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Abstract
This paper describes the implementation and evaluation of a
system to implement complex congestion control functions
by placing them in a separate agent outside the datapath. Each
datapath—such as the Linux kernel TCP, UDP-based QUIC, or
kernel-bypass transports like mTCP-on-DPDK—summarizes
information about packet round-trip times, receptions, losses,
and ECN via a well-defined interface to algorithms running
in the off-datapath Congestion Control Plane (CCP). The algo-
rithms use this information to control the datapath’s congestion
window or pacing rate. Algorithms written in CCP can run on
multiple datapaths. CCP improves both the pace of develop-
ment and ease of maintenance of congestion control algorithms
by providing better, modular abstractions, and supports
aggregation capabilities of the Congestion Manager, all with
one-time changes to datapaths. CCP also enables new capabil-
ities, such as Copa in Linux TCP, several algorithms running
on QUIC and mTCP/DPDK, and the use of signal processing
algorithms to detect whether cross-traffic is ACK-clocked.
Experiments with our user-level Linux CCP implementation
show that CCP algorithms behave similarly to kernel
algorithms, and incur modest CPU overhead of a few percent.

CCS Concepts
• Networks → Transport protocols; Network protocol
design;
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1 Introduction

At its core, a congestion control protocol determines when
each segment of data must be sent. Because a natural place
to make this decision is within the transport layer, congestion
control today is tightly woven into kernel TCP software and
runs independently for each TCP connection.

This design has three shortcomings. First, many mod-
ern proposals use techniques such as Bayesian forecasts
(Sprout [41]), offline or online learning (Remy [40], PCC [11],
PCC-Vivace [12], Indigo [43]), or signal processing with
Fourier transforms (Nimbus [19]) that are difficult, if not
impossible, to implement in a kernel lacking useful libraries
for the required calculations. For example, computing the
cube root function in Linux’s Cubic implementation requires
using a table lookup and a Newton-Raphson iteration instead
of a simple function call. Moreover, to meet tight performance
constraints, in-kernel congestion control methods have largely
been restricted to simple window or rate arithmetic.

Second, the kernel TCP stack is but one example of a
datapath, the term we use for any module that provides data
transmission and reception interfaces between higher-layer
applications and lower-layer network hardware. Recently,
new datapaths have emerged, including user-space protocols
atop UDP (e.g., QUIC [25], WebRTC [24], Mosh [39]),
kernel-bypass methods (e.g., mTCP/DPDK [13, 23, 33]),
RDMA [45], multi-path TCP (MPTCP) [42], and specialized
Network Interface Cards (“SmartNICs” [28]). This trend
suggests that future applications will use datapaths different
from traditional kernel-supported TCP connections.

New datapaths offer limited choices for congestion control
because implementing these algorithms correctly takes
considerable time and effort. We believe this significantly
hinders experimentation and innovation both in the datapaths
and the congestion control algorithms running over them. For
instance, the set of available algorithms in mTCP [23], a TCP
implementation on DPDK, is limited to a variant of Reno.
QUIC, despite Google’s imposing engineering resources,
does not have implementations of several algorithms that
have existed in the Linux kernel for many years. We expect
this situation to worsen with the emergence of new hardware
accelerators and programmable network interface cards
(NICs) because high-speed hardware designers tend to forego
programming convenience for performance.

https://doi.org/10.1145/3230543.3230553
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Third, tying congestion control tightly to the datapath makes
it hard to provide new capabilities, such as aggregating conges-
tion information across flows that share common bottlenecks,
as proposed in the Congestion Manager project [4].

If, instead, the datapath encapsulated the information
available to it about congestion signals like packet round-trip
times (RTT), receptions, losses, ECN, etc., and periodically
provided this information to an off-datapath module, then
congestion control algorithms could run in the context of
that module. By exposing an analogous interface to control
transmission parameters such as the window size, pacing
rate, and transmission pattern, the datapath could transmit
data according to the policies specified by the off-datapath
congestion control algorithm. Of course, the datapath must
be modified to expose such an interface, but this effort needs
to be undertaken only once for each datapath.

We use the term Congestion Control Plane (CCP) to refer
to this off-datapath module. Running congestion control in
the CCP offers the following benefits:

(1) Write-once, run-anywhere: One can write a conges-
tion control algorithm once and run it on any datapath
that supports the specified interface. We describe several
algorithms running on three datapaths: the Linux kernel,
mTCP/DPDK, and QUIC, and show algorithms running
for the first time on certain datapaths (e.g., Cubic on
mTCP/DPDK and Copa on QUIC).

(2) Higher pace of development: With good abstractions,
a congestion control designer can focus on the algorith-
mic essentials without worrying about the details and
data structures of the datapath. The resulting code is
easier to read and maintain. In our implementation, con-
gestion control algorithms in CCP are written in Rust or
Python and run in user space.

(3) New capabilities: CCP makes it easier to provide
new capabilities, such as aggregate control of multi-
ple flows [4], and algorithms that require sophisticated
computation (e.g., signal processing, machine learning,
etc.) running in user-space programming environments.

This paper’s contributions include:
• An event-driven language to specify congestion control

algorithms. Algorithm developers specify congestion
control behavior using combinations of events and condi-
tions, such as the receipt of an ACK or a loss event, along
with corresponding handlers to perform simple compu-
tations directly in the datapath (e.g., increment the win-
dow) or defer complex logic to a user-space component.
We show how to implement several recently proposed
algorithms and also congestion-manager aggregation.

• A specification of datapath responsibilities. These
include congestion signals that a datapath should
maintain (Table 2), as well as a simple framework to

execute directives from a CCP program. This design
enables “write-once, run-anywhere” protocols.

• An evaluation of the fidelity of CCP relative to in-kernel
implementations under a variety of link conditions. Our
CCP implementation matches the performance of Linux
kernel implementations at only a small overhead (5%
higher CPU utilization in the worst case).

