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Hedging Strategies for Load-Serving Entities
in Wholesale Electricity Markets

Datong P. Zhou∗†, Munther A. Dahleh†, and Claire J. Tomlin?

Abstract— Load-serving entities which procure electricity
from the wholesale electricity market to service end-users face
significant quantity and price risks due to the volatile nature of
electricity demand and quasi-fixed residential tariffs at which
electricity is sold. This paper investigates strategies for load
serving entities to hedge against such price risks. Specifically,
we compute profit-maximizing portfolios of forward contract
and call options as a function of uncertain aggregate user
demand and wholesale electricity prices. We compare the profit
to the case of Demand Response, where users are offered
monetary incentives to temporarily reduce their consumption
during periods of supply shortages. Using smart meter data
of residential customers in California, we simulate optimal
portfolios and derive conditions under which Demand Response
outperforms call options and forward contracts. Our analysis
suggests that Demand Response becomes more competitive as
wholesale electricity prices increase.

I. INTRODUCTION

Historically, electricity was supplied by vertically inte-
grated entities which maintained full functional control over
the entire supply chain, including generation, transmission,
and distribution assets. This static structure constituted an
impediment for new energy providers on both the supply
and retail end to participate in the energy market. In the
United States, the Federal Energy Regulatory Commission
issued Orders 888 and 889 in April 1996 to remove such
barriers of entry in an attempt to promote competition and
market efficiency [1], [2]. The result of this market design
process was a combination between a central electricity
pool operating day-ahead, overseen by Independent System
Operators (ISOs), and bilateral trading between generating
companies and electric utilities, which supplanted the tradi-
tional, vertically integrated entities.

As a consequence of the restructuring process, generators
and utilities in the electricity market started facing price and
quantity risks ensuing from the inelasticity of user demand,
the steep supply curve due to the slowly changing nature
of power plants’ output adjustment, and prohibitive cost
of energy storage. These factors allow small increases or
decreases of demand to result in a price boom or bust,
respectively. Furthermore, despite the fact that the economic
consensus calls for passing along varying electricity prices
to end-users in order to increase economic efficiency [3],
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[4], [5], policymakers have retained quasi-fixed electricity
tariffs, e.g. Time-of-Use pricing. In conjunction with the
obligation of utilities to service end-users with electricity
at all times, risks associated with sudden price spikes are
borne by the utility. This market situation has resulted in
several crises. For instance, unseasonably warm climate
in the summer of 2000 resulted in California’s wholesale
electricity prices to rise to average prices of more than
140 USD/MWh, leading to the bankruptcy of Pacific Gas
& Electric, California’s largest utility, and high profits of
electricity generators [6]. Similar crises occurred in Texas
(2004) and in the Midwestern United States (1998).

These crises resulted in the following notable develop-
ments. Firstly, electric utilities and generating companies
started to hedge against price fluctuations through contracts
on different scales of time, ranging from short-term forward
contracts to long-term contracts, thereby locking in a fixed
price and quantity to be delivered over a contractually spec-
ified period of time. Secondly, Demand-Side Management
(DSM), which aims to affect consumer behavior during
periods of peak demand, emerged as a viable tool to par-
tially relay price risks to end-users. For instance, companies
like OPOWER provide Demand Response (DR) services to
utilities, allowing them to offer monetary rewards to end-
users in exchange for a reduction in electricity consumption
during hours of peak demand.

Motivated by these shortcomings, a large body of research,
particularly in operations research, has studied optimal hedg-
ing contracts, most often from the utility perspective, includ-
ing [7], [8], where the authors construct an optimal one-step
hedging portfolio with standard power options, or [9], which
finds an optimal energy procurement policy with stochastic
programming over a specified period. [10] analyzes hedging
instruments against price volatility for industrial customers.
[11] investigates hedging strategies for electricity generators.

While there exists a large body of literature on operational
and algorithmic aspects of DR (e.g. load scheduling and
shifting [12], [13], [14]), significantly less research has
focused on the role of DR programs as an alternative way
of hedging. Notable examples are [15], where the authors
discuss interruptible service contracts, and [16], which esti-
mates the economic value of DR programs for commerical
customers by adapting models used to value energy options.
To the best of our knowledge, no significant research has
investigated the option value of residential DR programs. To
close this gap, we derive a stylized model for the utility’s
profit under such DR schemes and determine its optimal
profit. The methodology we use is closest in spirit with [17],
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where the authors determine the optimal bidding volume
of wind generators in a conventional energy market. We
compare the profit under Demand Response to the case
of forward contracts and call options by incorporating the
conditional value at risk [18] measure. Using smart meter
data of residential customers in California, we find that
DR can yield higher expected profits than under forward
contracts and call options, especially in the presence of high
wholesale electricity prices.

