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Efficient Statistics, in High Dimensions,
from Truncated Samples

Constantinos Daskalakis * Themis Gouleakis † Christos Tzamos ‡ Manolis Zampetakis §

Abstract

We provide an efficient algorithm for the classical problem, going back to Galton, Pearson,
and Fisher, of estimating, with arbitrary accuracy the parameters of a multivariate normal dis-
tribution from truncated samples. Truncated samples from a d-variate normal N (µ, Σ) means
a samples is only revealed if it falls in some subset S ⊆ Rd; otherwise the samples are hidden
and their count in proportion to the revealed samples is also hidden. We show that the mean µ

and covariance matrix Σ can be estimated with arbitrary accuracy in polynomial-time, as long
as we have oracle access to S, and S has non-trivial measure under the unknown d-variate
normal distribution. Additionally we show that without oracle access to S, any non-trivial
estimation is impossible.

1 Introduction
A classical challenge in Statistics is estimation from truncated or censored samples. Truncation
occurs when samples falling outside of some subset S of the support of the distribution are not
observed, and their count in proportion to the observed samples is also not observed. Censoring
is similar except the fraction of samples falling outside of S is given. Truncation and censoring of
samples have myriad manifestations in business, economics, manufacturing, engineering, quality
control, medical and biological sciences, management sciences, social sciences, and all areas of
the physical sciences. As a simple illustration, the values that insurance adjusters observe are
usually left-truncated, right-censored, or both. Indeed, clients usually only report losses that are
over their deductible, and may report their loss as equal to the policy limit when their actual loss
exceeds the policy limit as this is the maximum that the insurance company would pay.

Statistical estimation under truncated or censored samples has had a long history in Statistics,
going back to at least the work of Daniel Bernoulli who used it to demonstrate the efficacy of
smallpox vaccination in 1760 [Ber60]. In 1897, Galton analyzed truncated samples corresponding
to registered speeds of American trotting horses [Gal97]. His samples consisted of running times
of horses that qualified for registration by trotting around a one-mile course in not more than
2 minutes and 30 seconds while harnessed to a two-wheeled cart carrying a weight of not less
than 150 pounds including the driver. No records were kept for the slower, unsuccessful trotters,
and their number thus remained unknown. Assuming that the running times prior to truncation
were normal, Galton applied simple estimation procedures to estimate their mean and standard
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Figure 1: One thousand samples from N ((0, 1), I) and from N ((0, 0), 4I) truncated into the
[−0.5, 0.5]× [1.5, 2.5] box. We leave it to the reader to guess which sample comes from which.

deviation. Dissatisfaction with Galton’s estimates led Pearson [Pea02] and later Pearson and
Lee [PL08] and Lee [Lee14] to use the method of moments in order to estimate the mean and
standard deviation of a univariate normal distribution from truncated samples. A few years later,
Fisher used the method of maximum likelihood to estimate univariate normal distributions from
truncated samples [Fis31].

Following the early works of Galton, Pearson, Lee and Fisher, there has been a large volume
of research devoted to estimating the truncated normal or other distributions; see e.g. [Sch86,
Coh16, BC14] for an overview of this work. However, estimation methods, based on moments or
maximum likelihood estimation, are intractable for high-dimensional data and are only known
to be consistent in the limit, as the number of samples tends to infinity, even for normal distri-
butions. With infinitely many samples, it seems intuitive that given the density of a multivari-
ate normal N (µ, Σ) conditioned on a measurable set S, the “local shape” of the density inside
S should provide enough information to reconstruct the density everywhere. Indeed, results
of Hotelling [Hot48] and Tukey [Tuk49] prove that the conditional mean and variance on any
measurable S are in one-to-one correspondence with the un-conditional parameters. When the
sample is finite, however, it is not clear what features of the sample to exploit to estimate the
parameters, and in particular it is unclear how sensitive to error is the correspondence between
conditional and unconditional parameters. To illustrate, in Figure 1, we show one thousand
samples from two bi-variate normals, which are far in total variation distance, truncated to a
box. Distinguishing between the two Gaussians is not immediate despite the large total variation
distance between these normals.

In this paper, we revisit this classical problem of multivariate normal estimation from trun-
cated samples to obtain polynomial time and sample algorithms, while also accommodating a
very general truncation model. We suppose that samples, X1, X2, . . ., from an unknown d-variate
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normal N (µ, Σ) are only revealed if they fall into some subset S ⊆ Rd; otherwise the samples
are hidden and their count in proportion to the revealed samples is also hidden. We make no
assumptions about S, except that its measure with respect to the unknown distribution is non-
trivial, say α = 1%, and that we are given oracle access to this set, namely, given a point x the
oracle outputs 1x∈S. Otherwise, set S can be any measurable set, and in particular need not
be convex. In contrast, to the best of our knowledge, prior work only considers sets S that are
boxes, while still not providing computational tractability, or finite sample bounds for consistent
estimation. We provide the first time and sample efficient estimation algorithms even for simple
truncation sets, but we also accommodate very general sets. This, in turn, enables statistical es-
timation in settings where set S is determined by a complex set of rules, as it happens in many
important applications, especially in high-dimensional settings. Revisiting our earlier example,
insurance policies on a collection of risks may be complex, so the adjustor’s observation set S
may be determined by a complex function on the loss vector X.

Our main result is that the mean vector µ and covariance matrix Σ of an unknown d-variate
normal can be estimated to arbitrary accuracy in polynomial-time from a truncated sample. In
particular,

Theorem 1. Given oracle access to a measurable set S, whose measure under some unknown d-variate
normal N (µ, Σ) is at least some constant α > 0, and samples X1, X2, . . . from N (µ, Σ) that are truncated
to this set, there exists a polynomial-time algorithm that recovers estimates µ̂ and Σ̂. In particular, for all
ε > 0, the algorithm uses Õ(d2/ε2) truncated samples and queries to the oracle and produces estimates
that satisfy the following with probability at least 99%:∥∥∥Σ−1/2(µ− µ̂)

∥∥∥
2
≤ ε; and

∥∥∥I − Σ−1/2Σ̂Σ−1/2
∥∥∥

F
≤ ε. (1.1)

Note that under the above conditions the total variation distance between N (µ, Σ) and N (µ̂, Σ̂) is O(ε),
and the number of samples used by the algorithm is optimal, even when there is no truncation, i.e. when
S = Rd.

It is important to note that the measure α assigned by the unknown distribution on S can be
arbitrarily small, yet the accuracy of estimation can be driven to arbitrary precision. Moreover,
we note that without oracle access to the indicator 1x∈S, it is information-theoretically impossible
to even attain a crude approximation to the unknown normal, even in one dimension, namely,

Theorem 2. For all α > 0, given infinitely many samples from a univariate normal N (µ, σ2), which are
truncated to an unknown set S of measure α, it is impossible to estimate parameters µ̂ and σ̂2 such that
the distributions N (µ, σ2) and N (µ̂, σ̂2) are guaranteed to be within 1−α

2 .