2 Related Work
The Congestion Manager (CM [4]) proposed a kernel module
to separate congestion control from individual flows. CM
provides an API for flows to govern their transmissions and
a plan to aggregate congestion information across flows
believed to share a bottleneck. The CM API requires a flow to
inform the CM whenever it wanted to send data; at some point
in the future, the CM will issue a callback to the flow granting
it permission to send a specified amount of data. Unlike CCP,
the CM architecture does not support non-kernel datapaths
or allow custom congestion control algorithms. Further, the
performance of CM is sub-optimal if the CM and the datapath
are in different address spaces, since each permission grant
(typically on each new ACK) requires a context switch which
reduces throughput and increases latency. We show in §6.3 that
CCP can support the aggregate congestion control capabilities
of the CM architecture.

eBPF [14] allows developers to define programs that can
be safely executed in the Linux kernel. These programs can be
compiled just-in-time (JIT) and attached to kernel functions
for debugging. TCP BPF [6] is an extension to eBPF that
allows matching on flow metadata (i.e., 4-tuple) to customize
TCP connection settings, such as the TCP buffer size or SYN
RTO. In the kernel datapath, it may be possible for CCP to use
the JIT features of eBPF to gather measurements, but not (yet)
to set rates and congestion windows. Exploring the possibility
of TCP control entrypoints for eBPF, and an implementation
of a Linux kernel datapath for CCP based on such control, is
left for future work.

Linux includes a pluggable TCP API [10], which exposes
various statistics for every connection, including delay, rates
averaged over the past RTT, ECN information, timeouts, and
packet loss. icTCP [20] is a modified TCP stack in the Linux
kernel that allows user-space programs to modify specific
TCP-related variables, such as the congestion window, slow
start threshold, receive window size, and retransmission
timeout. QUIC [25] also offers pluggable congestion control.
We use these Linux and QUIC pluggable APIs to implement
datapath support for CCP. CCP’s API draws from them, but
emphasizes asynchronous control over datapaths.

HotCocoa [2] introduces a domain specific language to allow
developers to compile congestion control algorithms directly
into programmable NICs to increase efficiency in packet pro-
cessing. In contrast, CCP allows developers to write algorithms
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in user-space with the full benefit of libraries and conveniences
such as floating point operations (e.g., for Fourier transforms).

Structured Streams (SST [17]) proposed a datapath that
prevents head-of-line blocking among packets of applications
by managing the transport streams between a given pair of
hosts and applying a hereditary structure on the streams.
Unlike SST, CCP does not manage the contents of the
underlying transport stream: CCP enables deciding when a
packet is transmitted, not which packet. We view SST and
CCP as complementary architectures which can be combined
to provide composable benefits.

Finally, there is a wide range of previous literature on mov-
ing kernel functionality into user-space. Arrakis [30] is system
that facilitates kernel-bypass networking for applications via
SR-IOV. IX [5] is a dataplane operating system that separates
the management functionality of the kernel from packet pro-
cessing. Alpine [15] moves all of TCP and IP into user-space.
Whereas these systems use hardware virtualization to allow
applications to have finer grained control over their networking
resources, CCP exposes only congestion control information to
user-space. Moreover, CCP is also agnostic to the datapath; dat-
apaths for library operating systems could be CCP datapaths.

3 CCP Design Principles

To enable rich new congestion control algorithms on datapaths,
CCP must provide a low-barrier programming environment
and access to libraries (e.g., for optimization, machine
learning, etc.). Further, new algorithms should also achieve
high performance running at tens of Gbit/s per connection
with small packet delays in the datapath.

3.1 Isolating Algorithms from the Datapath

Should congestion control algorithms run in the same address
space as the datapath? There are conflicting factors to consider:

Safety. Supporting experimentation with algorithms and the
possibility of including user-space code means that programs
implementing congestion control algorithms should be
considered untrusted. If algorithms and the datapath are in the
same address space, bugs in algorithm or library code could
cause datapath crashes or create vulnerabilities leading to
privilege escalations in the kernel datapath.

Flexibility. Placing congestion control functionality outside
the datapath provides more flexibility. For example, we
anticipate future use cases of the CCP architecture where a con-
gestion control algorithm may run on a machine different from
the sender, enabling control policies across groups of hosts.

Performance. On the other hand, congestion control algo-
rithms can access the datapath’s congestion measurements
with low delays and high throughput if the two reside in the
same address space.

Implementation Reporting Interval Mean Throughput
Kernel - 43 Gbit/s
CCP Per ACK 29 Gbit/s
CCP Per 10 ms 41 Gbit/s

Table 1: Single-flow throughput for different reporting intervals between
the Linux kernel and CCP user-space, compared to kernel TCP through-
put. Per-ACK feedback (0 µs interval) reduces throughput by 32% while
using a 10 ms reporting interval achieves almost identical throughput to
the kernel. Results as the number of flows increases are in §7.2.

Our design restructures congestion control algorithms into
two components in separate address spaces: an off-datapath
CCP agent and a component that executes in the datapath itself.
The CCP agent provides a flexible execution environment
in user space for congestion control algorithms, by receiving
congestion signals from the datapath and invoking the
algorithm code on these signals. Algorithm developers have
full access to the user-space programming environment,
including tools and libraries. The datapath component is
responsible for processing feedback (e.g., TCP or QUIC
ACKs, packet delays, etc.) from the network and the receiver,
and providing congestion signals to the algorithms. Further,
the datapath component provides interfaces for algorithms to
set congestion windows and pacing rates.

An alternative design would be to run both the algorithm
and the datapath in the same address space, but with fault
isolation techniques [9, 16, 26, 31, 36, 38, 44]. However, this
approach comes with significantly increased CPU utilization
(e.g., 2× [9,26,31,36,38], resulting from tracing and run-time
checks), a restrictive development environment [44], or
changes to development tools such as the compiler [16, 38].
These performance and usability impediments, in our view,
significantly diminish the benefits of running congestion
control algorithms and the datapath in one address space.

