decentralized feedback; that is, we have global

pole assignability. However,



and we can conclude nothing from (2.4-8).

However, if the system is perturbed slightly by letting

Fl=€
F2 = (0 0)
then
l1+4¢ 1 O
A+ B1 Fl C1 + B2 F2 C2 = 0 1 1
0 0 1

and, if this system matrix is used in calculating D, there results

1 o1

D 2(i+e) 2 2

3(l+€)2 6 3

which is easily seen to be nonsingular for any ¢ # O.

One can ncw pose the following problem:

(2.4-12) Problem: Let I = (A, Bi' Ci, i € K) be a system with

decentralized control, and define the n x g matrix ﬁ(Fl, F2,

ces FK) to be the following function of the matrices

mj Xpj .
FieR , for i € K:
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B I eas C B feoce c B
1171 lpl 1 KpK K
aY Ia)
) cll 1 7 oeee clplﬁhi;... cKpKABK
D(Fl' aee FK) = . .
~n-1
~n-1 m=-1_. cC
- e o
cllA Bl' cae clplA Bl KpK
Where ﬁ = A+ L B, F, Ci and ¢..' ¢ Rp is defined as
ieg
€i1
c.
C., = %2 , for 1 € X
i . -
€i
P

Suppose that rank 3(0, 0, «.. 0) < n, so that one can conclude
nothing from (2.4-8). Under what conditions do there exist

"small"” values of the Fi such that rank D (Fl, oee FK) = n?

The approach that one may take in attempting to solve this problem
is as follows. One can construct from the function D(Fl, cee FK) a
polynomial A(Fijk) in the g components of the Fi’ i € K, having the

property that A(Fi.

Jk) = 0 if and only if rank 6(F1, - FK) < n. Such

a polynomial is
(2.4-13) A(Fijk) = sum of the squares of all n x n minors of D(Fl""FK)

Clearly, A(Fijk) has the desired property. Then, if A(Fiﬁk) is not the
zero polynomial {i.e. if A(Fijk) is not identically zero), it will follow

that the locus of zeros of A(Fijk):
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is a proper algebraic variety ([19, p.2], [26]) in R*,and consequently,

for any point v ¢ V, there exists an arbitrarily small vector h ¢ R® such

that v + h V. This discussion leads directly to the next definition

and lemma.

(2.4-14)

(2.4-15)

Definition: The matrix function ﬁ(Fi,...FK) of (2.4-12) is
said to be generically of rank n if whenever rank B(Fl,...FK) < n

for a particular choice of the Fi’ i € X, there exist arbitrarily

. mjixpi . A
small matrices Hi € R » 1 € K, such that rank D(Fl + H

l’n-o

+ = -
FK HK) n

Lemma: The matrix function B(Fl, ces FK) of (2.4-12) is

generically of rank n if and only if the polynomial A(Fi.

Jk) of

(2.4-13) is not the zero polynomial.

These ideas can best be illustrated in terms of the last example.

Denoting

we have

Fl = Q
F, = (B a)

14 1 0
A+B, F. C, +B F,C_= 0 1l 1

111 272 72
0 B 1l+q
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and
1 0 1
D(Fli F2) = 1+a 1 1+y
2 ., 2
(1+a) " 24y (1+Y)°+ B
Then,

Ao, By Y) = (B + aly - o))

and, since A(o, B, y) is not identically zero, we conclude that for this
system B(Fl, F2) is generically of rank 3.

Finally, if (2.4-8) fails, one might wonder if B(Fl, .o FK) being
generically of rank n is enough to ensure local pole assignability in
L = (a, Bi' Ci' i € K). Unfortunately, the answer is "no". This is

illustrated by the following example:

1 1 0
A= 0 2 O
l1 01
0 1
Bl = 1 ’ 32 = 0
0] 1
0O 1 o
C, = ' c,=(0 0 1)
1 0O v 1 2

The derivative matrix D is
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1 0 1

12 3 9

which has rank 2. However, letting

'
1

1 = (@ B)

F,. =Y
the matrix D(Fl, F2) is

1l 0 1
D(F,, F,) = 2+0, 0 2+Y

(2+oc)2 1 (1+a) (3+Y)
Therefore, since
2
Afa, B, ¥) = (Y - )

it follows that D(Fl, F2) is generically of rank 3, and one is tempted to
hope that the poles of I are locally assignable.
However, the Newton sums of A + B, F. C, + B_ F C2 are

1171 2 2
8. =4 +0+Y
s, =6 + a2 + 40 + yz + 4y
Sy 10 + a3 + 6 a2 + 120 + 3B + Y3 + 6 Y2 +9Y

The locus of points (o, B, Y) for which

sz(a, B, ¥) = 52(0, 0, 0) =6
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is a circular cylinder of radius V8 whose axis is the line (-2, -, -2).

Thus, the maximum value that s, can attain, subject to the constraint that

1
s, = 6, is 4, i.e. the value at the point (0, 0, 0). 1In short, in this

example one cannot increase Sy while keeping s, constant; thus the poles

2
of ¥ are not locally assignable.

As a concluding remark we may note that the ideas of this section
suggest search techniques (e.g.Newton-Raphson or a gradient method) for
finding feedback gains which yield desired closed loop poles. Probably
a necessary condition for the well-posedness of such a technique is that
B(Fl' ase FK) be generically of rank n. Of course this condition implies

nothing about the existence of suitable feedback gains, nor does it say

anything about the convergence of the search algorithms.

2.5 Pole Allocation via Decentralized Feedback

In this section we continue the discussion of pole allocation via
decentralized feedback; however, we shall use a global approach rather
than the local approach eﬁployed in Section 2.4. The underlying philosophy
is to introduce, by decentralized feedback, as much noninteraction into
the system I as possible, effectively producing a system that is naturally
decomposed into independent subsystems. If the i'th control agent can
both observe and control the i'th subsystem, then he may apply feedback
to arbitrarily reallocate its poles.

We shall make use of the theory of (A, B) - invariant subspaces and
(A, B) - controllability subspaces, as developed by Wonham and Morse

([54)-([59]), (721, (741, [75)). The results which are germane to our
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discussion are summarized in Appendix A.

Thus, let Z = (A, Bi' Ci, i € K) be the system whose poles we wish to
relocate. We shall make two assumptions about the observation matrices
Ci’ The first of these is
(2.5-1)  [] Ker ¢, = 0

iek *
This simply says that a central control agent having access to all the
outputs Y; could uniquely determine the state x without using a dynamic

observer. The second assumption is

(2.5-2) I ) ker c, = &

ieK j#i
which says that the observation vectors y; are independent. We shall
later be able to relax these assumptions somewhat.

These two assumptions now lead naturally to a decomposition of R,

Defining the subspaces

S; = ﬂ Ker C,, i € K

3#i

it is easy to show (see the proof to (2.2-14)) that the Si are independent

and that
_.n
(2.5-3) 316326...eSK-R

Subspace Si contains all states that cannot be seen by control agents j,
for j # i; thus it is natural to require that agent i be able to control Si'
Our approach will be as follows. We shall first attempt to find
. M; Xp; . . .
feedback matrices Fi € R which either decouple or triangularly de-

couple I with respect to the Si' i.e. such that
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or

AS;,C S5 0...8S5,ick

A
where A= A + I B, Fi C Then, if certain controllability conditions
ieK
are met, control agent i may apply additional feedback from Y, to u, so as

io

to allocate the pcles of the system restricted to Si'
We first define, for each i ¢ K, the map Pi : BT - R” to be the

projection onto S, along % S,; that is, Im p, = S, and Ker p. = r S..
i c e J i i i s ]
j#i j#i
As a result, the Pi satisfy

P.2=P. » 1 €K
1 1 -

Pin=0;i,j€5andi#j

iek

Moreover, it also follows that

nXp;
(2.5-5) Proposition: For each i ¢ K there exists Ki € R * such

that P, = K, C,.
i i7i

Proof: From the definition of the Si it follows that Sj C Xer Ci for all

j # i, whence

Z S, C Ker cC.
i 3 i

But then, from (2.5-3)
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Ker C, = Rnﬂ Ker C;

(Si + I Sj) nKer C;

j#i
= Siﬂ Ker (:i + I Sj
j#i
=0+ I 8.
j#L

using (2.5-1). Thus Ker P, = Ker C,, and the result follows. H

For ease of presentation of the remainder of this section we include

(2.5-6)  Definition: Let A be a set of n complex numbers. Then A is
said to be symmetric with respect to the subspaces {Si, ieg g(_}
if it can be written as a disjoint union: A = U Ai' Aiﬂ Aj = ¢
for i # j; and such that, for i € K, Ai contairlmigdi = dim Si

elements and is closed under complex conjugation.

Our first result pertains to decoupling I with respect to the subspaces

S.. .
1

(2.5-7) Lemma: If, for each i, Si is an (a, Bi) - controllability
subspace, then the poles of I can be allocated via decentralized
feedback so as to correspond with the n elements of A, provided

that A is symmetric with respect to {Si, i e K}

Proof: Since Si is an (a, Bi) - controllability subspace, there exist

matrices F:i. and Gi such that
P Im =
{a+B, F, i (B; 6,)} =S,

Therefore, letting the matrices Ki be given as in (2.5-5), the feedback laws
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u, = F, K, y. + G, v,
i Tifi i i

F, P, x + G, v,
i7i i i
produce the following closed loop system:
3:=(A+ZBif‘ipi)x+ZBiGivi
ieK i€k

For each i define xi = Pi x; from (2.5~4), x = I x,.

But, Im (Bj Gj) c Sj, and
(A+ % B.F,.P,)S =(+B F)S
jeK 3 3 3 k k k" 7k

Csk

Therefore,

X, = (A+B, F,) x, +B, G, v., i € K
1 1 1 1 1 1 1 -

That is, the dynamics for the vectors x, are uncoupled.
Finally, since {A + B, E‘i | Im (B, Gi)} = Si' there exists a matrix
f‘i such that the spectrum of the restriction of A + B, Fi + B; G, Fi to Si

is any desired set of 4, = dim S, complex numbers, provided that this set
i i

is closed under complex conjugation.

Thus, pick the f‘i accordingly, define
F, = (F; +G, F) K., i€k

and the proof is complete. B

While it may happen that I can be decoupled as above, the likelihood
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of this is not very great. Thus we next shall develop a theory of decentral-
ized pole allocation based on the idea of triangularly decoupling the

system. We shall need the following lemma:

(2.5-8) Lemma: Let M: R - R be a map such that, for each i ¢ K,

MS C Sl &...® S.

1 l

Then, for i € K and for k = 0,1, ... n-1,
(2.5-9) p, P, = (p. K p
1 b 1 1
(2.5-10) 2, M x= (o, M P, x, forall x € S. @ ... @ S
i i i X 19 ... 83

Proof: The proof for (2.5-9) is by induction on k; the result is obvious

for k = 0 or 1. Suppose the result to be true for k = £ - 1 and write

p, MY p, =p, M1t p,= 1t p Mmp. M 1lp
i i i i i j i

jek

But Im (MR'-]' Pi) c Sl D ...d Si by hypothesis; thus

1
P, M P, = Y p,. Mp M ! P,
i - j i

Likewise, Im (M Pj) c Sl

D ... QSj, and so

p, MY P, = P, M P, m* 1 p
1 1

P. M (P, M) -1 P, (induction)
i i i

L
(Pi M) Pi

To prove (2.5-10), note that since x € Sl d...0 Si,
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Therefore

But Im (MkPj) (= Sl D...® Sj by hypothesis, so
P M‘k X = P M P X
= (, M)k P, x
where the last step follows from (2.5-9). B

The next result pertains to the situation when ¥ is practically

triangularly decoupled to begin with.

(2.5-11) Lemma: If I is such that

(2.5-12) a Si c sle ce e @ Si' iek

and

(2.5-13) 2, {a | B, [1(5,0...0@8)} =5, iek

then the conclusion of (2.5-7) is valid.

Proof: Let Gi be matrices such that
m (8, ) =B, [](5,0...08), i¢ex
and define the controls ui as

ui=Givi,1€§
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Thus, ¥ = Ax + L B, G, v,; and, letting x = P,x,

lx.
I

Pi (Ax + I B, G, v.)
JEK )

X (Pi Ax. + Pi B. G, v.)
jﬂﬁ J J 23 3
In light of (2.5-12), ij € Sl D... Sj; moreover by the choice of Gj'
B. G, v. €8 oo S.. Thus
J I3 1‘3 ® J
K
X, = I (P, AX, +P, B. G, v.,), iek
o (P 3 i73 73 J)' =

i .
j=i

and the system is in triangularly decoupled form.

This structure is retained by feedback of the form

v, =F, K.y, =F. P. x = F. x.
T T B Tt L T B

which yields the closed loop system
K "~
X, = LI (P, A+P,B, G, F,) Xx., i€k
— 1 13 3 ) J -

1 .
J=1

The set of poles for the above system is then just the union of the spectra
of the maps (Pi A+ Pi Bi Gi ﬁi) restricted to the corresponding Si’
Thus, for each i € K, di = dim Si arbitrary poles with conjugate symmetry

may be assigned to the closed loop system by choosing ﬁi appropriately if
(2.5-14) {p, 2 | m (¢, B, G} =38,

However, (2.5-14) follows from the lemma hypothesis if one makes
use of (2.5-8). That is, from (2.5-13) it follows that
n-1
)

k
Iopa (Biﬂ(sle e ®8;)) =8,

1

But from hypothesis (2.5-12) and (2.5-10)
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K o X
p. 2° (B [1(S,®...05n =@ n > B[E..0s)

o, alm e 8 cHl=1(,ap B[l e..065N]

p, | B[l @...85)}

and (2.5-14) follows.

The feedback laws that accomplish all of the above are, of course,

or,

Of course, the system hypothesized in (2.5-11) is practically
trangularly decoupled to begin with. If this were not the case, then one
could attempt to triangularly decouple the system through decentralized
feedback. That is, it is now natural to look for matrices gi such that
the matrix

A=A+ I B, F, K, C,
. ititici
ieK

=A+ £ B, F, P,
R 1 1 1l
1eK

satisfies the hypotheses of (2.5-11). The following lemma simplifies this

problem.

(2.5-15) Lemma: There exist matrices F_ such that, with
1
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B2
1]
o
+
™
W
r
o

(2.5-16) A S < $;®...08,,1iekK
(2.5-17) », {A | Biﬂ(sle...esi)}=si,ie_x_
if and only if there exist matrices §i suych that
*
(2.5-18) (A+Bi Fi) SiC Sle..,esi, ieK or
* ﬂ ,
(2.5-19) P, {A+Bi F, IBi .(sle...easi)}=si,1e;<_

Proof: We show that if (2.5-16) and (2.5-17) are satisfied using matrices
~ * ~
Fi' then (2.5-18) and (2.5-19) are satisfied when Fi = Fi. That is, let

(2.5-16) be satisfied. Then, since

ASi= (A+BiFi) Si

* ~
it is clear that (2.5-18) is satisfied using Fi = Fi' Next, if (2.5-16)

and (2.5-17) are satisfied, using (2.5-8),

n-1
~ _ ~k
p, 3B (15, @...05)) = oA B, s, ®...05)

n=-1

_ ~. k

= I B B, (1, 0...88,))
n-1 - "

= I [e(a+BF] p, (Bf)s,®...@5,))
n-1 ~ x

= LB BB Ey (B1(s;®. . .@S,))

p.{an+BF | B N (S; ®...88,)}
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where the second to last line follows since (2.5-18) is satisfied. There-
fore, (2.5-19) is satisfied using ;i = r:l

Similarly, if (2.5-18) is satisfied for matrices ﬁi’ then (2.5-16)
is satisfied using ;i = g‘i' Then, by reversing the steps above, (2.5-18)
and (2.5-19) imply (2.5-17) when F, = F . B

The significance of (2.5-15) is that it is now possible to find the

matrices §i independently of one another. As might be expected, the

*
existence of matrices Fi satisfying (2.5-18) and (2.5-19) can be expressed

in terms of contrcllability subspaces.

(2.5-20) Lemma: Let Ri be the maximal (A, Bi)-controllability sub--
space that is contained in Sl ®...D Si' Then, if Si cC Ri'

*
a matrix Fi exists which satisfies (2.5-18) and (2.5-19).

Proof: Assuming the lemma hypothesis, it follows that there is a matrix

*
Fi such that

. *
s,c R ={a+8 F |B[lR}c S ®...0¢8,

1 1
Thus
* *
(A+BiFi) Sic (A+BiFi) RicRiCSle...esi

and (2.5-18) is satisfied. Moreover, since Ri C S,.08... Y

* *
Ri= {A+13i F. | BiﬂRi}c{A+Bi F, | Biﬂ(sle...esi)
so that

*
s;c {a+8, F, | B[]S, 0...08)}

Therefore, (2.5-19) is satisfied. B
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The result of the preceding lemmas may now be summarized as a theorem
stating sufficient conditions for pole assignment via decentralized feed-
back. We use the characterization of maximal controllability sukspaces
stated in Appendix A. It should be noted that the conditions of this

theorem are less restrictive than those of (2.5-7).

(2.5-21) Theorem: For each i ¢ K, let Ri be the maximal (&, Bi)-
controllability subspace contained in Sl D ...@Si. If, for

each 1i,

then the poles of I can be allocated via decentralized feed-

back so as to correspond with the n elements of A, provided

that A is symmetric with respect to {Si, iekh

The Ri can be computed as

Ry ={a+s, F, | Binvi}

v (d1t...+d4)
i

In the above, Ui = , where

(0) _
Vi = 3119 cee @ Si

and

(k) _ -1 (k-1)
v, = s @ ..es)Nats, + v )

4

The matrix Fi is any matrix for which

(A + Bi Fi) Vi = Vi

Since there is nothing special about the order in which the subspaces
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Si are considered, we immediately arrive at the following corollary:
(2.5-21) Corollary: 1If, for some permutation O : K + K,

S. ¢ R, iek
1 1 —

where Ri is the maximal (A, Bi)-controllability subspace satisfying
R. C z S., i€k
J:0(3)<o(i)

then the conclusion of (2.5-21) is valid.

This is the most general result that will be obtained in this section.
However, in Section 2.7 we shall consider the situation where each
control agent uses a generalized state reconstructor in order to increase
his information set. The effect of—ﬁsing observers is equivalent to
decreasing the sizes of the subspaces Ker Ci; thus (2.5-2) will no longer

be a valid assumption. However, we shall continue to make an assumption

similar to (2.5-1), namely that

r] (Ker Cirw Ker Hi) =0
ieK

where z, = fo represents the additional information due to the observer.

2.6 Generalized Observability and State Reconstructors

We now address the question of observability in the system
L= (a, Bi’ Ci' i € K). Our reasons for undertaking this task are twofold.
First, a theory of observability will tend to round out the controllability-

reachability discussion in Section 2.2. Secondly, a theory of observability
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and state reconstruction can be used to generalize the results on pole
allocation via decentralized feedback; that is, if it can be shown that
ccntrol agent i can asymptotically reconstruct a linear function of the
state, e.q. Hi x, then the matrices Ci in Sections 2.4 and Z.5 can be

replaced by the matrices (gi).

We shall begin the discussion by defining the set of states which are

indistinguishable by agent i.

(2.6-1) Definition: Let I = (a, B,/ Ci’ i € K) be a system with
decentralized control. Then two states xl, x2 £ Rp will be said
to be indistinguishable by agent i, with respect to the input

m; .
u, € C "[0,”), if there exist two sets of control inputs

m5 C o ™j s 4
{ulj €eC - [0,”) , j#4i} and {u2j € C [0, , j # i} such that

t
c.{eAt x, + [ eA(t-T)(B. u.(t) + I B. u,.(1)) 4Tl =
i 1 i i Y 13
0 j#i
At t A(t-T)
c.le"x, + f e ' V(B.u,(1) + I B,u_.fr)drl, for all t 2 O
i 2 0 ii j#1 3 23

1 2

control agents j, for j # i, can "mask" the differences, as they appear

That is, x, and x, are indistinguishable with respect to u, if

to agent i, between these two states. Two immediate results which require

no proof are:

(2.6-2) Froposition: States Xy and x, are indistinquishable by

agent i, with respect to u,, if and only if they are indistinguish-
able by aqgent i, with respect to the zero input; i.e., the

choice of u, cannot affect the ability to distinguishk ~etween
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x1 and x2.

2roposition: States Xy and x, are indistinguishable by

m. s Q
agent i (with respect to any u, €C 110,) if and only if the

difference X, = X%, is indistinguishable from the zero state by

agent i.

Those states which are indistinguishable from zero are given a special

name:

(2.6-4)

Definition: The set of states that cannot be distinguished
from the zero state by agent i is call.d the set of unobserv-

able states of agent i, and is denoted as Ui.

Again we have a simple result:

(2.6-5)

(2.6-6)

L . . n
Proposition: For each i € K, Ui is a subspace of R'. Two

states, xl and xz, are indistinquishable by agent i if and only

if xl

coset of Ui.

X, (modulo Ui), that is, Xy and %, are in the same

Remark: It is important to note that in (2.6-1) we require
that ulj and u2:i be elements of ij[o,m), for j # i. This
restriction to continuous functions plays a crucial role in the
determination of Ui. Indeed, we shall see that there are states
which are “effectively unobservable," but which are not in Ui; this

m

will be seen to be due to the fact that C J[O,@) is not a complete

vector space.

We shall now determine the subspaces Ui. In order to ease the
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notation, we shall consider the system

Ax + Bu + Dv

e
]

y = Cx

where u € Cm[O,m) is the input applied by agent i, y is the observation
made by agent i, and v € CQ[O,m) represents the inputs applied by agents

j,» for j # i. We denote the space of unobservable states as U.

(2.6-7) Lemma: The subspace U is the maximal (A, D)-invariant sub-
space contained in Ker C. That is, U = U(n), where
U(O) = Ker C

and

U = xer cNat W™ 40y, xen

Proof: A state x is an element of ! if and only if there exists a

v € c”[o,w) such that

t
C eAt x=Jf Ce

0

A(t-T) D v(T) 4T, for all t 2 0

That is, there must be a v € Cz [0,0) such that the sclution to
(2.6-8) Z=2az+Dv, 2(0) =0

satisfies
Cz(t) =¢C eAt x, for all t >0
But this can be true if and only if

w (t) é z(t) - eAt X € Ker C, for all t 2 0
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The vector w is easily seen to satisfy
(2.6-9) W =2aw + Dv, w(0) = ~-x

where the initial condition arises from the requirement that z(0) = 0.
Thus, x € U if and only if there exists v € CQ'[O ro)  such that the

solution to (2.6-9) satisfies

(2.6-10) w(t) € Ker C, for all t >0

Clearly, since w (0) = -x, (2.6-10) implies that
(2.6~11) U C Ker C

We now assert that, if x € U and if w satisfies (2.6-~9) and (2.6-10) '

then
(2.6-12) w(t) € U, for all £t 2 0

For, select any t, > 0. Then the solution to

1l

% de

=AW+DT, W) = w(tl)
where ¥(t) = v(t + tl), satisfies
Wit) = w(t + t;) EKer C, for t 2 0

But the only such solutions must arise, by definition, from initial
conditions in U. Thus w (tl) e u.

From (2.6-12) there follows

wW=Aw+Dvedl forall t 2@
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In particular, at t = 0
v - Ax + Dv(0) € U
Since x € Uis arbitrary, this implies that

alUc U +9?

that is, U is an (A,D)-invariant subspace. Recalling (2.6-11), it is also
seen that any (A,D)-invariant subspace of Ker C is a space of unobservable
states. Thus, the sum of all (A, D)-invariant subspaces of Ker C, i.e. the
unique maximal one, is a space of unobservable states. Since U must be
such a subspace, it follows that U is the maximal (a, D)-invariant

subspace of Ker C, proving the lemma. @

(2.6-13) Remark: The preceding proof depends in a crucial way on
the requirement that v € czto,w]. That is, if v were not

necessarily continuous, e.g. if v contained a delta function at
t = 0, then one could not claim in (2.6-8) that z(0) = 0.

Indeed, we shall shortly see that the subspace of "effectively
uncbservable" @tates is in general larger than U. The character-
ization of U given by (2.6-7) was proved in a slightly different
manner in [5], but the authors failed to recognize the

"effectively unobservable" phenomenon.

(2.6-14) Remark: For the special case where D = 0, the sequence

‘{U(k)} is just
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U(O) Ker C

ut) o ker ¢ nA—l Ker C = Ker cnxer (ch)

® M ker (cal™
ien

o
]
oy
n

as expected.

We have alluded several times to "effectively unobservable" states. We
shall develop the notion of such states by determining how one would
compute the "observable" portion of an initial state. Thus, let 0 be any

subspace of r" satisfying
Uu® 0 = "

We shall call ( the observable subspace; and, for any x ¢ Rn, if x = X, + X

where x €U and xoeo, we shall call X, the unobservable part of x, and X the
u

observable part of x. It is therefore implied that, by observing

t
At +f ¢ eA(t-'r)

(2.6-15) y(t) = Cc e’ x + c Pt 4 pv(t) dr
o] u 0

for t € [0,T] (T > 0), one could actually calculate X regardless of
what x, € Uand v € C2[O,T] happened to be.

The relation (2.6-15) is a linear map

t

0xUx C2[0,T] + cP o,

1 xo + L2 xu + L3 \'4

[ d
(xo, X, v) L

The map L1 is clearly injective; for if it were not, there would be an

uncbservable element in 0,contradicting olﬂ]u = 0. Thus one might expect
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to be able to find a linear map L, ¢ cPI0,T] -+ 0 such that the composition

. . . L .
L40L is the projection on ( along U x ¢ [0,T] , i.e. such that

I3 X »
L40L s o7 xu, v) xo

But, in order for such an L4 to exist, it would need to satisfy
Ker L4 O Im L2, Ker L4 D Im I.3, and (Ker L4) ﬂ Im Ll = 0. Since, by

the definition of U, Im L2 C Im L3, these requirements are just that

Ilen Ker L4=0

c
Im L3 Ker L 4

However, in order to find such an L 4" particularly if we wished that L a be

represented as

T
(2.6-16) L, s y(t) » fo L,(t) y(t) at

for some n x p integrable matrix function L 4(-) » we would need
(2.6~17) (closure of Im Ll) n (closure of Im L3) =0

Unfortunately, (2.6-17) is seldom true. Since ( is finite dimensional,

it follows that the closure of Im L. is just Im L.; but, since Cg’ [0,T]

1

is not finite dimensional, the closure of Im L

1

3 may be larger than Im L3.

A
In fact, define the subspace U as follows

(2.6-19 U=y™
where
V(o) =D n Ker C

V(k) = (D+a V(k-l)) n Ker C, k €n
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(k) {(k-1)

It is easily seen that o SNV » for k € n; therefore, G is the

smallest subspace satisfying
a=(v+A&)ﬂxerc

We shall demonstrate that for each x ¢ U there exists a generalized

function (i.e. a distribution, [37, Ch.1]) Ve such that
(2.6-19) Ce™ " x=/ Ce " Dv_(t=-T)dr, forall t2o0

Then,since v, can be apprzximated arbitrarily closelyAéin the distributional
sense) by an element of C [0,T], it follows that C e X € Cp[O,T] is in
the closure of Im L3. In particular, if {vi € CQ[O,T]} is a sequence
converging in the distributional sense to v, and if {yi e cPro,71} is

defined as

t AT
yi(t) = fo Ce D v, (t - 1) atr, te [0,T]

then with L, : CP[O,T] + (0 given by (2.6-16), the sequence {L4 yi} will

4
converge to L4(C eAt

x). Thus, each x € U is "effectively unobservable."
To demonstrate the existence of Vi let x € (. From (2.6-18) there
exist sequences {xi, 0<i<n} and {ui, 0 < i £ n} such that X, = 0,

xi € V(l-l) for i € n,

. = . + . i €
X, =Ax, ,+0D u;, 3, i€n

and
X=AXxX +Du
n n
6(1),

Now let 8§ denote the Dirac delta function; and define 0<£L1iZ<hn,

to be the ith (distributional) derivative of 8. Iet

n .
v, = z u oy 6(1)
i=0
Then, using
t* . i-1 . . .
Jo € Tps (t-mar=cePtalps T cal 3 603y, 0

3=0
and the fact that x; ev‘l‘l’ C Ker C, (2.6-19) is easily verified.
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(2.6-20) Definition: we shall call the subspace U + U, where U is
given by (2.6-18), the "effectively unobservable" subspace.

(2.6-21) Remark: We can now decompose the state space as

n

= (U+U)ed

At
Although it is not obvious now that C e ~ x ¢ (closure of Im L3)

for all x € 0, this fact will become apparent after we prove (2.

(2.6-22) Remark: If one wished to determine a linear map L : Cp[O,TI
that produced the observable part of the initial state (i.e.,

the part in 5) one could procede as follows. Let {ei} be a basi

A
for 0 and define £, ¢ c°[0,T] as £,(t) = C oMt e.; let

9, € CP[O,T] be the result of projecting fi orthogonally onto th

A

closure of Im L3. Then, if X, € 0 is the observable part of
d
the initial state, and if X, = z Oy e where 4 = dim 0,
i=1
1 T T
' = - -
(al’”'ad) M (fo(fl(t) gl(t))'y(t)dt.---fo(fd(t) gd(t))'y(t)

where
T

My = Jo (£, (t)=g, (£))" £,(8) at

However, this is difficult to carry out, because it is not clear

how one characterizes the closure of 1y L Fortunately, we

3‘
shall not have to do this, as we shall instead develop the theor

of generalized asymptotic state reconstructors.

We now place the foregoing in the framework of systems with decentral

ized control.

(2.6-23) Theorem: Let I = (a, B, Ci' i € K) be a system with
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decentralized control, and define the matrices

A
Bi = (Bl' e oo Bi—l' Bi+l’ e 00 BK)' i El(-

Then, the unobservable subspace, Ui, and the effectively

A

unobservable subspace, Ui + Ui , of agent i are given as

Uo=u ™ o+ l,o=u® ™
1 1 1 1 1 1

(k) _ -1 (k-1) = ‘
Ker Ci, Ll:.L = Ker Ci n A (Ui + Bi), ke r

il

and

(k-1)

(o A k) B
Ui ) Binl(er Ci' Vi( = Ker C, n (Bi + A Vi b X

We now go back to the system ¥ = Ax + Bu + Dv, y = Cx and determine
how one would asymptotically reconstruct the observable part of the state
The approach is somewhat lacking in rigour, but the end result will justi

the means.
Suppose,to begin, that both u and v are known, and that (a,C) is

observable. Then, there exist- a matrix K such that (A-KC) is stable;

thus if
(2.6-24) z = (A-X) z + Ky + Bu + Dv

it follows, by easy calculations ([48]), that z(t) - x(t) - 0 as t » o,

Moreover, the rapidity with which the error e = z - x goes to zero can be

adjusted by assigning the eigenvalues of A - KC (possible by observabilit
However, since the input v is not available, we try the following.

Suppose H is an r x n matrix that satisfies

(2.6-29 D C Ker H
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Also assume that for any polynomial 0.(\), of degree r and with real

cqefficients, there exist an r x r matrix F and an n X r matrix K such that
(2.6-26) H(A - KC) = FH

and

(2.6-27) det (A I - F) = a(})

One can then multiply (2.6-24) on the left by H, and the following results

(2.6-28) gz-(Hz) =FHz+HKy+HBu

Since, by (2.6-27), we can find F and K so that F is stable, it follows
that (2.6-28) describes an asymptotic reconstructor of the quantity Hx.

It is clear that, in the interests of reconstructing as much of x
as possible without knowledge of v, H should satisfy (2.6-25) as

tightly as possible. Moreover, it is easily seen that if a matrix Hl has

the above desired properties then so does H2, if Ker Hl = Ker H2. We
now state
(2.6-29) Definition: Given the system ¥' : %X = Ax + Bu + Dv,

y = Cx, with v unknown; a subspace S will be called unreconstruct-
ible if, for all matrices H satisfying (2.€-25), (2.6-26), and
(2.6-27) ( the latter two for arbitrary polynomials of the
appropriate degree), S C Ker H. The unreconstructible subspace

is defined as the largest subspace that is unreconstructible.

(2.6-30) Lemma: Given the system I' of (2.6-29), the unreconstructible
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*d *
subspace is H , where H is the largest (a', C')~controllability

X
subspace contained in D .

Proof: Let H be a matrix satisfying (2.6-25) - (2,6-27), and define

H=ImH', From (2.6-26),
(A' - c'K') H' = H' F'

so H is (A', C')-invariant. From (2.6-27) we conclude that the spectrum
of the restriction of (A' - K' C')to H can be arbitrarily assigned
(subject to conjugate symmetry) by choice of K'; thus H must be an (a', ¢y~
controllability subspace.

The unreconstructibile subspace clearly must be in the orthogonal
complement of H, for all (A', C')-controllability subspaces H for which
D C Ker H. But this latter is true if and only if (Ker H)L =H C DL.
Thus the unreconstructibie subspace is precisely ﬁ‘, where ﬁ is the largest
(A", C')-controllability subspace of 7. m

Of course, there are some states in ﬁ * that can be measured directly
through C; if H is such that Im H' = ﬁ, then the states that cannot be
"seen" are those in Ker C r1 Ker H. We now show that these states are

precisely the states in ( + (.

(2.6-31) Theorem: Given the system ' : % = Ax + Bu + Dv, y = Cx, with
~ *
v unknown; let U, U, and H be as given in (2.6-7), (2.6-18), and

(2.6-30). Then
u+ a = Ker C r] ﬁ&

* I
Proof: H, the maximal (A', C')-controllability subspace of ¥ , can be
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expressed as (see Appendix A)
* iy
f=wlw

L
where ( is the maximal (A', C')-invariant subspace of ) , and N is the
maximal (A, D)-invariant subspace of Ker C. But, from (2.6-=7), N = (;

therefore

Kercnffll Kercn(wl-l-u)

2
u+1<ercnw

since | € Ker C.

But, defining ¢ =Im ¢', g = '™ where

1 - _
w* = nAl(w(k1)+C),ke_rl

1 (n)+ . 1
Therefore, W = W where, since ¢ = Ker C,
YL
W =
w‘k)"' =D+ A (w‘k-l)"n Ker C), k ¢ n

Comparing this with (2.6-18), we see that
1 ~
w n Ker C = ({ U]

(2.6-32) Remark: There are situations where the subspace U + l is the
zero subspace. For example, it is easy to show that ({ = 0 i
and only if the system X = (A + DF) x + Dv, y = Cx is observable

for all F. Also, fl = 0 if and only if D n Ker C = 0; this will
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happen, for example, if C = D'.

We now return to the system I = (a, Bi' Ci' i € K) to summarize the

above results.