Overview of the Techniques. The proofs of Theorems 1 and 2 are provided in Sections 3 and 4
respectively. Here we provide an overview of our proof of Theorem 1. Our algorithm shown in
Figure 2 is (Projected) Stochastic Gradient Descent (SGD) on the negative log-likelihood of the
truncated samples. Notice that we cannot write a closed-form of the log-likelihood as the set S
is arbitrary and unknown to us. Indeed, we only have oracle access to this set and can thus not
write down a formula for the measure of S under different estimates of the parameters. While
we cannot write a closed-form expression for the negative log-likelihood, we still show that it
is convex for arbitrary sets S, as long as we re-parameterize our problem in terms of v = Σ−1µ

and T = Σ−1 (see Lemma 1). Using anti-concentration of polynomials of the Gaussian measure,
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we show that the negative log-likelihood is in fact strongly convex, with a constant that depends
on the measure of S under the current estimate (v, T) of the parameters (see Lemma 4). In
particular, to maintain strong convexity, SGD must remain within a region of parameters (v, T)
that assign non-trivial measure to S. We show that the pair of parameters (v, T) corresponding to
the conditional (on S) mean and covariance, which can be readily estimated from the truncated
sample, satisfies this property (see Corollary 1). So we use these as our initial estimation of the
parameters. Moreover, we define a convex set of parameters (v, T) that all assign non-trivial
measure to S. This set contains both our initialization and the ground truth (see Lemmas 7
and 6), and we can also efficiently project on it (see Lemma 8). So we run our Projected Gradient
Descent procedure on this set. As we have already noted, we have no closed-form for the log-
likelihood or its gradient. Nevertheless, we show that, given oracle access to set S, we can get
un-biased samples for the gradient of the log-likelihood function using rejection sampling from
the normal distribution defined our current estimate of the parameters (v, T) (see Lemma 9).
For this additional reason, it is important to keep the invariant that SGD remains within a set of
parameters that all assign non-trivial measure to S.

Related work. We have already discussed work on censored and truncated statistical estima-
tion. More broadly, this problem falls in the realm of robust statistics, where there has been
a strand of recent works studying robust estimation and learning in high dimensions. A cele-
brated result by Candes et al. [CLMW11] computes the PCA of a matrix, even when a constant
fraction of its entries to be adversarially corrupted, but it requires the locations of the corruptions
to be relatively evenly distributed. Related work of Xu et al. [XCM10] provides a robust PCA
algorithm for arbitrary corruption locations, requiring at most 50% of the points to be corrupted.

Closer to our work, [DKK+16a, LRV16, DKK+17, DKK+18] perform robust estimation of the
parameters of multi-variate Gaussian distributions in the presence of corruptions to a small ε

fraction of the samples, allowing for both deletions of samples and additions of samples that can
also be chosen adaptively (i.e. after seeing the sample generated by the Gaussian). The authors
in [CSV17] show that corruptions of an arbitrarily large fraction of samples can be tolerated as
well, as long as we allow “list decoding” of the parameters of the Gaussian. In particular, they
design learning algorithms that work when an (1− α)-fraction of the samples can be adversarially
corrupted, but output a set of poly(1/α) answers, one of which is guaranteed to be accurate.

Similar to [CSV17], we study a regime where only an arbitrarily small constant fraction of the
samples from a normal distribution can be observed. In contrast to [CSV17], however, there is
a fixed set S on which the samples are revealed without corruption, and we have oracle access
to this set. The upshot is that we can provide a single accurate estimation of the normal rather
than a list of candidate answers as in [CSV17], while accommodating a much larger number of
deletions of samples compared to [DKK+16a, DKK+18].

Other robust estimation works include robust linear regression [BJK15] and robust estimation
algorithms under sparsity assumptions [Li17, BDLS17]. In [HM13], the authors study robust
subspace recovery having both upper and lower bounds that give a trade-off between efficiency
and robustness. Some general criteria for robust estimation are formulated in [SCV18].
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2 Preliminaries
2.1 Notation

We use small bold letters x to refer to real vectors in finite dimension Rd and capital bold letters
A to refer to matrices in Rd×`. Similarly, a function with image in Rd is represented by a small
and bold letter f . Let 〈x, y〉 be the inner product of x, y ∈ Rd. We use Id to refer to the identity
matrix in d dimensions. We may skip the subscript when the dimensions are clear. We use Ei,j to
refer to the all zero matrix with one 1 at the (i, j) entry. Let A ∈ Rd×d, we define A[ ∈ Rd2

to be

the standard vectorization of A. We define ] to be the inverse operator, i.e.
(

A[
)]

= A. Let also
Qd be the set of all the symmetric d× d matrices.
E[X] is the expected value of the random variable X and Var[X] is the variance of X. The
covariance matrix between two random variables X, Y is Cov[X, Y ].

Vector and Matrix Norms. We define the `p-norm of x ∈ Rd to be ‖x‖p =
(
∑i xp

i

)1/p
and the

`∞-norm of x to be ‖x‖∞ = maxi |xi|. We also define the spectral norm of a matrix A to be equal
to

‖A‖2 = max
x∈Rd,x 6=0

‖Ax‖2
‖x‖2

.

It is well known that ‖A‖2 = max{λi}, where λi’s are the eigenvalues of A.
The Frobenius norm of a matrix A is defined as follows:

‖A‖F =
∥∥∥A[

∥∥∥
2

.

The Mahalanobis distance between two vectors x, y given a covariance matrix Σ is defined as:

‖x− y‖Σ =
√
(x− y)TΣ−1(x− y)

Truncated Gaussian Distribution. Let N (µ, Σ) be the normal distribution with mean µ and
covariance matrix Σ, with the following probability density function

N (µ, Σ; x) =
1√

2π det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.2)

Also, let N (µ, Σ; S) denote the probability mass of a set S under this Gaussian measure.

Let S ⊆ Rd be a subset of the d-dimensional Euclidean space, we define the S-truncated normal
distribution N (µ, Σ, S) the normal distribution N (µ, Σ) conditioned on taking values in the subset
S. The probability density function of N (µ, Σ, S) is the following

N (µ, Σ, S; x) =


1∫

SN (µ, Σ; y)dy
· N (µ, Σ; x) x ∈ S

0 x 6∈ S
. (2.3)

We will assume that the covariance matrix Σ is full rank. The case where Σ is not full rank can
be easily detected by drawing d samples and testing whether they are not linearly independent.
In that case, one can solve the estimation problem in the subspace that those samples span.
Membership Oracle of a Set. Let S ⊆ Rd be a subset of the d-dimensional Euclidean space. A
membership oracle of S is an efficient procedure MS that computes the characteristic function of S,
i.e. MS(x) = 1x∈S.
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2.2 Useful Concentration Results

The following lemma is useful in cases where one wants to show concentration of a weighted
sum of squares of i.i.d random variables.

Theorem 3 (Lemma 1 of Laurent and Massart [LM00].). Let X1, . . . , Xn independent identically
distributed random variables following N (0, 1) and let a ∈ Rd

+. Then, the following inequalities hold for
any t ∈ R+.

P

(
d

∑
i=1

ai
(
X2

i − 1
)
≥ 2 ‖a‖2

√
t + 2 ‖a‖∞ t

)
≤ exp(−t),

P

(
d

∑
i=1

ai
(
X2

i − 1
)
≤ −2 ‖a‖2

√
t

)
≤ exp(−t).

The following matrix concentration result is also useful in order to show that the empirical
covariance matrix of samples drawn from an identity covariance distribution is itself close to
identity in the Frobenius norm.

Theorem 4 (Corollary 4.12 of Diakonikolas et’al [DKK+16b]). Let ρ, τ > 0 and X1, . . . , Xn be i.i.d
samples from N (0, I). There is a δ2 = O(ρ log(1/ρ)), such that if we draw n = Ω( d2+log(1/τ)

δ2
2

), we get:

P

(
∃T ⊆ [n] : |T| ≤ ρn and

∥∥∥∥∥∑
i∈T

1
|T|XiXT

i − I

∥∥∥∥∥
F

≥ O
(

δ2
n
|T|

))
≤ τ

Using the well known fact that the squared Frobenius norm of a symmetric matrix is equal to
the sum of squares of its eigenvalues, we can obtain a bound on the l2 distance of the eigenvalue
vector to the all ones vector.