3.2 Decoupling Congestion Control from the ACK Clock

Typical congestion control implementations in the Linux
kernel are coupled to the so-called “ACK-clock,” i.e.,
algorithm functionality is invoked upon receiving a packet
acknowledgment in the networking stack. In contrast,
with CCP, algorithms operate on summaries of network
observations obtained over multiple measurements gathered
in the datapath. Users program the datapath to gather these
summaries using a safe domain-specific language (§3.3).

This decoupling of algorithm logic from the ACK clock
provides two benefits.

First, users can develop congestion control algorithms free
from the strict time restrictions rooted in the inter-arrival time
of packet acknowledgments—a useful feature, especially at
high link rates. Hence, it is possible to build algorithms that per-
form complex computations and yet achieve high throughput.

Second, the ability to provide congestion feedback less
frequently than per-ACK can significantly reduce the overhead



SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Akshay Narayan, Frank Cangialosi, Deepti Raghavan, et al.

of datapath-CCP communication. Table 1 shows that for a
single saturating iperf connection over a loopback interface,
Linux kernel TCP on a server machine with four 2.8-Ghz cores
achieves 45 Gbit/s running Reno. In comparison, per-ACK
reporting from the kernel to the CCP agent achieves only 68%
of the kernel’s throughput. By increasing the time between
reports sent to the slow path to 10 ms (see the “per 10 ms”
row), our implementation of Reno in CCP achieves close to
the kernel’s throughput.

Given that CCP algorithms operate over measurements sup-
plied only infrequently, a key question is how best to summa-
rize congestion signals within the datapath so algorithms can
achieve high fidelity compared to a traditional in-datapath im-
plementation. Indeed, in §7.1 we show that reporting on an RTT
time-scale does not affect the fidelity of CCP algorithm imple-
mentations relative to traditional in-kernel implementations.

3.3 Supporting per-ACK Logic Within the Datapath

How must the datapath provide congestion feedback to algo-
rithms running in the CCP agent? Ideally, a datapath should
supply congestion signals to algorithms with suitable granu-
larity (e.g., averaged over an RTT, rather than per ACK), at
configurable time intervals (e.g., a few times every RTT) and
during critical events (e.g., packet losses). With CCP, users can
specify such datapath behavior using a domain-specific lan-
guage (§4). At a high level, CCP-compatible datapaths expose
a number of congestion signals, over which users can write fold
functions to summarize network observations for algorithms.
It is also possible to perform control actions such as reporting
summarized measurements to CCP or setting a flow’s pacing
rate. Datapath programs can trigger fold functions and control
actions when certain conditions hold, e.g., an ACK is received
or a timer elapses. Users can thus control how to partition the
logic of the algorithm between these two components accord-
ing to their performance and flexibility requirements (§4.4).

4 Writing Algorithms in CCP

Figure 1 shows the control loop of a congestion control
algorithm in CCP. Users implement two callback handlers
(onCreate() and onReport()) in the CCP agent and one or
more datapath programs. When a new flow is created, CCP’s
datapath component invokes the onCreate() handler. The
implementation of onCreate() must install an initial datapath
program for that flow. Datapath programs could compute
summaries over per-packet congestion signals (such as a
minimum packet delay or a moving average of packet delivery
rate) and report summaries or high priority conditions (such as
loss) to the CCP agent. On a report, the CCP agent invokes the
onReport() handler which contains the bulk of the logic of
the congestion control algorithm. The onReport() function
computes and installs the flow’s congestion window or sending
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Figure 1: Congestion control algorithms in CCP are distinct from the
application and datapath. Users specify an onCreate() handler which
CCP calls when a new flow begins. In this handler, algorithms install (1)
a datapath program. This datapath program aggregates incoming mea-
surements (2) using user-defined fold functions and occasionally sends
reports (3) to CCP, which calls the onReport() handler. The onReport()
handler can update (4) the datapath program, which uses its defined con-
trol patterns to enforce (5) a congestion window or pacing rate.

1 (def (Report (volatile acked 0) (volatile lost 0)))
2 (when true
3 (:= Report.acked (+ Report.acked Ack.bytes_acked))
4 (:= Report.lost (+ Report.lost Ack.lost_pkts_sample))
5 (fallthrough))
6 (when (> Report.lost 0) (report))

Figure 2: A simple datapath program to count bytes acked and report on
losses.

rate using the signals from the datapath report. It may also
replace the datapath program entirely with different logic.

4.1 Datapath Program Abstractions

CCP’s datapath programs are written in a simple domain
specific language. These programs exist in order to provide a
per ACK execution environment, where algorithms can define
and update variables per ACK and perform control actions,
in response to the values of these variables.

Figure 2 shows a program that counts the cumulative
number of packets acknowledged and lost and reports these
counters immediately upon a loss. The first statement of the
program allows users to define custom variables. The “Report”
block signifies that these variables should be included in the
report message sent to the CCP agent. The volatile marker
means that these variables should be reset to their initial values,
0, after every report to the CCP agent.
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Primitive congestion signals

Signal Definition
Ack.bytes_acked,
Ack.packets_acked

In-order acknowledged

Ack.bytes_misordered,
Ack.packets_misordered

Out-of-order acknowledged

Ack.ecn_bytes,
Ack.ecn_packets

ECN-marked

Ack.lost_pkts_sample Number of lost packets
Ack.now Datapath time (e.g., Linux jiffies)
Flow.was_timeout Did a timeout occur?
Flow.rtt_sample_us A recent sample RTT
Flow.rate_outgoing Outgoing sending rate
Flow.rate_incoming Receiver-side receiving rate
Flow.bytes_in_flight,
Flow.packets_in_flight

Sent but not yet acknowledged

Operators

Class Operations
Arithmetic +, -, *, /
Assignment :=
Comparison ==, <, >, or, and
Conditionals If (branching)

Variable Scopes

Scope Description
Ack Signals measured per packet
Flow Signals measured per connection
Timer Multi-resolution timer that can be ze-

roed by a call to reset

Table 2: Datapath language: congestion signals, operators, and scopes.