(2.6-33) Theorem: ILet I = (A, Bi' Ci’ i € K) be a system with decentral-
ized control. Then, through the use of generalized state
reconstructors, the cbservation matrix Ci of agent i can be

Co
replaced by the matrix (Hl), which satisfies
i

Ci U 0
Ker (Hi) =+ l,iek
where Ui and Ui are as given in (2.6-23).
Finally, we note that control agent i can use a minimal order state

reconstructor whose output, ﬁi, asymptotically approaches the quantity

~

Hi X, where

Ci
-~ )= . o= u, + 0.
Kex (H ) Ker C; [ ker H, = U 01

i
and
-~ n
Ker C, + Ker H, = R
i i
Ci
the latter equation implying that the rows of ﬁ- are independent. This
i

follows from the next lemma, the proof of which is a simple variation

of [72]):
(2.6-34) Lemma: Let F be the maximal (A', C')-controllability sub-
L *
space contained in D, let C = Im C',and let d1 = dim H and

*
d2 = dim (H r] C). Then, if dl > d2, for every set A of d1 - d2
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complex numbers, closed under complex congugation, there exist

a subspace H and a matrix XK' such that

A = spectrum of A' + C' K' restricted to H

The integer dl - d2 is the dimension of a minimal order state
reconstructor, whose output asymptotically reconstructs ﬁx,

A A
where Im H' = H.
This gives us our final result:

(2.6-35) Theorem: In the system ¥ = (A, Bi’ Ci' i € K), the
dimensions of the minimal order state reconstructors that validate

the conclusion of (2.6-33) are

n, = dim (Ker Ci) - dim (Ui + Ui),i £ K

Proof: From (2.6-34), the dimension of a minimal order state reconstructor

for agent i is

n,

;= dim (ﬁi) - dim (ﬁi ARKA)

*
= dim (Hi + Ci) - dim (Ci)

I * 1 .
n-dim (Hi + Ci) - dim (Ci)

N A n .
n - dim (Hi Ker Ci) - dim (Ci)

n - aim (U, + ﬁi) - dim (C,)
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= dim (Ker Ci) - dim (Ui + Ui)

where the second to last line follows from (2.6-31). &

2.7 Pole Allocation with Increased Information Sets

In this section we shall investigate the consequences of removing
the assumptions (2.5-1) and (2.5-2). Our reasons for doing this are as
follows. First, while (2.5-1) may be a reasonable assumption if the order,
n, of X = (a, B;,» C;» 1 € K) is not very large (especially if n = K),
this assumption becomes more unreasonable as n increases. That is, for
large scale systems one would expect that there would be a nontrivial
subspace of states that could not be directly observed (i.e., without the
use of a dynamic observer) by any of the control agents. Thus, in place

of (2.5-1) we shall assume in this section that

2.7-1) ) u, + Gi) =0
i€k

where Ui + ai is the effectively uncbservable subspace of agent i
defined in (2.6-23). That is, we shall assume in this section that each
agent uses a generalized state reconstructor, as described in Section 2.6.

As to (2.5-2), this assumption implies that the control agents make
independent observations on the system. While this assumption is perhaps
reasonable when the control agents do not use dynamic observers, the
assumption of independent observations when dynamic observers are used
$s highly questionable. Thus in this section it will be generally

assumed that
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2.7-2) T [) ( + 0y # &
1K ji )

We shall attempt to make use of (2.5-21) in determining sufficient
conditions for arbitrary pole allocation via decentralized dynamic
compensation, i.e. decentralized feedback from the observations Y; and the
outputs of the generalized observers. However, since (2.5-21) depends
crucially on the assumption (2.5-2), the analogue of which we are not
making in this section, we shall take the following approach, We shall

attempt to determine subspaces N&, i € K, satisfying

(2.7-3) N.DU, + a., iekx
1 1 1 -_—

(2.7-) [ N, =0
i€k

(27-5) £ [] N, = &"
iek #i 7
Then we shall apply (2.5-21), using
2.7-6) S, 2 M N, iex
1 NPYR | -
j#i
The significance of subspace Ni is as follows. By using a state

reconstructor, control agent i can asymptotically measure the quantity

Cj ~
where Ker (H?) = Ui + Ui. However, he is not constrained to using all of
i

A
this information. Since, for any Ni o Ui +~Ui there exists a matrix M,

such that
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Ker (Mi (.7)) =N,

it is clear that control agent i may increase his unobservable subspace

to Ni if he simply uses the observations

Thus, we immediately arrive at the following result:

(2.7-7) Proposition: Let % = (A, Bi' Ci' i € K) be a system with

decentralized control, and let the effectively unobservable
subspaces ui + ai be as given in (2.6-21). If there exist
subspaces Ni' i € X, satisfying (2.7-3) through (2.7-5);

and if the subspaces Si' given by (2.7-6), satisfy the conditions
of the corollary (2.5-21); then the poles of the closed loop
system resulting from decentralized dynamic feedback in I may
be allocated as follows. The poles of each generalized state
reconstructor (which may be taken to be of minimal order, as in
(2.6-35)), may be independently allocated subject to conjugate
symmetry; the remaining n poles may be arbitrarily allocated so
as to correspond with the set A, where A is any set of n

elements, symmetric with respect to {Si, i e K}.

Proof: For each i ¢ K, let ﬁi be as given in (2.6-34); let ﬁi be n, xn.
Then, for any monic polynomial ai(l), with real coefficients and of
degree n,, there exist matrices K, and ﬁ. such that ﬁ.(A - K, C,) = A, ﬁ.,

i . i i i i 7i i i
and det (A I - Ai) = ai(k). Let

N>

= ii 2. + ﬁ. K, y. + ﬁ. B, u,

i i i"i-°i . ii i

Then it is easy to show that the quantity

A ol
e, é z, - H, x
i i i

satisfies

A

é. . e,
1 1 1

A C; A~
From the construction of H;, Ker (ﬁf) = ui + U;. Choose the matrix M,
i
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such that
Ci
Ker (Mi (Hi)) = Ni

From (2.5-21) there exist matrices Fi’ i € K, such that the set of
eigenvalues of
A C3
A=A+ I B F M (5)
ieX 1

is A. Thus, define the feedback control laws as

. =F, M.y, +F, M z,
Yy Fl Mll ¥y Fl M12 zl

A c s \ Ci
where Mi is partitioned, conformably with (ﬁ ), as

1

Mi = (Mil; Miz)

Using the components of x and ei, i € K, as state variables for the

~
closed loop system, we see that, since zi =e; +H, x '

i
X A BiFiM, ByF My, ... BeFeMe X
e1 0 Al 0 0 el
a_
al 0 A, . .
eK 0 0 0 AK e‘K

The poles of the closed loop system are as promised. B

Thus the problem reduces to a search for suitable subspaces Ni' It
is a fairly simple matter to increase the subspaces ui + ai to subspaces
Ni such that (2.7-3) through (2.7-5) are satisfied. For example, one

could let



90

Ny =l + Uy

N

and, for i = 2,...X, choose Ni 2 Ui + Ui such that

i ~ 1 i-1 ~ 1 n
j£1 (Uj + Uj) = (jil(uj + Uj) ) @Ni

~ L n

Since, from (2.7-1), .2 (ui + ui) = R, this process is guaranteed to
produce a set of subsgigés Ni satisfying (2.7-3) through (2.7-5). However,
we must attempt to choose the Ni so that the subspaces Si' given by
(2.7-6), satisfy the requirements of (2.5-21). This, unfortunately is not
a simple task.

The problem of determining sufficient conditions for the existence of
appropriate subspaces Ni' i € K, remains unsolved. However, we can state
the following result, the philosophy of which is to first find (a, Bi)-
controllability subspaces Ri' and then check to see if these subspaces are

compatible, via (2.5-21), with subspaces Ni satisfying (2.7-3) through

(2.7-5) :
(z.7-8) Theorem: Assume that K = 2 and that
n
{n |B}+{a]|B,}=r

Let Ri be an (a, Bi)-controllability subspace, i = 1, 2, such that

_ on
R1+R2"R

ithis is possible by the first assumption). Then the poles of
T = (a, Bi' Ci, i =1, 2) may be allocated via decentralized

dynamic feedback if
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(2.7-9) (U, + U)) € R,
(2.7-10) (U2 + U2) c Rl
2.7-11) (W, + 0)H(\R = 0

where {Ui + Ui, i =1, 2} are the effectively unobservable

subspaces given in (2.6-21).

Proof: For the case K = 2, S = N2 and S, = Nl; thus we must find Nl and
N2 such that
Ny = Ry
(2.7-12) N, <:] Nl = Ri + R,
(2.7-13) N, € Ry

and

(2.7-14) N; D U, + ai, i=1, 2

Clearly, N, = Rl satisfies (2.7-14).
Next noce that, from (2.7-9) and (2.7-11), the subspaces Rln R2 and

R, n (ul + al) = (ul + ﬁl) are independent. Thus write

R=R (1R @% Ny + i@,
=R, N R, @ (w + @ @8,

and define

Nl (Ul + al)@ §2

Clearly, (2.7-14) is satisfied, as is (2.7-13). Moreover,
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Ny @ N, =Ry + Wy + ) + 8,
=Ry *+ Ry [V Ry + Wy + ) +8,
=R, + R,

to satisfy (2.7-12).

We have thus found subspaces Ni such that Nl n N2 = 0, and, with

S. = n N..
o
n

$;®s, = R

Thus (2.5~21) may be applied. (Note that the controllability subspaces

Ry need not be maximal for (2.5-21) to be valid). B

(2.7~15) Remark: It would appear at first glance that one could perform
such a construction when K > 2. It can be fairly easily shown

that subspaces {Ni' i € K} exist such that, with S, = n Nj’
j#i

$,®...®S, =R ®...0R, iekK

if and only if

i-1
Rj o |

z R () (uy + 0, for i e x
3=1 j=1 °

1
X
=1

However, we also need



(2.7-16)

924

and it is this requirement that causes difficulties when K > 2.

Remark: Unfortunately, there is presently no way to determine
the existence of controllability subspaces Ri satisfying (2.7-9)
through (2.7-11). Thus, if this theorem is to be applied, one
may have to consider a large number of pairs of controllability

subspaces (Rl, R2)°



CHAPTER 3

FURTHER DISCUSSION OF POLE ALLOCATION AND INTRODUCTIOM TO FEEDBACK INVARIANTS

3.1 Discussion of Pole Allocation Results

The problem of pole allocation via decentralized feedback may be
approached from two points of view. In this section we shall elaborate on
these two points of view, discuss the sufficient conditions derived in
Sections 2.5 and 2.7, and propose a second method for more nearly completely
solving this problem.

In formulating the problem of pole allocation via decentralized
feedback, we stated in Chapter 2 that our goals are to establish necessary
and sufficient conditions for the existence of feedback matrices {Fi’ ie K}
such that the set of eigenvalues of A + .Z . Bi Fi Ci corresponds with a
desired set A of n numbers. However, th;;;_ls a secondary issue which we
have not mentioned up to this point. This issue involves the actual
determination of the matrices Fi' Since Firepresents feedback applied by
control agent i, one might interpret the phrase "decentralized control”
to imply that each Fi should be computable by control agent i alone. That
is, there are actually two levels involved in the control of ¥ = (A, Bi' Ci’
i ¢ K). The higher of the two levels is the determination of suitable
feedback matrices, the lower level involves utilizing the feedback matrices
in decentralized control laws. A strict interpretation of "decentralized
control" would be to require both of these levels to be decentralized.

If the above interpretation is adhered to, then it should be clear
that ¥ must be at least triangularly decoupled, and that this decoupled
structure must remain invariant under decentralized feedback. Only if this

is true can it be guaranteed that agent i can compute his feedback matrix Fi’
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sc as to allocate poles in his subsystem, without linowledge of either the
ohjectives or the feedback matricrs of control agents j, for j # i. Thus

the structure of the system must b« such that

(3.1-1) [) kerc, =0
. 1
ieK

(3.1-2) S, @...08, = R", where S, = [;: Kex C,
j 1

Pi{AlBi} = Si , and

{a | Bi} cC X Sj » for sows permutatiorn :K + K
j:o(3)<o (3)

If ¥ has this structure, then it is easy to wverify that ¥ retains this
structure when arbitrary decentralized feedback is applied. Control agent
i then simply chooses Fi so that the eigenvalues of Pi(A + Bi Fi Ci),
restricted to Si, are as desired, where Pi is the projection on Si along
Ker Ci.

While the above system structure is the only one where pole ailocation
via decentralized feedback in the strict sense is possible, this structure
is not very interesting. Thus, we may relax the strict interpretation of
decentralized feedback in the following manner. We shall still demand that
each Fi be computable independently of the others; however, we shall allow
the control agents to have a common objective: first decouple the system
as much as possible, and then allocate poles while retaining the decoupled
structure. This is in fact the situation treated in (2.5-21). Wé have
seen that if, for each i, there is an (A, Bi)-controllability subspace Ri

such that
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Si c Ri c z . S,
j:o(3)<o (i)

then the decoupling and pole assignment are possible. Note, however, that,
in spite of the fact that the Fi's which produce the desired decoupled
structure may be determined independently, implicit in the determination
of each Fi is knowledge of the permutation g : K -+ K, which determines the
nesting, or chain, structure in the triangular deccupled system. Moreover,
if agent i fails in decoupling the effects of his control from agent j,
tor some j where g(j) > o(i), since agent j need not decouple the effects
of his control from agent i, the result will be that these two agents
remain coupled; and subsequent attempts at assigning poles will fail.

One can next consider a class of decentralized feedback problems where
triangular decoupling is a primary objective, but where the feedback matrices
Fi which achieve this objective need not be determined independently.
However, once the decoupled structure is achieved, the additional feedback
matrices necessary for arbitrary pole allocation can be determined
independently.

As a result of (2.5-15) we know that, under the assumptions (3.1-1)
and (3.1-2), if the system can be triangularly decoupled with decentralized
feedback, then this decoupling can be can be achieved by solving for each Fi
independently. However, if assumption (3.1-2) is dropped (as, for example,
when the unobservable subspaces are decreased through the use of generalized
observers) one can no longer make this claim. In the absence of (3.1-2)
it is extremely difficult to determine necessary and sufficient conditions
for the existence of matrices {Fi, ieg E} which achieve a desired triangularly

decoupled structure.
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One approach that can be taken at this point is to attempt to modify the
theories of (A, B)-invariant and controllability subspaces in order to
accommodate decentralized feedback. A result in this direction is the following,

which extends the theory of (A, B)-invariant subspaces.

(3.1-3) Proposition: Let || C R” be an arbitrary subspace. Then,

there exist matrices Fl and F2 such that

(A+BlFlCl+B2 F,C) Ve
if and only if

(3.1-4) Ayc vy + By + B,

(3.1-5) Ay n Ker Cl) c v+ 32

(3.1-6) Ay [ Ker c,) € v+B

(3.1-7) Ay n Ker Cl n Ker C2) cv

Proof: For necessity, take v € |/. Then

A

(A+BlFlCl+B2F2C2)v=veV

by assumption. Thus
Av = v - Bl Fl Cl v - 82 F2 C2 ve |+ By * 32
to establish (3.1-4). Moreover, if ve n Ker cl’

Av=v-B,F,C,ve | +B,

which proves (3.1-5); (3.1-6) and (3.1-7) follow similarly.
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For sufficiency, we write

vﬂxercl v N xer ¢, KerCz@ol

VnKerCZ UﬂKerCanercz@a2

We note that

01 n Ker C, (f/l n W n Ker Cl)) n Ker C, = 0

and similarly,

It
o

02 n Ker Cl

Therefore,
2, N (Uﬂxercln Ker C, ® U,) = alﬂ V() kerc, =0

and we have
vNrerc +vrerc,=y[lrerc (Nrerc, 0, 00,

Now write

A

u=vnKerC1nKerC2®V1$V2®V

Let {ei},{Oli}, {vzi}, and {vi} be bases for | ﬂ Ker C; n Ker C2, 01’

U, and V. respectively. From (3.1-4) to (3.1-7) we know that

A e, € , for all i

AG - B, u

1i 5 e /; some uli' for all i

1i

~

A Voi ~ Bl u,; € V; some YL for all i
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Av., - B, u - B, u,.e(; some u

i T By Uy T Byuy, Uyyr for all i

3i’

We would like to find F,, F. such that

17 "2

v
(A + Bl Fl C1 + 52 F2 C2) v E

for every ve V; or, equivalently, when v is any one of the above basis
elements.

We first note that

(A+B1F1C1+B2F202) ei=AeieV

for all matrices Fl and F2. Now consider the vectors

{e) vyt U (e vy
These vectors are independent because

ker ¢, (1 (0,00 =kerc; N v ) (i, ®

W [ ker ¢, [ xer 02001) N W, ® 0)

=0
Similarly, the vectors
e, v U {s,
are independent. Now define Fl and Fz so that
F) C) Vpy = = Upys By €y ¥y = - uy,

and

F, C. v

FaC vy = = vy 2 G vy = muy
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Using these matrices we now have

(A+B1F1C1+B2F2C2) eisv

(A+BlFlC1+B2F2C2) vli=Avli—B2uligV
(A+B1F1C1+B2F2C2) v21=szi—BluzieV
(A+BlF1Cl+BzF2C2) vi=Avi—Blu3i-B2u4igV

Having determined the analogue of an (A,B)-invariant subspace, we now

look at controllability subspaces.

(3.1-8) Proposition: Iet R C R" be an arbitrary subspace. Then R is

a controllability subspace under decentralized feedback with two

control agents, i.e. there exist Fl and F2 such that

R={A+Blrlcl+321='2c2Ikﬂ(Bl+82)}

if and only if (3.1-4) through (3.1-7) are satisfied and, in

addition, R = Rn where

R,=0, R, =R([}(B, +B,+AaR _),i€n

(3.1-9) Remark: It is unfortunate that (3.1-3) cannot be extended
to accommodate more than two decentralized feedback controllers.
The difficulties involved are quite similar to those noted in
(2.2-30). It is, however, easy to show that a necessary condition

for the existence of {F,, i € K} such that

(A+ L B, F . CHlVECV
ex b1
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is

AW ()] kerc)c v+ 1 B,
jeI ] I J

for all subsets I C X

(3.1-10) Remark: The result (3.1-8) is not as useful as it might
appear. What one would like to have is a characterization of

subspaces of the form

(3.1-11) R={a+ B, F, cl + B, F, c2 | Blﬂ R}

Such a subspace would then be controllable by agent 1. It can
be shown that R satisfies (3.1-11) if and only if (3.1-4) through
(3.1-7) are satisfied and, in addition, there exists an F2 such

that R = ﬁn where

Ry=0, R =r@ +@+s, F,c)R ), icn.

The dependence on F2 makes this an unsatisfactory characterization.
A second detraction from (3.1-8) is that, even though R might
be such a controllability subspace, in general one cannot allocate

the eigenvalues of A + B Fl C, + B, F, C, restricted to R. &as

1 1 "2 "2 "2

an example, suppose C1 = C2 =0 and R = {aA | (B1 + BZ) r] R}.

In the foregoing we have outlined a hierarchy of approaches to the
pole allocation problem, all of which take as their primary objective the
achievement of a triangularly decoupled system. However, this approach
clearly places undue emphasis on the decoupling aspect, particularly if the

catrol agents are allowed to collaborate in the determination of the feed-
back matrices ri. That is, if we allow the Fi to be determined simultaneously
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then we are "simply" faced with the problem of selecting the Fi such that
det A\ I -A ¥ B, F, C,) =al}))
, i"ii
1eK
where o (A) is the desired closed loop characteristic polynomial.

If we write

1 c,
o F, 0 .
A+,2_B.F.C.=A+(Bl;...BK) . . . .
e+t 7 T : C
- . K
6 0 ... F

then the problem of pole assignment via decentralized control can be phrased
as a problem of pole assignment via output feedback, where the feedback
matrix {outputs} s {inputs} is constrained to a particular block diagonal

form. If the matrix

cees (N

O
~

is n x n and nonsinqular (which is essentially the case under assumptions
(3.1-1) and (3.1-2)) then the problem becomes a state feedback problem where
the feedback matrix satisfies the block diagonal constraint.

Problems where the feedback matrices satisfy certain constraints are
in general unsolved. However, we shall attempt to formulate an approach to

these praoblems, as introduced in the next section, in Chapter Fcur.
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3.2 Introduction to Feedback Invariants

In Section 3.1 we noted that the problem of pole aliocation via
decentralized control can be formulated in terms of finding a feedback

matrix F, of dimensions ( ¥ mi) x (2 pi), such that
iek ieK

det () I - A - (Bl;...BK) F ) = a())
\ %k

where F is constrained to be of the form

Fl O * o o O
o F2 .
F = . ’ (Fi is m, x pi)

O e e
O s e
|

K
Clearly, one could also represent decentralized feedback as a highly
constrained class of state feedback.

Thus, in Chapter Four we shall develop a method for algebraically
characterizing state feedback, and for determining the changes in system
structure that can be induced by the use of state feedback. We shall also
see that, in certain cases, feedback laws that are constrained to be of a
particular class can be accommodated in this framework. Thus, we can
hope to derive further results pertaining to decentralized feedback.

We shall formulate our ideas in terms of invariants. This concept is
as follows (see also B3], b0O], l’/S]). Iet X be a set, and let E be an

equivalence relation on X; thus, for all x, v, z € X,
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X E x

XEy & yYEx

XEy and Vv E z=>XE z

It then follows that X may be naturally decomposed as the disjoint union of

equivalence classes under E:

(3.2-1) X = L’J X
o

where each xa is "generated" by an element xa € X:

X = X E
- {y € y xa}

A function f : X + S is called an invariant of E if

XEy= f(x) = f(y)

That is, an invariant of E simply must be constant over each of the sets

Xa. A complete system of invariants is a list of functions fi : X > Si’

each of which is an invariant of E, and where
fi(x) = fi(y), for all i => x E y

A system of invariants of E, {fi : X > S, i g I}, is said to be independent

if there exists no i ¢ I with the property that
fj(x) = fj(y), for all je I - {i} = fi(x) = fi(y)

Thus, if {fi : X > Si} is a complete set of invariants of E, knowledge
of the values{fi(x)} is the same as knowing the equivalence class to which

X belongs. A complete set of independent invariants is, in a sense, a
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minimal complete set of invariants.

Finally, if X is decomposed as in (3.2-1), the set
C = {ﬁx}

is called a set of canonical forms. The significance of C is that for

every x ¢ X, there exists exactly one canonical form xa such that x E x .
Thus, if {fi : X > Si} is a complete set of invariants, knowledge of {fi(x)}
allows us to uniquely determine a canonical form xa such that x E xu.

These ideas will now be placed in the context of system thecry. Iet
(A,B) denote the system governed by

X=Ax +Bu: Ae R, Be R "

Let GL(k) denote the group of k x k invertible matrices, and let F = R0,
Then, by introducing state feedback and coordinate transformations in the

input and state vector spaces, we can produce a new system described by
. -1
z=T(A+BF) T z+TBGV

where T € GL(n), G € GL(m), and F € F. We shall now define a relation, ",

on the set of pairs (A,B) as follows:

(a,B) v (A,B) <> (A,B) = (T(A+BF) T 5, T B G)

for some T € GL(n), G € GL(m), Fe F

It is a straightforward exercise to verify that Vv is an equivalence relation
Thus, it is now of interest to determine a complete system of independer

invariants of Vv, as well as a set of canonical forms. Having accomplished
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this, we shall be able to identify all properties of the pair (A, B) that
cannot be changed by introducing feedback and coordinate transformations;
any such property must be an invariant of Vv, and as such must be
expressible in terms of the complete system of independent invariants.
The problem of determining a complete set of independent invariants
of v, and a set of canonical forms {(Aa' Ba)}, has been completely solved
(421, [60], [75]) for the case where the pairs (A, B) are constrained so

that
(3.2-2) {a | B} = &°
The solution is as follows.

(3.2-3) Proposition: For each pair (A, B) ¢ R subject to (3.2-2),

determine two sets of integers {ri, i > 0} and {\)i, ie m}

as follows. Define

rank B

a)
il

rank (B; ... al B) - rank (B; ... A -1 B), ix>1

2]
]

and

V.=#{rj|rj2-i}. iem

where # denotes cardinality.

Then, v, 2V >...2\)m.20, z \)i=n, and the maps (A,B) »

1 2 = .
iem
\)i, i em, are a complete set of independent invariants for n.
For each pair (A,B), there exists a unique canonical pair

(Ac, Bc) with (A,B) (Ac,Bc). The canonical pair is specified

in terms of the integers {v,, i € m} as



(3.2-4)

1
0 0
H\)2
A = . . .
c - . .
0 o ... H,
ml
h\) 0 .. O o
1
0 h, 0 o]
2
B = . . . .
c . . . .
0 0 h\)m' 0
m-m' columns
where m' = max {i | vi > 0} and

o1 0o ... O
O 01 ... O
Hk = e e s , (k x k)
S 1
0O 0 0O ... O
0
0
hk = - , (k x 1)
0
1

Remark: When (3.2-2) is not satisfied, a complete set of
invariants can be found as follows. Let A : {a | B} ~ {a | B}
be the restriction of A : Rn-+ Rn, and B : R > {a | B} the

restriction of B : R* > Rp. Let {Gi' i€ EQ be determined from
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(R, ﬁ) as in (3.2-3). Also, for P : R > Rp/{A i B} é X, let
A : X+ X be the map induced by A : R" > RD; i.e., A satisfies
AP="pPA. Finally, let {wi(k), i € n} be the invariant polynomials
of &, ordered so that ¥i,1 ) divides p, () for 1 £ i < n -~ 1, and
with ¢, (}) 81 for dim (X) < i < n.

Then, a complete set of independent invariants for v is the set
of maps (A, B) & Gi' i € m, together with the maps (A, B) »

A

¥, (), ie n.

One of the important results arising from (3.2-3) is

(3.2-5) Theorem: (Rosenbrock, Bl]): Given (A, B) ¢ gy g

such that {A | B} = R", there exists a matrix F € R such that
the invariant polynomials of A + B F are identical to the poly-

nomials of {wi(k), i e n} if

v,

1+1(A) divides wi(X), for 1<£i<n-1

and

i i
I degy, > L v, foriem
where {v , i € m} are determined as in (3.2-3).

We shall prove (3.2-3) and (3.2-5) in Chapter Four, where a module
theoretic characterization of linear systems is developed. It will be seen
there that the problem of obtaining a complete set of independent invariants
when the feedback is constrained to be of a particular class (e.g. as in
the case of decentralized feedback) remains unsolved. However, it will be
possible to determine a characterization of system structures attainable

via decentralized feedbacl .



CHAPTER 4

A CHARACTERIZATION OF LINEAR SYSTEMS VIA

POLYNOMTAL MATRICES AND MODULE THEORY

4.1 Introduction

Techniques for solving problems in the area of linear, constant, finite
dimensional systems usually may be classified as belonging to one of the
following cl:ssses: transform techniques, where an external description of
the system is given by a transfer matrix; state space techniques, where
the internal dynamics of the system are exhibited explicitly by a vector
differential equation; polynomial matrix techniques, where the system is
described by the "system matrix;" and abstract algebraic techniques, where
the system description is in terms of the canonical factorization of the
input-output map. Any one of the above classes of techniques may be more
appropriate, in solving a particular problem, than the others. For example,
state space techniques are appropriate for treating the decoupling problem;
polynomial matrix techniques have been applied by Rosenbrock (f6l1) and
Wolovich ([67] - (70]) in problems of model matching; algebraic
techniques have been used by Kalman ([38], (39], (411, [43]), Arbib and
Zeiger ([3], [76]1), and Giveon and Zalcstein ({311) in determining the
structural properties of a system from an external description.

In this chapter we shall develop a new method for characterizing
linear systems. This characterization is mostly algebraic in nature,
build ng on the module - theoretic characterization of linear systems
developed by Kalman; however, polynomial matrices, transfer matrices, and
dynamical system properties play a significant role in the development. Thus,

the contents of this chapter may be viewed somewhat as a unification of the

110
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previously mentioned classes of linear system techniques.

More importantly, however, this characterization will provide us
with a new and powerful way to treat the subject of feedback invariants;
also, new results pertaining to controllability subspaces may be obtained
fairly easily in this new framework. Thus, the abstract algebraic approach
to linear system theory will be seen to have a significantly widexr scope
than has been apparent from previously published works.

The remainder of this chapter is organized as follows. Section 4.2
is devoted to a review of Kalman's module-theoretic characterization of
linear systems. In Section 4.3, a new method of canonically characterizing
submodules of a free module, quotient modules, and canonical projections
will be presented; these characterizations will be seen to be in terms of
polynomial matrices of a particular class, which we shall denote as
canonical matrices. In Section 4.4 we shall develop a characterization of
linear systems in terms of canonical polynomial matrices; the appropriateness
of this characterization for problems in realization and system structure
will be demonstrated. 1In Section 4.5 the theory is extended to incorporate
state feedback; the subjects of feedback invariants and controllability
subspace characterizations will be presented. Finally, in Section 4.6 we
explore the subject of feedback invariants when the feedback is constrained

to be of a particular class, as in decentralized feedback.

4.2 Review of Linear System Theory via Modules

This section is intended as both an introduction and a review of the
algebraic characterization of linear systems via module theory. The approach

and notation closely follow that in [38, Ch.10]. References that will
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provide the required background in algebra are (53, Ch. 1-10}, [46]1, and
to some extent ([21); most of the commonly used concepts and results are
summarized in Appendix B. References that illustrate the varied ways that
abstract algebra can be used to characterize systems are the works of:
Arbib and Zeiger, (3], [7?]; Giveon and Zalcstein, [3l1]; and Kalman, [39],
(41].

In what follows we shall always be considering systems that are
linear, constant, and described in discrete time. A very similar character-
ization of linear, constant, continuous time systems has been presented by
Kalman and Hautus, [43]; and Bensoussan, Delfour, and Mitter [6 ].

However, since we are interested in the underlying algebraic structure

of a system, and since for each continuous time finite dimensional system
there is a discrete time system with the identical structure, we shall not
lose any generality in restricting ourselves to discrete time systems. Also,
in this chapter the systems will always be defined over the real numbers,
R; however, as we are considering discrete time systems, practically all
the results remain valid if R is replaced by an arbitrary field K.

Thus, let I denote a linear, constant, discrete time, causal system.
We shall think of I as processing strings of input values taken from Rm,
and from the input strings producing strings of output values in R,
Because of the assumptions on I, this system is completely characterized by

an input-output map fZ
*
£: () » R

where
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(Rm)* = {("’,0,0,u_k,u °-u0)|k € Z+ = nonnegative integers,

k41’

and each u, € R}

Thus, (Rm)* is just the set of all semi-infinite sequences (-'°,u_2,u_l,uo)

of vectors in R" for which only a finite number of the u, are nonzero. The

i

interpretation that one should give to a sequence (**°0,0,u -~uo) € (Rm)*

_k"
is that of a string of control input values which starts at time t = -l. and
terminates at time t = 0. Each such sequence u* € (Rm)* produces an output

value (in RP) at time t = 1; it is in terms of this output value that we

define the action of f. on u*:

z
£y (R")* > RP
: uk » y1 = cutput value at time t = 1 resulting from input
string u*

Ve also define the extended output space (RP)** to be the set of all

semi-infinite sequences of vectors in rP:

(Rp)** = {(Y11Y2IY3I'°°) IeaCh Yi € Rp}
and the extended input-output map f§ as

£5 : (R * > (RF)**

. ux* » y** = (yl'yzly3'c.‘)
where, for each i 21,
yi = output value at time t = i resulting from input string u®

It is clear that the map f§ uniquely determines the map fZ; we shall shortly

see that fZ uniquely determines ff when I is linear and constant.

The spaces RP,(RQ)* and (RP)** admit the structure of P-vector spaces,
where addition and multiplication by scalars in the latter two are defined

in the obvious way: If u* = (°"0,u_ ---uo) € (Rp)* and v* =

k’



("'O.V_g,'°°vo) € (Rm)*, where (say) k > g, then
. .- LI LA ) LI
u* + v ( O,u_k, U paprlog ¥ Vogettiug + vo)

au* = (<¢<0,au sesau ), for all a € R

-k'
Also, if y** = (Y1'Yz""’ € (RP)y#* and w* = (w W pttt) € (RP) #w
then

*H Rhk = )
ay** = (ayl.ayz,---), for all a € R
We also define the left shift operators o, and 0, as

(4.2-1) 0,: (RMH* > (F*

H ("‘O'u ""uo) L (-;.O'u-k'ooouo'o)

-k’
and

(4.2-2) o (RP) #* & (RP) #+

*%k °
S S S0 SVERES Ble (yz.y3,"')
These operators are easily shown to be R-linear maps.
We can now define linear, constant, discrete time systems.

(4.2-3) Definition: I is a linear, constant, discrete time system if

£2 (aclcu* + bo, v*) = aok LE3(u*) + bG%*fi(V*)

for all a,b €'R; u*,v* ¢ (Rm)*; and k, 2 > 0.
Clearly, if I is linear and constant, then fZ: (Rm)* > gP is an R-1lin-
ear map. The following result indicates that I is completely characterized
by fZ‘

(4.2-4) Proposition: Let X be a linear, constant, discrete time system

with input space (Rm)* and output space (RP) #*

Then

(i) f* is determined by f

v as

z

£2 (R) * + (RP) #»
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2, 2
tour e (ER) EO,u%)£07 k) o)
(i) zIf {ei,i € m} is the standard basis for R, and if

matrices Gj € Rme are defined as

= * e e o 8 * 4 >
Gj (fz(elj ; rfz(emj))r J _O
where
e;0 = ("'ololei)
and
e;,j+l = G*e;j , for j > 0
then fz is represented as
k
. LI . . »
fZ' ( 0,0,u_k, u) ; E oGJu 3

(iii) With {Gj,j > 0} as given by (4.2-5), the map £§ :

(R™* > (RP)** is represented as

ff : (oooolo’u-k,uo-uo) [ (yl'yz'ys’.to)

where
= r . ~ ]
yl G0 G1 o« o . Gk uo
Ys © % - S%a "1
. . L] . u_k
L - - adl b -t

(iv) 1If ("'0,0,ut0, u, +l,---) is an arbitrary (possibly semi-
0

infinite) input string which starts at time t = to, then the re-
sulting output string (:--y, v Ye o Y o)

0-1 0 0+1
is given by
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(4.2-7)

(4.2-8)

(4.2-9)
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Y. = fz(--o,uj_z,u. ), for all j

3 j-1
Remark: The sequence {Gi'j Z_O} is known as the pulse response

of L. The infinite array

G0 G1 G2 o e .

Gl G2 G3 e e a
H =

G2 G3 G4 « e s

is called the Hankel matrix associated with I.

Remark: From (4.2-4), part (iv), we immediately see that our
definition of linear, constant, discrete time systems has the
notion of causality already "built in." That is, if the input
sequence is ("‘0,0,uto,uto+l,°'°), then
from (4.2-6),

Y. = fz(°°'0,0,0) =0, for all j <t

J 0

since fz is a linear map.

Remark: If I is a system described by the equations
X o1 = AX_ + Bu, x__ =0
Yp = Cx
Then it is easily seen that I is linea2r and constant according
to the definition (4.2-3), and that the pulse response

{Gj,j Z.O} is given by

GJ.=CAJB,3'30
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The above characterization of L may now be translated into the language
of modules as follows. In place of the space of input sequences, (Rm)*, we
substitute the free R[A] - module Rm[X], where R[A] is the ring of polynomials
in the indeterminate A with coefficients in R, and Rm[A] is the module of
polynominal m-vectors in the indeterminate A with coefficients in R, The
correspondence between (Rm)* and Rm[X] is as follows. Each element

("'O,u_k:'

by the rule

'uo) € (Rw)* determines an element u(l) € Rm[A]

k .
u(d) = I Atu

This establishes an R-linear isomorphism between (Rm)* and R@[A]. Defining

multiplication by A in Rm[A] as

Xi u . = I Atu

A -i . -i+l

it is easily seen that the action of A on R [A] is equivalent to the action
of 0, on (R')*, defined in (4.2-1).