3 Stochastic Gradient Descent for Learning Truncated Normals
In this section, we present and analyze our main algorithm for estimating the true mean and
covariance matrix of the normal distribution from which the truncated samples are drawn. Our
algorithm is (Projected) Stochastic Gradient Descent (SGD) on the negative log-likelihood of the
truncated samples.

3.1 Strong-convexity of the negative log-likelihood

Let S ⊆ Rd be a subset of the d-dimensional Euclidean space. We assume that we have access
to n samples xi from N (µ∗, Σ∗, S). We start by showing that the negative log-likelihood of the
truncated samples is strongly convex as long as we re-parameterize our problem in terms of
v = Σ−1µ and T = Σ−1.

3.1.1 Log-Likelihood for a Single Sample

Given one vector x ∈ Rd, the negative log-likelihood that x is a sample of the form N (µ, Σ, S) is

`(µ, Σ; x) =
1
2
(x− µ)TΣ−1(x− µ) + log

(∫
S

exp
(
−1

2
(z− µ)TΣ−1(z− µ)

)
dz
)

=
1
2

xTΣ−1x− xTΣ−1µ + log
(∫

S
exp

(
−1

2
zTΣ−1z + zTΣ−1µ

)
dz
)

(3.4)
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Here we will define a different parametrization of the problem with respect to the variables
T = Σ−1 and ν = Σ−1µ, where T ∈ Rd×d and ν ∈ Rd. Then the likelihood function with respect
to ν and T is equal to

`(ν, T ; x) =
1
2

xTTx− xTν + log
(∫

S
exp

(
−1

2
zTTz + zTν

)
dz
)

(3.5)

We now compute the gradient of `(ν, T ; x) with respect to the set of variables

(
T[

ν

)
.

∇`(ν, T ; x) =−
((
− 1

2 xxT)[
x

)
+

∫
S

((
− 1

2 zzT)[
z

)
exp

(
− 1

2 zTTz + zTν
)

dz∫
S exp

(
− 1

2 zTTz + zTν
)

dz

=−
((
− 1

2 xxT)[
x

)
+

∫
S

((
− 1

2 zzT)[
z

)
exp

(
− 1

2 zTTz + zTν−
∥∥T−1ν

∥∥2
2

)
dz∫

S exp
(
− 1

2 zTTz + zTBx−
∥∥T−1ν

∥∥2
2

)
dz

=−
((
− 1

2 xxT)[
x

)
+ Ez∼N (T−1ν,T−1,S)

[((
− 1

2 zzT)[
z

)]
(3.6)

Finally, we compute the Hessian H` of the log-likelihood function.

H`(ν, T) =

∫
S

((
− 1

2 zzT)[
z

)((
− 1

2 zzT)[
z

)T

exp
(
− 1

2 zTTz + zTν
)

dz∫
S exp

(
− 1

2 zTTz + zTν
)

dz

−

∫
S

((
− 1

2 zzT)[
z

)
exp

(
− 1

2 zTTz + zTν
)

dz∫
S exp

(
− 1

2 zTTz + zTν
)

dz
·

·

∫
S

((
− 1

2 zzT)[
z

)T

exp
(
− 1

2 zTTz + zTν
)

dz∫
S exp

(
− 1

2 zTTz + zTν
)

dz

=Covz∼N (T−1ν,T−1,S)

[((
− 1

2 zzT)[
z

)
,

((
− 1

2 zzT)[
z

)]
. (3.7)

Since the covariance matrix of a random variable is always positive semidefinite, we conclude
that H`(ν, T) is positive semidefinite everywhere and hence, we have the following lemma.

Lemma 1. The function `(ν, T−1; x) is convex with respect to

(
T[

ν

)
for all x ∈ Rd.

3.1.2 Log-Likelihood in the Population Model

The negative log-likelihood function in the population model is equal to

7



¯̀(ν, T) = Ex∼N (µ∗,Σ∗,S)

[
1
2

xTTx− xTν

]
− log

(∫
S

exp
(
−1

2
zTTz + zTν

)
dz
)

(3.8)

Also, using (3.6) we have that

∇ ¯̀(ν, T) = −Ex∼N (µ∗,Σ∗,S)

[((
− 1

2 xxT)[
x

)]
+ Ez∼N (T−1ν,T−1,S)

[((
− 1

2 zzT)[
z

)]
. (3.9)

Hence from Lemma 1 we have that ¯̀ is a convex function with respect to ν and T . Also, from (3.9)
we get that the gradient ∇ ¯̀(ν, T) is 0, when µ∗ = T−1ν and Σ∗ = T−1. From this observation
together with the convexity of ¯̀ we conclude that the true parameters, ν∗ = Σ∗−1µ∗ and T∗ =
Σ∗−1, maximize the log-likelihood function.

Lemma 2. Let ν∗ = Σ∗−1µ∗, T∗ = Σ∗−1, then for any ν ∈ Rd, T ∈ Rd×d it holds that

¯̀(ν∗, T∗) ≤ ¯̀(ν, T).

Finally, observe that the Hessian of ` is the same as the Hessian of ¯̀.
One property of the log likelihood that will be important later is its strong convexity.

Definition 1 (Strong Convexity). Let g : Rd → R, and let Hg be the Hessian of g. We say that g is
λ-strongly convex if Hg � λI.

Our goal it to prove that ¯̀ is strongly convex for any S such that N (µ∗, Σ∗; S) is at least a constant
α. We first prove strong concavity for the case S = Rd. For this, we need some definitions.

Definition 2 (Minimum Eigenvalue of Fourth Moment Tensor). Let Σ ∈ Rd×d and also Σ � 0 with
eigenvalues λ1, . . . , λn, then we define the minimum eigenvalue λm(Σ) of the fourth moment tensor of
N (0, Σ) as

λm(Σ) = min
{

min
i,j∈[d]

λi · λj, min
i∈[d]

λi

}
.

Lemma 3 (Strong Convexity without Truncation). Let H` be the Hessian of the negative log likelihood
function ¯̀(ν, T ; X), when there is no truncation, i.e. S = Rd, then H` as an operator on (ν, T) with T
being a symmetric matrix, satisfies

H` � λm(T−1) · I.

Proof of Lemma 3: Let µ = T−1ν and Σ = T−1, we have that

H` = Covz∼N (µ,Σ)

[((
− 1

2 zzT)[
z

)
,

((
− 1

2 zzT)[
z

)]
.

Now let v ∈ Rd and U ∈ Qd with ‖v‖2
2 + ‖U‖

2
F = 1. It is easy to prove the following inequality((

U[
)T

vT

)
Covz∼N (0,I)

[((
− 1

2 zzT)[
z

)
,

((
− 1

2 zzT)[
z

)](
U[

v

)
≥ 1, (3.10)

8



from which we easily get that((
U[
)T

vT

)
Covz∼N (µ,Σ)

[((
− 1

2 zzT)[
z

)
,

((
− 1

2 zzT)[
z

)](
U[

v

)

≥
((

U[
)T

vT

)(
Σ⊗ Σ 0

0 Σ

)(
U[

v

)
≥ λm(Σ). (3.11)

Hence the lemma follows. �

To prove strong convexity in the presence of truncation, we use the following anticoncentra-
tion bound of the Gaussian measure on sets characterized by polynomial threshold functions.