Following the def block, fold functions provide custom
summaries over primitive congestion signals. Datapath
programs have read access to these primitive congestion
signals (prefixed with “Ack.” or “Flow.” to specify their
measurement period), which are exposed by the datapath
on every incoming packet. Such signals include the round
trip delay sample, the number of bytes the datapath believes
have been dropped by the network, and the delivery rates of
packets. Table 2 enumerates the primitive congestion signals
we support. Users can write simple mathematical summaries
over these primitive signals, as shown in Lines 3-4 of Figure 2.

Finally, algorithms can perform control actions in response
to conditions defined by the fold function variables, e.g.,
updating a rate or cwnd or reporting the user defined variables
to the CCP agent. As shown in Figure 2, the program defines a
series of when clauses, and performs the following block only
if the condition was evaluated to true.

CCP’s datapath program language provides an event driven
programming model. The condition (when true...) signifies
that the body should be evaluated on every packet. This is
where the program might calculate fold function summaries.
The when clauses have access to all the fold function variables,
as well as timing related counters. The report instruction

causes the datapath to transmit the acked and lost counters
to the CCP agent. By default, the program evaluates until one
when clause evaluates to true; the (fallthrough) instruction
at the end of the first when indicates that subsequent when
clauses should also be evaluated.

4.2 CCP Algorithm Logic

The onReport() handler provides a way to implement
congestion control actions in user-space in reaction to reports
from the datapath. For example, a simple additive-increase
multiplicative-decrease (AIMD) algorithm could be imple-
mented in Python1 using the acked and lost bytes reported
every round-trip time from the datapath:
def onReport(self, report):
if report["lost"] > 0:

self.cwnd = self.cwnd / 2
else:

acked = report["acked"]
self.cwnd = self.cwnd + acked*MSS/self.cwnd

self.update("cwnd", self.cwnd/MSS)

We have implemented complex functionality within
congestion control algorithms by leveraging slow-path logic,
for example, a congestion control algorithm that uses Fast
Fourier Transform (FFT) operations [19].

If the round-trip time of the network is a few milliseconds
or more, it is possible to locate congestion control algorithm
logic entirely within CCP with high fidelity relative to a
per-packet update algorithm, as we show in §7.1.

4.3 Example: BBR

As a more involved example, we show below how various
components of TCP BBR [8] are implemented using the CCP
API. A BBR sender estimates the rate of packets delivered to
the receiver, and sets its sending rate to the maximum delivered
rate (over a sliding time window), which is believed to be the
rate of the bottleneck link between the sender and the receiver.

This filter over the received rate is expressed simply in a
fold function:
(when true

(:= minrtt (min minrtt Ack.rtt_sample_us))
(:= curr_btl_est (max curr_btl_est Flow.rate_incoming))
(fallthrough))

To determine whether a connection can send more than
its current sending rate, BBR probes for additional available
bandwidth by temporarily increasing its sending rate by a
factor (1.25×) of its current sending rate. To drain a queue that
may have been created in the process, it also reduces its rate
by a reciprocal factor (0.75×) before starting to send at the
new estimated bottleneck link rate.

The following excerpt expresses this sending pattern (for
simplicity, we show only 2 transitions):
(when (== pulseState 0)
(:= Rate (* 1.25 curr_btl_est))

1Our CCP implementation is in Rust and exposes Python bindings (§5).
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Figure 3: Our CCP implementation of BBR used for a bulk transfer over
a 48 Mbit/s link with a 20 ms RTT and 2 BDPs of buffering. The band-
width probe phase can be seen in the oscillation of the queueing delay,
and the RTT probe phase can be seen in the periodic dips in throughput.

(:= pulseState 1))
(when (&& (== pulseState 1)

(> Timer.micros Flow.rtt_sample_us))
(:= Rate (* 0.75 curr_btl_est))
(:= pulseState 2))

Here, the variable pulseState denotes the state of the
sender’s bandwidth probing: probing with high sending rate
(0) and draining queues with low sending rate (1). Each when
clause represents a pulse state transition and is conditioned
on the resettable timer Timer.micros. Upon the transition,
the handler sets the Rate and advances pulseState. After the
last phase of the pulse, the handler would reset the timer and
pulseState to restart the sending pattern (not shown).

Figure 3 shows the impact of BBR’s bandwidth probing2 on
the achieved goodput and queueing delays when a single flow
runs over a 48 Mbit/s bottleneck link with a 20 ms round trip
propagation delay. BBR’s windowed min/max operations and
the RTT probing phase (showing steep rate dips every 10 sec-
onds) are implemented in the slow path’s onReport() handler
by installing a new fold function. CCP’s split programming
model enables this flexible partitioning of functionality.

4.4 Case Study: Slow Start

Because algorithms no longer make decisions upon every
ACK, CCP changes the way in which developers should
think about congestion control, and correspondingly provides
multiple implementation choices. As a result, new issues arise
about where to place algorithm functionality. We discuss the
involved trade-offs with an illustrative example: slow start.

Slow start is a widely used congestion control module in
which a connection probes for bandwidth by multiplicatively
increasing its congestion window (cwnd) every RTT. Most
implementations increment cwnd per ACK, either by the
number of bytes acknowledged in the ACK, or by 1 MSS. One
way to implement slow start is to retain the logic entirely in
CCP, and measure the size of the required window update
from datapath reports. We show an example in Figure 4. This

2We only implement BBR’s PROBE_BW and PROBE_RTT. Our implemen-
tation is here: github.com/ccp-project/bbr.

fn create(...) {
datapath.install("
(def (Report (volatile acked 0) (volatile loss 0)))
(when true
(:= Report.acked (+ Report.acked Ack.bytes_acked)))

(when (> Micros Flow.rtt_sample_us) (report) (reset))");
}
fn onReport(...) {
if report.get_field("Report.loss") == 0 {
let acked = report.get_field("Report.acked");
self.cwnd += acked;
datapath.update_field(&[("Cwnd", self.cwnd)]);

} else { /* exit slow start */ }
}

Figure 4: A CCP implementation of slow start.
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based, so we show the congestion window corresponding to the achieved
throughput over each RTT.

implementation strategy is semantically closest in behavior
to native datapath implementations.