Similarly, we establish an R-linear isomorphism between (RP)** and
RP[[A-I]], the R{A]-module of formal vector power series in the indeterminate

A " with coefficients in .

This isomophism is just

(RF)** 3 P a7y

o s
(yl,yz.---)"*izl At y; =¥

We define multiplication by A in Rp[[k-lll as

. 0 .
Ae T AThyL = Ty,
i=1 i=1 it
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That is, to compute Ay{A), for y(A) € RP[[A—l]], simply formally multiply A
and y(A), and then delete any nonnegative powers of A. It is easy to see that
. 2P -1 . . - RP) #*
the action of A on [[A 71] is the same as the action of g, on (R)**, as
defined in (4.2-2).
Clearly, the input-output map fzz (Rm)* + R’ and the extended input-

output map f¥* : (R@)* -> (RP)** uniquely determine corresponding maps

X
EZ: Rm[l] > R and fi: Rp[l] -+ Rp[[k—lll. For ease of notation, we shall
call the former
£y RU(A] ~ ’P

and the latter
g2 E'DO > RPN
Then, in module-theoretic terms, (4.2-3) becomes

(4.2-10) Prqposition: Z is a linear, constant, discrete time system

if and only if £3: ] > B [(\"11] is a morphism of RIA]-
modules.
Proof: From (4.2-3),I is linear and constant if and only if
g2@ a) + bA'v() = afero) + mategw )
for all a, b € R; u(}), v(\) € R'[A]; and k,% > 0. Thus, L is linear and
constant if and only if
fi(a(l)u(l) + B(A)V(A)) = a(l)fg(u(l)) + B(A) fg(v(l))
for all a()),B()) € R[A] and all u(\),v(A) € R°[A\]. B
(4.2-11) Definition: If I is a linear, constant, discrete time
system, then the map ££: RE'[A] > R [\ '1] will be called

the input-output morphism of I.

We have already seen that the extended input-output map fi: (R@)*-+(Rp)**

can be represented in terms of the Hankel matrix of X. We now give an
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equivalent representation of the input-output morphism.

(4.2-12) Proposition: Let I be a linear, constant, discrete time system,

and let fﬁ: R@[A] - RP[[A-I]] be the input-output morphism.

Then f£ is represented as

£ B > 21

: u(d) » [HQA)u)]
where, if {Gj’j.i 0} is as given in (4.2-5), H(\) ¢ Rpxm[[A—I]] is

HO) = % A Jg. .
=1 7%

and where the product [H(A)u()A)] is interpreted as the formal

product H()A)u()) with all nonnegative powers of )\ deleted.
Proof: From (4.2-4), part (iii), it follows that if

k .
u(p) = I Aha
-1

i=0

then
£2u)) =y0) = I Ay,
i=1
where
X .
(4.2-13) Y, = Gj+i-lu-j' for i > 1
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But, formal multiplication of H(A) by u(}) gives

® -5 k i
H(A)u(A) = LA -G, ‘{.Z2. A u .
. j-1 i=0 -1
i=1
0 -3 k
= I A G. . u
j=—k+1 i=p-j JHTL i
§oad %
+ . G, . ,u_.
j=1 1=0 j+i-1 i

Therefore, deleting the nonnegative powers of )\,

™ -9 k
_ J
[H(\)u(A)] —J;=21 AT gEg Gyugo1 Yy

[

"
s
z

where the second to last line follows from (4.2-13). W

(4.2-14) Remark: This proposition illustrates the algebraic
significance of H(A), which is really just the familiar transfer
matrix written as a4 formal power series in Anl.

The input-output morphism fi: Rm[A] - Rp[[A-lJ] has provided us with a
module-theoretic, external description of J. Aside from the notational
simplicity that results from expressingvinputs as polynominal m-vectors, and
outputs as power series p-vectors, this external description of I is
identical to that provided by the extended input-output map, fﬁ: (Rm)*-+(Rp)**.
However, the power of the module theoretic characterization will soon

become apparent when we deduce an internal description of I from the input-

output morphism.
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We procede as follows. Let Xs be the quotient R[A]-module

Rm[l]/Ker f*; X, has the interpretation of being the set of Nerode equiv-

" L
alence classes in Rm[A] (see [38]). Let m: Rm[A] +-XZ denote the canonical

projection, and let p*: XZ > Rp[[A_l]] be chosen so that the following

diagram commutes:

R [A] >rRP A7)

™ p*

m
(4.2-15) XZ = R [A]/Ker f§

Such a p* clearly exists because of the definition of Xy; moreover, T is an
epimorphism (i.e. surjective) and ¢* is unique and a monomophism (i.e.,
injective}.

By a realization of I we shall mean a quadruple (X,A,E,C) where X is an
R-vector space, A: X » X is an R-linear endomorphism, B: R® -+ X and C: X RY
are R-linear maps, and such that

i .
CAB=G, ,1>0
l —
where {Gi'i Z_O} is as given in (4.2-5). By a canonical realization we
shall mean a realization that is both reachable and observable, i.e. such

that

{a|B} = X

m Ker(CAi) = 0
i

By a finite dimensional realization we cshall mean a realization where the

dimension of X, as an R-vector space, is finite. It is well known

([(8], [38]) that every canonical, finite dimensional realization is minimal,
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i.e. there exists no other realization where the dimension of X is smaller.

We can now prove the following.

(4.2-16)

Theorem: Let I be a linear, constant, discrete time system,
and let ff be the input-output morphism; let f§ be canonically
factored as in (4.2-15). Then, an abstract realization ¥ can bec
obtained as follows.

(i) Define the R-vector space X to be XZ' i.e. the underlying
set XZ together with the action of R on Xy (implicit by the
action of R[A] on XZ)'

(ii) Define the endomorphism A: X>X as

A: xP Ax
This is well defined, because each x € X is also an element of the
R[}]-module Xg .

(iii) Define {: R™ -+ Rm[l] as the insertion of R" into Rm[A]
(this is well defined as an R-linear map) and define
B: R" + X as

B=To A
(iv) Clearly, Ker f* C Ker fZ; thus there exists an R-linear

)}
map P: XZ > R® such that the fcllowing diagram commutes

R[] > 7P
£y
m ¢
m
XZ = R [A]l/Ker fi

Thus, define C: X+ RF as

C=0p
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Proof: We must show that, for the (X,A,B,C) defined above,
s I :
CA'B=G, , jJ>0

But,

calB = padmi

pﬂkji (since 7 is a R[A]-morphism)

fZAJxL (definition of p)

If e is the k'th standard basis vector of Rm, then Al{e. is the polynomial

k
m-vector that represents the input sequence eﬁj (see (4.2-4), part (ii)). Thus,

CAJB e

k

*
fZ(ekj)
= k'th column of Gj (from 4.2-5))

Therefore,

j -
CA-B ek Gj ek r kK Em

whence

CAJB=Gj , forallj>0 m

It is important to determine when the system I can be realized as a
finite dimensional system. The following theorem answers this question.
(4.2-17) Theorem: Let I be a linear, constant, discrete time system

and let the input-output morphism fi be canonically factored as in
(4.2-15). Then,

(1) There exists a finite dimensional realization of ¥ if and
only if the quotient module XZ is a torsion module.

(ii) The realization defined in (4.2-16) is always canonical

(i.e. both reachable and observable).

(iii) 1If X5 is torsion, the realization of (4.2-16) is minimal.
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Proof: (i) If (X, A,B,C) is a finite dimensional realization of dimen-
sion n, by the Cayley-Hamilton theorem there is an o()\) € R[A] of degree

n y
n such that a(A) = 0; if a(A) = J Aloci, this implies that
n i k
L G, oci=Z ca BOLi=CAOL(A)B=0, for all k > 0

Let u € R" be any vector; if y(A) = fg(u(k)u), then from the proof to
(4.2-12),

_.n
AJZG
1l i=0

y(A) =

o.u
. j+i-1"1
i J

I t~8

Since the elements of R“ are generators for Rm[A], it now follows that
££((Mu(d)) =0 , for all u(d) € R [A]

Thus, a(A\)R [A] C Ker £*, and it follows that
o(A) x =0, for all x ¢ XZ

i.e., XZ is torsion.

Conversely, suppose that XZ is torsion, and consider the realization
of (4.2-16). We shall derive a simple bound on dim (X). Indeed, if
(1) is the minimal annihilator of Xz and if da(X) = 4, then, for all
ue R,

T(a(A)u) =a(A)T(u) = 0

whence it follows inductively that
a+k -
A ""We R-linear span of {m(A'w), 0 < i < a-1}, for k > 0

Since T: Rp[A] > XZ is surjective, it then follows that a basis for X
can be selected from the vectors {w(f‘ek); 0<i<ad-1, ke g} where

{ek,k € m} is any basis for R". Therefore,
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dim(X) < md < o

(ii) To show that the realization of (4.2-16) is reachable, note

that

ne>

£ alimB
120

{a|B}

L ATIm(med)
320

T X Im(Aj°i)
>0

T Rm[A]

= X

since T is surjective. To show that this realization is observable, let

X € O Ker(CAi). But X = T7(u(l)) for some u(d) ¢ Rm[A]. Thus
pliw(u(l)) = pﬂ(kiu(l)) = fZ(Xiu(l)) =0, for all i >0

whence, using (4.2-4) part (i),

]
o

£ (u()

Thus u(}) € Ker f$, x = 0, and the realization is observable.

(1ii) This part follows from (i) and the fact that finite dimen-
sional canonical realizations are minimal. @

While the realization of (4.2-16) is canonical, it suffers from the
fact that it is abstract, i.e. X and A,B, and C are abstract quantities.
It will be the purpose of the next section to develop a method for
concretely representing these quantities. Thus a complete representa-
tion theory of linear, constant systems » including a theory for ccncrete

realization, will evolve.



126

4.3 Characterizations of Mocdules and Morphisms via Canonical Polynomial

Matrices

In Section 4.2 we have seen that, if ¥ is a linear, constant, discrete
time system with input-output morphism fi: RU[A] ~ Rp[[k_l]], then the
internal structure of any canonical (i.e. both reachable and observable)

realization of I may be completely deduced from the canonical factoriz-—

ation.
R [A] > Pt
£
T p*
(4.3~1) m
Xz = R [A]/Ker f§

Unfortunately, while (4.3-1) provides us with a complete characterization
of I (modulo unobservable and unreachable portions), it is too abstract
to be of much practical use. What is needed, therefore, is a method of
characterizing the morphisms T and p*, and the state module XZ' all in
concrete terms.

This is trivially possible for the case where m = 1. For then
the input space is just R[A], and Ker f§ C R[}], being a submodule of
R[A], is simply an ideal in R[A]. But, since R[A] is a principal ideal
domain, it follows that there exists a unique monic polynomial
t{A) € R[A] such that

Ker fi = (t(A))

where (t(A)) denotes the ideal generated by t(\), i.e. all polynomial

multiples of t(A). The state module XZ is then just
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Xy = RIAL/(£())

i.e. xz is isomorphic to the ring of polynomials modulo t(\). Moreover,
the canonical projection m: R[A] xZ is basically just the operation
"reduce u(A) € R[A] modulo t(A)."

XZ and m: R[A] > XZ may now be represented in concrete terms as
follows. Let the degree of t(A) be n, i.e.

_ 1N n-1 .
t(A) =27 + A tn-l + +t0

Thus, each element of xz, i.e. each coset of (t(A)), has a unique
polynomial representative of degree less than n; also, every polynomial
of degree less than n determines a coset of (t(A)). It follows that

XZ is R-isomorphic to the n-dimensional R-vector space of all polynomials
(in R[A]) of degree less than n:

Xy zx 8 {x(}) € R{A1|3x{}) < n} (as R-vector spaces)

We can now represent the action of A on XZ by an endomorphism
A: X > X, as follows. The set of vectors {ei,i € n},
where

i-1
ei = A s 1 E n

clearly forms a basis for X; thus the set {ei + (£(A)), i€ 2} forms a

basis for xz, taken as an R-vector space. However,

Mey + (E())) = (e,,, + (£(M)), for 1 < i < n-1

and, since AR = -(An-lt +---+to) (mod t(A)),

n-1

n
Ae + (£(N)) = -izlti_l (e, + (£()))
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Thus, the actior of A on Xy is represented by A: X + X which, in the

basis {ei, ie 2} s is represented by the matrix

- 7
0 c . . . 0 -t
1 0 0 -t
0 1 . .
A = O O - -
(4.3-2) . - . .
. . 0 _tn"2
T
N -

The canonical projection m: R[A] + XZ is just
T: u(d) » [u(Ad)] + (£(N))

where [u(A)] denotes the unique polynomial of degree less than n such

that
[u(M)] = u(d) (mod t(\))

Thus, if V. xz + X is the R-isomorphism outlined above, it is easy to

verify that m: RI[A] > XZ may be represented by the following R-linear

map:
Pemw: R[A] > X
: w)» (LA, A" Yuab
k . k .
where, if u(d) = I Alu., then u(a) = ¢ Alu., and where
i=0  * i=0 '
- -
(4.3-3) b = .
0 |

(Note that we are thinking of elements in X as being polynomials of

degree less than n.)
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Finally, the morphism p*: XZ -+ Rp[Il-lll can be represented by the

R-linear map
ovpl: X > ®RPrahy

: T oe » Iafr(th

ien 1 162_1 2

Defining the map c: X > rP as

c: Lae » Iaf 0l
ien 11 ien i
one can easily verify that (A,b,c) is a realization of I, where A and b
are as in (4.3-2) and (4.3-3).
Thus, for single input systems, it is fairly easy to represent

Xz,ﬂ, and p* in terms of a vector space and R-linear maps.

In the remainder of this section, and in the next, we shall show
that all of the above can be generalized to the multi-input case. Our
method of attack will be to generalize the concept of a monic polynomial
generating an ideal to that of a "canonical matrix" generating a

submodule. of Rm[A].

4.3.1 Canonical Matrices and Free Submodules

Motivated by the preceding discussion, we now consider the following
problem: Given a submodule M C:R?[A], how can one "canonically" represent
M, R*[A]1/M, an@ the canonical projection T: RV[A] -+ RU[A]/M? (For
applications, we have in mind the éase where M = Ker fi , for some input-
output morphism fi.) Guided by the relative simplicity of the situation
in the case where m = 1, we shall try to find a polynomial matrix T(\) with

the following properties:
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(4.3-4) The columns of T(A) form a set of free generators for M.
m
(4.3-5) Elements of R [A] may be uniquely "reduced modulo T(XA)."

Property (4.3-4) will allow us to represent M in a canonical manner,
while (4.3-5) will canonically exhibit the quotient module Rm[K]/M and

. . m m . . .
the projection m: R [A] > R [Al/M. These objectives are certainly
attainable when m = 1, for then we pick T{\) € R[A] such that T(\) is
monic, and M = (T(A)). We shall see that these objectives remain attain-
able when m > 1.

In what follows, we shall always be concerned with R[A]-modules,
and with matrices with elements in R[A]. However, the results remain valid
if R[A] is replaced by K[A], where K is an arbitrary field. Moreover,
most of the results remain valid if R{A] is replaced by any Euclidean
ring, the main difference in the Euclidean ring case being that there is
no notion of "monic," as there is for polynomials.

To establish notation, we include the following
(4.3-6) Definition: (1) If a(A) € R[A], we denote the degree of a(}))

as da(A), or simply da; if a()) = 0, we define da(}) a -,
(ii) If u(A) € Rm[A], we define Ju () 4 mgg Bui, where
i
ui(l) is the i'th component of u()l); we may also abbreviate
du(A) to du.
s mxxr .
(iii) If T(A) € R [A], define 3T(\) = max Bti., where
iein_,je_z;
tij(k) is the i,j'th element of T(\); again,
9T(A) may be shortened to OT.

Next, we introduce the concept of a canonical decomposition of a

submodule M c R™[A].
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(4.3-7) Definition: Let M < Rm[X] be a submodule of rank r > 0. We
shall say that there exists a canonical decomposition of M if

there exists an integer ¢ > 0 and a chain of submodules

(4.3-8) 0=M07CL Ml g M2<7:‘---c7:LMa'=M

such that, if integers {T]i,isg_} are defined as

(4.3-9) N. = min {3u|u(}\)€M, u(A)¢Mi_l} , for ieq

(4.3-10) M = 2 R[A]Ju(A) = submodule generated by S,, for ito
1 i -
u(A)ESi

where the subsets SiC M are defined as

(4.3-11) S, = {uMeM |du < n,}  for iea
If all of the above is true, then we shall call (4.3-8) a
canonical decomposition of M.
(4.3-12) Proposition: Every submodula M Rm[l] of rankr >0 has a

unique canonical decomposition.
Proof: Suppose there exists a canonical decomposition of M. Then, for
each i€ea, the triple (ni,Si,Mi) is uniquely determined by the submodule
Mi-l' Since MO is defined to be the zero submodule, it follows by induc-
tion that the set of triples {(ni,Si,Mi),isg} is unique. Thus, if there
exists a canonical decomposition of M, it is necessarily unique.
To demonstrate the existence of a canonical decomposition of M,

suppose that, for some integer k > 0, we have found, recursively via

(4.3-9)-(4.3~11), a set of triples {(ni,si,Mi) ,» i€k} such that

(4.3-13) c=M Ml C ...cMcM

{ g
0oF 1 F U F%
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This is certainly possible when k = 1, because rank M >0 implies M # O.
There are now two possibilities to consider: either Mk =M, or Mk gﬁ M.
In the former case, we have a canonical decomposition of M, with
o = k.
In the latter case, (4.3-9)-(4.3-11) produce a triple (nk+l'Sk+l'
M 1); moreover, from the definition of M’k’ it foliows that Meyp > o

k+

that S

D -
k4l 2 Sk' and that

Thus, the chain in (4.3-13) can be extended.
We now proceed resursively, determinnng the triples (ni'si'Mi) until
at some point Mk = M. This must be true for some finite integer k;

otherwise we would have a strictly increasing infinite chain of submodul

M cC ... CTM cee M

= c c
0=WZt T T Mg

contradicting the ascending chain condition (See Appendix B). B

Proposition (4.3-12) will ultimately form the basis for a procedure
for canonically characterizing any nonzero submodule M C Rm[}\] . However,
we must first consider several special classes of polynomial matrices.

begin with the following definitions:

(4.3-14) Definition: Let T(A) = (tl(}\); tz()\) ;---tr()\)) be an mxr
polynomial matrix; and let \)i = ati, for ier, and

V=0T = max V,. Then
ie_r.;

(i) T(A) is regular if m = r, if v>0, and if T\) is non-
singular, where T v is the coefficient of )\v in T(A).

(ii) T()\) is column proper if vy > 0, for all ier, and if

es

We
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Th has full column rank, where Th is the mxr constant matrix
\Y
whose i'th column is the coefficient of A i in ti(A).

(iii) T(A) is row proper if T'()) is column proper.

Regular, row proper, and column proper matrices enjoy certain proper-—

ties that will prove useful in our development. We begin with

(4.3-15) Lemma: Let T(A) be a reqular mxm matrix of degree v. Then

each u(A)eR™[A] may be uniquely written as
u(d) = TN g(d) + r(\)

where q(A), r(X)ERm[l], and where 9r < V. Moreover, for this

unique pair, 9g = 3u-v if du > V; otherwise q(A) = O.
Proof: This is a standard result; see, e.q., [28,p.77]1. B

The operation of determining the "remainder" xr(A) upon "dividing"
u(A) by T(A) will be referred to as "reducing u(A) modulo T(A)." This
concept can be generalized to the case where T()\) is row proper, as

follows.

(4.3-16) Lemma: Let T(A) be a row proper mxm matrix whose i'+h row
is of degree vi, iém. Then any u(A)e Rm[A] can be uniquely
reduced modulo T(A) in the following sense. For every
u(A) e K®[A] there exist unique q(A), r(A) eR™[A]
such that

(1) ufd) = T(A) q(d) + r(})
(ii) ari < \)i + for each iem
Moreover, if n= max (aui - vi), then 9 = 1 when n > 0;

iem
otherwise q(A) = 0.
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Proof: Define V = max V, = 9T, and let A()) be the diagonal mxm matrix
iem *
such that

A= AVVi, ienm
11 -

Then it is easy to see that A(M)T(A) is regular and of degree v. Let

u(X)E:Rm[A] be arbitrary, and reduce A(A)u(A) modulo A(A)T()\):

AMud) = ATMNg(A) + T

for unique q(A), T(\) € RV[)A] subject to 3% < V. Now define
r(A) = u(d)-T(A\)q(})

so that (i) is satisfied. But then
ANx(d) = £

and, since 3% < v, it follows that (ii) is satisfied. Moreover,
0(Au) =max (Qu, + Vv=v.) = Vv + n; thus, from (4.3-15), 3g =V + n - v
i€m 1 1
if n > 0 and q(\) = 0 if n < O.
This establishes the existence of q(A) and r()\) with the desired
properties, But, if g*(A) and r*()\) are any elements of R@[A] satisfying

(i) and (ii) then

AQM)ud) = AT g* (X)) + AAN) r*(\)

and, moreover, d(Ar*) < v. But then, by the uniqueness part of (4.3-15),

it follows that q(A) = gq*(A) and that
AM)z(A) = AQ)x*(D)
But, since A(A) is not a zero divisor in the ring of mxm polynomial

matrices, it then follows that r(A) = r*(\). This establishes the unique-

ness of q(A) and r(A). B
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Column proper matrices will prove useful because of the following

property.

(4.3-17) Lemma: Let T(A) be a column proper mxr matrix, whose i'th
column is of degree vi, for ier. Then, for all q(A)E:Rr[A],

3(T(M)g(A)) = max (qu + V

L)
ier 1

where qi(l) is the i'th element of gq(A).
Proof: The result follows trivially when g(A) = 0. We next observe that if

q(A) # 0, then T(A)g(A) = L ti(l)qi(k), where ti(k) is column i of
ier
T(A). Thus -

9(T(A)g(A)) <max (3t, + 9q,) = max (Iq, + V)
iex iex

Now take q(A) # O0; and define n é max (qu + vi), and
ier
di Q qu for iex. It follows, since each_'vi > 0, that n > 0 and

(Mg =A" I £y 9 g *vO)

i:d.+v.= i i
lln

where ti 3 is the coefficient of AJ in ti(A), q; 3 is the coefficient of
’ ’

A7 in qi(l) (if qi(l) # 0), and 9v(A) < n. But, since T(A) is column
proper, (t1 v ;---tr v ) has full column rank. Therefore, since at least
’

1 Yr

one of the 9 is nonzero, the coefficient of Win T(A)g(A) is nonzero.

Idi

This completes the proof. B

This last result has a useful corollary:

(4.3-18) Corollary: Let T(A) be a column proper mxr matrix, whose
i'th colum, ti(k), is of degree vi. Then
(i) The columns of T(A) are a set of free generators for a

submodule M c RM[A].
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(ii) If u()) € M is a nonzero vector polynomial of degree

n, then u(A) must be of the form

u(d) = I t,. (A)q, (A)
i=Viﬁn' t *

for unique qi(k) € R[A] such that qu <n - v, -
Proof: (i) Consider the set {ti(l),iEE}. These elements are free gen-
erators of a submodule of Rm[A] if q(A) € Rr[A] and g(A) # O imply
T(A)g(A) # 0. But, from (4.3-17),

3{T(A)g(A)) = max (3qg.+Vv.} > min v, >0
. i i = i =
1§£_ 1q§

since at least one qi(A) is nonzero. Therefore, T{(A)g(A) # 0. Clearly,
M is the submodule generated by {ti(l), i€£} .
(ii) Next, if u()\) € M, because {ti(k), i € x} is a set of free

generators for M, there exist unique qi(l) € R[A] such that

u(d) = I ti(l)qi(k)

ier

But then, from (4.3-17), 9u = max (qu+vi). Therefore, it follows that
ier

. S
qg.(A) =0, if v, ou

< - i <
aqi < du V;y if Vv, <3u m

As in (4.3-18), we shall frequently wish to refer to a submodule
generated by the columns of a polynomial matrix. Thus, we now establish
the following convention:

(4.3-19) MﬁudmzLuTM)=&ﬁMpn%ﬂnbemamumm
mxr polynomial matrix. Then, by Im T(A) we shall mean the

submodule of R"[A] generated by {ti(k),iqg}:

Im T(A) Q'{u(k)elelllu(A) =X ti(l)qi(l), for some qi(A)eR[A]}
ier
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We now introduce a fourth class of polynomial matrices, canonical
matrices. Such matrices will be seen to share certain of the desirable

properties of both column proper and row proper matrices.

(4.3-20) Definition: Let T(A) be an mxr polynomial matrix, where

r im. Then T(A) is a canonical matrix if there exist two sets

of integers {\)i, ier} and {mi, ier} such that

(i) m E€m for each i

(ii) vy 2 0, for each i
(iii) i # j implies mi # mj
(iv) i < j implies vi < \,‘j
P - . <
(v) i j and \)i \)j imply mi mj

(vi) tm i(A) is monic and of degree Vi for each ie r
s 2 -
i

(vii) i # 3§ implies atmi'j vy

(i4) 5 < . . <
(viii) j m, implies atj,i \)i

. . - . . <
(ix) k # i and \)k \Ji implies atmk'i \)i

(x) tj 34 £V, for all ier and jem
’

(4.3-21) Remark: Although (4.3-20) may appear somewhat formidable,
these conditions may be interpreted as follows. First, (vi),
(viii), and (x) imply that the sets {\)i} and {mi} may be
determined as

vi = degree of column i of T()), for iexr

m, = min {Jlatj,i =v,}, for ier
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Having determined these integers, one then checks that tm i(A)

i’

is monic; that 0 <V, f_vz < .. S V_ i that the m, are
distinct integers; and that the degree of each element in row m,
of T(A), except tm.'i(k), is less than vi. The remaining
conditions must belchecked only when the integers vi are not

distinct.

It sometimes will be convenient to partition a canonical matrix,

thus grouping columns of the same degree. Therefore, we define:

(4.3-22) Definition: Let T(A) = (t,(A);---tr(X)) be an mxr

canonical matrix. Then, by a canonical partitioning of T(A)

we shall mean a partitioning
T(A) = (T, A) iT,(A) 5. -T, ()

such that 3T1 < 3T2 < eee < aTa and such that, for each
iea, all the columns of Ti(l) are of the same degree. Thus,

o equals the number of distinct integers in {vi,ieg}.

The significance of canonical matrices will have been established when
we shall have proved (4.3-33). This theorem will prove that for every
nonzero submodule M C Rm[)\] there exists an mxr canonical matrix T())
such that M = Im T(A); that is, the columns of T()A) are a "canonical"
set of free generators for M. The first result relating canonical matrices,
canonical partitionings, and canonical decompositions of submodules is

the following.

(4.3-23) Lemma: Let T(A) be an mxr canonical matrix, and let

(Tl(l);'°°;Ta(l)) be a canonical partitioning of T()).
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Define Mc R"[A\] as: M = Im T(A). Then

(i) rank M = r
(ii) The unigue canonical decomposition of M is

= ... € =
0 M0$M1(7:‘- 7‘M0L M

where

(4.3-25) M, é Im(T, (A);+++;T.(N)), for ieo
i 1 i -

Proof: For (i), it is easily seen that T(A) is column proper (the matrix
Th in (4.3-14) (ii) can be made to have an rxr lower triangular submatrix,
by a permutation of its rows). Thus, from (4.3-18) (i) it follows that the
columns of T(A) are free generators for M, whence rank M = r.

For (ii), first note that the Mi' as defined in (4.3-24), satisfy
(4.3-8). Thus, it remains to show that they also satisfy (4.3-9) -
(4.3-11).

Suppose that T, (A) is mxr,, for i€x . We first show that the 1,

as defined in (4.3-9), satisfy
(4.3-25) n, = 8Ti(7\) , i€0

Indeed, it is certainly true that ni < 3Ti; for, since the columns of T(A)
are free, each column of Ti(A) is an element of M, but it is not an element

of M,

. To show that n, > 3T,, note that if u(A) € Mand u(A) ¢ M, _ then
i-1 i-— i i-1

u(l) =.z Tj (A)qj (A)
jea
r
for unique q:i (A) €ER j[l] , where at least one qj (\) for j > i is nonzero.

But then, from (4.3-17), since T(A) is column proper,

Ju(A) = max (9gq

+ OT.)
jea ]

3
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> max (dq. + OT.)

> oT.
ol 1

where the last line follows from the facts that BTi < 3Ti+l <eoel BTOL
and that at least one element of {qj,j > i} is nonzero. Thus,
(4.3-25) follows.
Next, from (4.3-18) (ii) the subset Si is just
= D <
S; = lueM] du < n .}

r,
_ _ 3 -
{u()) j§1 Tj()\)qj () Iqj (M) eR J[A] and 3qj <ny n.}

Therefore, Mi' as defined in (4.3-24), is just

M

Im(Tl(l) icce ;Ti(l) )

z RIAIU(A) ’ 182
u(A)eS,

i
in agreement with (4.3-10), and the proof of (ii) is complete. B

We shall eventually prove what is essentially the converse to
(4.3-23), namely: For every nonzero submodule M C Rm[l] there exists a
unique canonical matrix T(A) such that M = Im T()). However, first we
must prove the following result which establishes what is perhaps the

most important property of canonical matrices.

(4.3-26) Theorem: Let T(A) be an mxn canonical matrix and let
{vi ,i€n} and {mi ,» i€n} be the associated sets of integers
(uniquely determined by T(A), from (4.3-21)). They any
u(A) eRm[l] can be uniquely reduced modulo T(A) in the following

sense. Ffor any u(MeRm[M there exist unique q()\)t-:Rn[A]
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and :(A)eRm[A] such that
(1) u(d) = T(A)q(A) + ()
and
(ii) 9r < v,, for ien
m, i -
Moreover, for this unique pair (g(A),x(\)),
(ii1) 3r(d) < du(})

and

i <4 - i < a: i =
(iv) aqi <d Vi if vi < d; otherwise qi(A) 0

where

d = max du < 3du(})
. m,—
182_ i

and where qi(l) is the i'th element of q(A).

Proof: Let P be an mxm permutation matrix such that (Px)i = xm , for all
N i,
x€R" and ien, and define the nxn and (m-n)xn matrices T(A) and T()) as
T(\)
- = PT(A)
T(A)
Let u(A) € R'[A] be arbitrary, and define G(A) € R"[A] and 3(\) € R™ P[)]
as
am )

. = Pu(l)
u(A)

It is easy to see that T(A) is row proper, and that the i'th row of

T(A) is of degree Vv Therefore, by (4.3-16), there exist unique q(}),

X
£(A\) € R®[A] such that
G0 = TMq) + £

and
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(4.3-27) 9%, < v, , for i € n
1 1 -

Now define

T = al - TMq)
and set
() = p-1 f(l)
r(A)

The q(A) and r(A) so determined clearly satisfy (i) and (ii). Also, if

(ii) is to be satisfied, then (4.3-27) must be satisfied. Thus, the
uniqueness of g(A) and ¥(X) implies the uniqueness of g(A) and r(}).

Demonstrating the validity of (iii) and (iv) is somewhat more

difficult. To proceed methodically, we must define several .new vectors

and matrices. Thus, let the canonical partitioning of T(A) be
T(A) = (Tl()\); TZ(A);---;Ta(A))
where T, (A) is mxn, ,
i i

BTi(A) =ni » €0
andé

< < oo <
L "

For notational simplicity, define

L. = Zn, , for i E O

Now define, for each i € o , the following matrices and vectors.

si(zixm) and ﬁi ((m—li)xm) are defined so that

P, . rows
i i

~

P,
i
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where P is the permutation matrix in the first half of the proof.

T.(A) (2.x2.) and T. (A\) ((m=%.)x%.) are defined as
1 1 1 1 1 1

Ti(l) Pi(Tl(A);'°'; Ti(l))

and

Ti(k) gﬁTl(A);---Ti(k))

Note that Ga(k) = a(k) and Ta(l) = T(A). Next, fix u(})) € R®[A], and let

q(A) and r(A) be the unique vectors such that

u(d) = T(A)g(A) + r(A); aﬁn.< vy

1
Define
vi(l) = Pi u(A)
vi(A) = Pi u(A)
5.(\) = Si r(\)
si(k) = Pi r(A)
Qa(l) = q(A)

2'. n-
and, for 1 < i < a-1, define &i(A) € R l[A] and &i(l) € R 1+1[A] so

that
&i(x) } li elements

g, ..\ =
i+l ~
qi(l) } N1 elements

There are now two cases we must consider: (a) BGi < ni for all
ie a , and (b) avi z_ni for some i ¢ a . In the former case, it follows

from the definition of the n; that

Ju < v, ,forallien
m, i -

Therefore, since in this case u()) satisfies the degree requirements



144

that r(A) must satisfy, it follows that r(A) = u(A), i.e. the unique
reduction of u(A) modulo T(X) is just

u(A) = T(A)-0 + u(A)
Thus, q(A) = 0, which satisfies (iv); and r(A) = u()), which satisfies
(iii).

In case (b), define
k & max {iIBGi 2_ﬂi}

Again, we have two cases to consider: (bl) k = a , and (b2) k < a. In
the former case it follows that

A .
d = max oJu
X m,
1811_ 1

= 3V

(4.3-28) > 38
Where the last inequality follows from the facts that r(A) satisfies (ii),

and that V; £ N, for all i € n. Thus
B(Vd(k)-sa(l)) =d

and, since
vd(k)-sa(k) = Ta(l)qu(k)

and @a(l) is column proper (easily proven), it follows from (4.3-18) (ii)
that

< qu .
Z)qj____d\)i s for i en

This proves (iv). Finally, because the degree of column i of @a(k) is

not greater than vi'

AT, MG, () <d
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Thus, since

ey =Pt S, _pt (5

~ ~ - ~ A
Sa(k) va(A) Ta(x))qa( )

it follows, using (4.3-18), that
a:(A) < max(aga. max(ava, B(Tu(l7ﬂa(l))))

< max (d.ava)
= Ju(A)
which proves (iii).
We now consider case (b2). 1In this situation we have
n. >, , for k+tl < i < a
i i -7 -

and

<
M < 9V

We shall prove by induction that

(4.3-20) vi(X) = Ti(l)qi(k) + si(l) , for k <i<a
and that
(4.3-30) q;\) =0, for k <i < a-l

We shall accomplish this by proving

(4.3-31) %, ) =%, Mg N + 5 (\) and 39, < n, imply q;_;(\) = 0

and

) )

(4.3-32) qi(l) 0 ggg.vi Ti+l(k)qi+l(l) + §i+1

imply vi(l) Ti(k)qi(l) + si(l)

Then, since the hypotheses for (4.3-31) are satisfied when i = «q,
induction will take over.
To prove (4.3-31) we note that, from condition (ii), 8§i < ni for

all i € & . Consequently, assuming the hypotheses of (4.3-31),



146

a(mi<x>ai(x)) = a(vi<A)-§i(A)) <y

Then, since Gi(x) is column proper, (4.3-18) tells us that &i_l(l) = 0,
proving (4.3-31). The proof of (4.3-32) is immediate when one recalls the
definitions of ¥ (M), s, (M), Gi(x), 4, (\) and §, (\). Therefore, (4.3-29)
and (4.3-30) have been proved.