Theorem 5 (Theorem 8 of [CW01]). Let q, γ ∈ R+, µ ∈ Rd, Σ ∈ Qd and p : Rd → R be a multivariate
polynomial of degree at most k, we define

S̄ =
{

x ∈ Rd | |p(x)| ≤ γ
}

,

then there exists an absolute constant C such that

N (µ, Σ; S̄) ≤ Cqγ1/k(
Ez∼N (µ,Σ)

[
|p(z)|q/k

])1/q .

Lemma 4 (Strong Convexity with Truncation). Let H` be the Hessian of the negative log likeli-
hood function ¯̀(ν, T ; X), with the presence of arbitrary truncation S. Let µ = T−1ν, Σ = T−1 and
N (µ, Σ; S) ≥ β, then H` as an operator on (ν, T) with T being a symmetric matrix, satisfies

H` �
1

213

(
β

C

)4

λm(Σ) · I,

where C is the universal constant guaranteed by Theorem 5.

Proof of Lemma 4: We have that

R = Covz∼N (µ,Σ,S)

[((
− 1

2 zzT)[
z

)
,

((
− 1

2 zzT)[
z

)]

= Ez∼N (µ,Σ,S)

[(((
− 1

2 zzT)[
z

)
−Ez∼N (µ,Σ,S)

[((
− 1

2 zzT)[
z

)])
·

·
(((

− 1
2 zzT)[
z

)
−Ez∼N (µ,Σ,S)

[((
− 1

2 zzT)[
z

)])T
 .

We also define

R′ = Ez∼N (µ,Σ)

[(((
− 1

2 zzT)[
z

)
−Ez∼N (µ,Σ,S)

[((
− 1

2 zzT)[
z

)])
·

·
(((

− 1
2 zzT)[
z

)
−Ez∼N (µ,Σ,S)

[((
− 1

2 zzT)[
z

)])T
 ,

9



and

R∗ = Ez∼N (µ,Σ)

[(((
− 1

2 zzT)[
z

)
−Ez∼N (µ,Σ)

[((
− 1

2 zzT)[
z

)])
·

·
(((

− 1
2 zzT)[
z

)
−Ez∼N (µ,Σ)

[((
− 1

2 zzT)[
z

)])T
 ,

Now let v ∈ Rd and U ∈ Qd with ‖v‖2
2 + ‖U‖

2
F = 1. We have that((

U[
)T

vT

)
R

(
U[

v

)
= Ez∼N (µ,Σ,S)

[
p(U,v)(z)

]

((
U[
)T

vT

)
R′
(

U[

v

)
= Ez∼N (µ,Σ)

[
p(U,v)(z)

]

((
U[
)T

vT

)
R∗
(

U[

v

)
= Ez∼N (µ,Σ)

[
p∗(U,v)(z)

]
where p(U,v)(z), p∗(U,v)(z) are polynomial of degree at most 4 whose coefficients depend on U

and v. Also, observe that for every z ∈ Rd we have that p(U,v)(z) ≥ 0 and p∗(U,v)(z) ≥ 0. Since the
mean of any distribution minimizes the expectation E[(x − a)2] with respect to a, we have that
Ez∼N (µ,Σ)

[
p(U,v)(z)

]
≥ Ez∼N (µ,Σ)

[
p∗(U,v)(z)

]
. From Lemma 3 Ez∼N (µ,Σ)

[
p∗(U,v)(z)

]
≥ λm(Σ)

and hence
Ez∼N (µ,Σ)

[
p(U,v)(z)

]
≥ λm(Σ). (3.12)

What is left is to bound Ez∼N (µ,Σ,S)

[
p(U,v)(z)

]
with respect to Ez∼N (µ,Σ)

[
p(U,v)(z)

]
. For this

purpose we are going to use Theorem 5 and the fact that N (µ, Σ; S) = β. We define

γ =

(
1
C

β

8

)4

λm(Σ) and S̄ = {x ∈ Rd | p(U,v)(x) ≤ γ}

and applying Theorem 5 together with (3.12) we get that N (µ, Σ; S̄) ≤ β
2 . Therefore, when

calculating the expectation Ez∼N (µ,Σ,S)

[
p(U,v)(z)

]
at least the half of the mass of the mass of

N (µ, Σ, S) is in points z such that z 6∈ S̄. This implies that

Ez∼N (µ,Σ,S)

[
p(U,v)(z)

]
≥ 1

2
γ =

1
213

(
β

C

)4

λm(Σ),

and the lemma follows. �
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3.2 Initialization with the conditional mean and covariance

In order to efficiently optimize the negative log-likelihood and maintain its strong-convexity we
need to search over a set of parameters that assign significant measure to the truncation set we
consider. In addition, we need that the initial point of our algorithm lies in that set and satisfies
this condition.

We will prove that a good such initialization is the sample mean and sample covariance, i.e.
the empirical mean and covariance of the truncated distribution N (µ, Σ, S).

We begin by showing that only few truncated samples suffice to obtain accurate estimates µ̂S
and Σ̂S of the mean and covariance.

Lemma 5. Let (µS, ΣS) be the mean and covariance of the truncated Gaussian N (µ, Σ, S) for a set S such
that N (µ, Σ; S) = α. Using Õ( d

ε2 log(1/α) log2(1/δ)) samples, we can compute estimates µ̂S and Σ̂S

such that
‖Σ−1/2(µ̂S − µS)‖2 ≤ ε and (1− ε)ΣS � Σ̂S � (1 + ε)ΣS

with probability 1− δ.

Proof. Let {xi}n
i=1 be the i.i.d samples drawn from the truncated Gaussian, µ̂S = 1

n ∑n
i=1 xi and

Σ̂S = 1
n ∑n

i=1(xi − µ̂S)(xi − µ̂S)
T.

We assume w.l.o.g. that (µ, Σ) = (0, I). Since the n samples xi are drawn from N (0, I, S),
which can be seen as drawing O(n/α) samples N (0, I) and keeping only those that follows in
the set S. This implies that with probability at least 1− δ, for all samples i and coordinates j,
|xi,j| ≤ log

(
nd
αδ

)
.

By Hoeffding’s inequality, we get that:

Pr[|µ̂S,j − µS,j| ≥ ε/
√

d] ≤ 2 exp
(
− nε2

d log(1/αδ)

)
Therefore, if n ≥ Ω( d log(nd/αδ) log(1/δ)

ε2 ), n samples are sufficient to learn µS within ε with
probability 1− δ.

Similarly, we can use a matrix concentration inequality ([Ver10], Corollary 5.52) to get that
with probability 1− δ:

(1− ε)ΣS � Σ̂S � (1 + ε)ΣS

if n ≥ Ω(d/ε2 log(nd/αδ) log(d/δ)).
Thus setting n = Θ̃(d/ε2 log2(1/αδ)) gives the result.

We also show that these estimates µ̂S and Σ̂S are sufficiently close to the parameters µ, Σ of
the true (untruncated) distribution. We do this by first considering the real conditional mean and
covariance parameters µS and ΣS.

Lemma 6. Let (µS, ΣS) be the mean and covariance matrix of the truncated Gaussian N (µ, Σ, S) with
N (µ, Σ; S) = α. Then it holds that

1. ‖µS − µ‖Σ
≤ O(

√
log 1

α ) and
2. ΣS � Ω(α2)Σ,

11



3. ‖Σ−1/2ΣSΣ−1/2 − I‖F ≤ O(log 1
α ).