For some workloads this approach may prove problematic,
depending on the parameters of the algorithm. If the reporting
period defined is large, then infrequent slow start updates can
cause connections to lose throughput. Figure 5 demonstrates
that, on a 48 Mbps, 100 ms RTT link, different implementa-
tions of slow start exhibit differing window updates relative
to the Linux kernel baseline. A version with a 1-RTT reporting
period lags behind the native datapath implementation. It
is also possible to implement slow start within the datapath
either by using congestion window increase (Figure 6), or by
using rate based control:
(when (> Timer.Micros Flow.rtt_sample_us)

(:= Rate (* Rate 2))
(:= Timer.Micros 0))

Take-away. As outlined in §3, the programming model
of datapath programs is deliberately limited. First, we
envision that in the future, CCP will support low-level
hardware datapaths—the simpler the fold function execution
environment is, the easier these hardware implementations
will be. Second, algorithms able to make complex decisions
on longer time-scales will naturally do so to preserve cycles
for the application and datapath; as a result, complex logic
inside the fold function may not be desirable.

github.com/ccp-project/bbr
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fn create(...) {
datapath.install("
(def (volatile Report.loss 0))
(when true (:= Cwnd (+ Cwnd Ack.bytes_acked)))
(when (> Ack.lost_pkts_sample 0) (report))");

}
fn onReport(...) { /* exit slow start */ }

Figure 6: A within-fold implementation of slow start. Note that CCP al-
gorithm code is not invoked at all until the connection experiences its first
loss.

More broadly, developers may choose among various points
in the algorithm design space. On one extreme, algorithms
may be implemented almost entirely in CCP, using the fold
function as a simple measurement query language. On the
other extreme, CCP algorithms may merely specify transitions
between in-datapath fold functions implementing the primary
control logic of the algorithm. Ultimately, users are able to
choose the algorithm implementation best suited to their
congestion control logic and application needs.

5 CCP Implementation

We implement a user-space CCP agent in Rust, called Portus3,
which implements functionality common across independent
congestion control algorithm implementations, including a
compiler for the datapath language and a serialization library
for IPC communication. CCP congestion control algorithms
are hence implemented in Rust; we additionally expose
bindings in Python. The remainder of this section will discuss
datapath support for CCP.

5.1 Datapath Requirements

A CCP-compatible datapath must accurately enforce the
congestion control algorithm specified by the user-space CCP
module. Once a datapath implements support for CCP, it
automatically enables all CCP algorithms. An implementation
of the CCP datapath must perform the following functions:

• The datapath should communicate with a user-space
CCP agent using an IPC mechanism. The datapath
multiplexes reports from multiple connections onto
the single persistent IPC connection to the slow path.
It must also perform the proper serialization for all
messages received and sent.

• The datapath should execute the user-provided
domain-specific program on the arrival of every ac-
knowledgment or a timeout in a safe manner. Datapath
programs (§4) may include simple computations to
summarize per-packet congestion signals (Table 2) and
enforce congestion windows and rates.

3github.com/ccp-project/portus

5.2 Safe Execution of Datapath Programs

Datapaths are responsible for safely executing the program
sent from the user-space CCP module. While CCP will
compile the instructions and check for mundane errors
(e.g., use of undefined variables) before installation, it is the
datapath’s responsibility to ensure safe interpretation of the
instructions. For example, datapaths should prevent divide
by zero errors when calculating user defined variables and
guarantee that programs cannot overwrite the congestion
primitives. However, algorithms are allowed to set arbitrary
congestion windows or rates, in the same way that any
application can congest the network using UDP sockets.

Thankfully, this task is straightforward as datapath programs
are limited in functionality: programs may not enter loops,
perform floating point operations, define functions or data
structures, allocate memory, or use pointers. Rather, programs
are strictly a way to express arithmetic computations over a
limited set of primitives, define when and how to set congestion
windows and pacing rates, and report measurements.

5.3 libccp: CCP’s Datapath Component

We have implemented a library, libccp4, that provides a ref-
erence implementation of CCP’s datapath component, in order
to simplify CCP datapath development. libccp is lightweight
execution loop for datapath programs and message serializa-
tion. While we considered using eBPF [14] or TCP BPF [6] as
the execution loop, including our own makes libccp portable
to datapaths outside the Linux kernel; the execution loop runs
the same code in all three datapaths we implemented.

To use libccp, the datapath must provide callbacks to
functions that: (1) set the window and rate, (2) provide a notion
of time, and (3) send an IPC message to CCP. Upon reading
a message from CCP, the datapath calls ccp_recv_msg(),
which automatically de-multiplexes the message for the
correct flow. After updating congestion signals, the datapath
can call ccp_invoke() to run the datapath program, which
may update variable calculations, set windows or rates, and
send report summaries to CCP. It is the responsibility of the
datapath to ensure that it correctly computes and provides the
congestion signals in Table 2.

The more signals a datapath can measure, the more algo-
rithms that datapath can support. For example, CCP can only
support DCTCP [1] or ABC [18] on datapaths that provide
ECN support; CCP will not run algorithms on datapaths
lacking support for that algorithm’s requisite primitives.

5.4 Datapath Implementation

We use libccp to implement CCP support in three software
datapaths: the Linux kernel5; mTCP, a DPDK-based datapath;

4github.com/ccp-project/libccp
5Our kernel module is built on Linux 4.14: github.com/ccp-project/ccp-kernel

github.com/ccp-project/libccp
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Signal Definition
Ack.bytes_acked,
Ack.packets_acked

Delta(tcp_sock.bytes_acked)

Ack.bytes_misordered,
Ack.packets_misordered

Delta(tcp_sock.sacked_out)

Ack.ecn_bytes,
Ack.ecn_packets

in_ack_event: CA_ACK_ECE

Ack.lost_pkts_sample rate_sample.losses
Ack.now getnstimeofday()
Flow.was_timeout set_state: TCP_CA_Loss
Flow.rtt_sample_us rate_sample.rtt_us
Flow.rate_outgoing rate_sample.delivered /

Delta(tcp_sock.first_tx_mstamp)
Flow.rate_incoming rate_sample.delivered /

Delta(tcp_sock.tcp_mstamp)
Flow.bytes_in_flight,
Flow.packets_in_flight

tcp_packets_in_flight(tcp_sock)

Table 3: Definition of CCP primitives in terms of the tcp_sock and
rate_sample structures, for the Linux kernel datapath.

and Google’s QUIC. For both the Linux kernel and QUIC
datapaths, we leveraged their respective pluggable congestion
control interfaces, which provide callbacks upon packet
acknowledgements and timeouts, where the libccp program
interpreter can be invoked. The kernel module implements the
communication channel to CCP using either Netlink sockets
or a custom character device, while mTCP and QUIC use Unix
domain sockets. We additionally modified the QUIC source
code to support multiplexing CCP flows on one persistent IPC
connection and to expose the function callbacks required by
the libccp API.