From (4.3-30) it immediately follows that condition (iv) is satisfied
for 2k+1 L i £ n; thus it remains to prove (iv) for i € % . But, from

>

the definitions of 4 and k,

Also, since condition (ii) is met,

> 38
n sk

k

Therefore, from (4.3-29) with i = k,

3R MG ) = 35, M-8, (W)
= 36,
Z 4

Since Tk(l) is column proper, it now follows from (4.3-18) that

qu f-d-vi , for all i € Ek

thus completing the proof for (iv).
Finally, to prove (iii) in this case we note that
~ ~ <
a(Tk(A)qk(A)) L4
and that

5, () v M -T (Mg Q)
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Therefore, Or < max(d, 3;]{) = du; this proves (iii). B

The next result, which states that for every nonzero submodule
M C:Ry[K] there exists a unique canonical matrix T(A) such that

M =ImT(A), will serve as a second indication of the importance of canonical

matrices.
(4.3-33) Theorem: Let M Rm[A] be a submodule of rank r > 0,
and let
O=M CM, L eeeCH =M
o 17 7 o

be the unique canonical decomposition of M. Then there exists
a mxr canonical matrix T(A) such that M =ImT(A). Moreover, the
canonical partitioning of T(A):

(4.3-34) TQ) = (T)(A);+*3Tg (A))
is such that a = B and

(4.3-35) M, = In(T, (\);*+;T, (\), for all i € @

Proof: We first note that, in consideration of (4.3-23), if there exists
a canonical T(A) such that ImT(A) = M, then it necessarily follows that:
(i) rank M = rank T()A), whence T(\) is mxr; and (ii) the canonical
partitioning, (4.3-34), of T(A) is such that o = B , and such that (4.3-35)
is satisfied.

Therefore, to prove the theorem, it is sufficient to prove the

following:
(4.3-36) There exists a unique canonical matrix Tl(A) such that ImTl(A) =M1.

and
(4.3-37) If k < o, and if (TI(A);---;Tk(A)) is a canonically parti-

tioned canonical matrix such that Im(Tl(A);---;Tk(A)) = Mk'
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then there exists a unique cancnical matrix T ()\) such that

kL
(T N ieeeiTy ) ) = M,

To prove (4.3-36), we proceed as follows. Let nl,Sl, and Ml be as
defined in (4.3-9)-(4.3-11). The subset Sl(: M is clearly closed under
R-linear combinations; thus Sl is an R-vector space. Moreover, Sl is
finite dimensional; indeed, since Sl<: R@[A], dimR(Sl) i.m(nl+l).

Now let Vlc: R™ be the subset consisting of all coefficients of
Anl in u(})), for u()) ¢ Sl; since 3u <mn for all u(}) e Sl’ Vl can be
defined as

n
V. = {ve -2ty <n

1 for some u(A) € Sl}

1

Clearly, Vl is an R-vector space, and dim(Vl) = dl < m, for some dl.

Next, consider the function
. -»>
8: S 7Y

n
: u(A) P v = coefficient of A 1 in u(})

It is easy to verify that glis an R-linear map. Moreover, Ker¢l =0

because, by the definition of n_, if ¢1u(l) = 0 then du < N, so that

1

u(A) € MO = 0. Therefore, ¢l establishes an R-linear isomorphism from
Sl to Vl.

We next determine a canonical basis for Vl as follows. Let B1 be

any mxd1 matrix whose columns are a basis for Ul, and define integers

m s 1 € 91 » as

1,i

min {k|row k of B, is nonzero}

1,1 1
ml,i = min {k>m1'i_1|row k of B, 1s independent of
rows 1,2, ---k-1 of Bl},

for 2 < i < d
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By a standard argument, it is easy to show that the set {ml i,i € 91}
’
is independent of the choice of basis matrix Bl' Then by a standard

Gaussian reduction on the columns of Bl' there exists a unique matrix E1

whose columns are a basis for Vl' and for which

1, if i = m. .
! 1,3

(El) = O0; if i <m ., or if i = m

s for some k j
1,] 1,) 1,k # 3

nothing in particular, otherwise

Now carry the columns of E. back through ¢Il to obtain d, elements of

1 1

S.; form these vector polynomials into the mxd

1 matrix Tl A\ :

1
T, () =g E

Since ¢1 is an isomorphism from Sl to Vl, it follows that the columns of

Tl(l) are R-linearly independent. Moreover, since each column of Tl(k)

is a vector polynomial of degree nl' it follows that Tl(l) is column proper;

thus, by (4.3-18), these columns are free generators for the submodule

ImTl(A). But, since every element of Ml is an R[A]l-linear combination

of elements of Sl, and since any element of Sl is an R-linear combination

of the columns of Tl(A), it follows that ImTl(l) = Ml'

Thus, we have found an mxdl matrix Tl(l) whose columns are free
gene;ators for Ml' Because of the particular structure of the coefficient
of X'l in Tl(A) (which is, of course, just El), it is clear that Tl(A) is

a canonical matrix. Also, note that, from (4.3-23),

rank Ml = d1

If Ql(k) were another canonical matrix such that Imﬁl(k) = Ml then it

follows from (4.3-23) that Gl(x) must be of dimensions mxd and that every

ll
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column of Tl(l) must be of degree nl. Therefore, since Im@l(A)c: M, every
A n A
column of Tl(l) is an element of Sl' The coefficient of A 1 in Tl(x)
is
E, =870

and, since Tl(l) is canonical, there must exist integers ﬁl i ie 91'
4

A

such that m <f

ool -
1,1 0 ™,2 m) g ¢ and

1

s 1, if i = h
£, =

Vig ) o sescn A Lo
l 0; if i ml,j’ or if i m1'k for some k # j

But then, since ¢&Tl(l) = ﬁl must be a basis matrix for Vl, it follows that

ﬁl,i = ml,i for i e 21, and that ﬁl = El' Conseguently
A -lA —l
00 =¢gE =g E =70

Thus Tl(A), as determined above is the unique canonical matrix such
that Imml(l) = Ml' This completes the proof for (4.3-36).

To prove (4.3-37), since k < o the quantities 7 S 1’ and Mk+1

k+l’ T k+
are well defined by (4.3-9)-(4.3-11). The subset sk+1(: M is clearly

an R-vector space; however, it is too large to be treated in the manner

. m
that we treated Sl. Therefore, we now define a map wk+1' Sk+1 + R [A]

so that, for each u{l) ¢ S u()) is the unique remainder upon

kel Vil
reducing u()A) modulo the canonical matrix (Tl(l);°°';Tk(A)). (See
(4.3-39)). That is,

u(d) = (Tl(l);"':Tk(A))q(X) + wk+1u(k)

In this modulo reduction, by (4.3-26) (iii),

3y, ,,u0) < dulh)
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is easily

Therefore, if u(}) € Sk+l’ then ¢ u(A) € Sk+l; moreover,

k+1 lpk+1

seen to be R-linear. Thus wk+l is an R-linear endomorphism
Vir1® Sker 7 Skn
Now define the subspace §k+IC: Sk+l as
§k+l = Vrs1 Sk
One can easily verify that wk+1= Sk+1ﬂ- Sk+l is the projection on

A . . ) .
Sk+1 along Mk r1 $k+l' That is, the unique modulo reduction of

Q) € 8§, ,, is

aQ) = (T ) geee3T, (X)) -0 + am)

while wk+lu(l) = 0 if and only if

a) € In(r, Q) seeesm O(s, = Mfs,

Therefore,

A

(4.3-38) Ske1 = Skl N My @ Sy

Every element in § is either a polynomial vector of degree

k+l

M4y’ OF the zero vector. This is because, for all u(}) € Sk+l’

3(wk+1u(l)) S Myyrf and if 3(¢k+lu(l)) <My then, by the definition of

A

Mes1’ wk+lu(k) € Mk so that wk+lu(k) € Sk+1 r1 Mk = 0. Therefore, Sk+1
is isomorphic to the R-vector space Vk+1 c R" consisting of the
n

. + ~ . . s
coefficients of A k+l in elements of Sk+ Just as in considering Sl'

10
we define the R-linear isomorphism ¢k+1: g

n
of ) k+l in i(\); the unique matrix Ek+1 whose columns are a canonical

basis for Vk+1; and the canonical matrix Tk+l(k) =

4(A) » coefficient

>V

k+1 k+1°

—1 .
Besl Brars T W) is
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dim(Uk-i-l

). Also, T ,,(A) is the unique canonical

dek+1 + where dk+1

matrix such that

k+1

ImT, ,. (A) = submcdule generated by S

k+1 k+1

Finally, (4.3-38) implies that gk+l and Sk+lr1 Mk together generate

Mk+1' so that since S rw M C Im(T (X)-"°°Tk(k)),

k+1

Im(T ()\);“"T (A)) = Mk-l-l

By construction of T (k), ] \) (A\) . This, together with

k1 k+1 Te+1

the facts that T 1(7\) is a canonical matrix and that n

k+ > Ny » implies

k+1

that (Tl(l);° (A)) is canonical.

k+1

If §k+1(l) is another matrix such that (T, (A);*<*;T (A\);T, . )A}) is
i k

k+1

canonical and such that M il = Im(T (A)-"-;T (A);% (A)), then it follows

from (4.3-23) that Tk+1(l) is mxdk+l and that each column of T (X) is of

degree nk+1' Also, it must be true that V¥ (A) = T (A). But then,

k+lTk+l k+1

Tk+1(l) must be a canonical matrix such that Imfk+l(k) is the submodule gen-

erated by S But T

k+1 k+1(A) is the only such canonical matrix, whence

A) =1 . (A)

k+l k+l

This completes the proof of (4.3-37). B

(4.3-39) Remark: Note that, if T(A) is an mxr canonical matrix, then
the integers {vi,i € r and {mi,i € r} may be determined from
T(A) as in (4.3-21). Thus, the R-linear maps wk: Sk -+ Sk in

the above proof are well defined in terms of the matrices

(T, (M) seeesT (D).

(4.3-40) Remark: In the above proof, we have produced what might

be called a canonical direct sum decomposition of M:
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M-Ml@ﬂz @‘--eﬂa

where
Ml = I R[AJu(}D)
u(A)eS
1
ﬁ. = I R[AJY.u(d) , for 2<i < a
. u(hes, *

As a consequence of (4.3-23) and (4.3-33) we now state:

(4.3-41) Corollary: Let M C RV[A] be a submodule of rank r > O.

Then, in the canonical decomposition of M:

0=MG M g--GH, =M

the integer 0 is no larger than r.

Proof: (4.3-33) asserts the existence of a unique canonical matrix T(A) =
(Tl(l);-~-;Ta(l)) such that ImT()A) = M; while (4.3-23) claims that rank
T(A) = r. Clearly, rank T(A) > a , since the columns of T(\) are free. &
The main drawback in the proof to (4.3-33) is that it is not partic-
ularly constructive. That is, it is an existence prcof, but it is not
clear how one would actually determine the integers ny and the vector
spaces Si' We shall see in Section 4.4 that in the case where M = Ker f§ ’
for some input-output morphism f§ : Rm[A] d RP[[A-I]], there is an easy
method for computing the corresponding canonical matrix T()) from the
Hankel matrix associated with fﬁ. The next series of results derives a
method for determining a canonical T(A) such that ImT(A) = M, where M
is the image submodule of an arbitrary mxn polynomial matrix. Thus, these
results pertain to "canonicalizing" an arbitrary polynomial matrix.

We shall soon state an algorithm for performing this task; however,

in order to formulate the algorithm in concise language, we shall need
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(4.3-42) Definition: (i) Let I € n be an arbitrary subset. Then,
by #I we shall mean the cardinality of I (so that 0 < #I < n).
(ii)Let M(A) be an mxn matrix, and let I < n. If #I =k > 0,
and if the elements of I are i1 < 12 < el ik' then by
MI(X) we shall mean the mxk matrix whose j'th column is the

ij'th column of M(M):

MI(X) = (mi (X);mi (A);e++;m, (A))
1 2 tx

IZ #1I = 0, then MI(A) is the "mx0 nonexistent matrix." Thus,
by this convention, if I and J are two arbitrary sets such
that 1[5 = g and 1[JJ = n, then the matrix (M (V) :M_(A))
is just M(A)P for some permutation matrix P.

(4.3-43) Algorithm: Let D(A) be an arbitrary nonzero mxn polynomial
matrix. Perform the following operations, in sequence unless
specified otherwise:

Step 1 -
(i) seti=1

(ii) Denote column j of D(A) as dj(k), and define:

Y, = min {yl[y >0 anay = ij, for some jen}
S, = min {jegjadj = YO}
L, = Ej{so}

(iii) Determine A €R so that ds (A)a is a canonical mxl

0
matrix (See (4.3-44)) and define
AP0 =a e
s
0
r =1

1
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(iv) If n =1, go to Step 4

(v) If n > 1, define

(A) =D_ (A\)
Lo

()

Step 2-

(i) At this point a‘%)

(1)

(A) is canonical (See (4.3-46)).

Define C (\) to be the mx(n-ri) matrix whose columns

are the columns of B(l) (1)

(A) reduced modulo A (A) (See

(4.3~45)).
(i)

(ii) If C (A\) = 0, go to step 4.

Step 3-

(i) Denote column j of C(i)(k) as c;i)(A), and define:

(1)

Y; = min {y|]y >0 anay = acj , for some j € n-r.}
s; =min {j € n-r_|3 e v.}

i —1 3 i
L,=n-zr -{s;} = {1,2,---/n-r.} - {s.}

(ii) Denote column j of A(i)(x) as a;i)(l), and determine

g
L]

. (i)
{5¢e £i|3aj <y, }

. (i)
{5 e gilaaj =v,!

J,
i

' (1)
K, ={je gilaaj >y}

(iii) Determine a constant, square matrix, Pi' such that the matrix
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Ay o

1 i

(A (7\))Pi is canonical (See (4.3-46))

(iv) Define:
A(i+l)(l) (A (1)(A), (A(l)k), (1%A))Pi)
l

J.

r = #I, + #J., + 1
1 1

i+l
(v) 1If i =0 increment i by 1 and go to Siep 4.
(iv) If T < n, define

sy = @t ; M

1 i
Increment i by 1, and go to Step 2.
(i)

Step 4 - Upon arriving here, r, = rank D(A), and A" () is

the unique canonical mXr . matrix such that
mp(A) = mma ) ()

(4.3-44) Remark: Clearly, if d4(A) € Rm[A] is nonzero, there exists a
unique @ ER such that d(A)a is a canonical mxl matrix. For,
if 3 = v, if k = min {iem|da, = v}, and if 4 () = a)” +
bkv-l ++e.-+c, then 0 = 1/a will make d(\)®% canonical; also,
it is easy to see that this is true for no other value of o.

This explains Step 1 - (iii) of (4.3-43).

(4.3-45) Remark: As noted in (4.3-39), an mxn canonical matrix uniquely
determines the integers {Vi, i € n} and {mi,i € n} in terms of

which a modulo reduction is specified.

We now must show that (4.3-43) does indeed produce, in a finite
number of operations, a canonical matrix whose columns are free genera-

tors for ImD(A). This is the subject of the following theorem.
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(4.3-46) Theorem: All of the operations in Algorithm (4.3-43) are
well defined. 1In particular, each of the matrices A(iX(A) is
canonical; and, fcr each i there exists a unique, square,
constant, nonsingular matrix Pi which satisfies the require-
ments of Step 3-(iii).

The operations defined recursively by (4.3-43) are equiv-
alent to a sequence of elementary operations on the columns of
D(A). Moreover, this sequence is finite; in particular, the
number N of iterations through Step 3 of (4.3-43) is bounded
by

N f_r(nv +n-r+1) -1
where V = 0T(A) and r = rank T(A).
Proof: It is clear from (4.3-44) that A(l)
(i)

(A) is canonical. We now show

that if A (A\) is canonical, if ri < n, and if C(l)(l) # 0; then there

exists a unique Pi to satisfy the requirements of Step 3-(iii), and

A(1+1)(l) will be canonical.

(1) (i)(l) # 0. Since

Thus, assume A (A\) canonical, r, < n, and C

C(l)(k) is obtained by reducing B(l)(k) modulo A(l)(k), it follows that

(1)(X) would remain unchanged if it were to be reduced

(i)

each column of C
(1) (\) can be reduced to 0 modulo

(1)

modulo A "' (A). Since any element of Im A

A(l)(k), it follows that no nonzero column of C (A) is an element of

Im A(l)(l); in particular,

cé%)(l) g Im
i

A(:_i'?(l)

If the subset Ji is the null set, then it is trivial to find Pi so
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(i)

(1)(l), c(l)(}\))Pi is canonical. For in this case, (AéiX(A), (A))

1 Si i

that (A

is mxl, and Pi € R can be found as O was in Step 1 (iii); this Pi is

clearly unique.
- . (1) A . (i) (1) (i) 5
If Ji # @ , then since Cg (A) # Im A (A) and Im AJ (k) € Im A (A,
i i
it follows that

(4.3-47) c;i) (A) £ Im Aéi) (A)
i i

(1)

Because cg (A) and the columns of A; 1)

1 Y. i

implies that the coefficient of A ~ in (A

(A\) are all of degree " (4.3-47)

( )(K), (i)

1 i
rank. Thus, as in the proof to (4.3-36), we can find a nonsingular, con-

stant matrix P such that (A(]

(A)) has full column

(AN ; ey (}\))Pi is canonical; moreover, since

1 i Y
this Pi must “"canonicalize" the coefficient of A © in (A(l)(k); (1)
1 5i

(A))

(to the form consisting of mostly 1l's and 9's) it is clear that Pi is

unique.
(i) (i)

1

Since A'"' (A) is canonical, it follows that A (A\) cannot be further

reduced modulo A;I)(l); also, since cs(lX(K) is the result of reducing
i i
(1) (i} . (1)
b (A\) modulo A" "{)A), it follows that Cg (A) cannot be further reduced
i i
modulo Aél)( A). Therefore, (A;l)(k);cél)

i i i

4 )(A). This, together with the facts that A(l)(k) and
1 I

(1)(1), ( )

l l

()\))Pi cannot be further reduced

modulo A

(a

(A))Pi are canonical, and that

Al oy <o el

1 1 l

(M))P,)

implies that

(1)

;@
l

J.

(1)

a i+l (M)E,)
1

N = (A)ic
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is canonical.

To show that the operations of (4.3-43) are equivalent to a

sequence of column operations on D(A), we proceed as follows.

(1) (1)

Clearly, the matrix (A "’ (A);B "' (A)) is related to D(A) as

@™ oo = poom,

where Ml is nxn, constant, and nonsingular. The action of Ml’ on D(A)

can be represented by a permutation of the columns, followed by multipli-

cation cf column 1 by a scalar.

B(i)(X) reduced modulo A(i)

Also, for each i, since C(i)(k) is (A),

c®ay =Py - aD 9, M)

for some Q(i)(l). Therefore,

@B Py = aP oy 5Py /1 -0, (A)
0 I
=a® ;s v

where Ui(k) is n x n and unimodular. The action of Ui(A) can be represented
(i) (i)

as a series of elementary operations on the columns of (A (\); B N)).
Finally, for each i,
@y s oy = @By Mo,

for a constant, nonsingular Mi+1 (alsc representable by elementary column

(i)(l); g(i)

operations). This proves our claim that each (A (A\)) and each

(A(l)(l); C(l)(l)) can be obtained from D(A) by column operations.
We must now show that (4.3-43) does indeed produce, in a finite number
of operations, a canonical matrix whose image is the submodule Im D(}).

From the preceding paragraphs it follows that
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(1) (i) (1)

ma® o 8P an = ma® o <P oy = moomy

for each i. Thus, if it ever happens that either r., =nor C(l)(k) = 0,
(l)(k) is always

Y = Im D(A). Since A

then, for that value of i, Im A(l)(k

canonical, it follows that if Step 4 is ever reached, then, for that value

of i, A(l)(l) is the sought-after canonical matrix.

We now show that Step 4 is reached after only a finite number of
iterations through Step 3. We assume that dT(A) = vV and that rank T()\) = X,

and argue as follows.

For every i, the degree of every nonzero column of B(l)(l) is greater
than or equal to BA(l). Thus, after having completed Step 2(i), there
(1) (1)

are two possibilities: (a) Y > oA , and (b) Y; < 9A . In case (a)

r, =r, +1
i+l i

while in case (b),

l <r, <r,
- "1+l — Ti

(l)(l) cannot increase when these col-

(1)(A). Therefore, since we

The degrees of the columns of B
umns are reduced modulo the canonical matrix A
are operating on a total of n columns, (n-r) of which will eventually be
reduced to the zero vector, and r of which can be reduced to polynomial
vectors of nonnegative degree, it follows that case (b) can occur at most
a total of

¥V + (n-r)(Vv+l) = nv + n - r

times.

Moreover, case (a) can occur for at most r-1 consecutive values of

i before either case (b) occurs or Step 4 is reached. For, if case (a)
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occurs r times in succession, then after the last of these, r will

necessarily be larger than r, contradicting Im A(lf(x)¢: Im D(A).
Depicting the successive cases for successive values of i by a

sequence of a's and b's:
aaabaaaabbaaba...baa

we see that in every allowable sequence there are at most ;v + n - r)b's,
and at most r - 1 a's separating any two successive b's. Thus, the total

length, N, of each allowable sequence is bounded as

N < r(nvtn-r) + r - 1 = r(nv+n-r+l) - 1

(4.3-48) Remark: Examination of the algorithm (4.3-43) reveals
that it is really just a generalization of the familiar Euclidean
algorithm for computing the greatest common divisor of a set of
polynomials in R[A]. Thus, we may refer to (4.3-43) as the
"generalized Euclidean algorithm".

In Section 4.3.3 we shall show that there is a natural partial order-
ing in the set of m x n canonical matrices (for 1 < n <m), and that this
partial ordering induces a lattice isomorphism between the set of such
canonical matrices and the lattice of submodules of Rp[A]. However, we now
proceed into Section 4.3.2, where we develop explicit representations for
the quotient module R?[A]/M and the canonical projection T : Rm[A] -+

R'[A]1/M, for any submodule M c R*[A].
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4.3.2 Representations for Quotient Modules and Canonical Projections in
Texrms of Canonical Matrices

In this section we obtain explicit characterizations for the
quotient module RW[XJ/M and the canonical projection T : RVIA] -+ Rﬁ[k]/M,
where M is any submodule of Rm[ll. The characterizations will be in terms
of the unique canonical matrix T(A) such that Im T(A) = M. It is well known

(see Appendix B) that, if rank M = r, then
m ~
RMAMM=T @& F

where T is a torsion module, isomorphic to the torsion submodule of Rm[A]/M,
and F is a free module of rank m - r. We shall obtain explicit charactex-
izations for both F and T.‘
We begin with
(4.3-49) Theorem: Let M C:Rg[kl be an arbitrary submodule of rank
r > 0, and let T(A) be the unique canonical matrix such that
M = Im T(A\). Then there exist a torsion module X and an R-linear
map 6 : X -+ Rp-r[kl such that the quotient module RW[A]/M is
isomorphic to the Cartesian product X x Rp—r[kl, first made
into an R-vector space in the obvious way (componentwise
addition and scalar multiplication), and then made into an

R[A]l-module by defining
A (x, v(M) = (Ax, Av(})-6x); for x € X, v(A) € K" "[A]

X and 6 are determined from T()A) as follows. If'{vi} and
{mi} are the sets of integers associated with T()\), define
A
T(A) (r x r) and T(A) ((m-x)xr) as in the proof to (4.3-26).

Then define
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(4.3-50) XA R A/Im T & {x() e RF[A] |ox, < v}
and
(4.3~51) 8 : x> R"F[A]

: x(A) + Im T(A\) » T(\) x

where 3;. <v,, for i € r, and xh € Rr is the vector whose
. . . v, -1
ith element is the coefficient of A * in ;i()\) .
Proof: Elements of Rm[)\]/M are cosets of the form u(l) + M, with
u(d) € Rm[}\]. For each u(A) € Rm[)\] there is, from (4.3-26), a unique

B) € R*[A] such that

u(d) + M =3a) + M

and

du <V, , forier
m, i -

(1_1'(1) is the remainder resulting from reducing any element of u(\) + M

modulo T(A)). Thus, the following sets are bijective:

e

R'AI/M S (W) e Rm[A]IaEm <v,,ierx}

i

n

=) e U9, < v. s iext xR

By the same argument, X, as defined above, and {x0\) € er)\]|8§i < \)i}

are set-isomorphic. Thus the set isomorphism
RUIAI/M = x x B 5

is established. Further, the above is easily seen to be an isomorphism of
R-vector spaces.
It is clear that X, as defined in (4.3-50), is an R[A]-module; that it

is a torsion module may be demonstrated as follows. Defining
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P A det T(N)

(nonzero because T(A) is column proper) and letting C(A) be the r x r

matrix of (r-1) x (r-1l) cofactors of 'f'_(l) , it is clear that
T) ch) = YOI
Now, if x(A) + Im &\'(A) € Rr[A]/Im "f()\), then

YA (x(A) + Im T(A)) = P(A) x(\) + Im T(A)

T(A) c(\) x(A) + Im D)

i

0 + Im T(\)

whence it follows that X is torsion.
Finally, if u()) is the canonical representative of u(A) + M, then
the canonical representative of A(u()) + M) is found by reducing Au())

modulo T(A). Since u(}) can be written uniquely as

_ . [ x)
u(l) =P 1
v{A)

where x(\) € Rr[k], a?i < Vi' v(A) € Rm-r[)\], and P is the permutation

matrix in the proof to (4.3-26), it follows that reducing Au(A) modulo T()\)
_ Ax(A)
PAu(}) =
A v(d)

T(A)
PT(A) =
T(\)

is equivalent to reducing

modulo
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Denoting the remainder upon reducing Au(}) modulo T (M) as [Au(M\)], and
the remainder upon reducing Ax(A) modulo %(A) as [Ax(A\)], it is easy to see
that -

Ax ()1

P[Au(M)] = _
Av(A) - %(A)xh

This establishes the module isomorphism between Rm[A]/M and X x R" C[A].
It is easy to see that the map 6 : X + R "[A], defined in (4.3-51), is
R-linear. B
Since any finitely generated R[A]-torsion module can be represented
in terms of a finite dimensional R-vector space X and an endomorphism
A : X+ X, we immediately arrive at the following corollary.
(4.3-52) Corollary: If Mc R"[\] is a submodule of rank r > 0,
if T(M) is the canonical matrix such that Im T(A\) = M, and
if {vi} and {mi} are the sets of integers associated with T(M\),
then there exists an R-vector space X of dimension n = 2 V.
such that RV [A1/M and X x R" Y[A] are isomorphic as Rrv:ciof
spaces.
Furthermore, there exist R-linear maps 2 : X + X and
H : X+ R" such that, if the action of A on X x R@?r[A] is
defined as

Ax,v(A)) A (Ax,Av(X)-T(})Hx)

then Rm[X]/M and X x Rm-?[k] are isomorphic as R[A]-modules.
In the above, T(A) is as given in (4.3-49).
With respect to a "canonical basis" in X, and the standard

basis in Rr, the matrices for A and H are given in terms of
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the integers \)i and the elements of r'I“(l) (as in (4.3-49) as

follows:
1, if 5 = vl + v2 +ovot vi
(4.3-53) h, . = iexr,jen
v3 0, otherwise
Bl1 o Pyp e By
A A
(4.3-54) a=| 2 22
A, By oees A

where A,. is v, x V. and, if
1] 1 J

v,
At - 2 ik )\k_l, for j = 1
R k ey,
Tij(A) =
-z aik)\k-l, for j # i
rev, I
—1.
then
-.o 0 0 i
e 3ji1
1 0 0 a;;,
a,= | -
11
0 0
. . 0
(4] 0 1 a..
I iiv, 1

and
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31
o o 0 a,
s D » for 1 # ]
0o o 0 ay,
-~ — 1

vj-l columns

Proof: Define X to be the R[A]-module X, taken as an R-vector space.
Define the R-linear endomosphism A : X + X so that the action of A on X

is the same as the action of A on X. Next, define H : X + Rr as
H : x(\) + Imn T(\) X

where 55; <Vv,, for i € r, and X e R is the vector whose ith element is
V,-1
the coefficient of A * in xi(l). Clearly, T(\)H = 6, where 6 is given

by (4.3-51); thus the induced module structure of X x R —I[A] is identical
to that of X x RW’I[A].

To demonstrate that dim(X) = 2 V;+ We construct a basis for X
ier a
as follows. Recall that each element x(A) + Im T(A) € X has a canonical

representative x(1A), where 35; < vi. It is clear that each such repre-

sentative can be expressed as an R-linear combination of the vectors
fv, . =271
1,]

for R'; moreover, by (4.3-18), the only R-linear combination of'{vij}

e; i 3 e, , ie€r}where {e,, i €z} is the standard basis

A
that is an element of Im T(A) is the zero linear combination. Thus,

{b,

i,5° jey, s i€ x}, defined as

bi,j = vi,j +Im T(A) ; j € v, rier

is a set of basis vectors for X. This verifies the claim that dim(X)=
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To determine the matrices for H and A, we take the basis {bij} in

the order bl,l' b1,2'°" bl,vl’ b2,1"" br,vr'

The map H must produce the vector X € R" from ®x(A)}) + Im @(A) e X.

But the ith element of X is just the coefficient of bi v in the
A
A 1
representation of x(A) + Im T(A) in the basis {bi .}. This verifies
’

(4.3-53).
To determine the matrix for A, we need only determine the action

of A on each bi 5 Thus :

’

= < j < - i .
i\ A bi,j bi,j+1 , for 1 < j vy 1, and i € ¢

Moreover, A bi A bi may be found by reducing Xvi v modulo T(A).
i i "1
The result is

>
]
e
]

. T()) e, + [Xvi’V.]
i i
whence

[Avi,v.] = Avi,v. = T(A) e,

|
tal e B o |
[\
>
Kl
I
=

w1
v
2]
P
x

™
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Therefore,
ADb =) a,. b+ ...+ a_. b
1,Vi kewv lik 1,k ke v rik r,k
=1 -x
to verify (4.3-54), and the proof is complete.
(4.3-55) Remark: In (4.3-52) we have used only one of many possible

bases for X. Clearly, another basis would, in general, result
in different matrices for A and H; however, the maps A and H
are invariant under choice of basis in X. 1In Section 4.5 we
shall consider a second basis for X, one that will allow an
easy treatment of state feedback in linear systems.
The torsion module X in (4.3-49) is not, in general, isomorphic to

the torsion submodule of RF[A]/M. This is due to the coupling between

X and Rm.r[A] from the linear map 0. We next prove several results

relating the structure of X to that of the torsion submodule of Rm[k]/M.

(4.3-56) Lemma: Assume that n =] v, > 0, i.e. that 9T(\) > O.
ier

Also, denote that torsion submodule of X x Rm—r[A] by T:
T = {(x,v(M)) € x x B T\l ]a) (x,v(1))= O
for some nonzero a(A) € R[A]}

Then
(i) There exists no element in T of the form (0,v()\)),
for v(\) # 0.
(ii) If F(A) =0, then T = {(x,0)|x € x}.
(iii) If rank T(A) = r, then there exists no element in T

of the form (x,0), for x # O.
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Proof: (i) Assume that (0,v(A) € T. Then there is a nonzero 0.()) € R[A]
such that a(A) (0,v(A)) = 0. But clearly, o(A) (0,v(A)) = (0,0(A)vi))).
Thus (0,v(A)) € T if and only if 0(A) v(A) = 0; i.e. if and only if
vi{A) = 0.
(ii) Let T(\) = 0. Then for all (x,v(\) € X x R "[A] and
®(A) € R[AL,
0 (A) (x,v(A)) = (a(A)x,0(A)v(A))

Therefore, if (x,v(A)) € T, then v(\A) must be zero; i.e.,
Tc {(x,0)|x e x}

On the other hand, X is a finitely generated torsion module, so there is
an 0.(A\) € R[A] such that a(M\)x = 0, for all x € X. Consequently,
o(A) (x,0) = 0 for all x € X, and

T2 {(x,0)|x € x}

(iii) We first show that, using the representation of (4.3-52),

if a(X) € R[A] is given by

a(A) = lk a + Xk—l a_, + ... + a

0
then
k=1 . )
(4.3-57) a) (x,0) = (a@x, -=FME ) A o' @
j=0
where
_ (3) ;3. _ . 1k-j-1 k-§-2
(4.3-58) a "' (A) = akA + ak-lx teetag,

for 0 < j < k-1

This follows from the fact that
i i 15 i-3-1
A7 (x,0) = (Ax, -Z AJ T(A)H A ] x), for i > 1
j=0
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as can be easily shown by continued use of
A(x,v(D)) = (Ax, Av(X) - T(A) Hx)

Now suppose that (x,0) € T and that rank T(A\) = r. From the former,

there is a nonzero a(A) € R[A] such that a()) (x,0) 0. Clearly, we can

n-d 0(A) is of degree n, and it

assume that 30 > n; for if 3a < n, then A
also annihilates (x,0).

From (4.3-57) with k = 9q,
k-1 . (5)
(@@x, -TA) B5) A o' (@x) =o0
j=0 '
and in particular, since rank T(\) = r,
(3)

Hao (A) x=0, for O L3 <k-1>n-1

From this it follows, since ak # 0, that
HAal x =0, for 0 < j < n-1

However, it is easy to check that the pair (H,A) is an observable pair,
whence it follows that x = 0. B
The module structures of X and T are more explicitly related by the

next result.

(4.3-59) Theorem: T is isomorphic (as an R[A]-module) to a submodule
of X. Thus, in particular,
(i)  If the invariant factors of X are denoted by {wi(l)},
where wi+1(l) divides wi(k), and those of T are
denoted by {¢i(l)}, where ¢i+1(l) divides ¢i(k), then

¢i(k) divides wi(k), for all i.
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(ii) The dimension of T as an R-vector space is no laxger

than n = 2 V..
iex *

Proof: Define the subset S C X as

S={x¢e¢ XI (x,v(A)) € T, for some v(A) € Rm_r[)\]}

Clearly, S is nonempty, since 0 € S. Now suppose that x € S, and that

both (x,vl(l)) € T and (x,vz(}\)) € T. But then,
O,v; A) = v, () = (x,v, (A)) = (x,v;(0)) €T

and from (4.3-56) (i) it follows that vl(l) = vz()\).
Thus, if x € 8, there is a unique vx(}\) £ Rm-r[)\] such that

(x,vx()\)) € T. Now define the set-theoretic map
Y :8->T
: x B (x,vx()\))

¥ is clearly a bijection. We shall now show that S is a submodule of X
and that ¥ is a module isomorphism.

Let x, y € S. Then,because T is a submodule,
(4.3-60) a(A) (x,Vx(M) + B(A) (Y.Vy(l)) eT

for arbitrary a(}),B(A) € R[A]. But, if da(d) = k, it is easy to verify
that

k-1 . .
a() (v, W) = (@ix,aMv A - § Alead oyx

J=0

where the a3 (\) € RI\] are as in (4.3-58). similarly, if 38(\) = L,
then
£-1 (1)
BO (¥,v, () = BAY,BMIV M) - ] Mes ()

j=0
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Thus, defining

z(A) & a(d) x(A) + B y()

and
k=1 1 L
v, A aMv A + BMv (M) - ) Aea ! ux - T AIes'd (ny
V4 = X Z j=0 j=0

it immediately follows from (4.3-60) that
(z(M), Vz(l)) eT
Therefore, S is a submodule of X. Moreover,

Y(a(d) x + B()y)

(z(), v, ()

a(A) (x,vx()\)) + B(A) (x»VY(M)

a(A)¥YQ) + B(\)¥(y)

whence it follows that ¥ : S + T is a module isomorphism.

