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ABSTRACT
ELEMENTARY SYSTEM DYNAMICS STRUCTURES

by

Michael Rolfe Goodman

Submitted to the Department of Mechanical Engineering
on January 21, 1972 in partial fulfillment of the
requirements for the degree of Master of Science

System Dynamics is a simulation modeling approach capable of
yielding insight into the performance of physical as well as social
systems. System Dynamics models are composed of interconnected, non-
linear feedback loops involving material and information flows (rates)
and the accumulations of flows (levels). Many times a system cannot
be grasped as a whole and requires that investigation be made of the
individual loops or simple structures comprising the model. Frequently,
simple structures are encountered which are common to many systems. This
thesis begins an effort to collect and organize fundamental structures
into an anthology of these generic structures. This anthology should
assist the serious System Dynamics student.

Two first order structures are examined. The negative feedback
structure involves a decision process intervening between the level and
rate, attempting to reach and maintain a goal. The goal-oriented structure
is typical of man-made as well as biological control processes. The linear
negative feedback structure produces exponential decay behavior over time.
The equilibrium value reached when a constant input is applied to the lin-
ear structure will not be the desired goal value. A nonlinear negative
feedback process shares many of the goal-directed characteristics of the
linear process. However, a nonlinear structure involving a saturation
phenomenon is unable to maintain a goal in the presence cof a constant input
whose value exceeds the maximum compensatory rate of the structure.

The elementary structure capable of producing S-shape growth,
exponential growth followed by exponential decay, adequately represents
many real world growth cycles. Population growth and diffusion phenomena
are classic examples. S-shape growth, in its simplest form, requires a
nonlinear rate-level relationship which begins with positive feedback and
concludes with negative feedback.

Thesis Supervisors: Jay W. Forrester, Professor of Management

Thomas B. Sheridan, Professor of Mechanical Engineering
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Chapter 1

The Importance of Simple Feedback Structures

Frequently, 2 feedback structure emerges which seems to be
pertinent to mamny different systems. A feedback structure having this
characteristic is classified as a simple or generic structure. Generic
structures are the building blocks of System Dynamics models. The study
of generic structures. the intent of this thesis, has many important
advantages.

Very often a complex system can be adequately represented by a
gimple structure. A system whose behavior is dominated by a particular
structure is a likely candidate. In a similar vein, all higher order
(complex) structures are composed of interconnected simple structures.
Focusing attention on an elementary structure often yields insight into
the dynamics of the overall system, insight that might be obscured
otherwise.

Simple structures are generally easy to comprehend. A simple
structure is useful for communicating fundamental ideas of structure and
behavior to decision-makers. They have significant value as teaching
vehicles. An intuitive grasp of why a particular type of behavior
eventuates from a given structure is one by-product. The ease with
which one simple structure can be used to understand a whole host of
phenomenon previously housed under separate academic disciplines is
another educational by-product.

Having a repertoire of basic structures at one's disposal facilitates

the modeling process. Seemingly unrelated phenomenon having a common mode



of behavior might share the same basic structure. The elementary
relationships underlying the dynamics of an ecological system might apply
to an economic system for example. Knowledge of the elementary feedback
structure capable of producing a given behavior alerts the modeler to the
kinds of structural relationships that could prove to be important. The
modeler has at least a starting point for his modeling activity.

This thesis is the beginning effort aimed at cataloging and
investigating elementary System Dynamics structures. Two generic struc-~
tures are developed. Chapter 2 contains the most fundamental feedback
loop, the goal-seeking negative feedback loop producing exponential decay.
Chapter 3 utilizes the structure in Chapter 2 and combines with it the
positive loop associated with exponential growth to form the mechanism
responsible for generating S-shape growth over time.

Each chapter is self-contained. The behavioral phenomenon is
introduced followed by a detailed analysis of the underlying rate-level
relationship of the generic structure. Three specific adaptations of the
structure to interesting and varied occurrences of the behavior mode
complete each chapter. It is assumed only that the reader has had a
brief introduction to the modeling approach of System Dynamics, including

%
Dynamo notation.

%
For the reader interested in obtaining a background, Forrester's
Principles of Systems (Forrester 1968) is recommended.




Chapter 2 9

First Order Negative Feedback

Introduction

Negative feedback as used in System Dynamics is defined as goal
directed or goal oriented behavior. Any process that is governed by an
implicit or explicit objective qualifies as negative feedback. Frequently,
systems dominated by negative feedback are characterized by terms such as
self-governing, self-regulating, self-equilibrating, homeostatic, or adap-
tive which imply the presence of a goal. A few examples should illustrate
the goal seeking nature of negative feedback systems.

The thermostatically controlled heating/air conditioning system
responsible for regulating much of man's indoor environment is a common

self-governing system. A causal diagram of the system is presented in

Figure 1.
DESIRED
ROOM
Aggfﬁ&%g’g}é*ﬁ TEMPERATURE

(SET-POINT)

HEATING/ TEMPERATURE

COOLING DIFFERENCE

Figure 1

Thermostat Heating/Air-Conditioning System
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Involved is an interacting set of electrical, mechanical, and

theimal components. The desired room temperature or "set temperature" is
the goal that the system attempts to maintain. The human component of the
system is not an active factor since once the set temperature is selected,
the system is independently self-regulating (the reason for its popular-
ity). When a disparity between the desired and the actual room temperature
is sensed by the thermostat, the decision-making unit, the heating or air-
conditioning unit is switched on. The heat addition or removal eventually
raises or lowers the room temperature. The thermostat automatically shuts
off the heater or cooler when the room temperature has reached the desired
temperature and a discrepancy no longer exists.

The diagram of the physical system in Figure 1 could easily apply to
a thermostatically controlled oven, the electric eye of a camera, the auto-
matic pilot of an airplane, or the speed governor of an engine. These
systems all belong to a class known as control systems. Arising from the
field of control technology, such systems are specifically designed to
achieve and maintain a particular objective. The notion of control is
itself expressive of a goal orientatiomn.

Mechanically controlled systems are not without analogy in the bioc-
logical world. The human body, for instance, is composed of numerous self-
regulating physiological processes. The ultimate purpose of such processes
is to maintain a relatively constant internal environment necessary for
survival and described as homeostasis. The temperature regulation system
is a typical example. Its purpose is to maintain the normal body tempera-
ture. Continual alteration of the metabolic activities or blood flow rates

are the mechanisms involved. Digestion, blood-sugar regulation, and waste
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removal are additional examples of homeostatic processes.

Homeostatic systems are not restricted to individual organisms.

The growth and regulation of a single population as well as a community
composed of various populations (i.e., an ecosystem) involves negative
feedback. The survival and maintenance of a population depends upon a
myriad of ecological checks and balances. Competition, parasitism, preda-
tion, food supply, soil, light, and weather, to mention a few, all act to
prevent the population from inundating the environment responsible for
survival. Ecological control is exercised both in the short term through
migration, disease, starvation, and cannibalism as well as in the long term
through evolutionary adaptation. There are few elements in the organic
world that do not depend on feedback control for survival.

Goal directed action is a fundamental part of man's activities. For
purposes of illustration, consider the socialization of the child in a
parental environment. Parents transmit their values, attitudes, and expec-
tations to the child largely through a trial and error process, itself an
expression of negative feedback. When a discrepancy arises between the
behavior they desire and the behavior of the child, the parents take
appropriate corrective action in the form of reward and punishment. In
turn, by making mistakes, the child learns through trial and error what is
expected of him and how he is to behave to appease his parents.

In this chapter, the basic attributes of simple negative feedback
will be investigated. The causal and flow diagrams of first order negative
feedback will be introduced. The behavior of the system over time will be
investigated by considering graphically the rate-level relationship

involved in negative feedback. The definition of the time constant will be
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developed and related to the slope of the rate-level graph. The response

of the structure to constant inputs will be discussed, followed by mention
of nonlinear negative feedback. Three case studies will be presented: an
inventory control system; a coffee cup; and a pollution dissipation system.

T

Causal Diagram of Simple Negative Feedback

It is feasible to pin down the elements of negative feedback in
detail. The diagram of Figure 2 is introduced. Four elements form the
structure: the desired state (goal), the discrepancy, the action (rate),
and the system state (level). The thermostat system in Figure 1 is a

specific example of the feedback loop in Figure 2.

SYSTEM

STATE DESIRED
STATE

LEVEL OR
GOAL

ACTION
DISCREPANCY
Mv
Figure 2

Causal Diagram--Negative Feedback
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For a simple negative feedback system, one containing a single

level, there are no direct causal links from the system to the goal. The
goal is determined externally or exogenously and is not involved in the
circular loop except as an input. It serves as a reference or guideline
on which the system bases action. The set temperature, the desired speed
of an automobile, or the desired inventory of a warehouse are common
examples of goals.