Proof. First observe that we can assume without loss of generality that µ = 0, Σ = I and that ΣS

is a diagonal matrix with entries λ1 ≤ · · · ≤ λd.
1. We will show that

‖µS‖2 ≤
√

2 log
1
α
+ 1

which implies 1. for arbitrary µ, Σ after applying the standard transformation.
Consider the direction of the sample mean µ̂S. The worst case subset S ⊂ Rd of mass at

least α that would maximize ‖µS‖ =
Ex∼N (0,I)[1x∈SxT µ̂S]

Ex∼N(0,I)[1x∈S]
is the following:

S =
{

xTµ̂S > F−1(1− α)
}

where F is the CDF of the standard normal distribution. Since α = 1− F(t) ≤ e−
t2
2 , we have

that t ≤
√

2 log( 1
α ). The bound follows since Ex∼N(0,1)|x≥t[x] ≤ 1 + t.

2. We want to bound the following expectation: λ1 = Ex∼N (0,I,S)[(x1−µS,1)
2] = Varx∼N (0,I,S)[g1],

where g1 denotes the marginal distribution of g along the direction of e1.
Since N (0, I; S) = α, the worst case set (i.e the one that minimizes Var[g1]) is the one that
has α mass as close as possible to the hyperplane x1 = µS,1. However, the maximum mass
that a gaussian places at the set {x1 : |x1 − µS,1| < c} is at most 2c as the density of the
univariate gaussian is at most 1. Thus the Ex∼N (0,I,S)[(x1 − µS,1)

2] is at least the variance of
the uniform distribution U[−α/2, α/2] which is α2/12. Thus λi ≥ λ1 ≥ α2/12.

3. Finally, case 3, follows from Theorem 4. Consider any large set of n samples from N (µ, Σ).
Theorem 4, implies that with probability 1− o(1/n), for all T ⊆ [n] with |T| = Θ(αn), we
have that

∥∥∥∑i∈T
1
|T|XiXT

i − I
∥∥∥

F
≥ O (log(1/α)). In particular, the same is true for the set of

Θ(αn) samples that lie in the set S. As n→ ∞, ∑i∈T
1
|T|XiXT

i converges to ΣS + µSµT
S .

We thus obtain that
∥∥ΣS + µSµT

S − I
∥∥

F ≤
√

O (log(1/α)), which implies that ‖ΣS − I‖F ≤√
O (log(1/α)) + µSµT

S ≤ O (log(1/α)).

Combining the two Lemmas and Theorem 4, we get that

Corollary 1. The empirical mean and covariance µ̂S and Σ̂S computed using Õ(d2 log2(1/αδ)) samples
from a truncated Normal N (µ, Σ, S) with N (µ, Σ; S) = α satisfies with probability 1− δ that:

1. ‖µ̂S − µ‖Σ
≤ O(

√
log 1

α ) and

2. Σ̂S � Ω(α2)Σ,
3. ‖Σ−1/2Σ̂SΣ−1/2 − I‖F ≤ O(log 1

α ).

Proof. The first two properties follow by applying Lemma 5 with ε = 1/2 to Lemma 6. The last
one follows by Theorem 4, using an identical argument to the proof of Lemma 6. Note that the
required sample complexity has a quadratic dependence on d as it is necessary for closeness in
Frobenius norm, and is required by Theorem 4.
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3.3 A set of parameters with non-trivial mass in the truncation set

Corollary 1 shows that the empirical mean µ̂S and the empirical covariance matrix Σ̂S of the
truncated distribution N (µ∗, Σ∗, S) using n = Õ

(
d2) samples are close to the true parameters

µ∗, Σ∗.
We show that these guarantees are sufficient to show that the Normal N (µ̂S, Σ̂S) assigns

constant mass to the set S. Lemma 7 gives us the necessary conditions to show this statement.

Lemma 7. Consider two Gaussians N (µ1, Σ1) and N (µ2, Σ2), such that
1. ‖I − Σ1/2

1 Σ−1
2 Σ1/2

1 ‖F ≤ B and
2. 1/B ≤ ‖Σ−1/2

1 Σ2Σ−1/2
1 ‖2 ≤ B,

3. ‖Σ−1
2 Σ1/2

1 (µ1 − µ2)‖ ≤ B.
Suppose that for a set S we have that N (µ1, Σ1; S) ≥ α. Then N (µ2, Σ2; S) ≥ (α/12)30B5

.

Proof. To prove the statement, we note that N (µ2, Σ2; S) = Ex∼N (µ1,Σ1)[1x∈S
N (µ2,Σ2;x)
N (µ1,Σ1;x) ].

Without loss of generality, we may assume that (µ1, Σ1) = (0, I) and that Σ2 = diag(λ1, . . . , λd).
Also, for simplicity we denote µ2 simply by µ. The given bounds can be rewritten as ∑i(1−
1/λi)

2 < B2, 1/B < λi < B and ∑i µ2
i /λ2

i < B. The last two bounds imply that ∑i µ2
i < B3, while

the first two imply that ∑i(1− λi)
2 < B4.

We have that

N (µ2, Σ2; x)
N (µ1, Σ1; x)

= exp(−∑
i
[(xi − µi)

2/λi − x2
i + log λi]) (3.13)

We will show that for a random x with high probability (higher than 1− α/2) the above ratio
is larger than some bound T. This will imply thatN (µ2, Σ2; S) = Ex∼N (µ1,Σ1)[1x∈S

N (µ2,Σ2;x)
N (µ1,Σ1;x) ] ≥

a
2 T.

To obtain the bound T, we note that:

1. if λi < 1/2, then (xi − µi)
2/λi − x2

i + log λi < B(xi − µi)
2 < Bx2

i − 2Bλix + µ2
i .

2. if λi > 2, then (xi − µi)
2/λi − x2

i + log λi < µ2
i − 2xiµi + log B.

3. f λi ∈ [1/2, 2], then (xi − µi)
2/λi − x2

i + log λi < (1/λi − 1)x2
i + 2µ2

i − 4xiµi + log λi.

We observe that since ‖λ− 1‖2
2 ≤ B4, the total number of coordinates with λi 6∈ [1/2, 2] is at

most 4B4.
For case 1, we have that Prx∼N (0,I)

[
∑i:λi<1/2 Bx2

i > 8B5 log(8/α)
]
< α/8. This is true by a tail

bound on the norm of a Gaussian vector x in B4 dimensions.
For cases 1,2, we have that Prx∼N (0,I)

[
−∑i:λi 6∈[1/2,2] xiµi > ‖µ‖ log(8/α)

]
< α/8. This is true

by a tail bound on the projection of the Gaussian in the direction µ which is also normally
distributed.

For case 3, we first restrict our attention to all λi ∈ [1, 2] and use Theorem 3 to obtain the
bound Prx∼N (0,I)

[
∑i:λi∈[1,2](1− 1/λi)(x2

i − 1) < −2
√

∑i(1/λi − 1)2 log(16/α)
]
≤ α/16.