Statements (i) and (ii) now follow immediately. B

(4.3-61) Remark: If we wished to characterize T by a vector space-
endomorphism pair (V,F), we could do so by choosing V to be
the A-invariant subspace of X whose elements are the same as
those of S C X, and by defining F : V + ! to be the restriction
of A to V.
As a corollary to (4.3-59) we now prove the following result, which
may be used to determine the submodule S C X.

(4.3-62) Corollary: Let S C X be given as

S =1{xe x| (x,v(M)) e T, for some v(\) € B F[A]
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and for each x € X, let ux(l) denote the (monic) minimal
annihilator of x. Then
(i) If x € S, the minimal annihilator of (x,vx(l)) eT
is ux(l).
(ii) x € §$ if and only if ux(l) is a divisor of each of

the m-r components of

k-1 (4) _

Q@ Meu xn e RN
j=0

where, if

w ) = L Yimp * oo F Ay 4 Y,

the polynomials ux(J)(A) are defined as

(3) _ 2 k-j-1 k-j=-2
My (A) = A + Yk—l A + ... + Yj+1 ,
for 0 < j < k-1

(iii) If x € S, then

1 ¥l G
vk(X) = 0 §=0 A6 My A\ x

X

Proof: (i) Let x € S, and let the (monic) minimal annihilator of
(x,vk(l)) be u(A). Then, since ¥ : S + T of the proof to (4.3-59) is an
isomorphism,

0=Y() = W(ux(l)x) = ux(k)(x.vx(k))
so that ux(l) is a multiple of u(A). But also,

0=yv21) = Yo (v, (0)) = u) x
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so that U(A) is a multiple of ux(l). Since both M(A) and ux(l) are taken
to be monic, it follows that H(A) = ux(l).
(ii) It now follows that x € S if and only if there exists

v () e RV T [A] such that

k-1 . .
0 = 1 N (v ) = (L Mxu My ) - ) AT ux‘J’(A) %)

j=0

Thus, x € S if and only if

5 @)
w M)V, ) = Z Ao u T«

j=0
for some vx(l) € Rm-r[A], and the result follows.

(iii) This result is now obvious. B

Results (4.3-56) and (4.3-59) provide us with revealing, albeit
incomplete, characterizations of the torsion submodule of Rm[A]/M; while
(4.3-62), in theory, provides a method for actually determining T.
However, in order to apply (4.3-62), one has to determine ux(k) for
every x € X. While this is possible to accomplish, it is quite difficult.
(It amounts to calculating the Jordan form of the matrix A in (4.3-54).)
We therefore next consider an algorithmic method for determining both

the torsion and free submodules of RP[A]/M.

(4.3-63) Lemma: Let M C R"[A] be a submodule of rank r > 0, and let
T(A) be the unique m x r canonical matrix such that Im T()\) = M.
Define unique r x r canonical matrices Tl(k) and T2(A) such
that

Im Tl(A) = Im T'(A)

Im TZ(M = Im 'rl'(x)
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Then
RAME (R D\/In T,00) @ BT
so that
T 2 R°[A]/Inm T, ]

where T is the torsion submodule of X x Rm_r[A].

Proof: From (4.3-46) it follows that Tl(k) is obtained from T'(A) by
elementary column operations, as is TZ(X) from Tl'(A). Thus, there exist

unimodular matrices Ql(k) (m x m) and QZ(A) (r x r) such that
(Tl(l); 0) = T'(A) Ql'(l)

TZ(A) = Tl'(l) Q,(A)

Thus,

T) =9, T <T2m) 0, t

0

Since Ql(l) and Qz(l) represent isomorphisms (RT[A] > RU[A] and

Rr[A] > R?[A], respectively), it is now clear that

RU[A]/Im T (M)

R [\1/Im T, ()
0

where the isomorphism is explicitly given by

RO A /M

"e

u(d) + M » Ql(l)u(k) + Im ‘rz(}\)
' 0

But, from (4.3-56) (ii), it follows that
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R/ f1,00) 2 @0/ T,00 @ #
0
which completes the proof. B

We can now use (4.3-63) to explicitly characterize the free and

torsion submodules of X x Rm_r[A]:
(4.3-64) Theorem: Let Ql(l) be the unimodular m x m matrix in the

proof to (4.3-63), and let P be the m ¥ m permutation matrix
T(\)

of (4.3-49) (i.e., PT(A) =($(X)

)). Partition Ql-l(k) as
-1,, _ . .
Q ") = (L M) A L(L ) ismx ¥)

Further, let'{ﬁi} be the degree integers' associated with the
canonical matrix Tz(l) cf (4.3-63). Then
(i) Ll(l) is unique
(ii) An internal direct sum decomposition of X x Rm-r[k]
("internal" meaning that both direct summands are
actually submodules of X x Rm-r[kl, and not just
isomorphic to submodules of X x Rm_r[A]) into its

free and torsion submodules is
XxR ‘M1 =T @ F

where

4. "6 =. < p ;(}‘) = %(}\)
(4.3-65) F {(x(l)+ImT(l).V(X))!(V(A)) = PLz(l)Z(A)(mod(E(A)” and

X, <v, for i e r,
i i -
for some z(\) € R Y[A]}

and
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x(A)

(4.3-66) T= (x,v M) ]x =x() + Im T(A), ana -y

) = PL (MY,

for some y(\) € R;[A] such that 3;; < Gi , 1 € 5}

Moreover, in the expression for T, each of the
polynomial vectors x()A) automatically satisfies
9, < V;,, i € r; thus each x()\) is automatically a

la)
canonical representative for the coset x(A) + Im T(A).

Proof: (i) From the definition of Ql(A),

_ T. '{A)
) =9ty | 1
0
so that
Ll'(k)
T'(A) = (Tl(l); 0) = Tl(l) Ll'(k)
Lz'(l)

Since Tl(l) is canonical, its columns are free generators for Im Tl(lh and

it follows that Ll'(l) is unique.

T (M)
(ii) We have seen from (4.3-63) that K*[A]/M and R°A]/Im| 2
0
are isomorphic; this isomorphism is given by
T,(})
u(d) + M »-Ql(l) u(l) + Im
0

But also, from (4.3-49), Rm[l]/M and X x Rp-r[l] are isomorphic, with the
isomorphism given by

T (M)

%(A)) 1Y) y
T(A)

u(d) +M » Pu(\) + Im (i(l) = (v(l)

) + Im(

» (X)) + Im T(\), v()))

where 35; <vVv; for i € r. Therefore, we have the following isomorphism:
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m T2(A) ~ m-x
I'': R [A}/Im + X x R (Al

0
T. (A) .
Ny [ 2 e GOy o+ R0, v
z(A) 0
where 8x, < Vv, for i € r, and
1 1 -
x(A), _ y(A) T(\)
(v(k)) = Q (l)( (A))( a(~(l)n
= (L, My + L (A)z(M)(mod(T&;))
m TZ(A)
It is easily seen that the torsion submodule of R [A]/Im is
0]

just

~ T_ ()
T = {(gm) + Im( 2 )Iy(l) e RE (AL}
0

0

T, ()
£ _¢,0 2 m-y
F={ o)+ 1m< . >|z(A) e R [Al}

T, (A)
and, a complementary free submodule of R [A]/Im( 2 > is

(there is no unique free submodule, in general). Therefore, it follows
that complementary torsion and free submodules in X x R [A] are the

T_(A)
isomorphic images of the above ones in RV [A]1/Im 2 ‘) :
0

A

(4.3-67) T=TIT

T())

x(’\l =
= {&M) + m T),vON| (X7 = PL) M)y (A) (mod{, 37))

(A)
for some y(A) € Rr[A], and 32; < vi for i € gj

and
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A

TF

(4.3-68) F

x(\) T (\)

{EQ) + T v () = PLA 2 (mod (5 1))

for some z(\) € Rw_r[k], and Bfi < vi for i € 5}

Expressions (4.3-65) and (4.3-68) are in agreement; to show that
(4.3-66) and (4.3-67) are also compatible, and that the concluding
statement of (4.3-64) is valid, we need to argue as follows.

Since T,() is a canonical matrix with degree integers {VU., i e r},
it follows that each element of T can be expressed in the form

- T, (A)
(Yél)) + Im 2 ; for dy, <9V, ,ier
o i i -

Thus, to show that (4.3-66) and (4.3-67) are in agreement, it is enough

to show that

x(A)

(
vx(M

= - - < ~ . . .
) PLl(A) y(A) and Byi V. »ierx imply Bxi < vi, ier

But this is true if

for i,j € ¢

-e

AL O 5 <y - Ty

or, equivalently, if

(4.3-69) 23(1.1(7\))]Ln L <V, -V,

=Y 3 for i,j € ¢
i

-

To demonstrate (4.3-69), letl{ﬁi, i € r} be the degree integers for
the canonical matrix Tl(l) (of (4.3-63)). Then, since column m, of T* (M)
is of degree Vi and since T'(A) = Tl(k) Ll'(A), it follows from (4.3-18)
that

3(L1'()‘)’j,mi <v; -9,



181

Next, we observe that the transformation that canonicalizes Tl'(A):

7,0 =T ') 9,0

is accomplished by a constant matrix Q2 which can be factored into a per-

mutation matrix and an upper triangular matrix. Thus it follows easily

that U, = U, for i € r, and (4.3-69) is verified.

(4.3-70) Remark: Note that there is no unique free submodule of

X x Rm-r[X], unless 8T2(A) = 0.

(4.3-71) Remark: The following informal observation results from

(4.3-62) and (4.3-63). The isomorphisms

TZ2ScX=r[A]/Im T(\)
and

T = rRF[\)/Im T, (\)

imply that the invariant polynomials of Tz(l), {¢i(l)}, and

44:hesc—oﬁ_ﬁill+-£$.illl+_satisfy
i
¢i(k) divides wi(k), for i € ¢

Having characterized the quotient module Rﬁ[k]/M in several ways, we
now turn our attention to the canonical projection T : RV[A] + RV[A]/M.
It is clear that this projection induces two morphisms, T Rm[A] >
X x Rp-r[A] (or, equivalently, T RUIA] » X x Rm-r[A]) and T : RV[A] =
(R¥[A\1/Im Tz()\)) ® RV F[\], where the codomains of f and 7 are defined
in (4.3-49) and (4.3-63). We shall obtain explicit expressions for these

two induced morphisms.
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Clearly, the morphism T : RO[A] * X x RV T [{\] induced by the pro-

jection T : RF[K] > Rm[l}/M is given by

T : ud) » (x,v(\))

where

x = x(\) + Im 'i‘\(l)

and where x(A\) € R*(\) and v(A) € Rm—r[kl satisfy
%, <V, ,iex

and

-1,x()\)

P (v(l)) = u(A) (mod T(N))

In the above, 6f course, T(A) is the unique m x r canonical matrix such
that Im T(A) = M,'{vi} and‘{mi} are the associated sets of integers, P is

an m x m permutation matrix such that (Px)i = xm for i € x, and
T(A) *
T(A)

A
«While the above characterization of T is certainly correct, it is an

PT(A) = ( ).
algorithmic characterization in the sense that u()) must be reduced modulo
T(A) in order to determine x and v(\). It therefore is logical to seek a
"closed form" expression for %.

In order to achieve a closed form expression for % : Rm[l] -+
X x RE-I[X], we shall replace the codomain of T by X x Rw-r[kl (X x Rg_r[kl
and X x R" T[A] are really the "same" module), and seek a matrix repre-
sentation of T : RF[A] + X x Rm-r[kl. The concept of a matrix representa-

tion of this morphism is defined as
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(4.3-72)
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. A
Definition: Let {v; M TMN; Jey, i r} be the

[2

basis of X (as in the proof to (4.3-52)) where
e, ; €V, , i€ r (not defined if v, = 0)
i —i, -~ i

and where {ei, i € r} is the standard basis for R*. Also, let
{ei , i € m-r} be the standard basis for R" *; thus {gi} is a
set of free generators for Rm—r[l]. Thus, for each

(x,v(\)) € X x Rp—r[l] there exist unigue o, j ER, jE v, and

14

i€ x, and Bi(l) € R[A}], i € m~r such that

ov)) = (] § ey v, o+ m T, ] B ey

ier jev., ' iem-r
—ﬂ S E—

k.
Then, if u(\) = (J X" u) € R'[A], and if
i=0

T uh) = (x,v(A))

A -
a matrix representation of T : RF[A] + X x &© r[}\] is a

representation of the R-linear map

%11
%12
. B ]
u(d) » ( . ) € R® x RV T[A]
zl,vl '
21 .
. - B (A) ~

* m—xr

bar'v -
r

where n = z Ve
ier
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(4.3-73) Remark: Suppose that Vi >0 for all i € x. If o€ R’
denotes the vector of the dij's, and B(A) € Rw-r[ll denotes the
polynomial vector of the Bi(A)'s, then (4.3-72) may be written
as

(x,v(2)) = (S(\)a + Im T(A), B(A))

where S(A) is the following r x n matrix:

v,-1
1 .. 0 0...0 0...0...0
v,-1
0 0...0 1. X ...x 0 eoc 0 ... 0
s(A\)y=1 .
y v -1
0 O0... 01A...A 7%

Therefore, a matrix representation for T Rm[A] + X x Rm-r[A]
will provide us with a closed form expression for reducing any

u(A) modulo T(A). The unique remainder will be just

s(A)o

-1
= =P gy )

where (0,B8(A)) is determined from ﬁ u(A) as in (4.3-72).

In the case where vl = L. = vr = 0, the elements m
1
mz,...mr of any remainder must be zero. Thus, in this case
1
the result of reducing u(A) modulo T(A) is just

ll

4) }rl elements
S(A)
B(A)

r(\) =p L

where now S(A) is (r—rl) x n, the r, rows corresponding to zero

1

vi's having been deleted.
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A —
In determining the matrix representation for m : X x R r[)\] , we

shall make use of

(4.3-74) Lemma: Let the insertion of R© into Rm[A] be denoted by
£+ B"+ R'[A]. Then if
X j m
uy = (§ 2wy e A
j=0 7
the element T u(?) € X x K" *[A] may be computed as

koL
Tud) =) Ad(Med) (u

)
j=0 ’

Proof: This follows easily from the fact that - is an R[A]-module
morphism. &
The significance of (4.3-74) is that it is now possible to "build
" . -~ . A, m m-x
up” the morphism T from the R-linear map (m*{) : R =+ X x R ~[A]. We

next determine the matrix representation for this R-linear map.

(4.3-75) Lemma: The matrix representation for the R-linear map

M4 : B+ X x BTN is
(Med) : um (0,800
where o € R" and B(A) € Rm_r[)\l are given by
oa=Bu

and

B(A) =Du

where B € Rn xm and D € R(m—r) X m are defined as follows.
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Let T(A), the canonical matrix associated with M, be

partitioned canonically as
T(\) =(T1(A); Tz(k); e Tu(x))

where Ti()\) is m x r, and aTiO‘) = ;. Let P be the m x m
T(X)

permutation matrix such that PT(A) = ('i" o)

), and define p; to
be row i of P.

Then, when nl >0,

Py
9 ) \)1 YOwWS
0
Py
9 ) \)2 rows
(4.3-76) B = 0 X
P3 .
0
- w
Py
(0] ) V rows
. r
0
and
pr-l-l
(4.3-77) D = Pryo
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Otherwise, when nl = 0, B and D are given in terms of P

and Tl(l) as follows. Partition the (constant) matrix PT, as

1
— fl }rl YOWS
1 T

1
and define Eli to be row i of 51. Also partition P as
(P1>}r1 rows
P = B
1
and define 511 to be row i of ﬁl. Then
Py "t By
0] ) vr +1 rows
. l
0
Pio " %2 B
)
? vrl+2 YOows
4.3-78 B = °
( ) o
Pi3” %3P )
0
N
Pl,r—rl ;l.,r-rl 1
0 ) v, rows
0
and
~ ‘E la)
Pl,r-r +1 l,r-r +1.P1
1 1
(4.3-79) D= .
B -t P
pl,m—r1 l,m.-r1 1
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Proof: To determine the matrix representation for Ted, it suffices to
. . m AN
consider an arbitrary u € R, reduce P u modulo PT(A) = (T(A))' and then
express the resulting remainder in terms of o and B(A), as in (4.3-73).
Thus, it is enough to show that the modulo reduction of P u is
0 }rl elements if n,=0
P u=PT(A) g(A) + ] S(A) B u
Du
where S(A) is as in (4.3-73).
To this end, first consider the case nl > 0. Then it follows from

(4.3-26) that, since 9(Pu) = 0, g(A) = 0. Thus the remainder upon

reducing Pu modulo PT(A) is just Pu. But then

s(\)a

(s ()

) = Pu

and it easily follows that o= Bu and B(A) = Du, where B and D are as in
(4.3-76) and (4.3-77).
On the other hand, if n, = 0, then g()) # 0. In fact, since Tl(x)

is canonical and of degree zero, it follows that

P () = (3 ITL TS
1

whence it easily follows from (4.3-26) that

P_u\ }r. elements
a(d) ==( 1 ) 1

0

Therefore, the remainder upon reducing Pu modulo PT(A) is
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i
9
e

I
i)
g
=

B(A)

0 }rl elements

Consequently, a and B(A) must satisfy

~

sMa, _ _
(gen) } = Fyu - T,Piu

3
>

and it is easily seen that o = Bu, B(A) = Du, for B and D given by
(4.3-78) and (4.3-79). B
We now use (4.3-74) and (4.3-75) to deduce the matrix representation

for T : RMA] > X x RV I[A].

(4.3-80) Theorem: The matrix representation for the R[A]-moxrphism

T: R » X x RV F[\] is
m : u(d) » (a,B(N))
where o € R" and R(A) ¢ Rm-r[A] are as follows. If

ul(l)

uz(l)

u(}) = € RV

um(l)
then

m

and
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k-1 . .
B(A) = pu\) - TME ) AT ) qe(])(A) b,
j=0 Lem

In the above, k = du; A is the n x n matrix defined in
(4.3-54); bﬁ is column £ of B, as defined in (4.3-76) and
(4.3-78); D is as defined in (4.3-77) and (4.3-79); H is as

defined in (4.3-53); and T(A) is the (m-r) x r matrix such that

(%Eig) = PT(A). The polynomials Qe(j)(x) € R[A] are defined as
(3) _ 1k-3-1 k-§-2 . _
up M) =2 up ot I\ Up gemy Feeet Uy sy 0 <j<k-1

where

k k-1
= + * o 8
Up) = AT wp AT T gy Pt Yy
Proof: If v € R*, then by (4.3-75), v - (Bv,Dv). Therefore, if

ko
vid =] A v e RN
i=0

it follows from (4.3-74) that
k

v(A) »-z Ai . (Bvi,Dvi)
i=0

But, from (4.3-52), the action of A' on a pair (a,B(A)) is

! L i1,
A @B = alaalgon - rour] AdatTiTly

3=0
Consequently,
k. i1 L.
viA) » §  (a"Bv,,A'Dv, - TOE]  AJat T By
i=o0 i i 3=0 i

ko ko k-1 . k fmio1
= (] a'Bv, } AMov, -FTor)] M ] a7 Tevy
i=0 i=0 3=0 i=j+1
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Finally, if

§ ; ul(l)
Av, = u ()\)
f=0 1 2
u (A)
m
then it is easily seen that
k i k i
Z_OA By, = L I w,y
= 2 u,(A) b
fem £ 7
Similarly,
X i-j-1 X i
z A J Bv, = %ﬁm 2 u£ i A b£
i=j+l m i=j+1

__.z uz(j)(A) b£
€m

and the proof is complete. B

(4.3-81) Remark: It now follows from (4.3-73) that the closed form

expression for the remainder resulting from reducing u(A) modulo

T(A) is
0 }rl elements
r() =t s %em up(B) by
k-1 . (4
pu) -FMRT M ] w V@ b,
j=0 cm
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The matrix representation for the morphism T: Rm[k] -+
(R“(A)/Im T,(A)) @ R" ' [A] induced by the projection T : E'[A] + R"[A1/M
is defined similarly; we shall merely sketch through the development.

Let Pbe the r x r permutation matrix such that (Ek)i = X~ where
i
'{ﬁi, i S.E} are the row integers associated with Tz(l). Then PTz(X) is

a canonical matrix (r x r) with associated degree integers {J,, i e x},

and an n x n matrix A(n = ) Gi) may be defined from the elements of
iex ~
P Tz(k) just as A was defined from the elements of T(A) (in (4.3-52)).

. g . . - .
Defining a basis {vi,j + Im TZ(A), jed, i€ r} in R [A]/Im Tz(k) with

v, . =3 1e i jEV

. V. , i € r (not defined if V. = 0)
i,5 i —i = i

it then follows that elements (x,v{A)) € (R*[\]/Im T,(\) @ R Y [A] may
be represented by a pair (4,B(A)), & € R* and B(A) € R ¥[A]; moreover,

the action of A on such a pair is
A@,B()) = (B3,AB())

Finally, we define an n x m matrix B from the m x r canonical matrix
T, (A) PO
) and the m x m permutation matrix just as B was determined in

( 0 01I

(4.3-75) from T{A) and P.
(4.3-82) Theorem: Let Ql(l) be the m x m unimodular matrix determined

in the proof to (4.3-63); let

(Qll(l))}r rows

k.
1 —
o, =1 A, = 0y,

i=0

Also, let the n x n and n x m matrices A and B be determined

as in the preceding paragraph. Then the matrix representation
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for ¥ : KA1 » (R"IAl/Im T,(\)) @ R""[A] is

k .
ud) » () up () q &8 a ) v 9, u)
Lem j=0 ’

where

Q. = (q.

17 (93,00 93,00 00 Y ) P EEL

Proof: Apply (4.3-80), first noting that

R > (RRA/InT,(\) & R[]

‘1'2(?\)
u(A) -+ Ql(k) u(d) + Im( " m

This concludes the treatment of explicit characterizations of
Rm[)\]/M and T : Rm[l] -+ Rm[A]/M. In Section 4.4 we shall see that these

characterizations lend themselves readily to system representations.

4.3.3 The Lattice of Canonical Matrices

In (4.3-33) we proved that for every nonzero submodule M C Rm[A] of
rank r there exists a unique m x r canonical matrix T(A) such that

Im T(A) = M. This establishes amap T : T + € where

I=(Mc Rm[MIM is a nonzero submodule}
and

¢ = {TM)|T() is an m x r canonical matrix,
for some 1 < r < m}

A A A A
Clearly, T is injective; also, it is easy to see that InT=C. Thus T
is a bijection.

If we augment i and C by adding the zero submodule to L:
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L Uto}

Mc &'\ IM is a submodule}

(4.3-83) L

and the m x 1 zero matrix to C:

(4.3-84) C ﬁU {m x 1 zero matrix}

{r(}) |either T(A) = O(m x 1), oxr T(A) is anm x r

canonical matrix, for some 1 < r < m}

it is clear that T extends to a bijection
T:L3C

In this section we shall show that C admits the structure of a lattice
(e.g., [53, Chapter 14]) and that T is a lattice isomorphism. We begin

with the fcllowing definitions:

(4.3-85) Definition: Let A(A) and B(A) be two polynomial matrices.
Then

(1) If there exists a polynomial matrix C(A) such that
A(A) = B(A) C()), then B()A) is called a left divisor
(1.d.) of A(A), and A(A) is called a right multiple
(r.m.) of B(A). When such a C(A) exists, we also
say that B'(A) is a right divisor (r.d.) of A'(A),
and A'(A) is a left multiple (1.m.) of B'(A).

(ii) If A(A) and B()) have the same number of rows, then
a greatest common left divisor (g.c.l.d.) of A()\) and

B(A) is any polynomial matrix D(A) which is a 1.d. of



(iii)

(iv)
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both A(A) and B(A), and which is a r.m. of every

other common 1l.d. of both A(A) and B(A).

If A(A) and B(A) have the same number of rows, then

a least common right multiple (l.c.r.m.) of A(A) and
B(A) is any polynomial matrix M(A) which is a r.m. of
both A(A) and B(\), and which is a 1.d. of every other
common r.m. of A(A) and B(M).

Similarly, we can define greatest common right divisors

and least common left multiples.

We now wish to show that for every pair of matrices in C there exists

a unique g.c.l.d. and a unique l.c.r.m.. This we do by proving

(4.3-86) Lemma: Let Tl(l) and TZ(A) be two arbitrary elements of C,

where C is given by (4.3-84). Then

(1)

(ii)

There exists exactly one polynomial matrix, T3(A),
which is both a g.c.l.d. of Tl(k) and Tz(l), and an
element of C. In fact, T3(A) is the unique element

of C such that
Im T3(A) = Im(Tl(l); Tz(l))

There exists exactly one polynomial matrizx, T4(A),
which is both a l.c.r.m. of Tl(k) and Tz(l), and an
element of C. This matrix is the unique element of

C such that

In T,(A) = Im '1'1()\) n Im T,(A)
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Proof: (i) From (4.3-85) it is easily seen that D(A) is a common left

divisor of TI(M and '1‘2()\) if and only if
Im Ti(l) C Im D(A); for i = 1,2

Clearly, D(}A) = Ta(l) satisfies these relations. Moreover, for any D()\)
satisfying these relations,

Im T3(}\) C Im D{A)

whence T3()\) is a g.c.l.d4. of Tl()\) and Tz()\) . If there is another element
of C, say T,(A), that is also a g.c.l.d. of T,(A) and T,(A), then it
follows that Im T (A) = Im T4()), whence T,(A) = T ().

(ii) sSimilarly, M(A) is a common right multiple of Tl()\) and T, (A)
if and only if

Im M(A) C Im T:i.(M ; i=1,2

M(\) = T4(7t) satisfies these relations; and any other M(A) satisfying them
must satisfy

Im M(A) € Im T4(A)

Thus M(A) is a l.c.r.m. of Tl(l) and Tz()\). The uniqueness of M(A)
follows easily. B

We now define the operations of "meet" and "join" in C:

(4.3-87) Definition: For any two elements Tl (A\) and TZO‘) of C, we
establish the following notation:
(i) TI(M < Tz(l) if and only if TZ(X) is a left divisor

of Tl (A) .
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(i) The unique element T3(l) ¢ C satisfying

Im Ta(k) = Im(Tl(X); Tz(k)) is defined as
T, =T, MV T,

(iii) The unique element T4(X) e C satisfying

Im T,(\) = In T, (A) N1n T, is defined as
T, () =1, AT,

We can now state the following result, which establishes C as a

lattice isomorphic to L:

(4.3-88) Theorem: C admits the structure of a lattice, partially
ordered by the relation <, and with the binary operations
meet,/\, and join,\/, as defined in (4.3-87). Moreover, the
bijection T : L + C is a lattice isomorphism, where the
lattice structure in L is the obvicus structure: partially
ordered by C , and with the binary operations n(meet) and

+ (join).

Proof: One needs only to verify that Mlc M2 implies T(Ml‘) < T(MZ) , that
T(My+M,) = T(M)\/ T(My), and that TM[IM,) = TM) AT, for all My,
Mz €¢ L. But these are obvious. B
(4.3-89) Remark: If we wished to compute the elements 'l'l(k)\/'r2 (A)
and '1‘1(1) /\ 'rz(A) , we could prcceed as follows. First, if
Q(A) is a unimodular matrix such that (‘l‘l(kh '1‘2(1)) Q(A) is

canonical, thenr it is clear that

T, 00\ 7,00 = (2 (0 T, 000 Q)
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Note that Tl(k)\/ T,(A) can be computed via algorithm (4.3-43).
Computing Tl()\) /\ Té (A\) is only slightly more difficult.

Essentially, we must find a T 4()\) € C such that
Im T4(A) = Im Tl(x)f1 Im Tz(k)

But if TI(M is m x r, and T2()\) is m x r,, then

1
u(}A) € Im Tl(}\) n Im T2O‘) if and only if there exist

31 2
x(A) € R "[Al, y(A) € R “[A] such that
u(A) = Tl(l) x(A) = TZ(A) y(A)

Thus, to find all u(A) € Im Tl()\) ﬂ Im T2(A) , it suffices to

x(\)

find all (Y(A)

) € Ker(Tl()\); - Tz(A)) and use:
x(A)

m 7, MV 7,00 = {7, x| 0

) € Ker(Tl(k); Tz(k))

s
for some y(A) € R “[A1}

It is easily shown that Ker('rl()\); Tz(M) is a free submodule

r +r
R 172

of [Al]. Moreover, if Q{\) is a unimodular matrix that

canonicalizes (Tl()\); Tz()\)), and if Q(A) is partitioned as

., ) o (M) }r, rows
oy = [ P12 1
Qzl()\) sz()\) }r2 rows

E———

r, +r, - rank(Tl(M; Tz(l)) columns

then a simple argument reveals that the columns of

Q,, M)
Q00N

are free generators for Ker('rl(l); T,(A)). Therefore,



199

mr, 0 [1m 7,00 = ez, 0,00

Therefore, it follows that one way to compute Tl()\) /\ Tz()\)
is to canonicalize (Tl(}\); Tz(l)), and in the process, compute
Q(A). Then Tl()\) le(l) is canonicalized to produce Tl()\)/\Tz()\) .
This method requires two uses of algorithm (4.3-43).
We next derive a condition that must be satisfied if two cancnical

matrices in C are to be related as T(A) < %(A) .

(4.3-90) Lemma: Let T(A), T(A) € C; and let the ranks and the sets
of degree integers be r and T, and {vi, i€ x} and {Gi' ie _i\;}.

respectively. Then T(A) < "I\‘(A) only if
(i) r<r

A
(ii) v _>_vi, foriex

i
Proof: Since T(A) < ‘II\'(A) if and only if Im T(A) € Im T(A), (i) follows
trivially,

To prove (ii), note that T(A) < T{\) implies

(4.3-91) T(A) = T(A) Q)

£fxt ~
R < v, for some k £ xr. Then,

[Al. Now suppose that vk X

for some Q(A) €

since the integers’ {vi} satisfy

v; XV » for all i € k

k
it follows that

A
< .
vi vk » for all i € k
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Let {t'i.(M}" {Ei(l)}, and {qi(l)} be the columns of T()\), T\ , and O(\),

respectively, in (4.3-91). Then, from (4.3-91),
t, () =TA) ;) , iek
But, since vi < Gk' it foilows from (4.3-18) that
ti(x) € Im(t, ) ; t,(A)s...t, _J(A)) , for all i ek
whence it follows that
. - ‘ -

rank(tl(l)' tz(A)’boatk(l\)) ik l

in contradiction to the fact that T(A) is canonical. B

A second result, which in a sense complements (4.3-90) is the

following

(4.3-91) Lemma: Let T(A), T(A) € C; and let the ranks and the sets
of degree integers be r and ¥, and {vi, ier} and {Gi’ iezxl,
respectively. Tﬁenr ifr=7¢, if vi = \)i for i € r, and if

T(A) < Q‘(A) , it necessarily follows that T(A) = %(A) .

Proof: Since r = ¥ and T(A\) < T(A), there is an r x r Q(A) such tha*
T() = T(A) Q). Since v, =V, for all i € x, it follows that the
canonical partitioning for T(A) is conformable with that of T(A); parti-

tioning Q(A) conformably with these canonical partitionings, we have

(Tl(l):---;’l‘a(l)) = ('1‘1(3\);-.-:'1‘“0)) Qll()\) (A)

L Qla

Q

al(}‘) .o Qw(}\)

But then, using (4.3-18),
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Qij(k) = 0, if aTj < aTi
and

Q. .

i T 0, for all i e g
Thus it follows that det Q(A) is a constant. But det Q(A) # 0,
since rank T(A) = rank g(l). Thus Q(A) is unimodular, and consequently
Im T(A\) = Im T(\). But this implies that T(A) = T(\), and the proof is
complete. B
In (4.3-87) we defined the partial ordering < and the binary opera-

tions and in the lattice C. We now extend these definitions to

include all polynomial matrices with m rows.

(4.3-92) Definition: Let Pm denote the set of polynomial matrices
with m rows:

P ={r[p) e &' * °[A] for some s > 1}

Then we define the relation < on P and the functions
N:P xP +Canda \V/: P xP +C as
m m m m
(1) pl(A) < pz(,\) if and only if T(Im Pl(A)) < T(Im Pz(k))
(ii) P (A) JA P,(A) A T(Im P, (A)) N\ T(Im P, (M)
(1i1) 2,0 V P, () A T(zm 2, () V/ T(Im 2, ()

where T : L 3 C is the lattice isomorphism.

Our rationale for extending these definitions to Pm is that
PI(M V Pz()\) gives us a canonical g.c.l.d. of PI(M and Pz(l) , while
Pl(l) /\ Pz(l) gives us their canonical l.c.r.m.. We now can also intro-

duce the ideas of relative primeness of polynomial matrices.
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(4.3-93) Definition: ?wo matrices Pl(k), Pz(k) € Pm are said to be
relatively left prime if every g.c.l.d. of Pl(A) and PZ(A) is
a unimodular m x m matrix. Two matrices Pl(l) and Pz(k), where
Pl'(l), Pz’(l) € Pm' are said to be relatively right prime if

every g.c.r.d. of Pl(l) and Pz(k) is a unimodular m x m matrix.
Relative primeness can be easily determined as follows:

(4.3-94) Theorem: Let Pl(k), PZ(A) € Pm' Then the following are
equivalent:
(i) Pl(k) and PZ(A) are relatively left prime
(ii) P1°(l) and Pz'(l) are relatively right prime
(iii) P, AV P,(A) = I (m x m identity matrix)

(iv) Im P, (A) + Im P,(A) = Y IA]

mXq, Pl'(A)
(v) If P.(A) € R [A\] for i = 1,2, then Im
1 [
9, %9, Pyt ()
is a direct summand of R [Al.

Proof: The equivalence of (i) and (ii) follows from (4.3-93), while the
equivalence of (iii) and (iv) follows from (4.3-92) and (4.3-88). Also,
(i) implies (iii) kecause Pl(l)\/'Pz(l) must be unimodular and canonical;
while (iii) implies (i) since any g.c.l.d. must divide P; (M) \/ P,(A), i.e.
if Q(A) is a g.c.l.d. of Pl(l) and Pz(k) then Q(A) P(A) = I, whence Q(A)
is unimodular.

We now show that (iii) implies (v). Indeed, from the definition of

P, (M) \/ P,(1), there exists a unimodular Q(A) such that

(P, ) P,(0)) Q) = (I; 0)
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P.'(N)
~1 I
! =0t (@
]
P, (M)
P.'(A) -1
That is, consists of the first m columns of Q' ~(A). But, since
_ P, ' (A)
Q' 1(1) is unimodular, these columns are m of (ql+q2) free generators for
9 %9,
R fAl, and (v) follows.
Conversely, if Im is a direct summand of R iA]l, there
P.'(\) pl'(x):
exists a (g,+q.)x(g,+g -m? matrix P(A) such that 1P (M) is uni-
1 %2 1 "2 P_t(\)
modular. But then there exists a Q(\) such that 2 '
Pl'(A)
Q) =1
P, (V)

and it follows that (v) implies (iii). B

Throughout the remainder of this section we shall assume that T(A) is
an m x m canonical matrix. It thus follows from (4.3-52) that the quotient
module RP[A]/Im T(A\) may be represented by a pair (X,A) where X is an

R-vector space, of dimension n = z vi' defined as
iem

X Q RP[A]/Im T(A) (as R-vector spaces)

and where A : X > X is the endomorphism induced by the action of A on

RV [A1/Im T(M):
A: X+X

X P AX

As was seen in (4.3-52), the matr .x for A, with respect to a "canonical"
basis in X is given by (4.3-54). We shall show how the action of A on X

can be deduced from an examination of a sublattice of C. We first prove:
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(4.3-95) Lemma: The lattice of A-invariant subspaces in X is iso-
morphic to the lattice of submodules M satisfying
Im T(AD)C MC Rm[l] . This lattice isomorphism is explicitly

given by: M» M/Im T(A\) = S C X.