The remainder of this paper is organized as follows:
In Section II, we describe the interactions between the
participants in energy markets. Section III introduces for-
ward contracts, options, and Demand Response as hedging
instruments for the Demand Response Provider. The effect
of uncertainty in the user demand on the expected profit of
the Demand Response Provider is investigated in Section IV.
We compute optimal, profit-maximizing portfolios for load-
serving entities in Section V and simulate decision bound-
aries between them in Section VI. Section VII concludes.
All proofs are relegated to the Appendix.

Notation

Let E[·] denote the expectation of a random variable. Let
[·]+ denote the hinge function, i.e. [x]+ = max(0, x).

II. MARKET PARTICIPANTS

Figure 1 illustrates the interaction between generating
companies, load-serving entities (utilities), the wholesale
electricity market, and end-users of electricity.

Generators

Wholesale Market

Utility

End Users

λf , r

d, h(r)

[d− q̄]+

λs

Supply
Payment

q̄

λ̄, P

Fig. 1: Energy Market Participants and their Interactions

The electric utility can strike one-to-one contracts with
generating companies to purchase a fixed amount of elec-
tricity q̄ at a locked-in price λ̄ to be delivered at some a-
priori specified time in the future. P denotes the premium
for each reserved unit of electricity. The utility provides end-
users with electricity at a fixed unit rate λf and is obligated
to cover the random demand d at all times. The rate λf is
exogenously set by the Public Utilities Commission. How-
ever, the utility can use DR to incentivize users to temporarily
reduce their demand. This is achieved by offering the reward
r to end-users, which elicits a demand reduction h(r). If the
demand d exceeds q̄, i.e. the purchased amount of electricity

through one-to-one contracts with generators, the utility has
to procure [d − q̄]+ units of electricity from the wholesale
market at uncertain wholesale price λs per unit. The market
clearing price λs, reflected by Locational Marginal Prices
(LMPs), is a random variable and depends on the ratio of
energy supply by generators, the total demand [d − q̄]+,
operational constraints, as well as congestion of the grid.

The interactions between generators and the utility as
well as between end-users and the utility are instruments to
hedge utilities against high prices λs. If the utility expects
high wholesale prices λs, then it has an incentive to reduce
customer demand d by engaging in DR, or to procure cheaper
electricity through contracts with generating companies. We
make the following assumptions:

Assumption 1. The utility is risk-neutral.

Assumption 2. The utility is price-taking.

Assumption 2 is a natural assumption, stating that the
utility cannot influence prices by exerting market power.
Together with Assumption 1, the question we seek to answer
in the remainder of this paper is how the utility maximizes
its expected profit in the presence of the random variables d
and λs and hedging instruments. For simplicity, we focus on
a single load zone to avoid spatial heterogeneity of LMPs.

III. OPTIMAL HEDGING STRATEGIES

Let λs and d be random variables with cumulative distri-
bution functions (CDF) G(·) and F (·), respectively. G and F
are assumed to have support [0,∞) and [dmin, dmax], respec-
tively, where 0 ≤ dmin ≤ dmax. We assume the absence of
any energy storage capabilities and focus on a single-period
setting, where the LSE can purchase hedging instruments at
time 0, possessing only an estimate of consumer demand d
and real-time spot price λs at time 1. At time 1, the random
variables d and λs materialize and the LSE’s profit Π as
a function of the hedging instruments purchased at time 0
is determined. Figure 2 illustrates the hedging process. The
LSE aims to maximize its expected profit E[Π] by deciding
on its portfolio of hedging instruments at t = 0.

λ̄, P, h(r) are announced.
Utility purchases hedging

instruments to maximize E[Π]
as function of random d, λs.

t = 0

d and λs materialize.
Profit Π is determined.

Settlements between generators,
LSE, and end users take place.

t = 1

Fig. 2: Timeline of Hedging

In the following, we analyze the cases for (a) no hedging
instruments, (b) forward contract, (c) call option, and (d) DR
and derive explicit expressions for the optimal contracts and
corresponding profits for cases (b)-(d).

A. Base Case (No Hedging)

If the LSE does not buy any options at stage 0, its expected
profit at time 1 is simply

E[Π] = (λf − E[λs]) · E[d]. (1)

We will compare the profit of this base case to the forward
contract, call option, and DR in the following.