For all λi ∈ [1/2, 1], we again apply Theorem 3 to obtain the bound

Pr
x∼N (0,I)

[
∑

i:λi∈[1,2]
(1/λi − 1)(x2

i − 1) < 2
√

∑
i
(1/λi − 1)2 log(16/α) + 4 log(16/α)

]
≤ α/16.
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We thus have that with probability 1− α/8, ∑i:λi∈[1/2,2](1/λi − 1)x2
i ≤ ∑i:λi∈[1/2,2](1/λi − 1) +

2
√

∑i(1/λi − 1)2 log(16/α) + 4 log(16/α) ≤ ∑i:λi∈[1/2,2](1/λi − 1) + 8 log(16/α)

However, for all λi ∈ [1/2, 2], we have that (1/λi − 1) + log λi ≤ 4(λi − 1)2. Thus overall, we
have that with probability at least 1− α/4

∑
i:λi∈[1/2,2]

(xi−µi)
2/λi− x2

i + log λi ≤ ∑
i:λi∈[1/2,2]

(4(λi− 1)2 + 2µ2
i − 4xiµi)+ 8 log(16/α) ≤ 16B3 log(12/α)

where we worked as in case 1 and 2 to bound the contribution of 2µ2
i − 4xiµi.

Overall, we obtain that with probability at least 1− α/2, exp(−∑i[(xi−µi)
2/λi− x2

i + log λi]) >

exp(−30B5 log(12/α)).
This implies that the probability that N (µ2, Σ2) assigns to the set S is at least (α/12)30B5

.

We will apply Lemma 7 to bound the measure assigned to S by N (µ̂S, Σ̂S). For this, we need
to convert the bounds of Corollary 1 to those required by Lemma 7.

Proposition 1. It holds that

- ‖I − Σ∗1/2Σ̂S
−1

Σ∗1/2‖F ≤ O( log(1/α)
α2 ) and ‖I − Σ̂S

1/2
Σ∗−1Σ̂S

1/2‖F ≤ O( log(1/α)
α2 ),

- Ω(α2) ≤ ‖Σ∗−1/2Σ̂SΣ∗−1/2‖2 ≤ O(1/α2) and Ω(α2) ≤ ‖Σ̂S
−1/2

Σ∗Σ̂S
−1/2‖2 ≤ O(1/α2),

- ‖Σ̂S
−1

Σ∗1/2(µ̂S − µ∗)‖ ≤ O( log(1/α)
α2 ) and ‖Σ∗−1Σ̂S

1/2
(µ̂S − µ∗)‖ ≤ O( log(1/α)

α2 ).

Proof. W.l.o.g. µ = 0, Σ = I and Σ̂S = diag(λ1, . . . , λd). From Corollary 1, we have that

‖I − Σ∗1/2Σ̂S
−1

Σ∗1/2‖F = ∑
i
(1− 1/λi)

2 ≤ 1
α2 ∑

i
(1− λi)

2 ≤ O
(

log(1/α)

α2

)
.

Moreover, we have that ‖Σ̂S
−1

Σ∗1/2(µ1 − µ2)‖ = ∑i
1

λ2
i
µ2

i ≤ O
(

log(1/α)
α2

)
Similarly, we have that

‖I − Σ̂S
∗1/2

Σ∗−1Σ̂S
∗1/2‖F = ∑

i
(1− λi)

2 ≤ O (log(1/α)) .

Moreover, we have that ‖Σ̂S
−1

Σ∗1/2(µ1 − µ2)‖ = ∑i λ2
i µ2

i ≤ O
(

log(1/α)
α2

)
Proposition 1 implies that Lemma 7 can be invoked with B = O

(
log(1/α)

α2

)
to obtain the following

corollaries:

Corollary 2. Consider a truncated normal distribution N (µ∗, Σ∗, S) with N (µ∗, Σ∗; S) ≥ α > 0. The
estimates (µ̂S, Σ̂S) obtained by Corollary 1, satisfy N (µ̂S, Σ̂S; S) ≥ cα for some constant cα that depends
only on the constant α > 0.

Corollary 3. Consider a truncated normal distribution N (µ∗, Σ∗, S) with N (µ∗, Σ∗; S) ≥ α > 0. Let
(µ̂S, Σ̂S) be the estimate obtained by Corollary 1 and let (µ, Σ) be any estimate that satisfies

- ‖I − Σ̂S
1/2

Σ−1Σ̂S
1/2‖F ≤ O( log(1/α)

α2 ),

- Ω(α2) ≤ ‖Σ̂S
1/2

Σ−1Σ̂S
1/2‖2 ≤ O(1/α2),

- ‖Σ−1Σ̂S
1/2

(µ̂S − µ)‖ ≤ O( log(1/α)
α2 ).

Then, N (µ, Σ; S) ≥ cα for some constant cα that depends only on the constant α > 0.
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3.4 Analysis of SGD: Proof of Theorem 1

We define t = T[ and w =

(
t
v

)
for simplicity. Our goal is to run projected stochastic gradient

descent to optimize ¯̀ with respect to the parameters ν, t as we describe in detail in Figure 2. This
algorithm iterates over the estimation w of the true parameters w∗. Let also O the sample oracle
from the unknown distribution N (µ∗, Σ∗, S).

The initialization step of our algorithm computes the empirical mean µ̂ and the empirical co-
variance matrix Σ̂ of the truncated distribution N (µ∗, Σ∗, S) using n = Õ

(
d2

ε2

)
samples x1, . . . , xn.

µ̂S =
1
n

n

∑
i=1

xi, Σ̂S =
1
n

n

∑
i=1

(xi − µ̂S) (xi − µ̂S)
T . (3.14)

Then, we transform our space such that µ̂S 7→ 0 and Σ̂S 7→ I.
We are now ready to describe the domain D of our projected stochastic gradient ascent in

the transformed space where µ̂S = 0 and Σ̂S = I. The domain is parameterized by the positive
number r and is defined as follows

Dr =
{
(ν, T)

∣∣∣ ‖ν‖2 ≤ r, ‖I − T‖F ≤ r,
∥∥∥T−1

∥∥∥
2
≤ r

}
. (3.15)

Observe that Dr is a convex set as the constraint
∥∥T−1

∥∥
2 ≤ r an infinite set of linear, with respect

to T , constraints of the form xTTx ≥ 1/r for all x ∈ Rd. Moreover, in Algorithm 3 we present an
efficient procedure to project any point in our space to Dr. The next Lemma 8 shows gives the
missing details and proves the correctness of Algorithm 3.

Lemma 8. Given (ν′, T ′), there exists an efficient algorithm that solves the following problem which
corresponds to projecting (ν, T) to the set Dr

arg min
(ν,T)∈Dr

∥∥ν− ν′
∥∥2

2 +
∥∥T − T ′

∥∥2
F .

Proof of Lemma 8: Because of the form of Dr and the objective function of our program, observe
that we can project ν and T separetely. The projection of ν′ to Dr is the solution of the following
problem arg minν|‖ν‖2≤r ‖ν− ν′‖2

2 which has a closed form. So we focus on the projection of T .
To project T to Dr we need to solve the following program.

arg min
T

∥∥T − T ′
∥∥2

F

s.t. ‖T − I‖2
F ≤ r2

T � 1
r

I

Equivalently, we can perform binary search over the Lagrange multiplier λ and at each step solve
the following program.

arg min
T

∥∥T − T ′
∥∥2

F + λ ‖T − I‖2
F

s.t. T � 1
r

I
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After completing the squares on the objective, we can set H = I − 1
1+λ (T ′ + λI) and make the

change of variables R = I − T and solve the program.

arg min
T
‖R− H‖2

F

s.t. R �
(

1− 1
r

)
I

Observe now that without loss of generality H is diagonal. If this is not the case we can compute
the singular value decomposition of H and change the base of the space so that H is diagonal.
Then, after finding the answer to this case we transform back the space to get the correct R.
When H is diagonal the solution to this problem is very easy and it even has a closed form. �

Apart from efficient projection (Lemma 8) and strong concavity (Lemma 4) we also need a bound
on the square of the norm of the gradient vector in order to prove theoretical guarantees for our
SGD algorithm.