Proof: It is clear that a subspace S © X (as an R-vector space) is A-
invariant if and only if AS C §; but this is true if and only if \SC S
(thinking of S as a subset of the R[A]-module R'[A]/Im T(X)). Thus

S is A-invariant if and only if S is a submodule. Clearly, the submodules
of K'[A]1/Im T(\) are lattice-isomorphic to the set of submodules M, where

Im T(\) € M C R[A], and the proof is complete. B
This leads immediately to the next result.

(4.3-96) Corollary: The lattice of A~invariant subspaces in X is

isomorphic to the following sublattice of C:
[T(d), 11 A {c) e C|T(A) < c) <1}
The explicit isomorphism is C(A) » Im C(A)/Im T(A) C X.
Proof: Apply (4.3-80) and (4.3-95). B

One of the mecre important subclasses of the class of A-invariant
subspaces in X is the subclass of cyclic A-invariant subspaces. Clearly,
this subclass is not a sublattice of the lattice of A-invariant subspaces;
however, it can be very easily represented in terms of the canonical

matrix T(A):

(4.3-97) Lemma: Let x € X, and let {Alx} denote the cyclic A-invariant
subspace of X generated by x. Then there exists u(\) € Rm[A]

such that
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Im(T(A) \/ud)) /Im T(A) = {a|x}
Therefore, the following sets are bijective:
{S € X|S is cyclic} = {T(M\/u) [ud) € R'[AI}

Proof: Letting T : Rm[)\] > Rm[A]/Im T(A) = X denote the canonical
projection, since W is surjective there exists u(d) € Rm[)\] such that
7 u(l) = x. Consequently, mriu(l) = Alx, for i > 0; thus it follows

that
{(Im T(A) + Im u(A))/Im T(N)

Im(T(A)\/u(}))/Im T(A)

R-linear span of (x, Ax, Azx,...)

{al|x}

Clearly, the u(A) selected above is not unique; u(A) + 7’A) g(\) will
also do, for all gq(A) € Rm[)\] (as will v()\), so long as Tv(\A) is a gen-
erator for {Alx}). However, it follows from (4.3-96) that each of these
u(A)'s results in the same canonical matrix T(A)\/u(d). This froves the

second statement. B

We recall that, given a cyclic subspace S of X, the minimal annihilator

of S is the monic polynomial Y(A) of least degree such that Y(A)s = 0 for

all s € S. We now relate the concept of minimal annihilators to canonical

matrices.

(4.3-98) Lemma: Let {A|x} be a cyclic A-invariant subspace of X,

and let u()) ¢ Rnf[l] be such that

(4.3-99) Im(T(A)\/u(A))/Im T(A) = {a|x}
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Then Y(1), the minimal annihilator of {A|x} is the unique

monic polynomial satisfying

YO @MAD = aMATO)

Proof: It is clear that, if x is any generator of‘{A[x}, then Y(A) is
just the minimal annihilator of x. If u(A) € Rm[A] is chosen so as to
satisfy (4.3-99), then Tu(A) must be a generator of {A|x}; thus Y(A) is

the monic polynomial of least degree such that
P(A) Tu(d) =0
or, equivalently, such that
Y(A) u(d) € Ker m = Im T(A)

for any u(A) satisfying (4.3-99). Thus, Y(A) is the monic polynomial of

minimal degree such that
Y(A) u(A) € Im T(A) ﬂIm u(d) = Im(T(M/\u(l))
and the proof is complete. B

(4.3-100) Remark: Both T(A)\/u()) and Y(A) can be determined from a
single application of algorithm (4.3-43). That is, if Q()\) is

an (m+l)x(m+l) unimodular matrix that canonicalizes (T(A); u())):

(T3 u(d)) Q) = (T(A)\/u); 0)
q, ()

) ; Where
qz(l)

and if the last column of Q(A) is denoted by (

qz(l) € R[A], then it is easily seen that

(ql (A))
Ker(T(A); u(d)) = Im a, ()
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Consequently, qz(l), after it has been normalized to make it

monic, is the sought-after Y(A).

(4.3-101)  Remark: It should be clear that, if T(A) = T(\)\/u(\), then
o)

a matrix A may be obtaired from T(A) exactly as A was obtained

from T(A) (in (4.3-52)). Clearly, this matrix ﬁ represents the

map induced by A in the quotient space X/{Alx}, where
{a|x} = Im(T)\/ud))/In T(A)

One can now continue, and find an ﬁ-invariant subspace of
X7{a|x}, the minimal annihilator of this subspace, a new
canonical matrix T(\) = 6(1)\/v(1), and a new matrix A. In
this manner a cyclic decomposition of X will result (although

not necessarily a canonical one).

In Section 4.5 we shall apply these and similar ideas to determine
new ways of characterizing A-invariant, (A,B)-invariant, and (A,B)-

controllability subspaces associated with linear systems.
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4.4 Module-Theoretic Characterizations of Linear Multi-Input Systems
via Polynomial Matrices

In this section we shall apply the results of Section 4.3 to obtain
characterizations of multi-input linear systems. The approach will be
analogous to that in the prologue to Section 4.3, where a characterization
of single input systems was obtained. By representing the kernel of the
input-output morphism in terms of a canonical matrix, a representation
theory for linear systems will evolve. It will also be seen that we need
not restrict ourselves to finite dimensional systems, since representations

and realizations for infinite dimensional, discrete time systems may be

obtained as easily as in the finite dimensional case.

4.4.1 Regresentation of the State Module and Related Morphisms: Realization

We now return to the notation of Section 4.2. That is, let I be a
linear, discrete time, constant system characterized by the input-output
morphism:

f* 2 B > RPN

z

and let the canonical factorization of fZ* be

R[] —rRP 7
f *
P
(4.4~-1)
T p*
Xp = RV [A]/Ker £+

We shall assume initially that rank Ker fz* = r, where 0 < r < m; later

we shall restrict r to 1 < r < m, and finally, to r = m.
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In the case where r = 0, it follows that Ker fz* is the zero

submodule. Thus, in (4.4-1) we may take as the representation of I:
Xy = R [A]
T = identity morphism on Rw[l]
p*:fz*
A realization of L,(X, A, B, C), follows easily. That is, define
X = R®A\] (as an R-vector space)
A: X+ X
: u(A) = Au(}d)
B: R -+ X
s v A(v) = v
where { : K" + R"[A] is the insertion, and
c: X+ &P

: X P fz(x)

where fZ : Rm[l] + RP is the input-output map, as defined in Section 4.2.
From (4.2-16) and (4.2-17) it follows that (X, A, B, C) is indeed a canon-
ical realization of L.

In the less trivial case where r > 0, we know from Section 4.3 that

there is a unique m x r canonical matrix T(A) such that

Im T(A) = Ker ft*
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Letting, as usual, {vi, iex} and’{mi, i € x} be the sets of degree
integers and row integers, we define an m x m permutation matrix P so that
(Px);, = x forallierand=xe€ R"; and we define T(A) (r x r) and T(A)
((m-r)x r)lso that

pr(y) = M)

0

It now follows from (4.3-49) that XZ may be characterized by X x Rm—r[kl,

where X is the quotient module
X = RF[A\l/In T(A)
However, as was seen in (4.3-52), X is isomorphic, as an R-vector

space, to Rp, where

: i
ier

Define the isomorphism ¢ : X 3 R to be the coordinate isomorphism with

respect to the basis {\’ e, + Im TA); j € v,r i€ r} in X; that is,

11
) j . . n
o : 1,5 xi'j(l e; + Im T(A)) » xllv1 € R
1
X
- r'vr-

Then, with the matrices A, H, B, and D defined as in (4.3-54), (4.3-53),
(4.3-76) or (4.3-78), and (4.3-77) or (4.3-79), respectively, the

projection T : RP[A] -+ xz may be characterized by



LAl

Rm— r

A>

(4.4-2) : RO\ » R x Al

k-1 . :
u(d) » (i up(B)by, Du(d) - FH ] A7 %e uI_(J) (A)by)
e€m 3=0 m

where su(A) = k, and
ul(X)

u,_(A)
u(A) = 2

u (A
Therefore, if
vorox ¥ R x RN T\
is the isomorphism relating XZ and R x Rm‘r[x], and if p* : D > R@-r[A]

is defined as

(4.4-3) pr = pr y L

it follows that I may be characterized by either the top or the middle

route in the commutative diagram:

I\ -1
£_*
p*

z

(4. 4-4)

>

R x RN T[]

Clearly, the bottom route in (4.4-4) would provide the more explicit

characterization of I if we could determine an explicit characterization

of p*.
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This is accomplished as follows. Each element (x,v(A)) € R" x R —r[l]
is the image under T of some element u(l) € K [A]; we need only find such
an element, and define P*(x, v(A)) = fz*(u(l)). But, from the remark

(4.3-81) it follows easily that the element

0 }4zero rows = #zero vi's
(4.4-5) ay) = Pt | soyx
A
-v( ) 1
satisfies
T)) = (x,v(})
In (4.4-5),
vi-l
1 Y | 0 0O ... 0 ... 0
V2-1
0 0 ... 0 1 A A 0 ... 0
S(A) =
v -1
0 o 0 1 At

where row i cf S(A) is deleted if vi = 0. Thus we have:

0
B*(x,v(M) = £.4(7 [ sx) )
v(A)
We can obtain a more explicit expression for P* by determining a

realization of I, which we now proceed to do.

Define the quadruple (X, F, G, C) as follows.

(4.4-6) X=Rx Rm-r[l] (as an R-vector space)
(4.4-7) F: X+ X

(x,v(A)) + (Ax,Av(A) - T(A)Hx)
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where A, H, and T(\) are as defined in (4.3-52). Also,
(4.4-8) G: R"+ X
s u (Bu’ DU.)

where B and D are as defined in (4.3-75). Finally,

(4.4-9) c:X»>rR
0
s (x,v(\)) »> fz(P_]' s(\)x{ )
v(\)

where f2 : Rw[A] +> RP is the R-linear input-output map of I.

A matrix representation of K : X » RY is obtained via

(4.4-10) Lemma: Assume that 9T(A) > 0. Let {G, e K " ", i > 0}
be the pulse response of I, as defined in Section 4.2; and
let P € e * ® be the permutation matrix such that PT()\) =

(gr))- Plso, define F, £, and the set {0, i ¢ £} as

t = min{ilv, >0} -1
[a) -~
r=r-rx
V. = for i € r
i-\’i+i.f' °r1€£

For each k > 0, define

a . = column r + i of (G P-l), for 1 < i < m-%
k,i k - =

and

~

- (2 . .2 . a x (m-1)
Ge = (9 2417 I, 2427 Fg,m¥ € R

Finally, define C ¢ P XD g
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~ A)

- . o~ . AA . o . At\ ....A
C=19,1" 9,17 % -1,17 9,27 "% _-1,2 -1,z

1 2

Then, the R-linear map K : X »> P of (4.4-9) "3 given

by
k .
(4.4-11) K : (x,vQ\)) » Cx + z G v,
i=0
where
kK i
v =] A v
i=0

Proof: From (4.4-9) and {(4.2-4) {ii) it follows that if

0 2
sMx] = ) At u;, = u)
v() i=0
then
£ -1
K(x,v(d)) = G, P u,
i=0 ' *

Thus, we have only to determine the relation between (x,v(A)) and the ui°s.

But, since S(A) is just

0] 0 0 1...2 0o ... 0
S(A) =

eo e
<>

it is easily seen that
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0 }¥ elements
Vi1
W, ~
ui = i,2 r elements
w, 2
i,r
v, }Jm-r elements
where
0, if i > 9,
-
W, . =
1,] A
X A if i < V.
144} ]
a<j
Therefore,

~

K, vA)) =94 4 %) + 95,5 % 41 Feoot 90,7 K 4l tun 4l

1 1l r-1
+ a X, +o..t 3 ~ XD a8
1,1 72 l,r v1+...+vr_l+2
+. .o ~ A
+ gv'\-l,r xn
r
k ~
+ z G v,
i=0
k A
=Cx+ Z G, v,
- i i
i=0
and the proof is complete. B
We now state
(4.4-12) Theorem: The quadruple (X, F, J, K) defined in (4.4-6),

(4.4-7), (4.4-8), and (4.4-10) is a canonical realization of

L. Moreover, I is a finite dimensional system if and only if r=m.
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Proof: The first statement is an immediate consequence of (4.2-16) and
(4.2-17) if one notes that X may be endowed with the structure of an R[A]-
module where the action of A on X is the same as the action of F on X

(see (4.3-49)); that J is just the composition % ° L (see (4.3-75)); and
that Ko T = £,.
Clearly, I is finite dimensional (by (4.2-17)) if and only if

Rm[X]/Ker fZ* is a torsion module. But this is true if and only if r = m. i}

(4.4-13) Remark: If r < m there is a free submodule of RW[A]/Ker fz*,
and consequently X has an infinite dimensional part. 1In the
above realization of I we have represented the infinite-
dimensional component of the state vector by v(A) € Rm—r[A].

Clearly, we could equally as well represent this comporent by

an infinite vector

0
V1

v()) = § At v, b :
i=0 * Yk

0

0

2/

Using this representation for v(A), a block diagram of the
realization of (4.4-12) is as given in Fig. 4-1. 1In this
diagram,

" .
T(A) = EA T,
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and ' is the following infinite matrix:

= -

o 0 0

I 0 0 ® e 8

o -

where each I is the (m - r) x (m - r) identity matrix.

(4.4-14) Remark: In (4.4-10) (and by implication in (4.4-12)) we have
assumed that 9T(A) > 0. If this were not the case then the
finite dimensional subsystem in Fig. 4-1 would be of dimension

zexro (i.e., effectively not present).

(4.4-15) Remark: In (4.3-63) we obtained a second representation of

the quotient module RF[A]/Im T(A) as
(R'I\/Im T,(0)) & K (A

and in (4.3-82) we derived a characterization of the
corresponding morphism ¥ : RT[A] + (R [A]/Im TZ(A)) ®@ R’ FIAl.
These results can be used to obtain a second canonical realiza-
tion of L. When I is finite dimensional, this realization will
be essentially identical to the one given above. However, if I
is infinite dimensional, this second realization may well have
a lower order finite dimensional subsystem than the realization
of Fig. 4-1. This is due to the fact that S € X (see (4.3-59))

may be a proper submodule of X. We shall not derive this
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second realization here, as the determination of the state-to-

output map is fairly messy.

4.4.2 Detemmination of T(\) fron the Hankel Matrix

In the preceding section we have seen that a canonical representation
(and thus also a canonical realization) of a linear, constant, discrete
time system I may be obtained as follows. The structure of the state
module X and the input-to-state morphism ﬁ : R@[X] + X can be essentially

"read off" the canonical matrix T(A), which satisfies

(4.4-16) ‘ Im T(A) = Ker fZ*

Then, the output-to-state morphism p* : X + RP[[A_lll can be determined
quite easily from the pulse response'{Gi, i > 0} of E. We shall now show
that the canonical mutrix T(A) may also be determined from the pulse
response. It will thus follow, as should be expected, that a complete
internal description of I (modulo uncontrollable and unobservable parts)
may be deduced from'{Gi, i > o}.

We define the Hankel matrix H associated with I as in (4.2-7). The

finite Hankel matrices Hs q’ we define as
’

B -
G G Gy . G
G G G L BN BN ] G
4.4-17) H__ = 12 3 q+l : 8,9> 0
$.d G G G, ... G -
2 3 4 Cqe2
Gs Gs+1 Coyaee Gs+qJ
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Since Ker fz* is certainly a submodule of RW[A], and since we have
already established, in Section 4.3, the existence and uniqueness of a
canonical matrix T(A) satisfying (4.4-17), we have only to relate elements

in Ker fg* to certain properties of the pulse response {Gi’ i > 0}. fThe

key, albeit simple, result is

(4.4-18) Lemma: Let u(A) € R'[A], and let

§ i
u() =) ATy,
‘=0 i

Then, u(A) € Ker fZ* if and only if

K
€ Ker Hs,k

for all s 2_ 0.

Proof: This is a simple application of (4.2-5) (iii). B
Thus, each element u(A) € Ker fZ* determines a linear dependence
among the columns of H; and, conversely, each such linear dependence

determines an element of Ker fz*. Presumably, the celumns of T()),

being "canonical" elements of Ker fZ*' correspcnd to "canonical® linear
dependences among the columns of H. This is, in fact, the case.

To explore these canonical linear dependences, we define vectors

{
er'S™P s em 5>0,5>0, as

Yi,5,8
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) = ;j,S>O

4.4-19 . fece A
( ) (Ylljls, yzrjts ym,],s -

Also, as we recall, the ith column of T(A), ti(A) ;, is of the form (using

(4.3-20)):

m, V.-1 V.,
\)i 1 1 k m 1 k
(4.4-20) £ (A) =1 " e +1 L e e+ ] Y A toip €
i §=1 k=0 Jix - d j=m, +1 k=0 Jix 3

where {ei, ie E} is the standard basis for Rm. Moreover, in (4.4-20),

(4.4-21) t =0, if j = m, and k 2V, for some £ €x such that Vo<V

jik
We can now state

(4.4-22) Lemma: Let ti()\) be column i of T(A), as in (4.4-20). Then

the following linear dependence exists among the columns of H:

m, V.-1 vV,
;1 ) 7
(4.4-23) Y = - t... Y. - t.., V.
m . vi,s 5=1 k=0 jik “j,k,s 3= i+l k=0 jik ¥3,k,s

for all s > 0 and all i € r.

Proof: This follows immediately from (4.4-18) and (4.4-19), and the fact
that ti(l) € Ker fg*. |
It is now apparent that it is possible to determine the canonical

matrix T(A) from an examination of the columns of H. That is,

(4.4-24) Theorem: (i) For each s > 0, define the infinite array Ys as
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¥ = (ym,O,s; ym—l,o,s;"°yl,0,s; m,l,s;"'yl,l,s; ym,2,5;°°')

(note the special ordering of the columans).

(ii) For each column y,

of Y , define the antecedents
j.k,s s

of y. to be those columns to the left of y. in
j.k,s jo.k,s

Y _.
s

(i4i) Define a column vy,

3,K,s to be regular if
’ 1

. R-linear span of antecedents of y.
YJ ks ¢ P yJ R

(iv) For i € m define

K, = mih{kly. € R-linear span of antecedents of y, , for all s>0}
i i,k,s i —

k.S

if this set is nonvoid, and

Ki = 4+ ©, otherwise

Then
V., if i = m, for some j € &
(4.4-25) kg =1 7 -
o, if i ¢ {m, k € r}
Moreover, if j = mi, the reqular antecedents of yj - are
4 T
) J
{yz'k'sl(l,k) € Ij,s}' where Ij,s+1 > Ij,s for all s > 0 and

- I,
(4.4-26) J;% 38

= {(£,x) |k < min(K,,Kp) s O k < min(k +l,Kp) and
j <L <m}

and the linear dependence of yj k..g o0 its regular antecedents,
’ N 4
J

for all s > 0, is uniquely given by (4.4-23), subject to the

constraint (4.4-21).
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Proof: We first note that if Ki = 4o for all i € m, then there exists no

R-linear dependence amongst the columns of H. Consequently, from (4.4-18)

it follows that Ker fﬁ* = 0. Thus r = 0, and the theorem follows trivially.
Thus, assume that Kj < o for some j € m. Then, from the observation

that the regularity of yz k.S implies that of , it follows that
193-1

Yo x,s+1

Ij,s+1: Ij,s' Thus, we may define

s>0
Observation of the structure of H now reveals that (£,k) ¢ Ij,m implies
(£,k+1) ¢ Ij'm. This, together with the facts that k = Kp implies
(£,k) ¢ Ij,m' while k < min(Kﬁ'Kj) (or k < min(Kﬂ,Kj+1) and j < £ < m)
implies (£,k) € Ij’m, demonstrates the validity of (4.4-26).
It now follows that for every j such that Kj < o there exists an

equation of the form

>
gﬁ,j,k yl,k,s . for all s > 0

oo

Y.
IeKg08 (k) €1,
14

Each such equation determines, via (4.4-18), an element uj(l) £ Ker fZ* of

the form
K.
w) =7 e, - 2
] I K =3

k

A ep

a .
‘evJ 'k

'G)

If there are q values of j such that Kj < ®©, an m x g matrix U(A) may be
formed with the uj(l)'s as columns. Moreover, due to the nature of the

sets Ij'm, it is easily seen that the uj(l)'s may be ordered so that the
resulting U(A) is a canonical matrix. Note that uj(l) € Ker fZ* for all

q values of j implies
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Im U(A) © Ker £o*

Thus, if

A) = .M v, Mi... u, (A
U{A) (uJ (1) uJ (A) UJ (A))

1 2 q
then (4.3-90) implies that
qasr
and
(4.4-27) Kj. > \)i , for i e g
i

On the other hand, (4.4-23) implies that Ko <® for all i € x,
i
whence, the mi's being distinct, it follows that

r<g

Thus r = q, and the sets'{mi, iex} and'{ji, i € g} are identical.

Finally, (4.4-23) implies that

K >V, , forier
m, — i =
i
This, together with (4.4~27) implies that the sets {Kj, j € g} and
{vi, i € x} are identical. Consequently, applying (4.3-91),it follows

that T(A) = U(A), which completes the proof. W

(4.4-28) Remark: This construction is basically that used by Popov
([60]). The differences are that, while Popov operated on the
matrix (B; AB;j... Ap’lB), we are operating on the Hankel matrix.
Also, we are allowing for the possibility of an infinite
dimensional system (r < m).

There are two basic problems with (4.4-24). The first of these is

that, in order to determine Kio we must check the regularity of each



225

for all s > 0, until we find the first value of k such that Y, k.5
g2

yi,k,s
is not regular, for all s > 0. (learly, this is not very practical;
however, in general it is necessary, because there are situations where
Yi,k,s+1 is regular, while yi,k,s is not.

The second shortcoming of (4.4-24) is that there is no practical way
to finally decide that the value of a particular Ki is +», Essentially,
one has to exhaustively verify that Ki # 0, Ki #1, Ki # 2,...; and each
of these verifications has the difficulties sketched out in the preceding
paragraph.

In the special case where it is known that r = m and that

Z V; £ N, we can make use of the following result:
iem

(4.4-29) Theorem: If it is known a priori that r = m and that

z v, < N, then T(A) may be computed as follows. Write:
iem

N-1 = Ym,0,8-17""" Y1,0,8-17 ¥m,1,8-17""¥1,1,8-17 Ym,2,n-17"" )

Determine the regularity or non-regularity of each yj k. N-1' 2S
’ 14
in (4.4-24), and define
K, = mi . ~1i .
1 m:.n{klyl’k'N_1 € R-linear span of antecedents of Yl,k,N—l}’

foriem

Then, for each i € m, there exist unique constants a£ ik € R
7 ’

such that
i min(Ki,Kz)‘l
(44300 Yy T4 Lo %,i,k Y£,k,8-1
m mln(Ki,KL"l)

+ a, .., Y ~
§=i+l k=0 ‘Clllk -e,k,N 1
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Y for all s > 0, until we find the first value of k such that Y,

i,k,s 13,915

is not regular, for all s > 0. Clearly, this is not very practical;
however, in general it is necessary, because there are situations where
is reqular, whi.e y. is not.

g ’ yl'k,s

The second shortcoming of (4.4-24) is that there is no practical way

¥ x,s+1

to finally decide that the value of a particular Ki is 4, Essentially,
one has to exhaustively verify that Ki # 0, Ki # 1, Ki # 2,...; and each
of these verifications has the difficulties sketched out in the preceding
paragraph.

In the special case where it is known that r = m and that

Z vi < N, we can make use of the following result:
ie

n
(4.4-29) Theorem: If it is known a priori that r = m and that
Z V; <N, then T(A) may be computed as follows. Write:
iem
Y )

8-1 = Ym,0,8-17"" Y1,0,8-1% Ym,1,8-17""¥1,1,8-27 Y, 2,m-27 0

Determine the regularity or non-regularity of each yj k. N-1' 28
0
in (4.4--24), and define
K; = mln{klyi,k,N—l € R-linear span of antecedents of yi,k,N—l}'

foriem

Then, for each i € m, there exist unique constants éﬂ ik € R
’ ’

such that
i min(Ki'Kz) -1
(4.4-30) Yi'Ki 'N-—I = =1 k.—_o az,i ,k yz,k,N_l
m min(Ki,Kz-l)

+ a, . .Y
Zgi"'l k=o ‘tlllk ‘e'k'N"l
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Define vector polynomials ui(l) € R@[X] as

K

. min(K,-K,)~-1
4 1 _ L
ui(l) = A e,

-
) a, .
£=0 k=0 £rd ok

e~

m mln(Ki,Kl“l)

a .
£=i+l K=0 £idox

Then there exists a unique permutation 0 : m #+ m such that

TA) = (ug ) N5 gy M ienn uy  AD)

(1) (2) (m)

Proof: The result follows immediately from (4.4-24) if it can be shown

that yj X N-1 is regular if and only if y,. is regular for some s > O,
[ A 4

J.k,s
and that (4.4-30) implies

i mln(Ki,Kz)-l

. = a, .
Yl,Ki,S £=1 %=0 £,1i,k Yﬂ,k,s
m min(Ki,Kz-l)
+ ap . for s > 0
%=i+1 k=0 Loisk TLk,s ! -

This we accomplish as follows.

Since 2 vy A n <N, from (4.4-12) there exist A, B, and C (of
iem
dimensions n x n, n x m, and p x n) such that

CAB=6 ,i2>0

Consequently, defining the m x m permutation matrix P as

r -

O 0 L ] L] L] 1

L] L] O
P = L] L[] L]
0 1 :
1 0 0
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it follows that

Yy = (BP; ABP; AZBP;...)

cnS

. . . n . . .
Moreover, since the realization (R, A, B, C) is canonical, it follows

that

c ]
ca

Ker . =0, for all s > n-1

ca”)

Therefore, for all s > N-1 > n-1, the linear dependences among the columns

of Ys are identical to those among the columns of (BP; ABP;...), and the

assertions follow. B

Remark: It is unfortunate that there appears to be no way
to base a finite algorithm on (4.4-24) in the guneral case
where r < m {(and thus, when the associated system is infinite
dimensional). That this is the case can be seen from the

following example.

Let'{Gi, i > 0} be a pulse response such that

lim rank H = m(q+l) , for all q > 0
g > ® 5.4 -

where Hs q is as in (4.4-18). Clearly, then, Ker f.* = 0.

L
’
However, this is also the case when the pulse response
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is'{éi, i > 0}, where

although a casual observation of the first M elements of

'{§i, i > 0} might lead one to conclude that Ker fo* = RUIAT.

In the next section we shall develop an alternative methed of com-
puting T(A); this method will be applicable when I is finite dimensional,

and when the transfer matrix H(A) is known.

4.4.3 Determination of T(A) from the Transfer Matrix

In this section we derive an algorithmic method for computing T(A) in
the case where I is finite dimensional and where the transfer matrix, H(A),
of I is known. In fact, we shall do more than this; we shall derive a
canonical representation of H(A) as

1

H(A) = N(A) T ~(A)

where N(A) is a polynomial matrix, and T-l(k) is the inverse of T(A) (in
the field of quotients, R(A)). This result is by no means new; it has
been derived several different ways by Rosenbock ([61]} and Wolovich and
Falb ([67]1-[70]). However, the derivation here emphasizes the module-
theoretic nature of the resalt.

In (4.2-12) we introduced the transfer matrix H(A) as an element of
rP ¥ m[[k-llli and the action of H(A) on an element u(A) € Rw[kl was
defined as

H(A) : u(A) ¥ [H(A) u(})]
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where [H(A) u(l)] is the result of formally multiplying H(A) and u(A),
and then deleting all coefficients of nonnegative powers of A. We now
show that when I is finite dimensional the formal power series for H(A)

may be "summed" to yield an element of rP ¥ m()\), i.e. a rational p x m

matrix.

(4.4-32) Lemma: Let L be a finite dimensional, linear, discrete time
system, and let H(A) € ¥ m[[)\_l]] denote the transfer matrix
of L. Then H(A) admits the following representation as an
element of X * ™()\):

(4.4-33) HOA) = o= L)

V()

where Y(\) £ R[A], and L(A) € R° * ™[A\]. (By (4.4-33) we mean
that the formal power series for H(A) is identical to that

obtained by multiplying L(A) times the formal power series for

19N )

Proof: From (4.2-17)(iii) it follows that the finite dimensionality of 2
implies that the state module Xs is torsion. Let Y(A) be the minimal

annihilator of Xy« Then, since

£:4 (W) u)) =0, for all u(M) € R'[}A]
it follows, in particular, that

£*(W(Me,) = [H() Y(A) el =0, foriem
where {ei, ie gﬂ is the standard basis for Rw. In other words,

HO) () e, € RP(\] , foriem
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But this simply says that each column of H(A) can be written as 1/¢(A)

times an element of RP[A], and (4.4-33) follows. B

(4.4-34) Remark: One can also easily prove that H(A) has the repre-
sentation of (4.4-23) only if I is finite dimensional. More-
over, it is easily seen that Y(A), the minimal annihilator of
xz, is just the least common denominator of the elements of

HO) € RF X ™.

(4.4-35) Lemma: The rational matrix H(A) in (4.4-33) is always
proper, i.e. the degree of each column of L(A) is strictly

less than 9y (A).

Proof: This is an immediate consequence of the fact that elements of

H(A) are also elements of R[[l-]']] . B

(4.4-36) Remark: (4.4-35) corresponds to the fact that in our setup

causality is "built into" I from the start (c.f. (4.2-8)).

Our next result is the desired representation of H(A) in terms of the

canonical matrix T(A):

(4.4-37) Theorem: Let I be a finite dimensional lirnear system and
let H(A) € R® * ®(\) be the transfer matrix. Then there exists

a unique N(A\) € RP * ™[A] such that
(4.4-38) H(A) = N(A) T L(A)

where T(A) is the canonical matrix such that Im T(A) = Ker fz*.
Moreover, if {vi, ie g} denotes the set of degree integers of

T{(\), then
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(i) d(column i of N(A)) < Vs for i em

(ii) N(A) and T(MA) are relatively right prime.

Proof: From the definitions of H(A) and T(A), it follows that

[H(A) T(M)] = 0, i.e. that H(A) T(A) € RF * ™[A]. Thus, define
N(A) = H(A) T(N)

Clearly, this N{\A) is the only element of P ¥ m[}\] satisfying (4.4-38).
To prove the remainder of the theorem, we make use of (4.4-33),

noting that the pair (T(A), N(\)) must satisfy
L(A) T(A) = Y(A) N(A)
or equivalently,

T(\)

Im(N(A)

) € Ker(L(A); -y(A)I)
where (L(M\); -y(A)I) is interpreted as a morphism: nW*P[x] > RP[A]. On

u(A)

the other hand, if (Y(A)

) € Kexr(L(A); -Y(A)I), then
L) u() =P y(d)

so that

Thus, u(A) € Ker fz* = Im T(A) and it follows that

u(}) T()\) _ T(\)
Yoo € ™laayroy) = ™oy’
Consequently,
(4.4-39) m(T?)) = ker(v); VD)

NQV)



232

Since H(X) is a proper rational matrix, it is easy to see that column

i of N(A) = H(A) T(M) is of smaller degree than column i of T(A); this

T(\)

establishes (ii). Moreover, it implies that (N(A)

) is the unique canonical
matrix satisfying (4.4-39).

Finally, Ker(L(A); -y(MA)I), being the kernel of a morphism from
RF+P[A] to RP[X], is a direct summand of RW+P[11 (see Appendix B). Thus,
using (4.3-94 ), it now follows that T(A) and N(A) are relatively right
prime. B

We now have a simple method of determining both T(A) and N()A) from
the transfer matrix H(A):
(4.4-40) Theorem: Let H(A) be written as
HO) = —=— L(A)
YA
where L(A\) € RP ¥ ™[A] and where Y(A) is the least common denom-
inator of the elements in H(A) (this latter is not necessary).

Let T(\) be the F X p canonical matrix such that
Im T(A) = Im(L(\); -Y(A)I)

and let Q(A) be an (m+p)x(m+p) unimodular matrix that canonicalizes

(L) = YyA)I):
(T(A); ©) = (L); - YOI Q)
(Q(X) can be found via (4.3-43)). Partition Q()\) as

QM) = (@, (N5 2, ()

m columns
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T(A)

Then(N(A)) is the unique canonical matrix such that

T(A)

Im(N(X)

) = Im QZ(X)

Proof: It is clear that Im Qz(k)tz Ker(L(A); - Y(A)I). On the other hand,
let x(A) € Kexr(L(A); -¥Y(A)I); since Q(A) is unimodular, x(\) = Ql(k)xl(k) +
Q,(A) x,(\), for unique x; (\) € RK°[A] and x,(A) € R'[A]. But, since

x(A) € Rer(L(A); =Y(A)I1),

xl(l)
(L(A); -w(l)l)(Ql(X); Qz(l)) x.(l)
2

N (xlo\))
(T(A); 0) %, (0

(L) ; =PI x(A)

T(A) x, (A)

=0

whence it follows, @(A) being canonical , that xl(l) = 0. Thus x{(\) =

QZ(A) xz(l), and so Ker(L(A); -Y(A\)I) = Im QZ(X)-

T (A)

Finally, from the proof to (4.4-37), Ker(L(A); -y(A\)I) = Im(N(k))'

and the result follows. B

4.5 Module-Theoretic Treatment of Feedback

In this section we develop a module-theoretic method for determining
the effects of feedback on a linear, finite dimensionzl, discrete time
system. We shall attempt to determine the possible changes in system

structure that can be attained using feedback. We shall also determine
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equivalence classes of feedback laws, where two feedback laws are said to
be equivalent if they result in identical closed loop system structures.

In the preceding section it has been demonstrated that two of the
quantities which algebraically characterize a system, namely the state
module xZ and the input-to-state morphism T : Rm[A] > xZ' are completely
specified in terms of the unique canonical matrix T()A) satisfying
Im T(A) = Ker fz*; moreover, the state-to-output morphism p* : XE -+ RP[[k-l]]
is specified by T(A) and a few numbers from the pulse response’{Gi, i Z_O},
Thus, one philosophy that we could take in this section would be to
determine the changes that result in Ker fZ* when linear feedback is
applied around the system.

However, since observability is not necessarily preserved under state
feedback, Ker fz* may undergo drastic changes when small amounts of feed-
back are applied (If observability is lost, then Ker fZ* must become

"larger"). Therefore, in order to restrict our attention to a more well-

posed problem, we shall consider the canonical factorization of fz*:

[\ =1

m P
X5
and determine the changes that result in the input-to-state map T : R@[A] >
xz when feedback is applied. Since reachability is always preserved under
feedback, the resulting input-to-state map will always be surjective,

and thus this problem is well-posed. Of course, not only will T change

when feedback is applied, but changes in the module structure of X
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will also result. Indeed, it is mostly these changes that will be of

interest to us.