The system state or, alternatively, the level, is the object of
control. It is the accumulation of all past action. The amount of heat
in the room, the inventory, the population, the traditions of a society,
are typical system states.

The only way that the state of the system can be modified is through
the action element or rate. Action is defined as the activity that is
utilized to alter the system state. Heating or cooling a room, births and
deaths, sales and production are all activities which result in decrements
or increments with respect to time to the level.

The magnitude and direction of the action taken depends upon the
discrepancy between the goal and the state of the system. Since the dis-
crepancy element must be able to sense the state of the system and compare
it with the goal, it is often the most complex link. In the heating/air-
conditioning system this function is performed by the thermostat. A sensor
such as a thermocouple monitors the temperature of the room. This might be
in the form of a proportional electrical resistance. The resulting voltage
is compared to a reference voltage from the thermostat setting. The volt-
age drop between the two activates the appropriate cooling or heating unit.

For a man attempting to keep his car on the road, the discrepancy



14
function is performed by the brain. Through his visual perception, the

driver is able to sense the lateral position (state) of his vehicle rela-
tive to the curb. Should he find that the auto is not in the desired posi-
tion, he initiates corrective action. The resulting mechanical alteration
of the steering wheel modifies the position of the automobile.

The sensing, comparison, and decision-making intervening between the
level and rate can be viewed as the information, control, or more generally,
the decision process sector (Forrester 1968, p. 36):

...a decision process is one that controls any system action.

It can be a clear explicit human decision. It can be a sub-

conscious decision. It can be the governing processes in

biological development. It can be the natural consequences

of the physical structure of the system.

The decision process sector, in fact, completes the circularity of the
system. The presence of the decision process can be used to differentiate
the non-feedback, "open loop", system from the feedback, "closed loop",
system.

The closed loop nature of the system in Figure 2 can be illustrated.
Suppose the system state was initially the same as the goal. An arbitrary
increase in the state, for instance, would then cause a discrepancy to
appear between the goal and state of the system. In order to minimize the
discrepancy, the system would take action to decrease the level. This de-
crease, resulting from the internal relationship of the elements in the
closed loop, is in opposition to the outside change in the system level.
This same scenario would be witnessed in any of the feedback systems
mentioned earlier.

An open loop system is one in which the state does not alter the
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rate. The decision process is explicitly missing. Cyclic machines such as
toasters, automatic washing machines, and vending machines (when a human
operator is not actively adjusting the machines) are examples of open loop

systems.

Flow Diagram

From the dicsussion of the fundamental elements of negative feedback,
the generalized flow diagram of Figure 3 can be produced. The valve symbol
or rate RT is the action component of the system and is the only means of
altering the system state, the level LEV. Information about the magnitude
of the level LEV is compared to the goal GL through the discrepancy DISC.
The discrepancy DISC when modified by the amount OT fraction of the action

taken per time unit FPT determines the rate RT.

. S 7 LEV

Level
RT )|
_44:'”._-
FPT Rate
Fraction
~
per o
Time \ GL
~ Goal
\-
Figure 3

Flow Diagram—--First Order Negative Feedback
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The Dynamo equations for the first order loop follow:

L LEV.K = LEV.J + (DT) (RT.JK) (Units)

N LEV = 0 (Units)

R RT.KL = FPT*DISC.K (Units/Time)

C FPT = .1 (Fraction/Time)
A DISC.K = GL - LEV.K (Units)

C GL = 100 (Units)

C DT = 1 (Time)

Eliminating the auxilary equation and comstants by substituting them

into the rate equation yields:
R RT.KL = FPT*(GL-LEV.K)

A useful way of investigating the behavior of the system is to graph the
rate RT versus the level LEV for arbitrary values of the constants FPT and
GL using the rate equation. This is done in Figure 4.

The relationship in Figure 4 does not explicitly depend onitimé and
is thus a static relationship. The slope of line FPT, the horizontal axis
intercept GL, and the vertical axis intercept FPT*GL, are determined by
the values of the constants. The importance of these constants will be
examined later.

The behavior of the system with respect to time can be graphically
simulated by using Figure 4 and constructing a level versus time plot. A
simple procedure for doing this is:

1. The rate RT is determined from the most recent level LEV

value. For the starting conditions of this system, the
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initial value of the level LEV is zero.

The product of the latest RT value and the time interval
DT is added to the latest level value LEV. This is
equivalent to adding an increment to the level LEV and
yields a revised level value which is plotted on a level
LEV versus time graph one DT to the right of the last
calculation.

With the new level value LEV, a new rate value RT is
computed and so forth until the time span of interest is
covered. Or equivalently, one returns to step 1 and

step 2 until the level-time plot is computed.

RT
Rate
GL
Goal

J_»
150
+
4} Level
-6t
-8t
Figure 4

Rate-Level Graph
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The algorithm above is followed in Figure 5. The initial value of

level LEV(LEV(0) = 0) yields an initial rate RT(RT(0) = 10), as seen in
Figure 5(a). The product of DT and RT(0) is added to LEV(0) producing
LEV(1) at time equal to one unit (Figure 5(b)). LEV(l) is used in turn to
determine RT(1) which when multiplied by DT is added to LEV(1) producing
LEV(2) at time equal to two units. Because of the negative slope of rate-
level graph, each new increment to the level LEV becomes smaller and
smaller. This is because each new rate value RT is FPT*DT*100% or in this
case 10% of the previous one. Eventually, the rate RT becomes approximately
zero as it approaches LEV = 100 and new increments to the level cease. Once
the goal GL is reached, the system enters a steady or equilibrium state
since the rate RT is zero. Connecting the points generated in step 2 pro-
duces the characteristic curve of a linear, first order negative feedback
system (Figure 5(b)).

The behavior visualized in Figure 5(b) can be viewed as containing
two distinct regions: the transient and the steady state. These regions
are seen clearly in Figure 6, a reproduction and expansion of Figure 5(b).
The transient region is characterized by its goal seeking or transitory
nature. In this region the level value is different from the goal value.
The steady state region is characterized by its goal attainment or
stationary behavior. When the time shape of the system state is constant
as in the steady state region, the system is said to be in equilibrium.

Mathematical definitions of the transient and steady states can also
be useful. The transient region is identified by a varying rate not equal
to zero. The steady state region is defined by a rate that is zero.

Extending these definitions to Figure 4, it is noted that the steady state
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region reduces to a point--the goal GL. Any other point on the curve in

Figure 4 must lie in the transient region.

16%11‘«» Step 2
Add RT(t)*DT To LEV(t) 100 [
] Producing LEV(t+1) — Plot LEV(t+l)
6 -
75 [ LEV(t+l) Becomes LEV(t)
4 =3
2 r GL 50
0 T EEREI S
50 10 +
-2 T LEV 25
-4 L
-6
0
_8 o
Step 1 Time
(a) Find RT(t) From (b)
LEV(t)
Figure 5

Simulation of Negative Feedback

An analytical expression for the system can be derived which gives

the value of the level LEV at any point in time:

GL + (LEV(O)—GL)e('FPT't)

(1 LEV(t)

where

level value at time t

LEV(t)

GL goal



20

LEV(0) = level initial value
e = exponential function
FPT = slope
t = time

The presence of the minus sign in the exponential power indicates that

the system involves exponential decay.

A

TRANSIENT STEADY
REGION STATE
REGION

e ——i»—*-eyf— = o)

Level T Goal " I

Time

Figure 6
Time Plot of Negative Feedback

Slope and Time Constant

The slope FPT has some interesting properties. When a period of time
has elapsed equal to the inverse of the slope FPT, the level LEV has

attained 63 percent of the discrepancy between GL and LEV(0). This is
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demonstrated by the use of equation (1):

(-1)

LEV(t=1/FPT) GL + (LEV(0)-GL)e

LEV(0) + .632 (GL-LEV(0))

The inverse of the slope is called the time constant T of the system.

It allows one to compare the transient responses of various systems. The
larger the value of T, the longer it takes for LEV to reach 63 percent of
its final value.

The value of the slope FPT does not alter the general behavior of
system. The direction (sign) of the slope FPT, however, does. In fact,
the direction of the slope for a éingle level system differentiates a posi-
tive feedback system from a negative system. Figure 7 illustrates this

point.

E
+
)\ /////// Positive Feedback

Rate D

C
No Feedback

Negative
Feedback

Figure 7
Rate-Level Slopes
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Lines A and B, for example, differ only in the magnitude of the
slope FPT. They are both negative feedback systems. A system whose rate-
level graph yields line D or E is a positive feedback system. The struc-
ture producing curve C, a horizontal line having a zero slope, is an open
loop system. The rate resulting from curve C is no longer a function of

the level.