B. Forward Contract

A forward contract is a one-on-one agreement between
the LSE and an electricity generator, which obligates the
generator (at time 0) to deliver a fixed amount of electricity
q̄ at a locked-in price λ̄F to the LSE at some point in the
future (time 1). Forward contracts possess high flexibility
and are traded as over-the-counter products. The LSE seeks
to sign such a contract if it has reason to believe the expected
wholesale price at the time of delivery to exceed λ̄F , and the
generator will do so in the opposite case. If, at time 1, q̄ > d,
the LSE has purchased too much volume at time 0, and so
q̄− d are wasted. Conversely, if q̄ < d at time 1, d− q̄ units
of electricity have to be bought at real-time spot price λs.

The profit ΠF under a forward contract of volume q̄ at
unit price λ̄ is therefore expressed as

ΠF = λfd− λ̄F q̄ − λs[d− q̄]+. (2)

Theorem 1 (Optimal Forward Contract). With E[λs] > λ̄F ,
the optimal contract volume q̄∗ and the optimal expected
profit E[Π∗F ] become

q̄∗ = F−1

(
1− λ̄F

E[λs]

)
, (3a)

E[Π∗F ] = λfE[d]− E[λs]

∫ ∞
F−1

(
1− λ̄F

E[λs]

) xf(x) dx. (3b)

C. Call Option

Similar to fixed forward contracts, the LSE can strike one-
on-one deals with a counterparty over an agreed volume q̄ at
strike price λ̄C . The key difference is that the LSE can, but
is not obliged to, exercise the call option if λ̄C < λs at time
1. Typically the buyer of the call option pays a premium P
for each unit of the call option.

The profit ΠC under a call option with volume q̄ at strike
price λ̄C at the premium P per unit can thus be written as

ΠC = λfd− λs [d− q̄]+ − P q̄
−min(λ̄C , λs) ·min(d, q̄).

(4)

The last term of (4) encodes the fact that the LSE can
cover up to q̄ units at the cheaper of the strike price λ̄C
or the wholesale price λs. The remainder [d− q̄]+ has to be
purchased from the spot market at price λs.

Theorem 2 (Optimal Call). With E[λs] > P + λ̄C −∫ λ̄C
0

G(y)dy, the profit-maximizing call volume q̄∗ and the
corresponding optimal expected profit E[Π∗C ] are

q̄∗ = F−1

(
1− P

E[λS ]− λ̄C +
∫ λ̄C

0
G(y)dy

)
, (5a)

E[Π∗C ] =

(
λf − λ̄+

∫ λ̄C

0

G(y)dy

)
E[d] (5b)

−
(
E[λs]− λ̄C +

∫ λ̄C

0

G(y)dy

)∫ ∞
q̄∗

xf(x)dx.

D. Demand Response

We model the effect of demand response as a shift in the
distribution of the consumer towards zero, induced by the
monetary reward r ∈ R+ transferred from the LSE to the
consumer as a lump sum. Note that the real reduction of the
consumer in response to the DR signal has to be estimated by
constructing the counterfactual consumption in the absence
of the DR signal, whose estimation is beyond the scope of
this paper. The interested reader is referred to [19], [20].

Let f(d) denote the probability density function of d in the
absence of any reward with support [dmin, dmax]. Let F (d|r)
denote the cumulative distribution function of the random
variable d, given the reward level r. Then the distribution
shift is modeled as

F (d|r) =

{
0, if d < dmin

F (d+ h(r)), if d ≥ dmin

(6)

where h(r) is a concave, increasing function representing
the elasticity of the user in response to reward r, i.e.
the relative reduction of consumption as a function of r.
h(r) is equivalent to the shift of the location parameter of
distribution f(·). We make the following

Assumption 3. The reward r ≥ 0 induces a linear shift, i.e.

h(r) = αr, α > 0. (7)

With Assumption 3 and the definition of the distribution
shift, it becomes clear that the distribution f(·|r), given a
reward r > 0, has support [dmin, dmax − h(r)] with discrete
mass

∫ dmax

dmax−h(r)
f(x) dx at dmin.

Assumption 3 is necessary for analytical tractability of
the DR hedging case. We note that the linearity of h(r)
is unrealistic, since it implies that for large enough reward
levels r, the user consumes zero with probability 1. However,
for small reward levels, a linear price elasticity of demand
h(r) can be justified.

The LSE’s profit ΠDR with Demand Response is

ΠDR = (λf − λs)d(r)− r. (8)

From (8), it immediately follows that DR only makes sense
in the presence of large expected spot prices E[λs] at time
1 which exceed the fixed contractual price λf . Then the
optimal profit Π∗DR is the minimal expected loss of the LSE.