4.5.1 The Changes in the State Module and the Input-to-State Map Induced
by State Feedback

In this section we shall develop a method for module-theoretically
characterizing the changes that result in the input-to-state map T and in
the structure of the state module XZ’ when a linear, instantaneous state
feedback law is incorporated into L. We shall see that, by appropriately
modifying the framework by which one treats & module-theoretically, simple
characterizations of the input-to-state map and the state module for the
closed loop system, in terms of a new canonical matrix, will result.

Initially, we are at somewhat of a disadvantage, with respect to
treating feedback, when the standard module-theoretic characterization
(i.e. the one described in Section 4.2) of I is used. This is because each
u(d) € RM[A] represents an input whose last nonzero value occurs no later
than time t = 0; while Tu(A) represents the state of the system after this
last nonzero value has been received, i.e. the state at time t = 1. Clearly,
if we are to incorporate state feedback into I, we must develop some method
for representing the sequence of states at times t = eeey =2, -1, 0, 1
induced by a particular u(A) € RV[A].

This can be accomplished by borrowing some ideas from automata
theory. We recall that, if wl and w2 are two strings of elements from a

set S:

wi = (511' SiZ’...si'ki

Y; i=1,2
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where each sij € S, then the concatenation of wl and wz is defined as

1eseS )

w,w, = (s
2,k2

172

,...S

11’ 512 1,k., 521’ S22

1’
(See [38, Chapter 6]). In automata theory, one uses the fact that the set
of all such strings is a monoid (with identity element equal to the null
string); then, by determining the action of the machine on an input string
ws, where W is a string and s € S, one can deduce much of the internal
structure of the machine.

With respect to linear, constant, discrete time systems, where the
inputs are taken toAbe elements of Rm[A], the operation of concatenating

(1+9u_)

ul(l) and uz(l) results in the input A ul(A) + uz(k). Since we shall

be principally concerned with concatenating an element u(A) € Rm[kl with

an element v € R' C RW[A], we now define

(4.5-1) Definition: The concatenation operator for the input module

'RP{l] is an R-linear map Y : Rm[ll x B" » RU[A] defined as

Y : R[A] <« R® + RV[A)

(u(A), v) = Au(A) + v

Using this definition, one can easily see that, if

ko,
(4.5-2) ud) = § A u, e KA
i=0

then u(A) may be represented in temms of the sequence (uorul,...uk) and Yy

as
u(d) = YOV (0, w)y w ) ) eneu)

Alternatively, we can define a sequence of elements of Rm[X] as
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u(k)(l) =0
dP oy =y oy, w
I for 0 < < k-1
= w30y 4 .
and it will then follow that
ud) = v@ 0, u) =@y u

When u()) is given by (4.5-2), then u(J)(A), as in (4.3-3) is clearly

just

- (3) _ 1 k-j-1 k-j-2 . _
(4.5-4) u -t (A = w + A w gt U 0 <3j<k-1
Thus, u(J)(l) is the element of R“[A] which represents the total input

string as seen by the system just prior to time t = -j. Clearly then,
the state at time t = -j is just nu(J)(A). This motivates our next

definition.

(4.5-5) Definition: Let I be a linear, constant, discrete time,
finite dimensional system, and let xz be the state module and

T Rp[ll -+ xz, the input-to-state map. Then,

(i) By a linear, instantaneous, state feedback law we shall

mean an R-linear map F : xz > RV,

(ii) Associated with each such F is the concatenation-with-

feedback operator Yp ¢ R'IA] x R* » RO[A). Yp is an

R-linear map, and is defined as
Yp t R x B" > R[]

: (u(A), v) + Au(A) + v + Fru(})



Thus, the concatenation-with-feedback operator describes in a
completely natural way the manner in which the sequence of
inputs, as seen by the system at successively later instants
of time, is built up. It should be clear that this definition
of feedback is completely consistent with the ordinary

"dynamical" notion of state feedback, i.e. defining
= +
i L VR
in the system

M1 TRt By

We next define, in a completely natural way, the input-to-state

map induced by a particular feedback law.

(4.5-6)

(4.5-7)

Definition: Let I be a linear, constant, discrete time,
finite dimensional system with state module XZ' and let
F : xz + R" be a linear feedback law. Then the input-to-state
map induced by F is an R-linear map %F : Rm[A] +> X2 defined as

A _ (0)
wFu(A) = TT(YF(uF

M\, uo))
§ (3)

where, if u(\) =) At u, ,the sequence {u_ P, 0 <9 <k} is
i=0

defined as

(k)(l) =0

(J) (§+1)

(A = YF(uF \), uj+1), for 0 < j < k-1

Remark: It should be clear that, if u()\) is the input to

the closed loop system, then the input, as seen by £ (within the

"loop") is just'YF(uF(O)(A), uo). Thus, ﬁF u(A) is indeed
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the state to which I will be driven by the input u(}).
We can now give a simple characterization of T_ in terms of T and

I"l

(4.5-8) Lemma: Let I and F be as in (4.5-6). Also, redefine the
state module xz as X. Then
(i) The input-to-state map induced by F is explicitly

given by
T, Rm[l] > X

u(A) * r(u(A+Fm))

k . k .
where, if u(l) = z At u; then w(A+Fm) = ) (}\+F1r)l u, -

L
i=0 i=0
(ii) There exists an R[A]-module XF' R-isomorphic to X,

Yo X XF (as R-vector spaces)
such that the R-linear map ﬂF : Rm[k] > XF' defined as
T = Vg
is a morphism of R[A]-modules.
The module XF is defined as follows. Let the underlying set and

the R-vector space structure of XF be those of X, and define

the action of A on XF as

A XF - XF

: % > Y(A4TF) w-lx
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k .
Proof: (i) Let u(A) = z At u, - Then the corresponding sequence
. i=0
{uF‘J)(A), 0 < j < k} satisfies

(x)

w, M =0
G) _ (3+1) : (3+1)
ug TN = AUy (A + Ujuq * FTug N
- (3+1) ]
= (A+FT) ug (A) + uj+1

Therefore,

) . _ k-1 k=2
up ' (A) = (A+EM) w  + (A+FT) W g et uy

(0)

Since %Fu(k) = Tr(‘YF(uF \), uo)), it now follows that

%Fu(x) T((A+Fm K W Feeetou)

T(u(A+FT))

as claimed.
(ii) We first show that GF : Rm[l] + X is generally not an RA]-

morphism. This follows from the fact that

T[(A+FT) u(A+Fm)]

ﬂF(Au(A))

AT (u(A+FT)) + TFT (u(A+FT))

(A+TF) T (u(A+Fm))

(A+TF) To u(d)

It will be shown in (4.5-17) that T : Rm[A] + X is surjective; thus, so

F
long as TF # O, ﬁF : R?[A] + X is not an R[A]-morphism.

However, since
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k .
Proof: (i) Let u(A) = z At u, - Then the corresponding sequence
. i=0
{uF(J)(X), 0<3 j_k} satisfies

uF(k)(A) -0
I TG IR LUt
= (A+FT) uF(jH) (A) + Uiy
Therefore,
u.F(O) () = Qwrm X7t u + (A+Fm) K2 u gt ug
Since %Fu(k) = N(YF(uF(o)(k), uo)), it now follows that

%Fu(x) T ((A+Fm) K W eedou)

T (1 (A+FT) )

as claimed.

(ii) We first show that %F : Rm{l] + X is generally not an R[A]-

morphism. This follows from the fact that

TL(Au(A)) = TLOHET) u(A+FT) ]

AT (W(A+FT)) + TFT(u(A+Fm))

(A+TF) T (u(A+FT))

(A+TF) 1'r\F u(A)

It will be shown in (4.5-17) that T e RU(A] + X is surjective; thus, so

F
long as TF # 0, ﬁF : RP[X] + X is not an R[A]-morphism.

However, since
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NF(XU(A)) wﬂF(Xu(X))

U (\+TF) %Fu(x)

U (A+TF) w"lun?Fu(x)

AﬂFu(l)

it follows that Mo RU[A] -+ XF is an R[A]-morphism. This completes the

proot. M
(4.5-10) Remark: It is essential that we interpret Rm[l] as a left
R{A] module, in order for (4.5-9) to be valid. That is we
LI X i
mnst think of u(A) as E AT u., and not as X u, A~. This is
c i p i
i=0 =0 k i
due to the fact that in the expression u(A+Fm) = 2 (A+FT) u,
i=0

the operator (A+Fn)l must appear to the left of the corres-

ponding u, .

(4.5-11) Remark: The methcd of redefining the action of A on X to
get a new module XF is simply one of many ways that one can
get a new module from an old one. A similar construction was
used by Kalman (c.f. {32, Thm. 5.111).

We shall shortly develop a method for canonically characterizing
both XF and T : R [A] + XF' To accomplish these characterizations, we

shall determine a unique canonical matrix TF(A) such that

Im T,(\) = Ker T_C R[]

Then we shall demonstrate that Mo ¢ RF[A] -+ XF is surjective, so that in

the canonical factorization of "F
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R[] - X

RU[A]/Ker )

the morphism ¢ is an isomorphism. It will then follow that the module

structure of XF can be completely "read off" the canonical matrix T_( ),

P
as in (4.3-52).
In order to accomplish the above goals, we must determine an

inverse to the R-linear map

L, : RU[A] > RVIA]

u(A) > u(A+Fm)

For then, since “F : R@[l] g XF is given by

Mo = wﬂLF
it follows that, Y being an R-isomorphism,

1l
Ker “F = LF Ker

LF-lIm T(\)

At first glance it might appear that v(A) = u(A+Fm) if and only if
v(A-FT) = u(l). However, closer inspection reveals that this conjecture

is fallacious.

(4.5-12) Lemma: Consider the state module X and the input-to-state
map T : RO[A] + X. Let dim(X) = n (as an R-vector space) and
let {qi, i € n} be a basis for X (again, as an R-vector space).

Define the free R[A]-module generated by'{qi} as X[A]:
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k .
X o= {§ At xilxi € R-vector space X, and k € Z+}
i=0

Finally, define the R[A]-morphism F : X[A] + R"[A] as the

. m
natural extension of F : X+ R, i.e.

F : X[A] > R\

k 5 k .
: X AT x, > 2 At F ox.
- i - i
i=0 i=0
Then

(i) The R-vector space X x X[A] can be made into an

R[A]-module by defining
Aa, x(A)) = (Aq, Ax(A) + q)

(ii) The input-to-state map T : Rm[A] + X extends to an

R[A]-morphism
m™ : RUA] > X x X[A]
: u(d) > (mu(A), mu(dr))

where T : R'[A] + X[A] is defined as follows. For

k .
u(d) = 2 At u, € Rm[A], define

i=0
k-1 ()
TuM) =) A w0
3=0

where {u‘3 (1), o < 3 < k-1} are as in (4.5-4).
(iii) For every u(\) € R°[A] there exists a unique

v(d) € Rm[A] such tiLat

u(Ad) = v(A+FmM)
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Moreover, v(A) is given by
(4.5-13) v(A) = u(d) - F T ud)

(It is suggested that the reader read remark (4.5-15)

before proceeding to the procf of (4.5-12.)

Proof: (i) Since any R-vector space |/ can be made into an R[A]-module
simply by defining the action of A on V to be that of a given
R-endomorphism on V, it is clear that we can define Alg, x(A\)) as
(g, Ax(A) + q).

(ii) It is clear that T : RV [A] + X and T R'[A] > X[\] are
R-linear. Thus, to verify that 7* : RF[A] + X x X[\A] is an R[\A]-morphism,

it is enough to show that
T*(Au(d)) = AT* u(})

Since m : R'IA] + X is an R[A]-morphism, m(Au(\)) = Amu(r). Also, it is
easily seen that

() u(j-l)(l), for 1 <j <k
a0y =

u(}X), for j =0
Therefore,

k . R
@u), § AT mpw 3 ooy
j=0

m* (Au(A))

$ .3 (-1
Amad), § A% mu () + mu(r))
j=1

k-1 . (5)
Aaay, ¥ 23 ' oy
3=0

= AT* u(A)

whence m* is an R[A]-morphism.
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(iii) We first prove that the R-linear map ()\+F’n)1 . R+ Ry{kl

satisfies
N ] :
(4.5-14) owrmt =2t + T 0 mrowen 1L for 4 >1
£=0

Indeed (4.5-14) is trivially satisfied when i = 1. Suppose it is satis-

fied when i = k - 1; then
EME = Qurm K e

k-2
+ ) Az
£=0

k-1 Frr(}\+F1r)k-£-2) (A+FT)

(A

k-2
AF oy Bl opr o ) At
£=0

Fr(h+pm) X671

k-1
}\k+% )\1’

Fr () K61

and the proof of (4.5~-14) follows by induction.
Now suppose that there exist v(A), w(}d) € RW[A] such that, for

a given u(\) € RV[\],

V(A+FT) = w(A+FT) u(A)

But then, from (4.5-14) it follows that dv = du = 3w. Therefore, if

ou = k, and if
L
vid) =§ AT v,
i=0 1

£ i
wid) =) A W,

i=0

it follows from v(A+FT) = w(A+FT) and (4.5-14) that
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ko3 1y, ief-1
(v-w) + ) (A" + ) X FT(A+Fm) ) (v,-w,) =0
0O O . i 1
i=1 £=0

But this implies that v, =W for all 0 < i < k. Consequently, if there
exists v(A) € R'[A] such that v(AFT) = u(A), then v(\) is unique.
Now let v(\A) be as defined in (4.5-13). It then follows that

k-1

V(A+FT) = u(M+FT) - (A+F7r)j F‘lTu(j)O\)
J=0
k i k-1 5 k=3-1
= §=O(A+m) u, - §=0(A+F1r) FT Lo A Usppe

Analogously to the manner in which (4.5-14) was proved, cne can also

easily prove that

R . i-1 .
+Fm* = At + E (7\+F1r)e Fﬂll-z-l, for i > 1

=0
Therefore,
T i i1 L . i-f-1
VIMET) = uy + ] (AT + E +FMT FIAT ) u,
i=1 = 1
k-1 . k-j-1
- 3 £
§=O(A+Fn) F Lo X usen
k i-1 . .
=u(d) + ) % avEm® eIt
i=1 £=
k-1 k-j-1 . 2
- A+Fm) I rmAt u,
§=C %=0 ( ) u3+£+l
= u(A)
and the proof is complete.
(4.5-15) Remark: One should think of elements of X[A] as being
k

formal vector polynomials of the form Z At X0 where each
i=0
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x; € X is to be treated as a vector in the R-vector space X.
Thus, there may be cause for some initial confusion, because
the quantity Ax can have two meanings: if we interpret x as
a module element then Ax € X is the result of acting on x
with A; if we interpret x is a vector then Ax € X[A] is a

polynomial vector of degree one.
(4.5-16) Remark: The action of A on the module X x X[A] suggests
via (4.3-52) that we could represent X x X[A] as
X x X1 2 R*P 1/ I2B)

where n = dim(X) and@ A : X > X is the R-linear endomorphism

whose action on X is the same as the action of A on X.

As an immediate consequence of (4.5-12), we now have:

- . - m -> 1 - -—
(4.5-17) Corollary: Let LIS [Al XF be the input-to-state
morphism as defined in (4.5-8). Then “F is surjective.
Proof: Since “F = wWF, and Y is an R-isomorphism, it follows that “F is

A
surjective if and only if 7_ is surjective. Thus, let x € X, and choose

F
u(d) € RF[A] so that

Tu{d) = x

(This is possiblc because T : RP[A] + X is surjective.) But then, from

(4.5-12),

To() = E T u) = mu(d)

=X

A
Thus T is surjective, and the proof is complete.
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(4.5-18) Remark: This last result simply says, in module—theoretic

terms, that reachability is preserved under state feedback.

We now have the desired module-~theoretic characterization of XF and

ﬂF : RE[A] -+ XF:

(4.5-19) Theorem: Let T(A) = (tl(A); t,(l);...tm(l)) be the canon-
ical matrix such that Im T(A) = Ker fz* = Ker m, and let

'{vi, iz gﬂ be the associated degree integexrs. Then
(i) The m x m matrix U()), defined as
(4.5-20) U) = T(h) -~ F 1 T(A)

has the property that its columns are free generators

 for Ker “F' In (4.5-20), FmT(A) is an m x m matrix
whose ith column is Emt Q).

(ii) If u(\) = (ul(l);;..um(l)), then dui = 8ti = Vv;, for

i € m. Moreover, if TF(X) is the unique canonical

matrix such that Im TF(A) = ImU(A), and if

TeQ) = (b, | ieeity ()

then

(4.5-21) tF 1(l) ul(l), and

o+
—~
>
A d
I

: ui(l)(mod(tFll(l);---tF,i_l(l))),

for 2 < i <m

moreover, the sets of degree and row integers for TF(X)

are identical to those for T(\).
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(iii) The state module XF is R[A]-~isomorphic to
RW[X]/Im TF(X), and representations for XF and

My Rp[A] > XF may be obtained from TF(A) as in

(4.3-52) and (4.3-80).
Proof: (i) Since ti()\) € Ker T, it follows from (4.5-12) (iii) that
u, (A+FT) = t,(\) € Ker W
i i
Thus ﬂF ui(A) = wﬂ(ui(l+Fn)) = wﬂti(k) = 0, and it follows that
Im U(A) C Ker Mo
Oon the other hand, if u(A) € Ker Tar then u(A+FTm) € Ker T, so that

u(A+FT) = T(A) q(N)

for some q(A) € R'[A]. But then, from (4.5-12) (iii),

u(d) = T(A) q(A) - ¥ 1 T(A) q(d)

U{A) q(})

so that

Ker Te € Im U(A)

Since T, : RV [A) + Xg is surjective, X = RV [\]/Ker T

F and thus the

F;

fact that XF is torsion implies that rank Ker e = M. That is, the m

columns of U()) are indeed free generators for Ker Tpe

(ii) From the definitions of F and.g'in (4.5-12) it is easy to

see that 3(F 7 u(A)) < du(A) for all u(A) € RW[X]. Thus, aui = ati, as
V.
claimed. Moreover, the coefficient of A * in ti(A) is identical to the
\Y
coefficient of A i in ui(l). Thus, to canonicalize U(A), we only need

to change the low order coefficients in each ui(l). Since
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vl g.vz L e S-vm' it then follows that U(A) may be canonicalized in the
manner indicated by (4.3-21). Since the high order coefficient of tF'i(X)
is not changed in this process, it follows that the row and degree
integers remain invariant.

(iii) We have already observed above that the fact that T is
surjective implies that XF = RF[A]/Im TF(A).

While (4.5-19) completely describes, in module-theoretic terms, the
changes that the state model and the input-to-state map undergo when
state feedback is applied, it is not as concrete a result as one might
hope to derive. The lack of concreteness is due to the fact that X and
XF are abstract vector spaces, and that F : X -+ R is just a linear map.
That is, the next logical step is to determine a convenient basis in X

and to represent F as a matrix with respect to this basis. This we shall

do in the next section.

4.5.2 System Invariants and Equivalence Classes of Feedback Laws

In Section 4.3.2 we saw that there exists a "canonical” basis in
the state module X such that, with respect to this basis the matrices
for the maps A : X+ X and B : R® + X have the simple structures as given
in (4.3-54) and (4.3-76). 1In this section we shall see that there is a
second "canonical basis in X, one which allows a simple treatment of the
effects of state feedback on the system. We shall be able to determine
complete sets of system invariants under state feedback, and under state
feedback and coordinate transformations in the input space; these results

will be identical to those obtained by Popov ([60]), Kalman ([42]),
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Brunovsky ([13]), and Wonham and Morse ([75]); the first nearly complete
treatment is due to Luenberger ([50]). We shall also determine equiva-
lence classes of feedback laws, where two feedback laws are equivalent
if and only if they result in identical input-to-state structures.

Our primary motivation in looking for a canonical basis in X is to
find a basis which, when used as a set of free generators for X[A],
results in the n x m polynomial matrix representing T T(A) having a
particularly simple form. If this can be achieved, then by also express-
ing F in this basis, the expression (4.5~20) for U(A) will be quite easy
to interpret.

However, the columns of T T(A) are simply
_’Eti(}\) y for i em

and, from (4.5-12) it follows that

v,-1
1 . .

re =] e Gy
j=0 *

(3)

where the polynomial vectors t; AN, 0<3< V;-1, are obtained from

ti(M as the polynomial vectors u(J) (A\) were obtained from u(A) in (4.5-4).
What could be more natural than to use the elements {'nti(J)()\);

0<3j<v-1, i€ m} as abasis in X?

(4.5-22) Theorem: (Assume that vy > 0 for all i}. The set of elements
'{ﬂti(J); 0<3 S.vi-l, ie gﬂ is a basis for (the R-vector

space) X. Moreover, with respect to this basis the endo-
morphism A : X > X : x + Ax is represented by a matrix A of

the form



A A ees A

11 12 Im
Ba1 oo Bom

A= .
Aml A'm2 Amm

where A,, is v, x v,, and where
1] 1 J

0 1 0 e 0

0 0 1 0...0

(4.5-23) ST
o ... 1
X X X X
and

o 0...0

=l ] s eeriss

1] o o 0
X X X

where the x's denote possible nonzero elements, also, with
respect to this basis and the standard basis in Rm, the
R-linear map Te 4 : R° + X is represented by an n x m matrix

B satisfying



253

00 .. 0 \
00 ... 0 vy rows
lo e & o 0
00 ® & o 0
. . . v2 rows
00 ... 0
-1 x10... 0
(4.5-24) BP = 00 ... 0
00 .. 0
xx10...0
00 ... 0
. . . V  rows
L] . . m
XX oo x 1l

where P is the unique permutation matrix satisfying (Px)i =
X o for all i € m.
i .
Proof: We first show that the set { ﬂti(J)(A) } is a basis for X. Indeed,

suppose that there are numbers aij € R such that

v,-1
* (3)

) aijntiJ ) =0

iem j=0

But this can be true only if

u(i) é z aij ti(j)(k) € Ker T
1,3

That is, the unique reduction of u(A) modulo T()\) is

u(A) = T(A)gq(A) + 0

However, from the definition of the ti(J)(l), it follows that du < vi’

m
i
for all iem; thus the unique reduction of u()A) modulo T(A) is

u(A) = T(A)*0 + u(A)

It thus follows that
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I o .t Pm=0
i, *

Finally, it is easily seen that the ti(J)(A) are R-linearly independent;

thus a; . = 0 for all i,j , and the proof of the R-independence of the

[}

nti(J)(k) is established.
We now show that the matrix for A, with respect to the basis

(0) (1) (v,~1) (v_-1)
{ Tty (A), mt, (A),eee L (A yeun moom

(4.5-23). To this end, we note that
t.(J-l)
i

(M)} , is as given in

- 1 < -

(3) _ '
Ati (A) =

t. (A) - t,

1 1

j=0
0" -

where ti j is the coefficient of AJ in ti(k). Therefore,
’

nt.(j"l)(x) -mt, . ,1<§<v,-1
i i,j - — i
Anti(J)(A) =

- ﬂti'o I3 J = 0
We now note that, as a ccnsequence of T()A) being canonical, the

mxm matrix

[1] 2

T,

h = (

t i t 7 ... t
1'\,1 2’\)2 m,\)m)

is nonsingular. Let c; je R" be the unique vector satisfying
14

t =T ¢ ;forOijivi-l,iE:r_n_

i,j h 7i,j
But then
™, ., = 1T .
i,] h clrJ
= v.=1) ... (v_-1)
( wtl 1 (AND; ... ntm m (A)) ci,j

Consequently,
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(A) + linear combination of the

me, V1Y o, 135V, -1

nt,(j'l)
i
(3) =
ATt (A) =

0 + linear combination of the

nti‘“i'l’(x), 5 =0

Thus the matrix for A is as given in (4.5-23); moreover, we have derived
expressions for the x's in (4.5-23).
To verify (4.5-24), we note that the i'th column of B must represent

the vector Te, eX. But

-1
(ell e2’ LI ) em) - Th Th
so that
(Te,; «eo e ) =TT, T -1
1’ m h "h
e V1 oy o e Yn Doy 7t
1 : h
Thus the matrix for B is
00 ...0
00...0
00 ... 0
_ 10...0 -1
B = 00...0{ T
0 0 L 4 0
010.0
_P 0 .. %J
Hnally, we note that PTh is lower triangular, with 1's on the diagonal;
thus Th-l P-1 is also lower triangular with 1's on the diagonal, and BP-l

has the form of (4.5-24). B
(4.5-25) Remark: In (4.5-22) we have assumed that each vi is strictly
positive. However, we can easily generalize to the case where

one or more of the vi's is zero.



256
In the case where vi = 0 for all iem, it follows that T(A)=
I; consequently, fZ* is the zero morphism, X has dimension zero,
and A and B are meaningless quantities.

=0 and Vv >0

In the less trivial case where VvV, = ... = Vk —_

1
for some 1 <k <m, it is easily seenr that
(3)

{me, 20 0<3<v-1,ktl <i<m}

is a basis for X, and that the matrix for A with respect to this
basis is as given in (4.5-22), if one adopts the convention that

Ai . is to be deleted if vi = 0 or vj = 0. The matrix for B is
’

almost as easily obtained. Clearly, now

'rh = (tl(k);... tk(l); 'rh)

for some mx(m-k) matrix Th. Thus

-1
ﬂ(ellooo em) - ’"Th Th

1

ﬂ(tl()\);... tk()\); Th) Th

= (0;... 0; ﬂtk+{vk+1-l);.. ﬂtm(vm"l))'r;l

and the matrix for B is of the form

—
0...0

o
o
.
L]

0.-00
o...o
oll.o

B = PO
0...0
0...0
0...0

o...o

OO O +ee OOt O 00
O O¢eeO OO see
(]

Q e
.
.
.

Q oo
Heoee O OO ee O OOQssee O
(i )
1
=

and it is immediately seen that BP-l is of the form:
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00 ...0000 ... 0|
00...0000 ... 0 Vk41 YOS
XX ..xXx100...0
00...0000 ...0
-1 - MR : V4o TOWS
BP  =100...0000...0
XX ... XxxXx10...0
00...0000...0
4
L_x X oss % 14
k m-k
columns columns

We can now write a more concrete expression for (4.5-20):

(4.5-26) Lemma: Let the R-linear map F: X - R" be represented with respect
to the basis { ﬂti(j)(l)} in X and the standard basis in R by
the mun matrix F. Then, the mxm polynomial matrix U()), defined
in (4.5-20), is given by

U(A) = T(X) - F S(N)

where S()A) is the following nxm polynomial matrix:

_ _
1 0 e o o 0]
A 0
v.-1
Ao
0 1
Vv -1
0 2 2
0 0
[ ] L] vm-l
_o 0 > e A d
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(If Vi = 0, then column i of S(A) is zero.)

Proof: If vi # 0, then v -1
me. ) =5 AFme, 9
-1 . i
J=0

by definition. Oa the other hand, if V; =0, then 7t . (A) = 0.

We have seen how the structure of the state module and the input-to-
state morphism can be changed by applving state feedback; clearly, these
structural changes are reflected in the changes in the canonical matrix.
Thus, by determining all possible canonical matrices that can be achieved
by state feedback, we shall be able to examine the invariants of the input~
to-state structure.

(4.5-27) Theorem: A complete set of invariants, under state feedback,
of the input-to-state structure of I consists of the sets

{v,,iem}, { m,, iem }, and { t5,1

) > m, wh .
1,vi' 3 ml}, ere t

i,v.
y J"l

is the coefficient of A * in t L.
’

Proof: We have shown in the proof to (4.5-19) that these sets are invariant
under state feedback; that is, the values of the elements in these sets
are common to both canonical matrices T(A) and TF(X). On the other hand,
it is clear from (4.5-26) that all other parameters in T(A) can be changed
by state feedback. Thus, these sets form a complete set of invariants. But
clearly, if any of these parameters is changed, the remaining parameters
still define an input-to-state structure; but this structure will be differ—
ent from the original one. Thus these sets form a independent set of
invariants also. B

We can also determine the invariants of the input-to-state structure

when coordinate transformations on the space of input values is allowed.
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(4.5-28) Theorem: A complete set of independent invariants , under
state feedback and coordinate transformations in the space of
input values, of the input-to-state structure of I consists of
the set { v., iem }.

A

Proof: If T(A) and T(A) are two canonical matrices with the same sets of

degree integers, and if Th and Th are constructed from T(A) and T()A) as

in the proof to (4.5-22),then it is easily seen that there exists a matrix

F such that T(A) = -1 T(A) - F S(A). Thus, with transformations in the

ThTh

input space, the sets {m,, 4dem } and { t., .  ,
1 - j,l,\)i

j> mi} are no longer
invariant. On the other hand, it is easy to see that , if G is nonsingular,
the degree integers of GT(A) are identical to those of T(A). Since the

set {vi, iem} is invariant under feedback, the precof follows. K

We now define the concept of equivalent feedback laws.
(4.5-29) Definition: 'Two feedback laws F&: X > Rm, i=1,2, are said to
be equivalent with respect to I if the two corresponding

canonical matrices T_ (A) are identical; if F, and F. are

Fi 1 2
equivalent with respect to I, we write Fl N Fb.
Thus, the feedback laws Fl and F2 are equivalent if they result in

the same input-to-state structures. The following result provides us with
a simple test to determine when two feedback laws are equivalent.
(4.5-30) Theorem: Let the canonical partitioning of T(A) be
T(A) = (Tl(l): TZ(X); cos Ta(k))
and let S(A) be partitioned conformably with T(A) as

s(A) = (Sl(l); Sz(l); coo Sa(l))
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~

Then, two feedback laws, F and F, are equivalent if and only
if their corresponding matrices (with respect to the standard
basis in R and the canonical basis in X given by (4.5-22))
satisfy
F (A) =
S;(\) = Fs, ()

and

(F- B 5,() =0 (mod T, M) i1

where Ti_l(k) is the canonical matrix such that
Im T, ;) = Im({T; (V) ;... Ti_l(x))—fwsl(l);...si_l(x)))

Proof: This is an immediate application of (4.5-21).

4.5.3 (A,B)-Invariant and (A,B)-Controllabilitz Subspaces: Module-

Theoretic Implications

We have seen in Section 4.3.3 that the A-invariant subspaces of the
state module X can be characterized by the lattice of left divisors of the
canonical matrix T(A). Since the canonical matrix undergoes well-defined
changes when state feedback is applied, it would seem that these changes
would induce changes in the invariant subspace structure of the state mod-
ule. That is, one might hope that the canonical matrix would provide us
with a parameterization of (A,B)-invariant subspaces.

On the surface, this seems reasonable enough. That is, since

Im TF(A) = Im{ T(A) = F S(A))
we have only to somehow determine the left divisors of T(\) - F S(A). How-

ever, there are two major difficulties. First, there appears to be no
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effective method for determining left divisors of a polynomial matrix.
Secondly, and perhaps more importantly, the basis {ﬂti(j)(k)} does not
remain invariant under all posible state feedback laws (It does remain
invariant under a nontrivial class of feedback laws, a class which allows
for every possible input-to-state structure, subject only to the constraints
imposed by the feedback invariants.). Of course, if the basis does not
remain invariant, it will be difficult to relate subspaces in X with those
in Xr,

Surprisingly, it turns out to be easier to parameterize controllability
subspaces than (A,B)-invariant subspaces. The reason is as follows. One
can easily show that, for every u()) € Ker f.*, the coefficients of the
corresponding Mu(A) € X[A] span a controllability subspace. It then becomes
a fairly simple matter to characterize controllability subspaces in terms
of T Ker fZ*'

No more will be said about (A,B)-invariant and (A,B)-controllability
subspaces, because the originally hoped-for result (in terms of left

divisors of TF(X)) is apparently inaccessible.

4.6 _Implications Towards Decentralized Control

At this point we seem somewhat far afield from our original object-
ive: to say something definitive about the system structures that can be
achieved by decentralized feedback. The result that appears to be the most
nearly relevant to the decentralized control problem is (4.5-30), the result
which pertains to equivalence classes of feedback laws, each of which gives

rise to an identical input-to-state system structure. Since decentralized
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feedback can be thought of as a highly constrained form of state feedback,
it is, in theory, a simple matter to determine if the equivalence class
of feedback laws corresponding to the desired system structure contains a
feedback law constrained according to the rules of decentralized control.
Unfortunately, the method for determining when two feedback laws are equiv-
alent is algorithmic; thus it is difficult, if not impossible, to
characterize,in a closed form,equivalence classes of feedback laws.
However, there is hope that several of the unanswered questions in
Section 2.7 may find their solution in an efficient characterization of
controllability subspaces. As mentioned in Section 4.5.3, there is promise
for such a characterization. It might then be possible to determine

controllability subspaces satisfying conditions such as (2.7-9)-(2.7-11).



CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

An attempt will be made in this chapter to summarize the
contributions of this dissertation and to speculate on possible
areas of extension.

In Chapter Two we have treated, in a fair amount of depth,

a class of linear systems with decentralized control. Permeated
throughout many of the results was the general philosophy that re-
quired the individual control agents' controllable and observable
subspaces to be compatible in some sense. This compatibility was
usually just sufficient to allow each individual control agent to
operate independently, without adversely affecting the others. Thus,
in the case of open loop decentralized control, it was required that
each control agent be able to control that subspace which could not
be seen by all the other control agents; while in the case of de-
centralized pole allocation, a desirable system configuration, one
which in some cases could be produced by the right feedback, was a
triangularly decoupled system.

One interesting aspect of Chapter Two was the subject of
generalized observers, i.e. observers to be used when all the system
inputs are not known. It was seen that such generalized observers
could be used to increase each control agent's information set.
Unfortunately, too much information seems to be as much a curse as

too little: and once the control agents increased their information

263
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sets as much as possible, they were forced to discard some of their
newly gained information in the interests of cverall compatibility.

It is unfortunate that the results of Section 2.7 are not
very strong. Particularly bothersome is the inability to generalize
from the two coﬁtroller case to the many controller case. It is
probably the area covered by Section 2.7, involving the combined use
of observers and control law, that warrants the wost effort in the
future.

As introduced in Chapter Three, the rationale behind indulging
in the algebraic system theory of Chapter Four was to attempt to
get a handle on the subject of invariants under decentralized feed-
back, and thereby learn something about the system structures that
can be achieved via decentralized feedback. As should be obvious,
this attempt resulted mostly in failure; however, the promised
characterizations of controllability subspaces could be gquite useful
in tackling a variety of problems, some in the area of decentralized
control.

In spite of falling short of the original goal, it is felt that
the contents of Chapter Four are quite valuable. It is interesting
that so much of the structure of a system is exhibited by its asso-
ciated canonical matrix.

There are at least three distinct areas associated with the
contents of Chapter Four that warrant further attention. The first
of these is a thorough investigation into the real implications

towards representations of infinite dimensional systems; moreover,

the applicability of a similar representation for infinite dimensional
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continuous time systems should be loocked into. There are obviously
several aspects of conventional infinite dimensional system repre-
sentation that are not coasidered in our module framework (see [27]).
Considerable time and effort went into trying to prove
Rosenbrock's Theorem (3.2-5) in a module~thecretic setting; this
warrants further effort. Moreover, a result pertaining to a

characterization of the feedback matrices that achieve the goals of

Rosenbrock's Theorem could prove quite useful in applications such
as output, or decentralized, feedback.
Finally, it should be possible to simultaneously characterize
a system by its associated canonical matrix, and the dual system
by its associated canonical matrix, in such a way as to achieve a
more symmetric characterization of a system (e.g. one which is not
heavily biased towards the input-to-state aspect of the system).
Such a characterization, for example, could prove useful in determining

complete sets of invariants under output feedback.