Goal Values

As seen in Figure 4, in a negative feedback system, the intercept of
the rate-level line determines the final or equilibrium value of the
system. It was noted that the level intercept was simply the goal or
desired level of the system. The question is now asked, "What if the goal
were zero?"

A special but not uncommon case of negative feedback is produced by
letting the goal become zero. The causal loop, flow diagram and equations
for the structure are seen in Figure 8.

Two of the basic elements of the loop have been made implicit. First,
the exogenous goal no longer is required. Second, because the goal is zero,
it is no longer necessary to include the discrepancy link. The resulting
rate-level graph for this system is seen in Figure 9.1

From Figure 9 it is observed that the rate RT is always negative and
thus out of the level LEV. Additionally, the equilibrium value of the

system is zero. Only when the rate RT is zero can the system achieve a

1. Negative level values are assumed to be meaningless.
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steady state which in this system must occur at the zero level value.

Should the initial value of the level be zero, then the system would be in

equilibrium. A non-zero starting value is required for the tramsient be-

havior of the system to be observed. Figure 10 is an example of the

transient behavior mode.

System
State
—

Action
L LEV.K = LEV.J + (DT)(RT.JK)
N LEV = 100
R RT.XKL = -FPT*LEV.K
C FPT = .10

Figure 8

Negative Feedback-Goal Equal Zero

(Units)
(Units)
(Units/Time)

(Fraction/Time)
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12¢
10}
8t
RT
6t
Rate
41
2L
0 L>— +
Figure 9
Zero-Goal Rate-Level Graph
100
LEV
Level 1
N i A 1 . TN
10 20 30
Time
Figure 10

Zero-Goal Level Response
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The behavior in Figure 10 is well known in the chemical and bio-
logical sciences. Radioactive decay is a prime example. In general, the
behavior of any system requiring constant rejuvenation or maintenance seems
to display the decay behavior. The depreciation of capital and the decline
of a population having a higher death rate than birth rate are other
examples.

From equation (1) it is possible to derive an exact solution for the

system by simply letting GL equal zero:
LEV(t) = LEV(0)#e 1/ T (®)

The equation above has the exact form of the exponential increase equation

of positive feedback except for the negative sign. When t = T,
LEV(t=T) = .368 LEV(0)

Hence, in a time interval equal to T, 63 percent of the initial value of
the level has been removed.

A useful description of the rate of decay is the half-life. The
half-life is defined as the amount of time that elapses for half the
initial contents of the level to be lost. Mathematically, the half-life
may be computed by solving for t in the level equation above by setting
LEV(t) = .5 LEV(0). The doubling time of exponential growth is the analog

of the half-life in exponential decay.

Initial Conditioms

The role of initial conditions can be discerned from the rate-level
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graph (Figure 4). TFor a starting level value less than the goal, the
system will respond by flow into the rate. As was demonstrated in the
graphical simulation, the flow into the level will cease as the goal is
reached.

When the initial value of the level is equal to goal, the system is
already at its equilibrium point.

An initial value greater than the goal produces a system response
exactly similar to the zero-goal system above. The initial value specifies
a flow that must be out of the level. This action decreases the level
until the goal is reached and equilibrium is obtained. The initial condi-

tion only determines from which direction the goal will be reached.

System Compensation

There are many circumstances when the desired goal is not reached.
For example, consider what the response and equilibrium value of the
system would be for a step input rate. A constant rate such as curve C in
Figure 7 that is applied at some arbitrary point in time and persists
indefinitely is denoted as a step input.

Curve (a), RT1l, in Figure 11 is the rate-~level graph for the system
without a constant input rate. Curve (b), RT2, is the exogenous constant

input alone. The equations for the two rates are:

R RTL.KL = FPT(GL-LEV.K)

2. Omission of a numerical value for a constant in the Dynamo equations in
this paper means that any arbitrary number may be used.



R RT2.KL CONST

C CONST

1f RT1 and RT2 are combined into a net rate NIRT, the following results:

R NIRT.KL = FPT(GL-LEV.K) + CONST

NTRT is plotted as curve (c) in Figure 11.

NTRT
Net Rate

Figure 11

Constant Input to System-—-
Rate-Level Graph

For equilibrium to occur RT1 must be equal to RT2 or
-CONST = FPT(GL-LEV)

and the new goal NGL becomes

27
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LEV = GL + CONST/FPT = NGL
In terms of the time constant T:
NGL = GL + (T)(CONST)

The new equilibrium value of the system is larger than the desired goal GL
by the product of the time constant T and magnitude of the step input
CONST. A system with a very rapid response (i.e., a small T) will have a
new equilibrium value closer to the desired value for a given input than a
system with a large T. For an input that is negative (i.e., a constant
removal rate) the new equilibrium will be smaller than the goal by the
same product.

Intuitively, what occurs when a constant input is applied can be
seen in Figure 11. The input rate RT2 causes an initial increase in the
level LEV. The new level value produces a negative outflow rate RT1l since
LEV is now greater than GL. But RT1 is smaller than the input rate RT2
and there is a further net gain in the level LEV. LEV continues to
increase but more slowly since NTRT is being reduced each time increment.
Finally, the outflow rate RT1 compensates for the inflow rate RT2 and
equilibrium is established. In reaching equilibrium, the system, however,
has accumulated a net inflow rate NTRT and hence a higher equilibrium
value. The level will exhibit the same behavior over time as the case of
an initial value less than the goal without a step input. Conversely, a
constant removal rate would produce behavior similar to an initial condi-

tion greater than the goal without a step input.



Nonlinear Negative Feedback

The discussion above has so far pertained to
appropriate to briefly touch upon the more general
linear negative feedback. The rate-level curve is
analyzing the behavior of nonlinear relationships.

Two of many possible nonlinear relationships

The only restrictions that are imposed are done so

seeking definition of negative feedback.

29

linear systems. It is
case of simple non-

extremely helpful in

are shown in Figure 12.

to preserve the goal

It is assumed that negative

values of the level are meaningless and the curve intersects the horizontal

axis at least once. The curves shown might result

constant.

]

from a varying time

- — =&
Rate xS
N
AN
AN
\
\
\\(a)
| N -
Level \ +
* \
\\\\\\ \
\\ \
\[b\) \
-~ \
\\_.——_
P
y
Figure 12

Nonlinear Negative Feedback
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Curve (a) is characterized by fiat portions representing threshold
or saturated regions. Before point X is reached, a constant rate persists.
This results in the linear growth of the level with respect to time. When
x is reached, the rate begins decreasing as in the linear system until GL.
For initial values greater than y, the system behavior would be exactly
opposite. A constant flow out of the level would eventuate until y was
reached. A decreasing outflow rate from y would bring the level back to
GL.

Curve (b) is similar to curve (a) except that the rate curve passSes
through zero indicating a zero-goal value. Forcing the level into the
saturated regions of either curve (a) or (b) such as by a constant input
rate can convert the system from a goal seeking to a goal diverging system.

This will be explored in detail in Example 3.

Summary

Negative feedback is a process tending to keep a given system at
equilibrium. Discrepancies that occur are offset by internal pressures Or
forces which attempt to restore the system to its status quo. A simple
model of a negative feedback system is found in the flow diagram of
Figure 3. Information about the level is compared to the exogenously
determined desired goal. The inflow or outflow rate is adjusted
appropriately until the level has reached the desired value and the dis-
crepancy is zero. The point at which the rate-level relationship inter-—
cepts the level axis is the point of stable equilibrium. The time constant,

the inverse of the slope of the rate-level plot, is a measure of the
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rapidity with which the system reacts to external changes. The initial
conditions determine whether the initial flow will be inward or outward
to achieve the goal.

Three examples of simple negative feedback systems will now be

examined.

Example l1--Inventory Control System

Inventory control is an example of a simple feedback system.

Consider a dealer who would like to maintain a desired level of inventory.
When his stock of goods falls below the desired level, he places orders to
the distributor to replenish his supply. He ceases ordering when his stock
has once again been built up. Facing a condition of too much inventory, if
the option is available, he would send the excess back to the distributor.
Determining how much to order, and when, may be completely automatic or it
may be sporadic as the need arises. In this scenario a widely accepted
ordering policy is recognized which contains the basic elements of a nega-
tive feedback system. The flow diagram for the inventory control system is
produced in Figure 13.