Unlike QUIC and the Linux kernel, mTCP only implements
Reno and does not explicitly expose a congestion control
interface for new algorithms. In order to achieve behavior
consistent with other datapaths, we also implemented SACK
and packet pacing; these features were previously lacking.

The definition of congestion signal primitives, IPC, and
window and rate enforcement mechanisms is the only
datapath-specific work needed to support CCP. As an example,
Table 3 details the mapping of kernel variables to CCP
primitives. Most of these definitions are straightforward; the
CCP API merely requires datapaths to expose variables they
are already measuring. All other necessary functionality, most
notably interpreting and running the datapath programs, is
shared amongst software datapaths via libccp (§5.3).

6 New Capabilities
We present four new capabilities enabled by CCP: new con-
gestion control algorithms that use sophisticated user-space
programming libraries, rapid development and testing of algo-
rithms, congestion control for flow aggregates, and the ability
to write an algorithm once and run it on multiple datapaths.

Aggregation Reno
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Figure 7: 5 20-second iperf flows with 10 second staggered starts. While
Reno (right) must individually probe for bandwidth for each new con-
nection, an aggregating congestion controller is able to immediately set
the connection’s congestion window to the fair share value.

6.1 Sophisticated Congestion Control Algorithms

CCP makes it possible to use sophisticated user-space libraries,
such as libraries for signal processing, machine learning, etc.
to implement congestion control algorithms.

One example is Nimbus [19], a new congestion control
algorithm that detects whether the cross traffic at a bottleneck
link is elastic (buffer-filling) or not, and uses different control
rules depending on the outcome. The Nimbus algorithm
involves sending traffic in an asymmetric sinusoidal pulse
pattern and using the sending and receiving rates measured
over an RTT to produce a time-series of cross-traffic rates. The
method then computes the FFT of this time-series and infers
elasticity if the FFT at particular frequencies is large.

The implementation of Nimbus uses CCP to configure
the datapath to report the sending and receiving rates
periodically (e.g., every 10 ms), maintains a time-series of the
measurements in user-space, and performs FFT calculations
using a FFT library in Rust [34].

Although it is possible to implement such algorithms
directly in the datapath, it would be significantly more difficult.
For instance, one would need to implement the FFT operations
with fixed-point arithmetic. Moreover, implementing the
algorithm outside the datapath using CCP allows for a tighter
development-testing loop than writing kernel code.

We anticipate that in the future, CCP will enable the use
of other similarly powerful but computationally-intensive
methods such as neural networks.

6.2 Velocity of Development

Copa [3] is a recently proposed model-based congestion
control algorithm that seeks to maintain a target rate that is
inversely proportional to the queuing delay, estimated as the dif-
ference of the current RTT and the minimum RTT. It is robust to
non-congestive loss, buffer-bloat, and unequal propagation de-
lays. It includes mechanisms to provide TCP competitiveness,
accurate minimum RTT estimation, and imperfect pacing.
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Figure 8: Comparison of the same CCP implementation of Cubic and Copa run on three different datapaths. Copa is run on a fixed 12 Mbps link with a
20 ms RTT; Cubic is run on a fixed 24 Mbps link with a 20 ms RTT.

The authors of Copa used CCP to implement Copa recently,
and in the process discovered a small bug that produced an
erroneous minimum RTT estimate due to ACK compression.
They solved this problem with a small modification to the Copa
datapath program, and in a few hours were able to improve
the performance of their earlier user-space implementation.
The improvement is summarized here:

Algorithm Throughput Mean queue delay
Copa (UDP) 1.3 Mbit/s 9 ms

Copa (CCP-Kernel) 8.2 Mbit/s 11 ms
After the ACK compression bug was fixed in the CCP

version, Copa achieves higher throughput on a Mahimahi link
with 25 ms RTT and 12 Mbit/s rate while maintaining low
mean queueing delay. Because of ACK compression, the UDP
version over-estimates the minimum RTT by 5×.

6.3 Flow Aggregation

Congestion control on the Internet is performed by individual
TCP connections. Each connection independently probes
for bandwidth, detects congestion on its path, and reacts to
it. Congestion Manager [4] proposed the idea of performing
congestion control for aggregates of flows at end-hosts.
Flow aggregation allows different flows to share congestion
information and achieve the correct rate more quickly.

We describe how to use CCP to implement a host-level ag-
gregate controller that maintains a single aggregate window or
rate for a group of flows and allocates that to individual flows—
all with no changes to the non-CCP parts of the datapath.

Interface. In addition to the create() and onReport() event
handlers, we introduce two new APIs for aggregate congestion
controllers: create_subflow() and aggregateBy(). CCP
uses aggregateBy() to classify new connections into
aggregates. Then, it calls either the existing create() handler
in the case of a new aggregate, or the create_subflow()
handler in the case of an already active one.

These handlers are natural extensions of the existing
per-flow API; we implemented API support for aggregation
in 80 lines of code in our Rust CCP implementation (§7).
Algorithms can aggregate flows using the connection 5-tuple,
passed as an argument to aggregateBy().