10.

11.

12.

13.

14.

15.

BIBLIOGRAPHY

J.C. Abbott, Trends in Lattice Theory, Van Neostrand, N.Y., 1970.

M. Aoki, "On Feedback Stabilizability of Decentralized Dynanic
Systems," Automatica, 8 (1972), pp. 163-173.

M.A. Arbib and H.P. Zeiger, "On the Relevance of Abstract
Algebra to Control Theory," Automatica, 5 (1969), pp. 589-606.

G. Basile and G. Marrc, "Controlled and Conditioned Invariant
Subspaces in Linear System Theory," J. Opt. Th. and App.,
3 (1969), pp. 306-315.

G. Basile and G. Marro, "On the Cbservability of Linear, Time-
Invariant Systems with Unknown Inputs," J. Opt. Th. and App.,
3 (1969), pp. 410-415.

A. Bensoussan, M.C. Delfour, and S.K. Mitter, (manuscript on
module~-theoretic characterizations of continuous time systems,
to appear).

G. Birkhoff, Lattice Theory, American Mathematical Society,
Providence, 1967.

R.W. Brockett, Finite Dimensional Linear Systems, Wiley, N.Y.,
1970.

, "System Theory on Group Manifolds and Coset
Spaces," SIAM J. Cont., 10 (1972), pp. 265-284.

, "On the Algebraic Structure of Bilinear Systems.

, "On the Structure of Time Varying Feedback

Systems."

L. Brickman and P.A. Fillmore, "The Invariant Subspace Lattice
of a Linear Transformation," Canadian J. Math., 19 (1967),
pp. 810-822.

P. Branovsky , "A Classification of Linear Controllable Systems,"

Kybernetika, 3 (1970), pp. 173-187.

D. Carlson, "Inequalities for the Degrees of Elementary Divisors
of Modules," Lin. Alg. and App., 5 (1972), pp. 293-298.

J.-P. Corformat and A.S. Morse, "Stabilization with Decentralized

Feedback Control," Proc. IEEE Conf. Dec. and Cont., Dec.,
1972 ’ pp. 79-80 .

-266-



le.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

267 -

E.J. Davison, "The Output Control of Linear Time-Invariant
Multivariable Systems with Unmeasurable Arbitrary Disturbances,"”
IEEE Trans. Auto. Cont., AC-17 (1972), pp. 621-630.

B. Dickinson (Dept. of Elect. Eng., Stanford Univ.), "Assignment
of Dynamics by State Variable Feedback," private communication.

J.A. Dieudonné and J.B. Carrell, Invariant Theory, Old and
New, Academic Press, N.Y., 1971.

E. Fabian and W.M. Wonham, Generic Solvability of the Decoupling
Problem, Control System Report No. 7301, Dept. of Elect. Eng.,
Univ. of Toronto, 1973.

P.L. Falb and W.A. Wolovich, "Decoupling in the Design and
Synthesis of Multivariable Control Systems," IEEE Trans.
Auto. Cont., AC-12 (1967), pp. 651-659.

H. Flanders, "Finitely Generated Modules," Duke Math. J.,
22 (1955), pp. 477-483.

M.M. Flood, "Division by Non-Singular Matric Polynomials,"
Ann., Math., 36 (1935), pp. 859-869.

J. Fogarty, Invariant Theory, Benjamin, N.Y., 1969.

G.D. Forney, "Minimal Bases of Rational Vector Spaces with
Applications to Multivariable Linear Systems," submitted to
SIAM J. Cont. , 1973.

¢ "Convolutional Codes I: Algebraic Structure,"
1EEE Trans. Inf. Th., IT-16 (1970), pp. 720-738.

W. Fulton, Algebraic Curves, Benjamin, N.Y., 1969.

P. Fuhrmann, Notes on realization of linear discrete time
invariant input/output maps, Div. of Eng. and App. Phys.,
Harvard Univ.

F.R. Gantmacher, The Theory of Matrices, Vol. I, Chelsea,
N.Y., 1960.

, The Theory of Matrices, Vol. II, Chelsea,

N.Y.’ 19600

E.G. Gilbert, "The Decoupling of Multivariable Systems by
State Feedback," SIAM J. Cont., 7 (1969). pp. 50-63.

Y. Give'on and Y. Zalcstein, "Algebraic Structures in Linear
Systems Theory," J. Comp. and Sys. Sc., 4 (1970) pp. 539-556.




32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

-268 -

M. Gray, A Radical Approach to Algebra, Addison-Wesley, Reading,
1970.

W.H. Greub, Linear Algebra, Springer-Verlag, N.Y., 1967.

, Multilinear Algebra, Springer~Verlag, N.Y., 1967.

M. Heymann and J.A. Thorpe, "Transfer Equivalence of Linear
Dynamical Systems,"” SIAM J. Cont., 8 (1870), pp. 19-40.

M. Heymann, "The Prime Structure of Linear Dynamical Systems,"

L. Hormander, Linear Partial Differential Operators, Springer-
Verlag, N.Y., 1969.

R.E. Kalman, P.L. Falb, and M.A. Arbib, Topics in Mathematical
System Theory, McGraw-Hill, N.Y., 1969.

R.E. Kalman, Lectures on Controllability and Observability,
CIME Summer Course 1968, Cremonese, Roma, 1969.

, "Irreducible Realizations and the Degree of a
Raticnal Matrix," J. Soc. Indust. Appl. Math., 13 (1965),
pPp. 520-544.

, "Pattern Recognition Properties of Multilinear
Machines," Proc. IFAC Internat. Symp. on Technical and
Biological Prob. of Cont., Yeravan, Armenian SSR, Sept. 1968,
PP. 722-740.

, "Kronecker Invariants and Feedback," Proc.
of Conf. on Ordinary Diff. Eg., NRL Math. Res. Cent., June 1971.

R.E. Kalman and M.L.J. Hautus, "Realization of Continuous-
Time Linear Dynamical Systems: Rigorous Theory in the Style
of Schwarz," Proc. of Conf. on Ordinary Diff. Eg., NRL Math.
Res. Cent., June 1971, pp. 151-164.

P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon
Press, Oxford, 1966.

P. Lancaster and P.N. Webber, "Jordan Chains for Lambda
Matrices," Lin. Alg. and App., 1 (1968), pp. 563-569.

S. Lang, Algebra, Addison-Wesley, Reading, 1965.

M.T. Li, "On Output Feedback Stabilizability of Linear Systems,"
IEEE Trans. Aut. Cont., AC-17 (1972), pp. 408-410.




48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

-269-

D.G. Luenberger, "Observers for Multivariable Systems,"
IEEE Trans. Aut. Cont., AC-11 (1966), pp. 190-197.

, "An Introduction to Observers," IEEE Trans.
Aut. Cont., AC-16 (1971), pp. 596-602.

, "Canonical Forms for Linear Multivariable
Systems," IEEE Trans. Aut. Cont., AC-12 (1967), pp. 290-293.

D. McFadden, "On the Controllability cf Decentralized
Macroeconomic Systems: The Assignment Problem," Mathematical
System Theory and Economics, Springer-Verlag, N.Y., 1969,

pp. 221-239.

, "When Can a Macroeconomic System with
Decentralized Information Processing be Controlled?"

S. MacLane and G. BRirkhoff, Algebra, MacMillan, London, 1967.

A.S. Morse (Ed.); System Structure, IEEE Publication No.
71Cé6l=-css, 1371.

s "Output Controllability and System Synthesis,"

, "Structural Invariants of Linear Multivariable
Systems," to appear in SIAM J. Cont., 1973.

A.S. Morse and W.M. Wonham, "Decoupling and Pole Assignment
by Dynamic Compensation," SIAM J. Cont., 8 (1970), pp. 317-337.

 "Triangular Decoupling of Linear Multivariable
Systems," IEEFE Trans. Aut. Cont., AC-15 (1970), pp. 447-449.

» "Status of Noninteracting Control," IEEE
Trans. Aut. Cont., AC-16 (1971), pp. 568-581.

V.M. Popov, "Invariant Description of Linear, Time-Invariant
Controllable Systems," SIAM J. Cont., 10 (1972), pp. 252-264.

H.H. Rosenbrock, State Space and Multivariable Theory, Nelson,
Londoen, 1970.

¢ "Modules and the Definition of State," Int. J.
of Cont., 16 (1972), pp. 433-435.

M. Spivak, Calculus on Manifolds, Benjamin, N.Y., 1965.

G. Szasz, Introduction to Lattice Theory, Academic Press,
N.Y., 1963.




65.

66.

67.

€8.

69.

70.
71.

72.

73.

74.

75.

76.

-270-

M.E. Warren (Dept. of Elect. Eng., M.I.T.), "Generic
Solvability of the Restricted Decoupling Problem when Rank
B Equals the Number of Output Blocks," private communication.

J.C. Willems and S.K. Mitter, "Controllability, Observability,
Pole Allocation, and State Reconstruction," IEEE Trans. Aut.
Cont., AC-16 (1971), pp. 582-595.

W.A. Wolovich, "On the Synthesis of Multivariable Systems,”
IEEE Trans. Aut. Cont., AC-18 (1973), pp. 46-50.

» "The Determination of State-Space Representations
for Linear Multivariable Systems," Proc. 2nd IFAC Symposium
on Multivariable Technical Control Systems, Dresseldorf,
Germany, Oct. 1971.

» "A Direct Frequency Domain Apprcach to State
Feedback and Estimation," Proc. IEEE Dec. and Cont, Conf.,
Miami Beach, Fla., Dec. 1971.

W.A. Wolovich and P.L. Falb, "Or the Structure of Multivariable
Systems," SIAM J. Cont., 7 (1969), pp. 437-451.

W.M. Wonham, "On Pole Assignment in Multi-Input Controllable
Linear Systems," IEEE Trans. Aut. Cont., AC-12 (1967),
pPpP. 660-665.

, "Dynamic Observers: Geometric Theory,"
IEEE Trans. Aut. Cont., AC-15 (1970), pp. 258-259.

» Realization Theory of Rational Transfer Matrices,
NASA Report PM-102, Dec. 1969.

W.M. Wonham and A.S. Morse, "Decoupling and Pole Assignment in
Linear Multivariable Systems: A Geometric Approach," SIAM
Jo Cont., .8_ (1970)' ppt 1-180

, "Feedback Invariants of Linear Multivariable
Systems," Automatica, 8 (1972), pp. 93-100.

P. Zeiger, "Ho's Algorithm , Commutative Diagrams, and the
Uniqueness of Minimal Linear Systems," Inf. and Cont., 11
(1967) , pp. 71-79.




-271-

APPENDIX A

(A,B)-INVARIANT AND (A,B)-CONTROLLABILITY SUBSPACES

In this appendix are outlined some of the principal results pertaining
to the geometric structures of linear, finite dimensional systems, and the
ways in which these structures may be changed via state feedback. The
theories of (A,B)-controllability subspaces and (2,B)-invariant subspaces
were developed by Wonham and Morse, to be used in the solution to the
decoupling problem; see references [54]-[59]1, [72]1, [74], [75]1. The
concept of (A,B)-invariant subspaces was also developed by Basile and
Marro, independently of Wonham and Morse (they use the term "controlled
invariant subspace" for (A,B)-invariant subspace); see references [4]1, [5].

Throughout this appendix, A, B, and C denote linear maps:

a:rR"> R
B:R + R
c: R +R°

and may be thought of as defining a system
X = Ax + Bu
y = Cx

(a--1) Definition: A subspace S c R® is said to be A-invariant if
ASC S. If S is A-invariant, then the endomorphism A : R" + R"
may be restricted to an endomorphism A : S + S : s + As; this is

well defined, because As € S for all s € 8. We sometimes denote

the restriction of A to S as A|S.
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It is easily seen that the set of A-invariant subspaces of R" is a
sublattice of the lattice of subspaces of R". That is, if Sl and S2 are
A-invariant, then so are 31 + 32 and Slrw 32. The structure of the lattice
of A-invariant subspaces is completely determined from the Jordan normal
form of A; in the particular case where A has n distinct real eigenvalues,
there are precisely 2n distinct A~invariant subspaces, each of which can
be written as a direct sum of cne-dimensional eigenspaces. For more details
on the structure of this lattice, see reference [12].

Given two subspaces D and N of R”, the follewing sets of subspaces

are easily shown to be sublattices of the lattice of A-invariant subspaces:
L, =1{S|as €S, ana § 2D}
L, {8|aSc S, anda S c N}

Thus, the following result follows easily:

(A-2) Proposition: (i) L1 contains a unique minimal element,

§(D), equal to

Sm={1s =7 atd
SSLl ien

(ii) L2 contains a unique maximal element, S(N), equal to

S =Y s=[] A&y
Sel ien
2 —
It is easily seen that, if B : R" + R” is the input-to-state map,

A
then S(Im B) is simply the reachable subspace; while if C : R® + RP is the

state-to-output map, then S(Ker C) is the unchbservable supspace.
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In certain control situations one would like to decrease the reachable
subspace; for example, we might wish that the output z = Hx be unaffected
by the input u. One way to accomplish this is to replace the map B by the
map BG, where rank G < m, thus essentially removing the effect of one or
more input channels on the system. The resulting reachable subspace will

then be

R=7 a'?! me A {a|mee)}
ien -

It is easily seen that R is A-invariant, and that
(a-3) R = {a|B[ )R}

(A-4) Definition: A subspace R satisfying (2-3) is said to be a

controllable subspace.

It can be easily shown that the sum of two controllable subspaces is
a controllable subspace, but their intersection need not be a contrcllable
subspace. Thus, the set of all controllable subspaces of the pair (A,B) is

a join semilattice. The following result is an easy consequence of (A-2).

(A-5) Proposition: The maximal (A,B)-controllable subspace con-

tained in the subspace N is ﬁ(N), where

ien jen

The basic idea behind (A,B)-invariant and (A,B)-controllability
subspaces is to expand the sets of A-invariant and (A,B) -controllable
subspaces by allowing A to be replaced by A+BF, for some F € Rt xn This

corresponds to using state feedback, of the form u = Fx, in the system
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X = Ax + Bu; the objective of the feedback is to modify the original
structure of invariant and controllable sﬁbspaces. We therefore define

(a-6) Definition: Let A : Rn + Rp and B : R -+ Rn. Then

(i) A subspace V c rR" is said to be (A,B)-invariant if
there exists an F : R® + R* such that

(a+BR)V C V

(ii) A subspace R C R" is said to be an (A,B)-controllability

subspace if there exists an F : R" + R such that
{a+er|B[ 1R} = R

(A-7) Remark: It is clear that every (A,B)-controllability subspace
is (A,B)-invariant, and that, if R is a controllability subspace,
then

R = {a+BF|Im(BG)}

where Im(BG) = B'F]R. Thus controllability'subspaces allow us
more freedom in restricting the reachable subspace to a desired

subspace than do controllable subspaces.
It is a fairly trivial exercise to show that

(A-8) Proposition: V is an (A,B)-invariant subspace if and only if

AvVcV + B.
We shall also make use of

(A-9) Definition: The class of maps F : R" + R® for which
(a+BF)V C V, for a given V C Rn, is denoted as F(V) (thus, by

(A-8), F(V) #¢ if and only if A VC B + V).



=275~

The following are equivalent characterizations of (A,B)-controllability

subspaces:

(A-10) Theorem: A subspace R C R is an (A,B)-controllability
subspace if and only if one of the following (equivalent) sets
of conditions is satisfied:
(1) ARC R + B ana R = {a+8F|B [ 1R} for some F € F(R).
(The choice of F is not important - if it works for
one F ¢ F(R), then it works for all F € F(R).)
(i) ARC R + B and R = R where R) = 0, and R, = (aR,__+B)[ |R

for i € n.

One can easily demonstrate that the sum of two (A,B)-invariant
subspaces is (A,B)-invariant, and that the sum of two (A,B)-controllability
subspaces is an (A,B)-controllability subspace; however, this is generally
not the case with intersections. Therefore, the sets of (A,B) -invariant

and (A,B)-controllability subspaces are both join-semilattices (as was the

set of (A,B)-contrcollable subspaces). It follows that, for any subspace
N c R®, there is a unigue maximal (A,B)-invariant subspace V* € N, and
a unique maximal (A,B)-controllability subspace R* € N. These subspaces

are characterized as follows

(a-11) Theorem: Let NC R" be a subspace, and let V* (resp. R*) be
the unique maximal (A,B)-invariant (resp. (A,B)-controllability)
subspace contained in N. Then

(i) V* = V'n, where

VO =N, and Vi= NnA.l(Vi_l+B) fori €n
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(i)  R* = {a+BF|B[|V*}, for all F € F(V%)

An alternative, and sometimes quite useful representation of R* has

recently been derived by Morse ([56]):

(a-12) Theorem: Let N = Ker C, for some C : R® + RP. Then R%, the
maximal (A,B)-controllability subspace contained in N, is given
by

Re = px[Jws"

where "L" denotes orthogonal complement, V* is the maximal
(A,B)-invariant subspace contained in N, and W* is the maximal

(A',C')-invariant subspace contained in Ker B'.
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APPENDIX B

RINGS AND MODULES

In this appendix we summarize some of the aspects of ring and module
theory that will prove useful in treating linear system theory from an
algebraic point of view. Our treatment is by no means exhaustive,
particularly as we shall concentrate on results pertaining to K[A] and
modules over K[A]. For a more complete picture, the reader is referred
to the texts by MacLane and Birkhoff ([53]), Lang ([46]), and Gray ([321),
and the paper by Flanders ([21]).

It is assumed that the reader is at least vaguely familiar with the

concept of a ring. For completeness, we include

(B-1) Definition: A ring R (with unit) is a set R together with
two binary operations: addition, denoted by +, and multiplica-
tion, denoted by °*, which satisfies the following axioms

(1) R is an abelian group under addition; i.e. the
operation + is associative and commutative, there is
a unique element 0 € R such that r + 0 = r for all
r € R, and for every r € R there exists a unique
element ¥ € R such that r + £ = 0 (we denote ¥ as -r,
andr +f as r - r).

(ii) R is a monoid under multiplication; i.;. the operation °
is associative and there is a unique element 1 € R such
that r - 1 =1+« r=1r for all r € R

(iii) multiplication distributes over addition, i.e. r * (s+t)=

r*s+r-t, and (s+t) * r =s«r + t*r for all r,s,t € R.
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We shall usually drop the ° denoting multiplication, and write r ° s
simply as rs. We note that, from the definition of 0 and the distributivity
of * over +,

rr+0 = rr = r(r+0) = rr+r0

whence it follows that r0 = 0 (and, similarly, that Or = 0) for all r € R.
We shall soon be restricting attention to special classes of rings. We

therefore define

(B-2) Definition: Let R be a ring. Then R is
(i) commutative, if multiplication in R is commutative
(ii) an integral domain, if R # {0} and if R contains
no zero divisors (i.e. there exist no nonzero

elements r,s € R such that rs = 0)

As in all other aspects of algebra, the concept of a morphism is

extremely important:

(B-3) Definition: Let R and S be rings. Then amap ¢ : R+ S is a

ring morphism if

(1) ¢(r1 + r2) = ¢(r1) + ¢(r2), for all r;, r, €R

(ii) ¢(r1 r2) = ¢(r1) ¢(r2), for all r,» r, €R
(iii) ¢(1) = 1', where 1 and 1' are the unit elements in
R and S, respectively

The image and the kernel of ¢ are defined as
Imn¢ = {s € S|s = ¢(x) for some r € R}

Ker ¢ = {r € s|¢(xr) = 0 € s}
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We shall usually drop the ° denoting multiplication, and write r ° s
simply as rs. We note that, from the definition of 0 and the distributivity

of * over +,

rr+0 = rr = r(x+0) = rr+r0

whence it follows that rO0O = 0 (and, similarly, that Or = 0) for all r € R.

We shall soon be restricting attention to special classes of rings. We

therefore define

(B-2) Definition: Let R be a ring. Then R is
(1) commutative, if multiplication in R is commutative
(ii) an integral domain, if R # {0} and if R contains
no zero divisors (i.e. there exist no nonzero

elements r,s € R such that rs = 0)

As in all other aspects of algebra, the concept of a morphism is

extremely important:

(B-3) Definition: Let R and S be rings. Then amap ¢ : R>* S is a

ring morphism if

(1) d)(rl + rz) = ¢(r1) + ¢(r2), for all r., r_. € R

1" "2

1’ r2 € R

(iii) ¢(1) = 1', where 1 and 1°' are the unit elements in

(ii) ¢(r1 rz) = ¢(rl) ¢(r2), for all r

R and S, respectively

The image and the kernel of ¢ are defined as
Imd=1{se S|s = ¢(r) for some r € R}

Ker ¢ = {r € s|¢(xr) = 0 € s}
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The kernel of a morphism ¢ : R > S is an ideal, a subset of R with a

particular type of structure:

(B-4) Definition: Let R be a ring and let A C R be a subset. Then
A is a (two-sided) ideal in R if
(1) a1 - a2 € A, for all al, a2 € A
(ii) areAandracd, for all a€ A and r € R

It follows easily that if A and B are ideals in R, then so are AIA]B

and A + B, defined as

a[)e

A+B

{reRlrenand re s}

{reRrr=a+b, for some a € A and b ¢ B}

Thus, the set of ideals in R has the structure of a lattice, partially
ordered by inclusion. Also, given an ideal A in R, we can consider the

set of cosets of A, defined as

R/A = {r + A|r € R}
where

r+A={r +alaen}l, for each r € R

This set admits a ring structure, and a useful property, as indicated

below.

(B-5) Proposition: Let A be an ideal in R, and let R/A be the set
of cosets of A. Then
(i) There are unique operations of addition and multiplica-
tion in R/A which make R/A a ring, and which make the

canonical projection p : R* R/A : r + r + A a ring
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morphism. These operations are simply

(rl + A) + (r2 + A4) = (r1 + r2) + A

+ + =
(rl A)(r2 a) (r1 r2) + A
(ii) Let ¢ : R+ S be a ring morphism, and let Ker ¢ A.
Then ¢ can be "factored through" R/A in the sense that
there exists a unique ring morphism § : R/A + S such
that the following diagram commutes:
R » R/A

v

where p : R* R/A is the canonical projection : r - r + A.

(B-6) Definition: The ring R/A, as described in (B-5) (i), is known

as the quotient ring, or the residue class ring.

In Chapter Four of this thesis, we shall be principally concerned

with a particular class of rings, which we now define.

(B=7) Definition: (i) Let R be a ring, and let A be an ideal in

R. Then A is said to be a principal ideal if A consists of all

multiples of a ring element a, i.e. if
A =Ral (a) Q.{ralr € R}, for some a € A

If A = (a), then we say that a is a generator for A.
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(ii) If R is an integral domain, and if every ideal in
R is a principal ideal, then we say that R is a principal
ideal domain (abbreviated as p.i.d.)
The concept of divisibility entexrs nicely into the subject of principal

ideal domains:

(B-8) Definition: (i) If a,d € R are such that a = dc for some
c £ R, then we say 4 divides a, and write: dla.

(ii) Let a,b,d € R. Then we say that d is a greatest cormon
divisor of a and b if d|a and d|b, and whenever c € R, cla, and
c|b, then c|a.

(iii) We say that a and b are relatively prime if the greatest
common divisor of a and b is invertible (i.e. if there exists

d!eRsuch that 4 + a % = 1).

(B-9) Proposition: Let R be a p.i.d., and let a,b € R. Then there

exists a greatest common divisor, d, of a and b; moreover
(d) = (a) + (b)
Therefore, a and b are relatively prime if and only if
(a) + (b) = R
(B-10) Definition: Let K be a field (e.g. the real numbers). Then,
by K[A] we shall mean the set of polynomials of the form
x(A) = Xy + Axl + ...+ A" X where each X, €K, and where

m € Z = nonnegative integers. If x(A) = Xg teoot AR x_ € K[,

we define the degree of x(A) to be 9x(A) A mak{ilxi # 0}.
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(ii) If R is an integral domain, and if every ideal in
R is a principal ideal, then we say that R is a principal

ideal domain (abbreviated as p.i.d.)

The concept of divisibility enters nicely into the subject of principal

ideal domains:

(B-8)

(B-9)

(B~10)

Definition: (i) If a,d € R are such that a = dc for some
c € R, then we say d divides a, and write: dla.

(ii) Let a,b,d € R. Then we say that d is a greatest common
divisor of a and b if dja and d|b, and whenever c € R, cla, and
c|b, then c|a.

(iii) We say that a and b are relatively prime if the greatest
common divisor of a and b is invertible (i.e. if there exists

dleRrRsuch that a - a % = 1y.

Proposition: Let R be a p.i.d., and let a,b € R. Then there

exists a greatest common divisor, 4, of a and b; moreover
(d) = (a) + (b)

Therefore, a and b are relatively prime if and only if
(a) + (b) =R

Definition: Let K be a field (e.g. the real numbers). Then,
by K[A] we shall mean the set of polynomials of the form

x(\) =x_ +Ax, + ... + \"x + where each x, € K, and where
0 1 m i

m € Z_ = nonnegative integers. If x(A) = x_ +...+ AT X € K[A1,

0
we define the degree of x(A) to be 3x(A) A max{i|x, # o}.
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We now have:

(B-11) Proposition: K[A], together with the ordinary addition and

multiplication operations for polynomials, is a principal ideal

domain.

(B-12) Remark: Given x(A), y(A) € K[A], there exist unique q(}A),

r(A) € K[A] such that

x(A) = y(A) q(}) + ()
and

or(A) < 3y(A)

It is then easily seen that the cosets x(A) + (y(A)) and r(\) +
(y(A)) are identical elements in the quotient ring K{A]1/(y(\)).
Thus, it is seen that the subset of K[A], {r(}) e K[A}|3r(}) <
dy(\) ]} is set-isomorphic to K[A1/(y())), and the operation of
reducing x(A) modulo y(A) (i.e. obtaining r())) is a representation

of the canonical projection p : K[A] + K[Al/(y(A)).

Just as the concept of a ring is a generalization of the concept of a
field, we can generalize the concept of a vector space over a field to that

of a module over a ring. Thus, we next define

(B-13) Definition: Let R be a ring. Then, a (left) R-module A is
an additive abelian group (see (B-1) (i)) together with a function
Rx A=A : (r,a) * ra subject tc the following axioms:
(i) r(a+b) = ra+rb; for all r € R, and a,b € A
(ii) (r+s)a = ra+sa; for all r,s c R, and a € A

(iii) (rs)a = r(sa); for all r,s e R, and a € A
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(iv) 1la = a; for all a € A

(B-14) Remark: In the above, we say that A is a left R-module
because the action of R on A is written with the ring element
on the left. However, one does not need to distinguish between
left and right R-modules when R is a commutative ring, as will

be the case of interest to us.

It should be clear that the ring R acts on the module A in a manner
similiar to the action of a field K on a K-vector space. For this reason,
we often refer to R as the ring of scalars, and to the action of R on A
as scalar multiplication. The concept of a K-linear map between two K-

vector spaces is generalized to:

(B-15) Definition: Let A and B be two R-modules, and let F : A+ B

be a map. Then F is a morphism of R-modules (or R-morphism) if

f (ra+sb) = rf(a) + sf(b)
for all r,s € R, and a,b € A

The analogue of a subspace of a K-vector space is a submodule of an

R-module, which we define as

(B-16) Definition: Let A be an R-module, and let S € A be a subset.

Then € is a submodule of A if and only if

r1 s1 + r2 52 € S

s. € S.

for all rl, r2 € R and all sl, 2

Given two submodules, S1 and Sz, of an R-module A, the subsets
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{aenlaes

Slfws2

Sl+S2

1 and a € 82}

' = + S
{a € a|a s, +s,, for some 5, € S; and 5, € 2}

are easily seen to be submodules of A. Thus the set of submodules of A is
a lattice, partially ordered by inclusion. If a € A is an arbitrary ele-
ment, then it is easily seen that Ra é'{ralr € R} is a submodule of A.

This observation can be generalized to:

(B-17) Definition: Let A be an R-mcdule. Then

(1) If there exist elements a], a2,...an € A such that

A = + R +...+ Ra
Ra, ) n

then A is said to be a module of finite type; the
elements a, are said to be a finite set of generators
of A.

(ii) If A is of finite type, then the smallest integer n

for which there exists a set of generators'{al, A ye.- an}

2
for A, is called the rank of A.
(iii) If A is of finite type, and if rank A = 1, then A is

said to be a cyclic module.

One of the objectives that one usually has when treating a particular
module is to decompose it into cyclic submodules. If this can be accom-

plished, then much of the module structure can be represented in temms of

(B-18) Proposition: Let R be a commutative ring, and let A be a cyclic

R-mcdule; let a € A be a generator of A, so that

A = Ra
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Then, the set I = {r e R'ra = 0} is an ideal in R, and the

quotient ring R/I is an R-module isomorphic to A.

If SsC A is a submodule, then we can construct the set of cosets of

A/s = {a + s|a € a}
where
a+S=1{a+s|ses} for each a € a
The set A/S can be made into an R-module by defining
(a1 + 8) + (a2 + 8) = (al + a2) + S; for ajr a, € A

r(a+8S) = (ra) + S; for r € R, a € A

The next result demonstrates how submodules and quotient modules may

be effectively used:

(B-19) Proposition: Let £ : A > B be a morphism of R-modules. Then

(1) Ker f C A and Im £ C B are submodules, where
Ker £ = {a € A|f(a) = 0}
Im £ = {b € B|b = £(a), for some a € A}

(ii) £ may be canonically factored as

i
A »A/Ker £

AN

Im £
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where T is the canonical projection (T : a % a + Ker f),
6 is an isomorphism (6 : (a+Ker f) ¥ f(a)), and AL is the
insertion of Im f into B (£ : f(a) ¥ f(a)).

If Ker £ D S, for some submodule S C A, then there
exists a unique R-morphism p : A/S + B such that the

following diagram commutes:

A = A/S

where p : A+ A/S : a®» a + S.

We very often wish to make new modules out of old modules. One way

to do this is as follows:

(B-20) Definition: Let A and B be two R-modules. Then

(i)

(ii)

We also have

A ® BA {(a)b) |a € a,b € B} is a module if one defines
rl(al,bl) + r2(a2,b2) = (rlal + rzaz,rlb1 + r2b2) for
all ai € A, bi € B, ri € R. We then call A2 @ B the
direct sum of A and B (or, sometimes, the biproduct

of A and B).

If there is an isomorphism 6 : A @ B e C, for a third
R-module C, then we write: C=A @ B. Thus, A @ B

is a "model" for C which exhibits some of the basic

internal structure of C.
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Proposition: Let Al and A2 be submodules of an R-module B

such that A []A, = 0, and A, ® A, = B. Then

1 2
When this is the case, we usually write B = Al ® A ; and we
say that B is the (internal) direct sum of a, and A,, and that

Al and A2 are direct sumnands of B.

Remark: One of the major differences between R-modules and
K-vector spaces is the fact that, whereas every subspace of a
K-vector space V is a direct summand of V, not every submodule
of an R-module A is a direct summand of A. We shall soon see
one important case where one can say with certainty that a

submodule is a direct summand.

Definition: Let F be an R-module, let X C F be a subset, and
let j : X+ F be the insertion (set-theoretic). Then we say that
F is a free module on X, and that X is a set of free generators
for F, if, for every map f : X > A (A is an R-module) there exists

a unique R-morphism t : F + A such that the following diagram

> F

J
£ t
A

That is, t is uniquely determined by its values on elements of X.

commutes:

X
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It is easy to see that the free generators of a free module perform
the same function as elements of a basis for a K-vector space. Con-
sequently, any element a € F may be uniquely written as an R~linear
combination of elements in X.

The set Km[A] is one example of a free K[A]-module. We define K [A\]
as

k .
K"[A] = {z At u,|k € Z,_ and each u, € X"}
i=0 1 + 1

That is, Km[A] is the set of polynomial m-vectors. Addition in Km[A] and
multiplication by an element of K[A] are defined exactly as one defines the
analogous operations in the K-vector space Km (i.e. componentwise). Any
basis of Km will serve as a set of free generators for Km[l], as will the
columns of any m x m polynomial matrix Q(A) satisfying det Q(A) = nonzero
constant (such matrices are said to be unimodular).

A class of modules which are radically different from free modules
is the class of torsion modules, which we now define. We shall assume in
this definition, and in the remainder of this appendix, that R is a

principal ideal domain; a good example to think of is K[A].

(B-24) Definition: (i) Let R be a p.i.d., and let A be an R-module.
Define

T = {a € A|ra = 0, for some nonzero r ¢ R}

It is easy to verify that T is a submodule of A; T is called the

torsion submodule of A.

(ii) If T = A, then A is called a torsion module.

(iii) If A is a torsion module, then the subset of R
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I1=1{re R|ra = 0, for all a € A}

is easily seen to be an ideal in R. Since R is a p.i.d., I is
principal, i.e. I = (U). We then say that U is the minimal

annihilator of A.

Three properties that modules defined over principal ideal domains

enjoy are as follows:

(B-25) Proposition: Let R be a p.i.d., and let A be an R-module

of finite type. Then
(i) If A is a free module, then every submodule B C A is
free, and rank B < rank A.

(ii) A satisfies the ascending chain condition: For every

chain of submodules

S. C e« C A
1< 5,¢

there is an integer N such that S; = Sy for all i > N.

(iii) A admits the following canonical decomposition:

ne

(B-256) A Cl@C2®...@Cr®F

where, for each 1 fif<r, Ci is a cyclic torsion module

with minimal annihilator ui’ F is a free module and

ui+1|ui' for 1 <i <r-1

Moreover, the decomposition in (B-26) is unique up to
isomorphism, in the sense that r, {ui, i€ x}, and rank

F are all uniquely determined by A. The set {ui, ie x}
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is called the set of invariant factors for the torsion

submodule of A.

As a final result in this appendix, we consider the following
situation. Let A and F be R-modules, where R is a p.i.d. and F is free
and finitely generated; also, let g : A > F be a module morphism. Then,

as in (B-19), g can be factored as

i} 6 A
A~>A/Ker g > Img > F

g9

Since Im g C F, it follows that Im g is free; but 0 is an isomorphism, so
A/Ker g is also free, and of rank r < .
Let {xi + Ker g, 1 € 5} be a set of free generators for A/Ker g. Then

there exists a unique morphism ¥ : A/Ker g + A such that
.+ =x., i
V(x; + Ker g) x;p i€
It is easily seen now that

(mTeY)(a + Ker g) = a + Ker g, for all a € A

That is, Y is a right inverse for T.

We wish to show that
(B-27) A=Kerg ® Imy

Since T is a left inverse for Y, it follows that Ker T r] Im Yy = 0, whence

Ker g nIm Y = 0. Moreover, for any a € A,

a=a- Yra + Yma
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Clearly, YTa € Im Y; while T(a - YTa) = Ta - Ta = 0 implies a - Yma € Ker g.
This demonstrates that A = Im Y + Ker g, and (B-27) follows. We summarize

the above as

(B-28) Proposition: Let Rbe a p.i.d., and let g : A > F be an

R-morphism, where F is free and finitely generated. Then,
there exists a submodule S C A, isomorphic to A/Ker g, such
that

A=Kerg ® s
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