Sales, which deplete the inventory INV, are dependent on market condi-
tions. It is assumed that the dealer has little or no influence on the
demand for his goods. Depending on the nature of the product, this assump-
tion may or may not be valid. For example, a dealer might promote sales
by reducing the price of his goods. While such causal links could be
accommodated in the model, we shall simply assume sales are exogenously

determined.
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Figure 13

Simple Inventory Control System

The order rate OR replenishes the inventory stock. It is dependent
on the ordering policy of the dealer. Any number or combination of
policies could be used. The flow diagram represents one fairly simple
ordering scheme. The desired inventory DINV is determined from such
factors as space limitations and overhead costs. When the inventory INV
falls below the desired level, the dealer orders an amount equal to a
fraction of the difference of the two. In the model the time required to
make up an inventory shortage is two weeks, the time constant of the
system. Or equivalently, on a weekly basis, half the shortage is made up
the first week and half the second week. The fraction ordered per week

FOW then becomes .5.

32
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The simple model assumes that there are no material delays--delays

in shipping or handling inventory goods. That is, once an order is
placed it is immediately filled. Such would be the case where the dealer
has ready and easy access to his supplier. A further assumption is the

exclusion of information delays involved in determining the status of the

inventory at any time. In other words, the dealer is assumed to know at
all times the exact amount of his inventory. Such might be the case for a
company keeping a running inventory (e.g., an automated accounting system).
The assumption of no material delays and no information delays need not be
made. It is employed in the model to provide a 'best" case or ideal situa-
tion and to preserve the simplicity of the model.

The equations for the model in Figure 13 are given below:

L INV.K = INV.J + (DT) (OR.JK-SR.JK) (Items)

N INV = DINV (Items)

C DINV = 200 (Items)

R OR.KL = FOW*DISCR.K (Items/Week)

C FOW = .5 (Fraction/Week)
A DISCR.X = (DINV-INV.K) (Items)

R SR.KLL. = STEP(20,4) (Items/Week)

The system is initially at equilibrium. The inventory INV is equal
to the desired inventory DINV which is set at 200 units. Through use of
the step function, a sudden rise in sales from zero to 20 items/week after
four weeks is simulated. The performance of the simple ordering policy
under these circumstances is desired. In particular, how well does the

dealer do in maintaining his desired inventory?
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From the simulation run in Figure 14, surprising behavior is
witnessed in the level of inventory. The actual inventory INV is 20 per-
cent less than the desired inventory DINV. The simple discrepancy order-
ing policy proves not to be adequate for maintaining a desired level of
inventory. Figure 14 is a classic example of the general behavior
described in the section on system compensation.3 In that section it was
demonstrated that for a constant input rate into the level, the final
equilibrium value will not be the desired equilibrium. The final value
will be greater or less than the desired value by the quantity equal to
the product of the time comstant and the input. For the example in

Figure 13, the value is

INV

-(1/FowW) (SR) + DINV

-2%20 + 200

= 160

From Figure 14, it is possible to see why this should occur. The
difference between the sales rate SR and the order rate OR between week 4
and week 8 means that there is a net flow of goods out of the inventory.
The net flow is reduced to zero once the order rate OR compensates for the
sales rate SR. The total loss in inventory is represented by the cross-
hatched area in Figure 14. The cross-hatched area is in fact equal to the

product of the time constant (1/FOW) and the input (SR).

3. It is well known in the engineering control literature that a control
scheme based on the error between the desired state and actual state of
a physical system will never be adequate in the presence of a constant
input. An error or discrepancy will always exist.
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Inventory Control--Step Input in Sales

Unless the time constant of the system is reduced to zero (a highly
unlikely situation), the dealer's ordering policy will never be able to
maintain a desired level of inventory under constant or fluctuating sales
conditions. Further, if informational and material delays were included,

the disparity between the final inventory and the desired inventory would

be even greater.

In this example the general first order negative feedback structure
has been applied to a fairly common inventory maintenance system. Though
certain assumptions were made concerning delays in the system, the simple

structure yielded considerable insight. In particular, the compensatory
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nature of negative feedback was demonstrated for a system involving a
constant input. The order rate rose to meet sales but at the expense of

a lower equilibrium inventory.

Example 2--The Coffee Cup

An everyday first order feedback process with which most people are
familiar is the cooling of a cup of hot coffee. This behavior belongs to
a general class of thermal phenomena in which an object at one temperature
is inserted or "dunked" into an environment at a different temperature.
Involved are all the elements of a goal seeking system.

Heat flows between the environment (room) and the coffee cup. The
net accumulation gf the heat transferred to or from the cup determines
the amount of heat contained in the coffee cup at any time. The tempera-
ture of the coffee is a measure of the amount of heat. The direction and
amount of heat transfer is governed by a well-known physical law: the
heat transfer rate HTR is proportional to the difference DISC between the
ambient (room) temperature RTP and the coffee temperature CTP. The
constant of proportionality C2 is dependent upon the physical properties
of the coffee cup such as the volume and the insulation material involved.
A model of the system is given in Figure 15.

The Dynamo equations are contained below. The initial temperature

of the coffee is 200°F, while the room temperature is 78°F.

L HT.K HT.J + (DT) (HTR.JK) (BTU)

=
jau
-
fl

TI/Cl (BTU)

cC TI = 200 (°F)
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It is convenient to plot HTR as a function of CTP as in Figure 16.
Since the coffee temperature CTP is proportional to the coffee heat HT in
this example, this can be done easily. From Figure 16 it is seen that the
initial condition of the coffee specifies that the heat flow must be out
of the cup in order that equilibrium can be established between the cup
and the environment. The coffee temperature CTP will exhibit exponential
decay as it approaches the goal, the room temperature RTP. The simulation
run of the temperature over time is contained in Figure 17.

The time constant of the coffee cup is the reciprocal of C2 or
ten minutes in this example. Within ten minutes, the coffee temperature

CTP will be

CTP (10) C1*HT(10)

200 + .63(78-200)

123°F

Introducing a highly insulated coffee cup is tantamount to increasing the
time constant by decreasing C2 in the model. A perfectly insulated coffee
cup implies that the time constant is infinite and heat is prevented from
dissipating from the cup. The initial temperature would be maintained
indefinitely.

The coffee cup is an excellent example of a physical system
that involves a decision process sector. The simple negative feedback
structure yields considerable insight into the nature of a whole host
of physical behavior involving a change in environmental conditions such

as temperature.
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Coffee Dynamics
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Example 3--Pollution Abéorption

There are many simple feedback processes involving nonlinearities
which are capable of converting a negative feedback process to a positive
feedback process or vice-versa. In the next chapter, the latter case--a
shift in dominance from positive to negative feedback--will be dealt with.
In this example attention will turn to a special case of the former,
pollution absorption.4

The basic pollution system as shown in Figure 18(a) contains the
pollution level POL which is increased by pollution generation and de-
creased by pollution absorption. The polluticn generation rate POLGR,
like the sales rate in Example 1, is exogenously determined. The pollu-
tion absorption rate POLAR is a function of the amount of pollution present
in the environment at any point in time. It is completely amalogous to
the negative feedback loop having a zero-goal common to many biological
decay processes. The fixed time constant, in this case, the pollution
absorption time PAT, yields a linear pollution absorption rate POLAR which
is a function of the pollution level POL as in Figure 18(b).

In the absence of pollution generation, any value of POL greater
than zero would yield a proportionate value of POLAR according to the
magnitude of the slope 1/PAT. In a recursive manner, POL and POLAR
would be reduced until the entire initial amount of pollution were

dissipated.

4, This example is based on the pollution sector of World Dynamics
(Forrester 1971).
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Basic Pollution Model
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Response of Basic Model

42

to a Constant POLGR

If POLGR was active and equal to a constant, what would the final

level of pollution equal? An arbitrary POLGR equal to CONST is combined

with POLAR in Figure 19

generating a net pollution rate NPR versus POL

graph. The equilibrium pollution level POL is established as seen in

Figure 19 when POLAR is

NPR

Net
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Rate

equal to POLGR.

+
A
20t
POLGR
10 T = X -
: Const
. N .
0 g
1? 20 30 40 50
POL
"10. NPR]
=201
-30
POLAR

Figure 19

Net Pollution Rate
vs
Pollution
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The equilibrium value can be found by setting POLAR to POLGR or

CONST = (1/PAT)(POL)

and

POL = (PAT) (CONST)

The result is not unexpected. As demonstiated previously (e.g., Example 1),
applying a constant input rate to a nonzero goal structure produced a new
goal value greater (less) than the original goal by an amount equal to the
product of the time constant and input rate magnitude. Regardless of the
magnitude of the constant input rate to the structure in Figure 18, how-
ever, equilibrium will be attained. The behavior of POL over time will
emulate that of a nonzero goal structure as evidenced in Figure 20.