Lemma 9. Let v(i) the gradient of the log likelihood function at step i as computed in the line 6 of
Algorithm 1. Let ν, T be the guesses of the parameters after step i− 1 according to which the gradient is
computed with µ = T−1ν and Σ = T−1. Let µ∗, Σ∗ be the parameters we want to recover, with ν∗ =

Σ∗−1µ∗ and T∗ = Σ∗−1. Define We assume that (ν, T) ∈ Dr, (ν∗, T∗) ∈ Dr and that N (µ, Σ; S) ≥ β,
N (µ∗, Σ∗; S) ≥ β. Then, we have that

E

[∥∥∥v(i)
∥∥∥2

2

]
≤ 100

β
d2r2.

Proof. Let µ = T−1ν and Σ = T−1. According to Algorithm 2 and equation (3.6) we have that

E

[∥∥∥v(i)
∥∥∥2

2

]
= Ex∼N (µ∗,Σ∗,S)

Ey∼N (µ,Σ,S)

∥∥∥∥∥
((
− 1

2 xxT)[
x

)
−
((
− 1

2 yyT)[
y

)∥∥∥∥∥
2

2


≤ 3Ex∼N (µ∗,Σ∗,S)

∥∥∥∥∥
((
− 1

2 xxT)[
x

)∥∥∥∥∥
2

2

+ 3Ey∼N (µ,Σ,S)

∥∥∥∥∥
((
− 1

2 yyT)[
y

)∥∥∥∥∥
2

2

 .

In order to bound each of these terms we use two facts: (1) that the parameters (µ∗, Σ∗), (µ, Σ)

belong in Dr, (2) the measure of S is greater than β for both sets of parameters, i.e. N (µ, Σ; S) ≥ β

and N (µ∗, Σ∗; S) ≥ β. Hence, we will show how to get an upper bound for the second term and
the upper bound of the first term follows the same way.

Ex∼N (µ,Σ,S)

∥∥∥∥∥
((
− 1

2 xxT)[
x

)∥∥∥∥∥
2

2

 =
1
2

Ex∼N (µ,Σ,S)

[∥∥∥xxT
∥∥∥2

F

]
+ Ex∼N (µ,Σ,S)

[
‖x‖2

2

]
≤ 1

2
1
β

Ex∼N (µ,Σ)

[∥∥∥xxT
∥∥∥2

F

]
+

1
β

Ex∼N (µ,Σ)

[
‖x‖2

2

]
We define ρ =

(
σ11 σ22 · · · σdd

)T
, by straightforward calculations of the last two expressions

we get that
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Ex∼N (µ,Σ,S)

∥∥∥∥∥
((
− 1

2 xxT)[
x

)∥∥∥∥∥
2

2

 ≤ 2
β

(
‖Σ‖2

F + ‖ρ‖
4
2 + ‖ρ‖

2
2 ‖µ‖

2
2 + 2µTΣµ + ‖µ‖4

2 + ‖ρ‖
2
2 + ‖µ‖

2
2

)
But from the fact that (ν, T) ∈ Dr we can get the following bounds

‖Σ‖2
F ≤ d · r, ‖ρ‖2

2 ≤ d · r, µTΣµ ≤ r, ‖µ‖2
2 ≤ r

From which we get that

Ex∼N (µ,Σ,S)

∥∥∥∥∥
((
− 1

2 xxT)[
x

)∥∥∥∥∥
2

2

 ≤ 16
β
· d2 · r2

Finallly, we apply these bounds to the first bound for E

[∥∥∥v(i)
∥∥∥2

2

]
and the lemma follows.

Now we have all the ingredients to use the basic tools for analysis of projected stochastic gradient
descent. The formulation we use is from Chapter 14 of [SSBD14].

Theorem 6 (Theorem 14.11 of [SSBD14].). Let f = − ¯̀. Assume that f is λ-strongly convex, that

E
[
v(i) | w(i−1)

]
∈ ∂ f (w(i−1)) and that E

[∥∥∥v(i)
∥∥∥2

2

]
≤ ρ2. Let w∗ ∈ arg minw∈Dr f (w) be an optimal

solution. Then,

E [ f (w̄)]− f (w∗) ≤ ρ2

2λM
(1 + log(M)) ,

where w̄ is the output of Algorithm 1.

We also state a simple lemma for strong convex functions that follows easily from the definition
of strong convexity.

Lemma 10 (Lemma 13.5 of [SSBD14].). If f is λ-strongly convex and w∗ is a minimizer of f , then, for
any w it holds that

f (w)− f (w∗) ≥ λ

2
‖w−w∗‖2

2 .

Using Theorem 6, together with Lemmata 4, 9 and 10 we can get our first theorem that bounds
the expected cost of Algorithm 1. Then we can also use Markov’s inequality to get and our first
result in probability.

Lemma 11. Let µ∗, Σ∗ be the underline parameters of our model, f = − ¯̀, r = O
(

log(1/α)
α2

)
and also

β∗ = min
(ν,T)∈Dr

N (T−1ν, T−1; S) and λ∗ = min
(ν,T)∈Dr

λm(T−1) ≥ r.

then there exists a universal constant C > 0 such that

E [ f (w̄)]− f (w∗) ≤ C · r
β5
∗
· d2

M
(1 + log(M)) ,

where w̄ is the output of Algorithm 1.
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Proof of Lemma 11: This result follows directly from Theorem 6, if our initial estimate w(0)

belongs to Dr. To ensure that this is the case we set r = O
(

log(1/α)
α2

)
and we apply Proposition 1

and the Lemma follows. �

We are now ready to prove our main Theorem 1.
Proof of Theorem 1: Using Lemma 11 and applying Markov’s inequality we get that

P

(
f (w̄)− f (w∗) ≥ 3C · r

β5
∗
· d2

M
(1 + log(M))

)
≤ 1

3
. (3.16)

We can easily amplify the probability of success to 1− δ by repeating log(1/δ) from scratch the
optimization procedure and keeping the estimation that achieves the maximum log-likelihood
value. The high probability result enables the use of Lemma 10 to get closeness in parameter
space.

To get our estimation we first repeat the SGD procedure K = log(1/δ) times independently,
with parameter M each time. We then get the set of estimates E = {w̄1, w̄2, . . . , w̄K}. Our ideal
final estimate would be

ŵ = arg min
w̄∈E

¯̀(w)

but we don’t have access to the exact value of ¯̀(w). Because of (3.16) we know that, with high
probability 1 − δ, for at least the 2/3 of the points w̄ in E it is true that ¯̀(w) − ¯̀(w∗) ≤ η

where η = 3C·r
β5
∗
· d2

M (1 + log(M)). Moreover we will prove later that ¯̀(w)− ¯̀(w∗) ≤ η implies
‖w−w∗‖ ≤ c · η, where c is a universal constant. Therefore with high probability 1− δ for at
least the 2/3 of the points w̄, w̄′ in E it is true that ‖w−w′‖ ≤ 2c · η. Hence if we set ŵ to be a
point that is at least 2c · η close to more that the half of the points in E then with high probability
1− δ we have that f (w̄)− f (w∗) ≤ η.
Hence we can condition on the event f (ŵ) − f (w∗) ≤ 2C·r

β5
∗
· d2

M (1 + log(M)) and we only lose

probability at most δ. Now remember that for Lemma 11 to apply we have r = O
(

log(1/α)
α2

)
.