As a proof of concept, we implement an algorithm which
simply aggregates all flows on each of the hosts’s interfaces
into one aggregate and assigns the window in equal portions to
each sub-flow. Figure 7 shows the aggregator instantaneously
apportioning equal windows to each flow in its domain.

6.4 Write-Once, Run-Anywhere

Implementing a new congestion control algorithm is difficult
because of the subtle correctness and performance issues
that require expertise to understand and resolve. New
algorithms are often implemented in a single datapath and
new datapaths have very few algorithms implemented. CCP
enables algorithm designers to focus on building and testing
a single solid implementation of their algorithm that users can
then run on any (supported) datapath.
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Figure 9: Cubic in CCP matches Cubic in Linux TCP.

To exhibit this capability, we ran the same implementation
of both Cubic (not previously implemented in mTCP) and
Copa (§6.2, not previously implemented in any widely-used
datapath) on the three datapaths and plot the congestion
window evolution over time in Figure 8.

As expected, the congestion window naturally evolves
differently on each datapath, but the characteristic shapes
of both algorithms are clearly visible. Copa uses triangular
oscillations around an equilibrium of 1 BDP worth of packets
(22 in this case), periodically draining the queue in an attempt
to estimate the minimum RTT.

7 Evaluation
We evaluated the following aspects of CCP:

Fidelity (§7.1). Do algorithms implemented in CCP behave
similarly to algorithms implemented within the datapath? Us-
ing the Linux kernel datapath as a case study, we explore both
achieved throughput and delay for persistently backlogged
connections as well as achieved flow completion time for
dynamic workloads.

Overhead of datapath communication (§7.2). How
expensive is communication between CCP and the datapath?

High bandwidth, low RTT (§7.3). We use ns-2 simulations
to demonstrate that CCP’s method of taking congestion
control actions periodically can perform well even in ultra-low
RTT environments.

Unless otherwise specified, we evaluated our implemen-
tation of CCP using Linux 4.14.0 on a machine with four 2.8
Ghz cores and 64 GB memory.

7.1 Fidelity

The Linux kernel is the most mature datapath we consider.
Therefore, we present an in-depth exploration of congestion
control outcomes comparing CCP and native-kernel imple-
mentations of two widely used congestion control algorithms:
NewReno [22] and Cubic [21]. As an illustrative example,
Figure 9 shows one such comparison of congestion window
update decisions over time on an emulated 96 Mbit/s fixed-rate
Mahimahi [27] link with a 20 ms RTT. We expect and indeed

observe minor deviations as the connection progresses and
small timing differences between the two implementations
cause the window to differ, but overall, not only does CCP’s
implementation of Cubic exhibit a window update consistent
with a cubic increase function, but its updates closely match
the kernel implementation.

For the remainder of this subsection, we compare the
performance of CCP and kernel implementations of NewReno
and Cubic on three metrics (throughput and delay in §7.1.1,
and FCT in §7.1.2) and three scenarios, all using Mahimahi.

7.1.1 Throughput and Delay. We study the following
scenarios:

Fixed-rate link (“fixed”). A 20 ms RTT link with a fixed 96
Mbit/s rate and 1 BDP of buffering.

Cellular link (“cell”). A 20 ms RTT variable-rate link with
a 100-packet buffer based on a Verizon LTE bandwidth
trace [27].

Stochastic drops (“drop”). A 20 ms RTT link with a fixed 96
Mbit/s rate, but with 0.01% stochastic loss and an unlimited
buffer. To ensure that both tested algorithms encountered
exactly the same conditions, we modified Mahimahi to use
a fixed random seed when deciding whether to drop a packet.

These three scenarios represent a variety of environments
congestion control algorithms encounter in practice, from
predictable to mobile to bufferbloated paths. We calculate,
per-RTT over twenty 1-minute experiments, the achieved
throughput (10a) and delay (10b), and show the ensuing
distributions in Figure 10.

Overall, both distributions are close, suggesting that CCP’s
implementations make the same congestion control decisions
as the kernel.

7.1.2 Flow Completion Time. To measure flow comple-
tion times (FCT), we use a flow size distribution compiled
from CAIDA Internet traces [7] in a similar setting to the
“fixed” scenario above; we use a 100 ms RTT and a 192 Mbit/s
link. To generate traffic, we use a traffic generator to sample
flow sizes from the distribution and send flows of that size
according to a Poisson arrival process to a single client behind
the emulated Mahimahi link. We generate flows with 50%
average link load, and generate 100,000 flows to the client
from 50 sending servers using persistent connections to the
client. We used Reno as the congestion control algorithm in
both cases. To ensure that the kernel-native congestion control
ran under the same conditions as the CCP implementation, we
disabled the slow-start-after-idle option.

Of the 100, 000 flows we sampled from the CAIDA
workload, 97,606 were 10 KB or less, comprising 487 MB,
while the 95 flows greater than 1 MB in size accounted for 907
MB out of the workload’s total of 1.7 GB.
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Figure 10: Comparison of achieved throughput over 20 ms periods. The
achieved throughput distributions are nearly identical across the three
scenarios and two congestion control algorithms evaluated.

Across all flow sizes, CCP achieves FCTs 0.02% lower than
the kernel in the median, 3% higher in the 75th percentile, and
30% higher in the 95th percentile.

Small flows. Flows less than 10 KB in size, shown in
Figure 11a, are essentially unaffected by congestion control.
These flows, the vast majority of flows in the system, complete
before either CCP algorithms or kernel-native algorithms
make any significant decisions about them.

Medium flows. Flows between 10 KB and 1 MB in size, in
Figure 11b achieve 7% lower FCT in the median with CCP
because CCP slightly penalizes long flows due to its slightly
longer update period, freeing up bandwidth for medium size
flows to complete.

Large flows. CCP penalizes some flows larger than 1 MB
in size compared to the native-kernel implementation: 22%
worse in the median (Figure 11c).

7.2 Performance

7.2.1 Measurement Staleness. Because our CCP
implementation, Portus, runs in a different address space
than datapath code, there is some delay between the datapath
gathering a report and algorithm code acting upon the report.
In the worst case, a severely delayed measurement could cause
an algorithm to make an erroneous window update.