POLAR PO

POL
15[ 10
10F 5 POLGR
5 O
0 1 1 1
0 2 4 6
Time (Years)
Figure 20

Response of POL to a Constant POLGR
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Nonlinear Pollution Absorption Model

At high levels of pollution, the natural environmental clean-up
processes are often inhibited or destroyed, depressing the amount of pollu-
tion that can be dissipated over a unit of time. The assumption of a
constant pollution absorption time PAT does not seem to be valid at
elevated levels of pollution. Hence making PAT a function of POL captures
the "overloading" effect of high pollution on the dissipative capacity of
the environment. A table function relating PAT to a pollution ratio POLR,
the actual pollution level POL divided by a standard or definitional amount
of pollution POLS (equal to one is this example), is given below in Figure

21. It is similar to the nonlinear relationship found in World Dynamics

(Forrester 1971). The accompanying verbal description follows (Forrester

1971, pp. 57-58).

PATT
Pollution Absorption Time Table

20f
PAT

Pollution 2|

Absorption

Time

10¢

5

[

0 0 10 20 30 40 50 60

POLR
Pollution Ratio

Figure 21

Pollution Absorption vs Pollution Ratio



45

A pollution ratio POLR of 1 represents the conditioms
existing in 1970. A value for PAT of 1 year is taken for
1970. This means an assumption that under present conditions
a year would be needed to dissipate about two-thirds of the
existing pollution if all new pollution generation were to
stop. For some of the polluting materials, that is too slow.
On the other hand, one sees estimates that 907% of all DDT that
has ever been manufactured is still in the environment.
Certainly many kinds of pollution, probably including the
more serious kinds, take longer than a year to disappear. A
year is here used as an average. But as the amount of pollu-
tion increases, the pollution-absorption time is assumed to
increase. This represents the poisoning and destroying of
the pollution-cleanup mechanisms. Small amounts of pollution
are dissipated quickly. But large amounts can have a cumula-
tive effect by interfering with the natural processes of
dissipation. Figure 3-15 [Figure 21] suggests that the decay
time for two-thirds of existing pollution rises to 5 years
for pollution levels, 20 times the 1970 values, to 10 years
for a pollution increase of about 40 times, and to 20 years
for 60 times the 1970 pollution. Such delay times are already
observed. Many lakes may have become irreversible in their
pollution or would recover only after times as long as shown
in Figure 3-15 [Figure 21]. Estimates in the newspapers after
the strike of sewerage~plant workers in England in 1970 gave
estimates of 10 years for river life to recover to the condi-
tion it had before the excessive load of pollution.

The variable PAT is integrated into the basic pollution structure as
shown in Figure 22(a). Plotting POLAR as a function of POL yields the
curve in Figure 22(b). It has the same saturated form as curve (b) in
Figure 12 followed by a decline in the magnitude of the absorption rate
with increasing pollution. The direction of the slope changes from
negative to positive. The negative feedback system is converted to a
positive feedback system because of the increasing PAT. In the limit,

PAT becomes infinitely large causing POLAR to become infinitely small

(i.e., zero).
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Complete Pcllution Model

Response of Complete Model to a Constant POLGR

How does the behavior of the nonlinear pollution model compare to
the linear model? As shown in the net pollution rate NPR graph of
Figure 23, much depends upon the size of the pollution generation rate
POLGR. It is assumed that the initial value of the pollution level POL is
zero. The net pollution rate NPR will cross the abscissa in a manner that
is consistant with a negative feedback system provided CONST is less than
the maximum absorption rate MAR. A value of CONST greater than MAR will

yield a net pollution rate NPR that does not intersect the horizontal axis.



That is, equilibrium can never be achieved.

amount of exponential decay followed by linear growth.

48

POL will exhibit an initial

As POLAR passes

through the saturated region and begins to decrease in magnitude with

increasing POL, exponential growth will result.

Eventually, POLAR becomes

zero and POL will continue to grow linearly without limit. The simulation

runs in Figure 24 verify the analysis.
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CONST < MAR

Figure 23

Net Pollution Rate vs
Pollution Level
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The complete model can produce two different modes of behavior
because of the nonlinear rate-level structure. Run (a) in Figure 24 is
comparable to the run in Figure 20. Run (b), the overstressed system,
substantially differs in behavioral response to the same value of the
constant input used in the run of Figure 20.

The pollution dissipation system illustrates the effect a variable
time constant (and hence a nonlinear rate) has on the behavior of a zero-
goal, negative feedback structure. A constant pollution absorption time
PAT implied that regardless of the magnitude of the constant input, an
equilibrium level of pollution resulted. The simulation run of Figure 20
affirmed this. The linear mocdel was altered to account for the saturation
and decline of the pollution absorption rate at high pollution levels. At
low input rates, pollution accumulated but eventually equilibrated as in
the linear system. However, at high input rates, the system's dissipative
capacity was exceeded. The inability of the system to compensate for the
input and the resultant unrestrained linear growth of the level is typical

of many systems stressed beyond their tolerance.
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Chapter 3

S—-shape Growth Structure

Introduction

A large class of behavioral phenomena seems to combine both
exponential growth and exponential decay in a way such that a third type

of growth results. The S—-shape curve in Figure 25 is an example of this.

A
—<—  Transient Region Steady State
Region
Exponential Exponential
Level Growth Decay
$—
Time
Figure 25

S-shape Growth

S-shape growth, often referred to as logistic growth or sigmoidal
growth, is typified by three distinct phases--two in the tramsient region,
followed by a steady state region. The first phase involves exponential

growth. It is followed by exponential decay, eventually leading to the
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last or equilibrium phase when growth has ceased. The reader should note
the qualitative difference between the growth shape in Figure 25 and the
pure exponential decay shape developed in Chapter 2, that is, the addi-
tional exponential growth phase in the transient region.

Many growth patterns are similar to the curve in Figure 25. The
most commonly found are the population growth curves of various plants and
animals. In fact, the strong resemblance of the curve to laboratory and
field experiments involving population growth has given rise to an ana-
lytical model, the logistic equation, as the fundamental mathematical
description of population growth in the ecology literature (Odum 1971).

Many ecologists concerned with the human population are urging that
the present trend of exponential growth be diverted into an equilibrium
phase (Meadows 1972). Ideally, they would like to see mankind adopt a
growth strategy similar to the logistic growth observed in the rest of the
biological world, as sketched in Figure 26.

In Figure 26, human population is plotted as a function of time.

The solid line denotes past and projected growth, while the dotted line is
the advocated equilibrium growth shape.

The sigmoidal trend is also characteristic of the growth of the
individual within a population. For the human being as well as a number of
higher vertebrates this includes both physical as well as mental growth and
development. For example, the S-shape curve is proposed as the form
typical of certain types of "learning curves."

A whole host of social activities seem to resemble the sigmoidal

shape in part if not in whole. Urbanization is a classic example. The
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land area growth of four empires has been observed as following the
sigmoidal shape (Taagepera 1968). The life cycles of diffusion phenomena
in a fixed population, such as the spread of riots, rumors, news, and

epidemics. are further examples.
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Human Population Growth

This chapter synthesizes from the previous development of positive
and negative feedback the structure involved in S-shape growth. The
question that will be addressed is, 'What must occur in a feedback system
for the transition from exponential growth to exponential decay to be
made?" This chapter will also demonstrate how one utilizes and builds
upon simple structures to produce more complex behavior. Doing such will

aid the modeler in the reverse process as well: synthesizing simple



structures from real world phenomena. For example, given a behavioral
mode such as logistic growth, what are the important structural relation-
ships in the actual system capable of producing the behavior? Knowledge
of the simple structure enables the modeler to focus his attention on the
strategic elements in the real world system while filtering out the less

important ones.

S-shape Growth Structure

As mentioned above, the growth in Figure 25 seems to combine both
positive feedback and negative feedback. A possible combination of the
two is represented in the causal diagram of Figure 27, where A is the

variable of interest.

///,,———~\\\\\ /////’——ﬁk\B"{’—-—-\\\\\
D Loop 1 1;‘, A Loop 2 -~ GOAL
C

Figure 27

Causal Diagram
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Loop 1, the positive feedback loop, attempts to force A to
continually increase consistent with positive feedback. A goal is
assumed not to exist in the loop. Loop 2 is equivalent to the general
causal loop of negative feedback. ILts purpose is to attempt to maintain
variable A at a desired value, which could be any value. The diagram
above, however, does not contain enough information to indicate the

behavior of the system.

Flow Diagram of S-shape Growth

One obvious approach to modeling the structure involved in S-shape
behavior would be to go directly from the causal diagram above to the flow
diagram based on the 1inear rate and level relationships of positive and
negative feedback. A brief review of those relationships is presented
in Figures 28 and 29.