Also, using Corollary 3 we get that β∗ ≥ cα where is a constant cα that depends only on the
constant α. Hence, with probability at least 1− δ we have that

f (ŵ)− f (w∗) ≤ c′α ·
d2

M
(1 + log(M)) ,

where c′α is a constant that depends only on α. Now we can use Lemma 10 to get that

‖ŵ−w∗‖2 ≤ c′′α

√
d2

M
(1 + log(M)). (3.17)

Also, it holds that

‖ŵ−w∗‖2
2 = ‖ν− ν∗‖2

2 + ‖T − T∗‖2
F =

∥∥∥Σ−1µ− Σ∗−1µ∗
∥∥∥2

2
+
∥∥∥Σ−1 − Σ∗−1

∥∥∥2

F
.

Hence, for M ≥ Õ
(

d2

ε2

)
and using (3.17) we have that∥∥∥Σ−1µ− Σ∗−1µ∗

∥∥∥2

2
+
∥∥∥Σ−1 − Σ∗−1

∥∥∥2

F
≤ ε.

The number of samples is O(KM) and the running time is poly(K, M, 1/ε, d). Hence for K =

log(1/δ) and M ≥ Õ
(

d2

ε2

)
our theorem follows. �
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Algorithm 1 Projected Stochastic Gradient Descent. Given access to samples from N (µ∗, Σ∗, S).

1: procedure Sgd(M, λ) . M: number of steps, λ: parameter

2: w(0) ←
(

Σ̂
[
S

µ̂S

)
3: for i = 1, . . . , M do
4: Sample x(i) from O
5: ηi ← 1

λ·i
6: v(i) ← GradientEstimation(x(i), w(i−1))

7: r(i) ← w(i−1) − ηiv(i)

8: w(i) ← ProjectToDomain(r(i))

9: return w̄← 1
M ∑M

i=1 w(i) . Output the average.

Algorithm 2 The function to estimate the gradient of log-likelihood as in (3.6).

1: function GradientEstimation(x, w) . x: sample from N (µ, Σ, S)

2:

(
T[

ν

)
← w

3: µ← T−1ν

4: Σ← T−1

5: repeat
6: Sample y from N (µ, Σ)

7: until MS (y) = 1 . MS is the membership oracle of the set S.

8: return −
((
− 1

2 xxT)[
x

)
+

((
− 1

2 yyT)[
y

)

Algorithm 3 The function that projects a current guess back to the domain D.

1: function ProjectToDomain(r) . let r be the parameter of the domain Dr

2:

(
T[

ν

)
← r

3: ν′ ← arg minb:‖b‖≤r1 ‖b− ν‖2
2

4: repeat binary search over λ

5: solve the projection problem

T ′ ← arg min
T ′�r3 I

∥∥T − T ′
∥∥2

F + λ
∥∥I − T ′

∥∥2
F

6: until a T ′ is found with minimum objective value and ‖I − T ′‖2
F ≤ r2

2
7: return (ν′, T ′)

Figure 2: Description of the Stochastic Gradient Descent (SGD) algorithm for estimating the
parameters of a truncated Normal.
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4 Impossibility of estimation with an unknown truncation set
We have showed that if one assumes query access to the truncation set, the estimation problem
for truncated Normals can be efficiently solved with very few queries and samples.

If the truncation set is unknown, as we show in this section, it is information theoretically
impossible to produce an estimate that is closer than a constant in total variation distance to the
true distribution even for single-dimensional truncated Gaussians.

To do this, we consider two Gaussian distributions N (µ1, σ2
1 ) and N (µ2, σ2

2 ) with

distTV(N (µ1, σ2
1 ),N (µ2, σ2

2 )) = α.

We show that there exist a distribution over truncation sets S1 withN (µ1, σ2
1 ; S1), D1, and a distri-

bution over truncation sets S2 withN (µ2, σ2
2 ; S2), D2, such that a random instance {S1,N (µ1, σ2

1 )}
with S1 drawn from D1 is indistinguishable from a random instance {S2,N (µ2, σ2

2 )} with S2

drawn from D2.

Lemma 12 (Indistinguishability with unknown set). Consider two single-dimensional Gaussian dis-
tributions N (µ1, σ2

1 ) and N (µ2, σ2
2 ) with distTV(N (µ1, σ2

1 ),N (µ2, σ2
2 )) = 1− α. The truncated Gaus-

sian N (µ1, σ2
1 , S1) with an unknown set S1 such that N (µ1, σ2

1 ; S1) = α is indistinguishable from the
distribution N (µ2, σ2

2 ; S2) with unknown set S2 such that N (µ2, σ2
2 ; S2) = α.

Proof. We define the randomized family of sets Di: The random set Si ∼ Di is constructed by
adding every point x ∈ R with probability min{N (µ3−i, σ2

3−i; x)/N (µi, σ2
i ; x), 1}.

Now consider the distribution p with density 1
α min{N (µ1, σ2

1 ; x),N (µ2, σ2
2 ; x)}. This is a

proper distribution as distTV(N (µ1, σ2
1 ),N (µ2, σ2

2 )) = 1− α. Note that samples from p can be
generated by performing the following rejection sampling process: Pick a sample from the dis-
tribution N (µi, σ2

i ) and reject it with probability min{N (µ3−i, σ2
3−i; x)/N (µi, σ2

i ; x), 1}.
We now argue that samples from the distribution N (µi, σ2

i ; Si) for a random Si ∼ Di are indis-
tinguishable from p. This is because an alternative way of sampling the distribution N (µi, σ2

i ; Si)

can be sampled as follows. Draw a sample x from N (µi, σ2
i ) and then check if x ∈ Si. By the

principle of deferred randomness, we may not commit to a particular set Si only decide whether
x ∈ Si after drawing x as long as the selection is consistent. That is every time we draw the same
x we must output the same answer. This sampling process is identical to the sampling process
of p until the point where an xi is sampled twice. As the distributions are continuous and every
time a sample is accepted with probability α > 0 no collisions will be found in this process.

The following corollary completes the proof of Theorem 2.

Corollary 4. For all α > 0, given infinitely many samples from a univariate normal N (µ, σ2), which are
truncated to an unknown set S of measure α, it is impossible to estimate parameters µ̂ and σ̂2 such that
the distributions N (µ, σ2) and N (µ̂, σ̂2) are guaranteed to be within 1−α

2 .

To see why the corollary is true, note that since it is impossible to distinguish between the
truncated Gaussian distributionsN (µ1, σ2

1 , S1) andN (µ2, σ2
2 , S2) with distTV(N (µ1, σ2

1 ),N (µ2, σ2
2 )) >

1− α, any estimated N (µ̂, σ̂2) will satisfy either

distTV(N (µ1, σ2
1 ),N (µ̂, σ̂2)) >

1− α

2
or distTV(N (µ2, σ2

2 ),N (µ̂, σ̂2)) >
1− α

2
.
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Remark 1. The construction in Lemma 12 uses random sets S1 and S2 that select each point on the real
line with some probability. One may use coarser sets by including all points within some range ε of the
randomly chosen points. In this case the collision probability is no longer 0 and depends on ε. Given that
no collisions are seen the two cases are again indistinguishable. Moreover, for very small ε, an extremely
large number of samples are needed to see a collision.
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