Theorem 3 (Optimal Demand Response). With E[λs] > λf ,
the profit-maximizing reward r∗ and the optimal expected
profit EΠ∗DR are

r∗ =

{
1
αF
−1
(

1− 1
α·(E[λs]−λf )

)
, if 1

α < E[λs]− λf
0, otherwise

(9a)

EΠ∗DR =

{
(λf − E[λs])

∫∞
αr∗

xf(x)dx, if 1
α < E[λs]− λf

(λf − E[λs]) E[d], otherwise

(9b)

The condition α > (E[λs]−λf )−1 for the optimal reward
means that the ability to shift, 1/α, must be greater than the



inverse of the expected price difference (E[λs] − λf )−1 to
make DR profitable. The higher the expected price difference
E[λs] − λf , the less stringent the requirement on α, which
agrees with intuition.

Theorem 4 (Diversified Portfolios). For general demand
distributions, the optimal portfolio can either consist of a
unique option or a combination of call and forward contract
options, but never of a combination of DR and either call or
forward contract options. For the special case of a uniform
demand distribution, the optimal portfolio always consists of
a unique option, i.e. diversified portfolios consisting of more
than one option are always suboptimal.

Depending on the properties of the demand distribution
F (·), a mixed portfolio of call and forward contract options
can exist, but is impossible to obtain in closed form for
general distributions. This is consistent with the approach in
[7] where the authors replicate the optimal portfolio (which
would be continuous) with a finite set of options. Due to
Theorem 4, we restrict our attention to optimal portfolios
consisting of a unique option in the remainder of this paper.

IV. THE EFFECT OF UNCERTAINTY

For a better understanding of the optimal profits under the
different contracts Π∗F ,Π

∗
C ,Π

∗
DR introduced in the previous

section, we relate these quantities to properties of the con-
sumption distribution F (·).

A. Influence of Distribution Tail

By incorporating the Conditional Value-at-Risk (CVaR)
measure [18], we can relate the optimal profits to the tail
properties of the consumption density f(·). The CVaR at
confidence level α ∈ (0, 1) of a random variable X with
CDF F (·) representing loss is formally defined as

CVaRα(X) = E[X | X ≥ F−1(α)] (10)

and can be interpreted as the expected loss attained in the
worst (1 − α) · 100% of cases or the expectation of the
(1−α) probability tail of X . With this definition, the optimal
expected profits under the different options Π∗F ,Π

∗
C , and

Π∗DR are reformulated in Proposition 1.

Proposition 1. With α > (E[λs]− λf )−1 and the definition
of CVaR, the optimal expected profits under the forward con-
tract E[Π∗F ], the call option E[Π∗C ], and Demand Response
E[Π∗DR] can be expressed as follows:

E[Π∗F ] = λfE[d]− λ̄FE[d | d ≥ F−1(1− λ̄F /E[λs])]

= λfE[d]− λ̄F · CVaRαF (d) (11a)

E[Π∗C ] =

(
λf − λ̄C +

∫ λ̄C

0

G(y)dy

)
E[d] (11b)

− P · CVaRαC (d)

E[Π∗DR] = − 1

α
· CVaRαDR(d) (11c)

where we used the definitions

αF = 1− λ̄F
E[λs]

(12a)

αC = 1− P

E[λs]− λ̄C +
∫ λ̄C

0
G(y)dy

(12b)

αDR = 1− 1

α · (E[λs]− λf )
(12c)

From Proposition 1, it follows that the optimal profit
decreases as the conditional expectation of the tail increases,
that is, the more heavy-tailed the consumption distribution
f(·) becomes. It is illustrative to analyze the optimal deci-
sions and corresponding optimal expected profits for perfect
information of d, which are given in the following:

q̄∗F |d = d, q̄∗C |d = d, r∗|d = d/α

E[Π∗F |d] = (λf − λ̄F ) · d (13a)

E[Π∗C |d] =

(
λf − λ̄C +

∫ λ̄C

0

G(y)dy − P
)
d (13b)

E[ΠDR|d] = − d/α (13c)

q̄∗F |d and q̄∗C |d denote the optimal forward contract and call
volume, respectively. r∗|d signifies the optimal DR reward.

B. Influence of Statistical Dispersion

In this section, we attempt to construct a relationship
between the statistical dispersion of the consumption distri-
bution F (·) and the optimal expected profit. Intuitively, the
more spread out the distribution F (·), the lower the expected
profit. While many measures for statistical dispersion exist in
the literature, such as interquartile ranges, absolute deviation,
variance-to-mean-ratio, etc., we express the optimal expected
profits E[Π∗F ], E[Π∗C ], and E[Π∗DR] in terms of the standard
deviation σ for the special case of a uniform distribution
with support [dmin, dmax] for expositional ease and analytical
tractability.