Plotting the rate equations in the figures with respect to values of
the level LEV, yields the graphs of Figure 30. In Figure 30(a) as the
level LEV increases the rate RT increases proportionately, producing, when
integrated over time, a still higher value of the level LEV. This in turn
produces a larger rate value which eventually yields the exponential growth
curve. The opposite occurs in negative feedback. Because of the presence
of a goal GL in the formulation, the rate RT is at its maximum value when
the level LEV equals 0. As the level LEV increases, the rate RT decreases
until the level LEV reaches the goal value GL and the rate RT becomes zero.
No further growth is possible. Notice that for both Figures 30(a) and 30(b)

the slopes or constants of proportionality CONSTL and CONST2 do not change.
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56



o o P =" =2

LEV.K
LEV
RT2.KL
DISC.K
GL
CONST2

RT2

Rate

LEV.J + (DT) (RT2.JK)

0
CONST2*DISC.K
GL - LEV.K

Figure 29

Negative Feedback Structure
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Rate-Level Graphs

Since S-shape growth seems to combine both the mechanisms of positive
and negative feedback, one could hypothesize a rate-level structure as seen

in Figure 31. The assumption that the slopes CONST1 and CONST2 do not vary

will be preserved. ;

!
An approach to analyzing the behavior of the systemﬁin Figure 31 is
to combine RT1 and RT2 algebraically, forming a net rate NTRT. The plots
of the net rate NTRT versus the level LEV are seen in Figure 32. Curves
(a), (b), and (c) result for goal GL values not equal to zero. Three
possible modes of behavior can result, depending upon the relative values
of the constants. For CONST1 values greater than CONST2, the resulting

level values would follow the exponential growth shape. For CONST1 values

less than CONST2, negative feedback prevails and the result is the same
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decay behavior seen in Chapter 2. When CONSTl is equal to CONST2, the
NTRT is constant and equal to GL*CONST2. A constant NTRT value yields
the ramp shape also discussed in Chapter 2. Figure 33 summarizes the per-

formance of LEV over time for GL values not equal to zero.

CONSTL CONST2
TN . \_7

L LEV.K = LEV.J + (DT)(RT1.JK+RT2.JK)

N LEV = 0

R RT1.KL = CONST1*LEV.K

R RT2.KL = CONST2(DISC.K)

A DISC.K = GL - LEV.K

C CONST1 =

C CONST2 =

Figure 31

Additive Positive-Negative Feedback
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Additive Rate-Level Graphs
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Combined Positive-Negative Feedback Output

The NTRT curves for a goal GL equal to zero are shown in Figure 32
(curves 32(d), (e), (f)). The difference between curves (a), (b), and (c)
and (d), (e), and (f) are that the latter must pass through the origin.

It is evident that the resultant time shape of the level LEV from curve
(d) will be similar to that in Figure 33(a). For curve 32(e) instead of
linear growth, the level LEV will remain at its initial value. For
curve 32(f) equilibrium will occur when the level LEV is at zero in a

fashion similar to first order negative feedback.



62

No matter what the values of the slopes CONST1 and CONST2 or the goal
GL are, the structure in Figure 31 is unable to produce the desired
sigmoidal behavior. There is in fact, no way that a linear relationship
can produce S-shape growth for a first order system.

A possible alternative is to discard the assumption of constant
slopes and investigate nonlinear rate-level relationships. Figure 34 is
an example of a nonlinear association between the net rate NTRT and the
level LEV. The slope of the curve in Figure 34 between zero and IL is
equal to CONST1 while it is equal to CONST2 after IL. At IL the slope is

undefined, or discontinuous.

NTRT b

CONST1 CONST2

Goal
o)_
IL +
LEV
Figure 34

Nonlinear Rate-Level Graph
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From Figure 34, it is seen that an initial value of the level LEV
between zero and IL would yield a proportionate value of the net rate
NTRT. The NTRT value when accumulated over a small interval of time and
added to the initial value of the level LEV yields a new and larger value
of the level LEV. This new value of LEV produces a still higher value of
NTRT. Exponential growth will occur until inflection level IL is reached
and the maximum rate RM is achieved. The next value of LEV produces a
proportionately smallFr value of NTRT. A transition from positive to
negative feedback has occurred.

As in a purely negative feedback system, when the values of the NTRT
eventually reach zero, the level will obtain its equilibrium value, goal
GL. The simplified flow diagram is seen in Figure 35, together with the
simulation run of the level based on a table function similar to Figure 34.
Sigmoidal growth has been modeled.

The rate-level relationship in Figure 34 is an abstraction and merits
further discussion. An abrupt change in slope at IL does not occur often
in reality. More continuous shapes as in Figure 36 are found, as will be
illustrated later. Notice that the slopes in Figure 36 are varying. The
slope in 36(a) between L1 and L2 rapidly changes values. In Figure 36 (b)
the slope is constant only until L2 is reached at which time it begins
to change continuously. In Figure 36(c), the slope continuously varies.
Regardless of the exact shape, if a general trend exists similar to
those found in Figures 34 and 36, the resultant level behavior will be

sigmoidal.
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Continuous Rate-Level Graphs

Stable and Unstable Equilibrium

At this point it is feasible to take up the question of the
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equilibrium value that the level LEV obtains in sigmoid growth. The
meaning of stable and unstable equilibrium will be explored.

The goal GL, termed stable equilibrium, will persist indefinitely.
No further increase or decrease in the level LEV will occur when it is
reached. If the value of the level LEV in Figure 34 were increased by
some outside infiuence such that LEV exceeded GL, for example, a negative
NTRT would return the level LEV to its stable equilibrium point. If the
value of the level LEV were altered such that LEV fell short of the goal
GL growth would occur until GL was once again reached. Seen below are
simulation runs where the level LEV is exogenously changed from its
equilibrium state by an addition of ten units (Figure 37(a)) and a
decrease of ten units (Figure 37(b)).1 The characteristic goal directed
behavior of negative feedback is observed.

Figures 37(a) and 37(b) are graphic representations of the internal
pressures (or forces) which arise within the system through the
processes of negative feedback in order to restore desired steady-state

conditions.

1. Exogenous alteration of the level is accomplished by use of the pulse
function added to the rate equation where:

R NTRT.KL = TABLE(NTRTT,LEV.K,0,1200,100) + PULSE (HT,TIME.K,
INTVL)

HT = height of pulse

TIME.K = time of first pulse

INTVL = interval between pulses
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Ten Unit Impulse Response
On the other hand, prior to growth--that is, when the level LEV
value is zero-—the system is said to be in "unstable equilibrium.” If

the value of LEV were increased only minimally, such as by an initial

condition greater than zero, the net rate NTRT would no longer be zero.

The system level would increase as seen in the general S-shape. The
system's inability to maintain equilibrium at zero for the slightest

perturbation is the reason for the name unstable equilibrium.

2. We assume that only positive values of the level LEV are possible.




It is appropriate to investigate what would happen if the slope
CONST1 in Figure 34 were changed so that the curve did not pass through
the origin, but instead crossed the vertical axis at a value greater than
zero (i.e., the curve has a new slope CONSTL' which is less than CONST1
and similar to the one in Figure 32(a)). Essentially, the possibility of
unstable equilibrium is eliminated, since the NTRT can never be zero
except at stable equilibrium. The system is able to generate the S-shape
behavior even if the initial value of the level LEV is zero. Figure 38

shows the simulation run with the new slope CONST1'.
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Simulation with Slope CONSTL1'
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Summary

In general, a simple rate-level structure that exhibits rate
increases with increasing level values, and then exhibits rate decreases
with further level increases, will produce common S-shape growth. The
desired or equilibrium value reached will exhibit the stable equilibrium
characteristics of the first order negative feedback structure.

It is important to note that the causal diagram of Figure 27 does
not by itself contain enough information to determine what the behavior
of the system will be. A net rate based on a combination of the linear
Loops 1 and 2 is incapable of producing sigmoid growth. The structure
can only display exponential growth, decay, Or linear growth depending
upon whether Loop 1, Loop 2, or neither Loop 1 nor Loop 2 predominates.
Sigmoidal growth requires that the dominance shift from Loop 1 (positive

feedback) to Loop 2 (negative feedback) through a nonlinear relationship.

Application of the S-shape Growth Structure

Real world occurrences of sigmoid growth can be modeled utilizing
the underlying feedback structure above. Knowledge of simple feedback
relationships should facilitate the modeling of a diverse collection of
often observed but infrequently explained S-shape phenomena. The cases
investigated are: the growth pattern of a population of rats, the

propagation of a contagious disease, and the behavior of a damped pendulum.
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Example l--Population Growth

The growth and stabilization of the populations of various organisms
are a phenomena observed by many population biologists. Experiments using

fruit flies, bacteria, and sheep, for example, have resulted in the curves

shown in Figure 39.
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Population Growth Examples
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E. J. Kormondy (Kormondy 1969, p. 67) points out:

Although they are difficult to come by, there are enough
studies on a spectrum of different kinds of plants and
animals to permit the statement that most species show a
sigmoidal pattern during the initial stages of their popula-
tion growth. There is, in such cases, an initial slow rate
of growth, in absolute numbers, followed by an increase in
rate to a maximum, at which point the curve begins to be
deflected downward; it terminates in a rate that gradually
lessens to zero, as the population more or less stabilizes
itself with respect to its environment.