Fortunately, as Figure 12 shows, this overhead is small. We
calculate an IPC RTT by sending a time-stamped message
to a kernel module (or user-space process in the case of
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Figure 11: CDF comparisons of flow completion times. Note the differing
x-axes.
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Figure 12: Minimum time required to send information to the datapath
and receive a response using different IPC mechanisms.

a Unix-domain socket). The receiver then immediately
echoes the message, and we measure the elapsed time at the
originating process.

We test three IPC mechanisms: Unix-domain sockets [32],
a convenient and popular IPC mechanism used for commu-
nication between user-space processes; Netlink sockets [35],
a Linux-specific IPC socket used for communication between
the kernel and user-space; and a custom kernel module, which
implements a message queue that can be accessed (in both
user-space and kernel-space) via a character device.

In all cases, the 95th percentile latency is less than 30 µs.
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Figure 13: CCP can handle many concurrent flows without significant CPU overhead. Error bars show standard deviation.
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Figure 14: Mean tail completion across 50 simulations. While at 10 Gbit/s
even rare reporting (every 50 RTTs) has limited overhead (at most 20%),
at 40 Gbit/s, a 1 ms reporting period is necessary to avoid performance
degradation.

7.2.2 Scalability. CCP naturally has nonzero overhead
since more context switches must occur to make congestion
control decisions in user-space. We test two scenarios as the
number of flows in the system increases exponentially from 1
to 64. In both scenarios, we test CCP’s implementation of Reno
and Cubic against the Linux kernel’s. We measure average
throughput and CPU utilization in 1 second intervals over
the course of 10 30-second experiments using iperf [37]. We
evaluate CCP with two fold functions: one which implements
a reporting interval of 10 ms, and another which reports on
every packet.

We omit mTCP and QUIC from these scalability micro-
benchmarks and focus on the kernel datapath. The QUIC toy
server is mainly used for integration testing and does not per-
form well as the number of flows increase; we confirmed this
behavior with Google’s QUIC team. Similarly, after discussion
with the mTCP authors, we were unable to run mTCP at suffi-
cient speeds to saturate a localhost or 10 Gbit/sec connection.

Localhost microbenchmark. We measure achieved through-
put on a loopback interface as the number of flows increases.

As the CPU becomes fully utilized, the achieved throughput
will plateau. Indeed, in Figure 13a, CCP matches the kernel’s
throughput up to the maximum number of flows tested, 64.

CPU Utilization. To demonstrate the overhead of CCP in a
realistic scenario, we scale the number of flows over a single
10 Gbit/s link between two physical servers and measure the
resulting CPU utilization. Figure 13b shows that as the number
of flows increases, the CPU utilization in the CCP case rises
steadily. The difference between CCP and the kernel is most
pronounced in the region between 16 and 64 flows, where
CCP uses 2.0× as much CPU than the kernel on average; the
CPU utilization nevertheless remains under 8% in all cases.

In both the CPU utilization and the throughput micro-
benchmarks, the differences in CPU utilization stem from
the necessarily greater number of context switches as more
flows send measurements to CCP. Furthermore, the congestion
control algorithm used does not affect performance.

7.3 Low-RTT and High Bandwidth Paths

To demonstrate it is feasible to separate congestion control
from the datapath even in low-RTT and high bandwidth situa-
tions, we simulate a datacenter incast scenario using ns-2 [29].
We model CCP by imposing both forms of delays due to CCP:
(i) the period with which actions can be taken (the reporting
period) and, (ii) the staleness after which sent messages arrive
in CCP. We used our microbenchmarks in §7.2.1 to set the
staleness to 20 µs, and vary the reporting interval since it is
controlled by algorithm implementations. We used a 20 µs
RTT with a 50-to-1 incast traffic pattern across 50 flows with
link speeds of 10 and 40 Gbit/s. To increase the statistical
significance of our results, we introduce a small random jitter
to flow start times (<10µs with 10 Gbit/s bandwidth and <2.5
µs with 40 Gbit/s bandwidth) and run each point 50 times with
a different simulator random seed value and report the mean.

Figure 14 compares the results with the baseline set to
in-datapath window update. We find that at 10 Gbit/s, CCP
performance stays within 15% of the baseline across different
flow sizes and reporting intervals ranging from 10 µs to 500
µs. Recall that 500 µs is 50× the RTT; even this infrequent
reporting period yields only minor degradation.
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Meanwhile, at 40 Gbit/s the slowdown over the baseline
increases with the reporting interval in the case of 100 packet
flows, but not with 10 or 1000 packet flows. Similar to the
results in §7.1.2, the short flows and long flows are both
unaffected by the reporting period because the short flows
complete too quickly and the long flows spend much of their
time with large congestion windows regardless of the window
update. Indeed, at 100 µs (10 RTTs), the tail completion time
is within 10% of the baseline; as the reporting increases, the tail
completion time increases to over 2× the baseline. This never-
theless suggests that when reporting intervals are kept to small
multiples of the RTT, tail completion time does not suffer.

8 Conclusion
We described the design, implementation, and evaluation
of CCP, a system that restructures congestion control at
the sender. CCP defines better abstractions for congestion
control, specifying the responsibilities of the datapath and
showing a way to use fold functions and control patterns to
exercise control over datapath behavior. We showed how CCP
(i) enables the same algorithm code to run on a variety of
datapaths, (ii) increases the “velocity” of development and
improves maintainability, and (iii) facilitates new capabilities
such as the congestion manager-style aggregation and
sophisticated signal processing algorithms.

Our implementation achieves high fidelity compared to
native datapath implementations at low CPU overhead. The
use of fold functions and summarization reduces overhead,
but not at the expense of correctness or accuracy.

Future work includes: (i) CCP support for customizing
congestion control for specific applications such as video
streaming and videoconferencing, (ii) CCP on hardware dat-
apaths (e.g., SmartNICs), and (iii) CCP running on a different
machine from the datapath to support cluster-based congestion
management (e.g., for a server farm communicating with
distributed clients).
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