Proposition 2. For the uniform distribution F (·) with sup-
port [dmin, dmax], the optimal expected profits under the
conditions E[λs] > max

(
λ̄F , P + λ̄C −

∫ λ̄C
0

G(y) dy
)

and
α > (E[λs]− λf )−1 are expressed as follows:

E[Π∗F ] = λfE[d]− λ̄F dmin −
√

3E[λs](1− α2
F )σ (14a)

EΠ∗C =

(
λf − λ̄C +

∫ λ̄C

0

G(y)dy

)
E[d]− Pdmin (14b)

−
√

3

(
E[λs]− λ̄C +

∫ λ̄C

0

G(y)dy

)
(1− α2

C)σ

E[Π∗DR] = −dmin/α−
√

3(E[λs]− λf )(1− α2
DR)σ (14c)

For the case of perfect information, i.e. σ = 0 and
dmin = dmax = d, the equations for the optimal expected
profit under perfect information (13a)-(13c) are recovered.
Equations (14a)-(14c) explain that the optimal expected
profit for each case decreases linearly in σ, giving rise to
the notion that more “spread out” distributions diminish the



expected profit. The rate of decrease depends on case-specific
parameters, whose relation to each other determines which
hedging option is profit-maximizing for a particular case. As
consumption distributions typically are plagued by a large
amount of uncertainty (large σ), improved load predictions
to decrease σ have a direct economic benefit to the utility.

V. CHOOSING THE BEST OPTION

We now derive conditions on the random variables λs and
d with distributions G(·) and F (·) and the option parameters
λ̄F , λ̄C , P , and α announced at time 0 to determine the best
hedging strategy consisting of a unique option. For analytical
tractability, we make the following assumptions:

Assumption 4. The real-time spot price λs is uniformly dis-
tributed with support [0, smax], i.e. G(y) = 1

smax
10≤y≤smax .

Assumption 5. The consumption is uniformly distributed in
[0, dmax], i.e. F (x) = 1

dmax
10≤x≤dmax

.

Theorem 5. Under Assumptions 4 and 5 and E[λs] > λf ,
the forward contract is preferred over the call option, if

λ̄F ≤ E[λs]−
E[λs]− λ̄C + λ̄2

C/(4E[λs])− P√
1− λ̄C−λ̄2

C/(4E[λs])

E[λs]

. (15)

DR is preferred over the forward contract, if

1

α
≤ (E[λs]− λf )

[
1−

√
E[λs]

E[λs]− λf

(
1− λ̄F

E[λs]

)]
.

(16)

Finally, DR is preferred over the call option, if

1

α
≤ (E[λs]− λf )

[
1−

√
L

(E[λs]− λf )

(
1− P

L

)]
.

(17)

with L = (E[λs] − λ̄C + λ̄2
C)/(4E[λs]) and where λ̄F and

λ̄C denote the unit price for each reserved unit of electricity
under the forward contract and the call option, respectively.

VI. SIMULATIONS

Assumptions 4 and 5 admitted a closed form solution
to the best hedging instrument, stated in (15)-(17). For a
more elaborate analysis, we now repeat this exercise by
approximating the demand distribution F (·) as well as the
distribution of spot prices G(·) with real data from California
to approximate decision boundaries for which the expected
profits under different hedging instruments are identical.
Since closed-form solution under this more realistic scenario
do not exist, we plot these optimal decision boundaries as a
function of the hedging parameters P, λ̄F , λ̄C , and α.

A. Empirical Distribution of Demand

We use hourly smart meter data from residential customers
in California from the utilities Pacific Gas & Electric, San
Diego Gas & Electric, and Southern California Edison to
create a demand distribution for different sizes of user
aggregations. The observations are restricted to hourly con-
sumptions between 4-5 pm and 5-6 pm. Figure 3 shows

the empirical PDFs and CDFs for different sizes of user
aggregations. We approximate both functions as follows:

f̂(x) = a(x− dmin)e−cx, a, c ∈ R+, x ∈ [dmin, dmax]

(18a)

F̂ (x) =
a

c2
(cdmin − cx− 1) e−cx + γ, γ ∈ R (18b)

With the constraints F̂ (dmin) = 0 and F̂ (dmax) = 1, the
parameters a and γ can be found as a function of the decay
parameter c. It can be seen that the approximations (18a) and
(18b) fit the observed data reasonably well.
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Aggregate Demand: Empirical Distributions

Fig. 3: Distribution of Aggregate Hourly Consumption for Varying Aggre-
gation Sizes, 4-6 pm. Top: 250 Users, Middle: 150 Users, Bottom: 50 Users.