The stable equilibrium wvalues of the population are achieved when the
population is at the "carrying capacity' of the environment (i.e., the
limit at which the environment can support the population). If the
environmental conditions were shifted chemically or physically, a
different equilibrium level would likely result (Kormondy 1969, p. 66).
Biotic factors, biological relationships within species
(intraspecific) and between species (interspecific), together with
abiotic factors, environmental characteristics, seem to be the regulatory
forces involved in population growth and stability. Kormondy (Kormondy

1969, pp. 110-111) observes that:

At a critical time in the life history of a given population,
a physical factor such as light or a nutrient may be
significant as a regulatory agent; at another time, para-
sitism, predation, or competition, or even some other
physical factor may become the operative factor. As
complex and as variable as the niche of any species is,

it is unlikely that this regulation comes about by any
single agency. However, there does appear to be con-
siderable and mounting evidence, both empirical and
theoretical, to suggest that populations are self-
regulating through automatic feedback mechanisms. Various
mechanisms and interactions appear to operate both in
providing the information and in the manner of responding
to it, and with the exceptional case of a catastrophe, the
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stimulus to do so appears to depend directly on the density
of the population. The end effect is one of avoiding
destruction of a population's own environment and thereby
avoiding its own extinction.

Crowding and Population Growth

In order to develop a simple model of population growth as an
illustration of the general S-shape structure, attention will be given to
only one of the single density dependent agencies Kormondy alludes to.
The model will focus on a particular intraspecific interaction character-
istic of mammal populations, mainly, crowding and infant mortality. The
choice is arbitrary. Any single factor or combination of other factors
affecting or limiting population growth could be used. The result,
however, irrespective of the precise mechanism of the population check,
will be the same as will be demonstrated.

Perhaps the most classic example of the effect of crowding on infant
mortality is observed by B. F. Calhoun (Calhoun 1962, p. 139) in his

experiments with Norway rats:

Some years ago I attempted to submit [the question of population
density on social behavior] to experimental inquiry. I confined
a population of wild Norway rats in a quarter-acre enclosure.
With an abundance of food and places to live and with predation
and disease eliminated or minimized, only the animals' behavior
with respect to one another remained as a factor that might affect
the increase in their number. There could be no escape from the
behavioral consequences of rising population density. By the end
of 27 months the population had become stabilized at 150 adults.
Yet adult mortality was so low that 5,000 adults might have been
expected from the observed reproductive rate. The reason that
this larger population did not materialize was that infant
mortality was extremely high. Even with only 150 adults in the
enclosure, stress from social interaction led to such disruption
of maternal behavior that few young survived.
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Calhoun devised an additional indoor experiment in order to examine
in more detail the nature of the disruption. He found that mother rats
failed to build nests or nurse their young adequately when exposed to
overcrowding, causing infant mortality to rise (Calhoun 1962, p. 139).

Calhoun's description of the essentially sigmoid behavior of the
rat population will form the qualitative basis of the model. From his
description, the following assumptions are employed:

1. Confined space allowing no migration and no predation;

2. Ample and sufficient food supply;

3. Constant environment (no abnormal changes in weather,

temperature, etc.).
For modeling simplicity, two further assumptions are made:

4, Disregard for the effects of age and of the onset of

reproduction;

5. The sex ratio (males/females) of the population is 1.

The causal diagram for the rat population model is presented in
Figure 40. The rat population is increased by births (Loop 1) and
decreased by deaths (Loop 2). It was seen previcusly that in general
Loops 1 and 2 alone can only produce the behavioral modes of Figure 33.
Loop 3, an additional negative feedback loop based on Calhoun's observa-
tions, must then be responsible for transferring dominance from Loop 1
to Loop 2, necessary to produce equilibrium. As the population increases,
the social stresses due to crowding are translated into a decrease in the
aggregate birth rate of the population.

A flow diagram of Figure 41 is based on the causal loops described

above. The rat birth rate RBR is defined as the number of infant rats
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per month that will survive infancy and attain adulthood. The normal
rat fertility NRF is defined as the average number of infants per month
produced by each adult female rat. It is equal to .4 (rats/female rat-
month) for conditions of a relatively low or "normal" population demsity.

Or equivalently, every female produces approximately 5 pups per year.

RAT POPULATION
Loop l.:,/ Loop 2
g
BIRTHS DEATHS

Loop 3 -

v
DENSITY

Figure 40

Causal Diagram--Rat Population

The adult rat death rate ARDR is computed as the number of adult
rats divided by the average rat lifetime ARL. The average rat lifetime
ARL is defined as the number of months an average rat survives during
"hormal" conditions and is taken as 22 months. This meané that 4.5
percent of the population dies each month.

As Calhoun observed, the effect of high population density is an

increase in infant mortality. Hence, the number of infant rats surviving
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to adulthood, the rat birth rate RBR, is reduced. This effect is captured
in the model through alteration in the normal rat fertility NRF, by use of

the infant survival multiplier ISM in the fiow diagram.

o
g‘égtility // S Fepals \\
NRF / , e
_,<_ _ ﬁa%io \
SR
N = RD Area
Loop 3 —;—
at .
- Ben51 /
— e — - /
Figure 41

Flow Diagram-—-Rat Population

The infant survival multiplier table ISMT is produced in Figure 42.

The curve is based on the assumption that at low population densities 100

percent of the pups born will survive. Under such circumstances, the

normal rat fertility NRF is defined. As the population density PD

increases, the percentage of rats surviving infanthood decreases. The
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normal rat fertility NRF is appropriately modified downward. In extremely
crowded conditions, a very low percentage of the newly born pups will
survive; the normal rat fertility NRF is 16 percent of its“normaluvalue.

The equations for the system are given below.

IsM
Infant .
Survival
Mult.
0 A i L A - | [l
0 .5 1.0 1.5_2 2.0 2.5 3.0
(*10 7)
Population Density- PD
Figure 42
Infant Survival Multiplier Table
L RP.K = RP.J + (DT)(RBR.JK-ARDR.JK) (Rats)
N RP = 10 (Rats)
R RBR.KL = NRF*FRP.K*ISM.K (Rats/Month)
A TFRP.K = SR*RP.K (Female Rats)
C SR = .5 (Dimensionless)

C NRF = .4 (Rats/Female-Month)
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R ARDR.XL = RP.K/ARL (Rats/Month)

C ARL = 22 (Months)

A ISM.K = TABLE(ISMT,PD.K,0,.0225,.0025) (Dimensionless)
A PD.K = RP.K/A (Rats/Sq. Ft.)
T ISMT = 1/1/.96/.92/.82/.7/.52/.34/.20/.16

C A = 11000 (Sq. Ft.)

By combining the rat birth rate RBR and adult rat death rate ARDR
into a single net population growth rate NPGR and plotting the result as

a function of the population, we obtain Figure 43.

1

NPGR RBR ARDR —»m”
. -~
Net Populatiod Rat Birth Rate Adult’fff/geath Rate
Growth Rate

I
d - A
//'/’ ,,/”//’
0 EQ\
Population

(Rats)

+y

Figure 43

Net Population Growth Rate
with Linear Death Rate



78

The NPGR curve in Figure 43 is strikingly comparable to the curves
in Figure 36. In the absence of "population pressure' due to crowding,
the rat population grows exponentially. However, a reduction in the
growth rate occurs as crowding sets in. Infant mortality begins to
increase, reducing the rat birth rate RBR. Further population increase
continues to reduce the net growth rate until growth stops. Births
and deaths are in equilibrium (point A) and a steady state rat population
is reached. It is expected that the net growth rate would have to cross
the horizontal axis in order to achieve the stable population. Past point
A the death rate is greater than the birth rate. The resultant sigmoid
growth curve for the rat population is produced in the simulation run of
Figure 44.

The model developed above accounts for only one deﬁsity effect that
alone could produce logistic growth. What about limiting factors acting
on the adult rat death rate ARDR such as starvation, disease, oOr fighting?
That is, assume that an ample food supply (Assumption 2), for example, did
not exist. The effect of density might be included by an alteration of
the linear death rate curve as seen in Figure 45. A decrease in the
average rat lifetime ARL might be the mechanism involved. In Figure 45 a
new nonlinear, density-dependent death rate curve intersects the birth
rate curve at point B yielding a new and smaller "carrying capacity
population" EQ'. The overall shape of the net growth rate curve, however,
is not altered. Sigmoid growth would still result.