B. Empirical Distribution of Wholesale Prices

To obtain the price distribution G(·), we convert 5-minute
locational marginal prices (LMPs) λs set by the California
Independent System Operator into an hourly format. The
distribution G(·) of “high” LMPs is obtained by fitting a
density function to the normalized histogram of those LMPs
for which the two previous LMPs exceed the threshold ξ > 0,
i.e. we consider all {λs|λs,t−1 ≥ ξ, λs,t−2 ≥ ξ} for different
thresholds ξ. We approximate the density function with a
log-normal distribution:

N (lnx;µ, σ) =
1

σ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
(19)

which has support [0,∞), that is, we disregard negative
LMPs. Figure 4 shows the observed data and the approx-
imations for thresholds ξ = 80, 90, 100 USD

MWh .

C. Pairwise Comparison of Hedging Instruments

We now compute decision boundaries of equal expected
profit for all 3 pairs of hedging instruments with Newton’s
method, using the demand and price distributions derived in
(18a), (18b), and (19).
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Fig. 4: Distributions of CAISO LMPs conditional on previous prices
exceeding threshold ξ for ξ ∈ {80 USD

MWh , 90
USD
MWh , 100

USD
MWh}.
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1) DR vs. Forward Contract: Figure 5 shows the decision
boundary of elasticity α above which the optimal expected
profits under DR is greater than under the forward contract,
that is, E[ΠDR] ≥ E[ΠF ], for different expected spot prices
E[λs] and forward contract prices λ̄F , assuming λf ≤ E[λs].
It is observed that α decreases as λ̄F or the expected
wholesale price E[λs] increase. The negative correlation of α
with λ̄F is consistent with expectations as a higher λ̄F makes
forward contracts more expensive. The fact that decreasing
wholesale prices E[λs] make DR more competitive than
forward contracts can be explained by comparing (3b) to
(9b), which states that the entire demand d has to be covered
at price λs in the DR case, compared to only [d− q̄]+ in the
forward contract case. Also shown in Figure 5 is the lower
bound on α (gray transparent surface) below which DR is
non-profitable, i.e. {(E[λs] − λf )−1 | 70 ≤ E[λs] ≤ 150},
where we set the residential tariff to λf = 0.05 USD/kWh.

2) DR vs. Call: Figure 6 shows the decision boundary
of α for different call strike prices λC and premium levels
P above which E[ΠDR] ≥ E[ΠC ] with ξ = 80. As the
premium and strike price for the call option increase (and
hence the call option becomes less attractive), DR becomes
more profitable because α decreases.

3) Forward Contract vs. Call: Lastly, Figure 7 shows the
decision surface for λ̄F as a function of the call option
parameters P and λ̄C above which the forward contract
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Fig. 6: Boundaries and contours of equal expected profit for DR and call
option, 250 users, λf = 0.05USD

kWh .

is more profitable in expectation, i.e. E[ΠF ] ≥ E[ΠC ]. As
expected, the forward contract becomes more attractive as
either the premium P or the call strike price λ̄C increase.

Premium Level P
10

12
14

16
18

20
22

24

Call
Stri

ke
Pric

e
λ̄ C

70
80

90
100

110
120

130
140

F
or

w
ar

d
C

on
tr

ac
t

P
ri

ce
λ̄
F

60

70

80

90

100

Call vs. FW, E[λs] | (LMP(t− 1),LMP(t− 2) > 80)

10 12 14 16 18 20 22 24

Premium Level P

70

80

90

100

110

120

130

140

C
al

l
S

tr
ik

e
P

ri
ce
λ̄
C

64.000
72.000

80.000

88.000

96.000

104.000

112.000

Contour Plot for FW Contract Prices λ̄F

70

80

90

100

Fig. 7: Boundaries and contours of equal expected profit for forward and
call option, 250 users, λf = 0.05USD

kWh .

D. Evaluation

Assuming a residential tariff of 0.05 USD
kWh , a lower bound on

the elasticity α of approximately 0.02 MWh
USD = 20 kWh

USD at first
glance seems to be an unachievable goal. However, note that
wholesale prices can spike at up to 1000 USD

MWh , which is far
outside the range of our calculations. Further, we disregarded
transmission losses and capacity costs inherent to generators
and utilities, which make the delivery of electricity under the
forward contract and the call option more expensive, thereby
lowering the bound on α.

VII. CONCLUSION

We analyzed hedging instruments for load-serving entities
to mitigate price risks associated with volatile energy supply
and demand. Hedging against such risks is motivated by
the fact that load-serving entities are obligated to meet
energy demand of customers under contract instantaneously,
which, in the absence of any hedging instruments, has to
be procured in its entirety from the wholesale electricity
market (at potentially high prices). Forward contracts and
call options between load-serving entities and generating
companies as well as Demand Response programs for end-
users are methods to share this risk with other market
participants. We formulated the optimal hedging strategy as
a profit maximization problem which is random in the ag-
gregate demand and wholesale electricity price. The optimal
expected profit under each hedging instrument was found
to be monotonely decreasing in the statistical dispersion
of the demand distribution, and linearly decreasing for the



special case of a uniform distribution. Using smart meter
consumption data and locational marginal prices in Califor-
nia, we compared the optimal expected profits between the
hedging methods in a pairwise fashion to generate decision
boundaries of equal profit.

Our results can be extended in several regards. Firstly,
a more involved analysis that takes into account operational
constraints of the smart grid, e.g. transmission capacities and
grid congestion, would add credibility to the suggestions of
this paper. Secondly, analyzing how the optimal expected
profit increases as a function of diminished uncertainty in
electric wholesale prices and aggregate consumer demand
due to forecasting is interesting from the perspective of
profit maximization. Lastly, forgoing Assumptions 1 and
2 to allow utilities or generating companies to exercise
market power calls for a game-theoretic formulation of the
profit-maximization problem from the perspective of both
generating companies and utilities, where each player seeks
bids from the other in a mechanism design framework.
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APPENDIX

Lemma 1 (Leibniz Integral Rule). For a function f(x, t)
with both f(x, t) and ∂f

∂x continuous in t ∈ [a(x), b(x)] and
x ∈ [x0, x1], where a(x) and b(x) are continuous in x ∈
[x0, x1], for x ∈ [x0, x1]:

d

dt

(∫ b(t)

a(t)

f(x, t) dx

)
=

∫ b(t)

a(t)

∂f

∂t
dx+ f(b(t), t) · b′(t)

− f(a(t), t) · a′(t)
Proof of Theorem 1

Taking the expectation of (2) with respect to the random
variables λs and d yields:

E[ΠF ] = − q̄ · λ̄F + λf

∫ q̄

0

xf(x) dx+ λf q̄(1− F (q̄))

+ (λf − E[λs])

∫ ∞
q̄

(x− q̄)f(x) dx (20)

With the Leibniz Integral Rule, its derivatives with respect
to q̄ are

dE[ΠF ]

dq̄
= −λ̄F + λf (1− F (q̄) + (λf − E[λs])(F (q̄)− 1)

d2E[ΠF ]

dq̄2
= −λff(q̄) + f(q̄)(λf − E[λs]) < 0

from which the optimal contract volume q̄∗ (3a) follows.
Plugging q̄∗ back into (20) yields

E[ΠF ] =− λ̄FF−1

(
1− λ̄F

E[λs]

)
+ λf

∫ q̄

0

xf(x) dx

+
λf λ̄F
E[λs]

F−1

(
1− λ̄F

E[λs]

)
,

from which the optimal profit (3b) follows.

Proof of Theorem 2

Similar to the previous proof, we take the expectation of
(4) with respect to λs and d:

E[ΠC ] = λfE[d]−
∫ q̄

0

xf(x)dx

∫ λ̄C

0

yg(y)dy − P q̄ − r

− λ̄C(1−G(λ̄C))

∫ q̄

0

xf(x)dx− q̄(1− F (q̄))

∫ λ̄C

0

yg(y)dy

− q̄(1− F (q̄))(1−G(λ̄C))λ̄C − E[λS ]

∫ ∞
q̄

(x− q̄)f(x)dx



The first order optimality condition reads

dEΠC

dq̄
= − P + E[λs](1− F (q̄))

− (1− F (q̄))

[∫ λ̄C

0

yg(y)dy + λ̄C(1−G(λ̄C))

]
,

which yields (5a) at the optimum. To show that this is a
maximum, we compute the second derivative:

d2EΠC

dq̄2
= f(q̄)

[∫ λ̄C

0

yg(y)dy + λ̄C(1−G(λ̄C))− E[λs]

]
,

which is negative as we show below:∫ λ̄C

0

yg(y)dy + λ̄C(1−G(λ̄C))
?
< E[λs]

λ̄CG(λ̄C)−
∫ λ̄C

0

G(y)dy + λ̄C − λ̄CG(λ̄C)
?
< E[λs]

0 ≤ λ̄C −
∫ λ̄C

0

G(y)dy < λ̄C < E[λs]

Finally, the optimal expected profit E[Π∗C ] (5b) follows from
plugging (5a) back into the expectation of (4).