The conclusion to be drawn from this modeling exercise is graphically

seen in Figure 45. A sigmoidal population growth trend results when either
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the birth rate or the death rate or both begin to decrease or increase

respectively with density. This nonlinear effect of population growth

on births and deaths produces a net growth rate relationship of the

general type necessary for S-shape growth. Where the net population

growth rate intersects the population axis; the "carrying capacity

population" is determined.
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S-shape Rat Population Growth
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Example 2--Epidemic Growth

-
+

The propagation of infectious diseases and the mouth-to-mouth

diffusion of news have been observed under certain conditions to exhibit

sigmoidal growth (Coleman 1961). A simple model of this epidemic

behavior will be developed, employing the combined positive and negative

feedback structure.
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Simple Epidemic

Under the following circumstances, it is possible to develop a
single level model which will replicate the growth of an epidemic:

1. Constant population allowing no migration;

2. Infectious people are never sufficiently ill to with-

draw from circulation and are not cured of the infec-—

tion during the course of the epidemic (thus reinfec-

tion is minimized);

3. Fairly homogenous mixing of the susceptible population

and the infectious population.
Such circumstances seem to correspond to epidemics involving mild infec-
tions of the upper respiratory tracts such as the common cold, flu, and
mild virus (Bailey 1955).

A causal diagram embodying the three assumptions is produced in
Figure 46. The contagion rate depends on both the infected population and
the susceptible population. In Loop 1, all else being equal, an increase
in the infected population will result in an increase in the contagion
rate. An increase in the contagion rate adds additional people to the
infected population and so forth in a positive feedback manner. Since an
infinite supply of population does not exist, however, all else is not the
same. Loop 2, the negative feedback loop, accounts for the finite supply
of susceptible population. As the infected population increases, the
susceptible population, the difference between the total population and
the infected population, decreases. This action leads to a suppression

of the contagion rate. Eventually, the contagion rate must reach zero



when the entire population has contracted the disease.

INFECTED
POPULATION
Loop 1 4
CONTAGION - TOTAL
RATE POPULATION
Loop 2
__~ SUSCEPTIBLE /

POPULATICN

Figure 46

Causal Diagram of
Epidemic Model

The flow diagram and equations of Figure 47 represent the single
level epidemic model. The contagion rate CR is developed from
probabilistic considerations of the likelihood of infection between
individuals making contact in a closed environment with uniform mixing
(Bailey 1955). The term IP.K*SP.K is the total number of possible
contacts that can occur. NCF is the percentage of these total contacts
that actually do occur per day. The product of the three terms then
yields the total number of contacts occurring per day. When this product
is multiplied by the fraction of contacts producing an infection IPC,
the number of infections (i.e., infected people) per day, or the

contagion rate CR is generated.



83

IpP

3588 58on

1rC
Infections

Contact
/
NSF
ormal
gont%ct
raction
L. IP.K = IP.J + (DT)(CR.JK) (People)
R CR.KL = IPCANCF*IP.K*SP.K (People/Day)
N IP = 10 (People)
c IPC = .1 (Dimensionless)
C NCF = .02 (Fraction/Day)
A SP.K = P - IP.K (People)
C P = 100 (People

Figure 47
Epidemic Model

The susceptible population SP is simply the total population P less
the infected population IP. Eliminating the auxilary equation for the

susceptible population SP by incorporating it into the rate equation yields:

CR.KL = IPC*NCF*IP.K(P-IP.K)
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Plotting the contagion rate CR versus the infected population IP

(Figure 48) yields the rate-level relationship necessary to produce
sigmoidal growth. As the number of infected people increases, the
infection rate increases. This causes further growth in the number of
infected people. However, as the infected population IP increases,

the uninfected population pool is rapidly depleted. The likelihood of
contact between an infected person and an uninfected person is diminished,
even though the infected population IP is large. Finally, when the entire
population contracts the disease, the contagion rate CR must cease. Since
the contagion rate CR is by definition a one-way flow, the curve cannot

extend below the horizontal axis.

CR

Congggion

=
0 P+
Infected Population- IP

Figure 48

Contagion Rate vs Infected Population
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Figure 49 is a simulation run of the model. The infected population
IP time shape displays sigmoidal growth. The invefted sigmoid curve of
the susceptible population SP also is noteworthy. Its shape is predictable
since the sum of infected population IP and the susceptible population SP
must all times equal the total population P.

While the model in this example was developed for a mild disease,
with definitional changes, it would as well apply to a riot or a rumor.
In general, epidemic processes that begin exponentially and eventually
"consume'" all available population must follow the sigmoid time form

produced in Figure 49, at least in part.
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Epidemic Growth
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Example 3--Damped Pendulum

This final example is taken from the physical sciences. Under
certain conditions, it is possible to view the positional behavior of
a damped pendulum as being a single level feedback system displaying

sigmoidal growth.

The Damped Pendulum

Consider a pendulum in the vertical plane having a mass M, a damping
coefficient B, and a length L as pictured in the free body diagram of
Figure 50. When the pendulum is displaced from its zero degree (vertical)
position, it will have an angular velocity AV and an angular acceleration

AA.

= Angle

= Angular Velocity
Angular Acceleration
= Damping Coefficient
= Length

= Mass

nzww;z»
I

= Gravitational Constant

Figure 50

Damped Pendulum
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By considering the torques about the pivot point of the pendulum,

we can form the following equation:

T +T, = T
. e

where

Tg = Torque due to gravity
Td = Torque due to damping
TT = Total torque

The torques are in turn equal to the following:

T, = Fg*L*sin(A) (2)

T, = F AL (3)
and

Fg = Force of gravity = M-G

Fd = Force due to damping = -B-AV

Substituting equations (2) and (3) into equation (1) yields equation (4):

M*G*L*sin(A) - B*AV*L = TT (4)

If it is assumed that the net torque T, is very small as in the case of

T

high damping, the following approximation can be made:

Tg + Td ~ 0



and

or

Equation (5) is a rate equation where the angle A is the level.

B*L*AV

AV

= M*G*L*sin(A)

(MG/B)*sin(A)

of the pendulum is given in Figure 51.

o 0 " oo =2
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A plot of the angular velocity AV for various values of the angle A
according to equation (5) is seen in Figure 52. The rate curve is the
general nonlinear form needed to produce the S-curve time shape seen in
Figure 53. As the pendulum is displaced from its unstable equilibrium at
A = 0°, the velocity increases until reaching A = 90°. At A = 90°, it has
achieved its maximum velocity. The pendulum continues to lose speed
until at A = 180° its stable equilibrium value of zero velocity is reached.
It is not possible for the pendulum to overshoot 180° under the assumption

of zero net torque employed in the model.

AV
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1 7_¥
0 90° 189°
Angle- A
Figure 52

Angular Velocity vs Angle
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Damped Pendulum Behavior

The damped pendulum besides serving as an illustration of sigmoid
growth behavior also demonstrates how the notion of feedback can be
applied to purely physical phenomenon. It is intuitive that the pendulum
velocity alters the angular position. This unilateral view of cause and
effect, however, obscures the other less observable process at work. Also
present is the cause and effect relationship between the angular position
and the velocity. From Figure 52 it can be seen that the effect (angular
position) becomes the cause and the cause (velocity) becomes the effect.
Looking at the pendulum system in this circular fashion enhances our

understanding about the nature of many physical phenomena.
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Chapter 4

Conclusions

From the study of simple models comes the tools for constructing
and understanding larger models. This thesis has explored two elementary
structures.

A simple negative feedback structure as in Chapter 2 produces
behavior that is goal-seeking. The structure attempts to maintain a
goal when perturbed from outside the system. When the outside disturbance
is in the form of constant input, the resulting equilibrium state of the
system is different than the desired state. The first order linear
feedback loop provides insight into the dynamics of a common inventory
maintenance system and a coffee cup cooling to room temperature. The
simple nonlinear negative feedback structure involving a rate which satu-
rates (i.e., remains constant) with respect to the level shares many of
the same behavioral characteristics as the purely linear structure. How-
ever, when the input to the system is beyond the tolerance of the structure
as illustrated in the pollution absorption model, goal diverging behavior
results.

Exponential growth followed by exponential decay (sigmoid growth) is
the characteristic time shape of the structure in Chapter 3. Such behavior
can only be generated by a particular type of rate-level relationship
unachievable in a linear structure: a shift in dominance from positive
feedback to negative feedback. In the negative feedback region of the
sigmoidal growth structure, the behavior is characteristic of linear

negative feedback, demonstrating how knowledge of the dynamics of omne



elementary structure can be exploited to explain another. Population
growth, epidemic growth, and pendulum behavior phenomena seem to involve

the structural relationships capable of producing sigmoidal growth.
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