Proof of Theorem 3

Taking the expectation of (8) with respect to λs and r by
performing Lebesgue-Stieltjes Integration gives

E[ΠDR] = (λf − E[λs])

∫ dmax−h(r)

dmin

xf(x+ h(r))dx− r

+ (λf − E[λs]) dmin

∫ dmax

dmax−h(r)

f(x)dx (21)

= (λf − E[λs])

∫ dmax

dmin+h(r)

(x− h(r))f(x)dx− r

where we used the change of variables x+h(r)→ x and the
fact that F (dmax) = F (dmax − h(r)) = 1. With the Leibniz
Integral Rule, its derivatives with respect to r read

dE[ΠDR]

dr
= (λf − E[λs])[1− F (h(r))](−h′(r))− 1

d2E[ΠDR]

dr2
= (λf − E[λs]︸ ︷︷ ︸

≤0

)[f(h)h′ + (F (h)− 1)h′′︸ ︷︷ ︸
≥0

]
∣∣∣
h=h(r)

For the linear shift, i.e. h(r) = αr, first order optimality
yields (9a), which is valid only under the condition that α >
(E[λs]−λf )−1. The second derivative is negative due to the
concavity of h(r), which results in h′′(r) ≤ 0. The optimal
profit Π∗DR follows from plugging r∗ back into (21):

E[Π∗DR] = (λf − E[λs])

∫ αr∗+dmax

αr∗
(x− αr∗)f(x)dx− r∗

+ (λf − E[λs]) dmin [F (dmax)− F (dmax − h(r))]

= (λf − E[λs])

∫ ∞
F−1(1− 1

α(E[λs]−λf )
)

xf(x)dx

Proof of Theorem 4

This theorem can be proved by showing that the deter-
minant of the Hessian of the two-dimensional optimization
problem is negative, and hence yields a saddle at each joint
minimum of portfolios ((r∗, q̄∗C for DR + call, (r∗, q̄∗F ) for
DR + forward contract, (q̄∗F , q̄

∗
C) for call + forward contract).

The objectives for each of these pairwise portfolios are

ΠFC = λfd− λ̄F q̄F − P q̄C − (d− q̄F − q̄C)λs1d>q̄F+q̄C

− (d− q̄F ) min(λs, λ̄C)1q̄F≤d≤q̄F+q̄C

ΠFD = (λf − λs)[d(r)− q̄F ]+ − λ̄F q̄F − r
+ λF d(r)1d(r)≤q̄F + λf q̄F1d(r)>q̄F

ΠCD = λfd− λs[d(r)− q̄C ]+ − P q̄C − r
+ min(λ̄C , λs)

[
−d(r)1d(r)≤q̄C − q̄C1d(r)>q̄C

]
where ΠFC,ΠFD, and ΠCD denote the profit under the pair-
wise portfolios (forward contract, call), (forward contract,
DR), (call, DR), respectively. Taking the expectation w.r.t
to the random variables d and λs and the derivatives w.r.t.
the decision variables yields the Hessian matrix, from which
further analysis proves the claim.

Proof of Proposition 1

Using the definition of the conditional expectation for
continuous random variables X,Y

E[X|Y ] =

∫
x∈R

pX|Y (x|y)dx,

it follows that

E[d | d ≥ τ ] =

∫ dmax

τ
xf(x)dx∫ dmax

τ
f(x)dx

, dmin < τ < dmax. (22)

Applying (22) on (3b), (5b), and (9b) with τ = αF (12a),
τ = αC (12b), and τ = αDR (12c), respectively, yields the
desired expressions.

Proof of Proposition 2

For a uniform distribution with support [dmin, dmax], the
PDF is f(x) = 1/(dmax − dmin)1(dmin ≤ x ≤ dmax), and the
inverse CDF is F−1(z) = dmin + (dmax − dmin)z, z ∈ [0, 1].
Straightforward manipulation of the optimal expected profits
(3b), (5b), and (9b) and using the formula for the standard
deviation

σ =
dmax − dmin

2
√

3

yields (14a), (14b), and (14c).

Proof of Theorem 5

Straightforward by pairwise comparison of equations
(11a)-(11c).


	I Introduction
	II Market Participants
	III Optimal Hedging Strategies
	III-A Base Case (No Hedging)
	III-B Forward Contract
	III-C Call Option
	III-D Demand Response

	IV The Effect of Uncertainty
	IV-A Influence of Distribution Tail
	IV-B Influence of Statistical Dispersion

	V Choosing the Best Option
	VI Simulations
	VI-A Empirical Distribution of Demand
	VI-B Empirical Distribution of Wholesale Prices
	VI-C Pairwise Comparison of Hedging Instruments
	VI-C.1 DR vs. Forward Contract
	VI-C.2 DR vs. Call
	VI-C.3 Forward Contract vs. Call

	VI-D Evaluation

	VII Conclusion
	References

