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Abstract: There is a common theme to some research questions in additive combinatorics
and noise stability. Both study the following basic question: Let P be a probability distribu-
tion over a space Ω` with all ` marginals equal. Let X (1), . . . ,X (`),X ( j) = (X ( j)

1 , . . . ,X ( j)
n ) be

random vectors such that for every coordinate i ∈ [n] the tuples (X (1)
i , . . . ,X (`)

i ) are i.i.d. ac-
cording to P.

A central question that is addressed in both areas is:

• Does there exist a function cP() independent of n such that for every f : Ωn→ [0,1]
with E[ f (X (1))] = µ > 0:

E

[
`

∏
j=1

f (X ( j))

]
≥ cP(µ)> 0 ?

Instances of this question include the finite field model versions of Roth’s and Sze-
merédi’s theorems as well as Borell’s result about the optimality of noise stability of
half-spaces.

Our goal in this paper is to interpolate between the noise stability theory and the finite
field additive combinatorics theory and address the question above in greater generality
than considered before. In particular, we settle the question for `= 2 and when ` > 2 and
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P has bounded correlation ρ(P)< 1. Under the same conditions we also characterize the
obstructions for similar lower bounds in the case of ` different functions. Part of the novelty
in our proof is the combination of analytic arguments from the theories of influences and
hyper-contraction with arguments from additive combinatorics.

Key words and phrases: correlated product spaces, invariance principle, noise stability

1 Introduction

1.1 Setup and same-set hitting

In this paper we analyze a general framework which includes many fundamental questions in both the
theory of noise stability and in finite field models of additive combinatorics. We begin with formally
defining this general setting. Let Ω be a finite set and assume we are given a probability distribution P

over Ω` for some `≥ 2 – we will call it an `-step probability distribution over Ω.
Furthermore, assume we are given n ∈N. We consider ` vectors X (1), . . . ,X (`), X ( j) = (X ( j)

1 , . . . ,X ( j)
n )

such that for every i ∈ [n], the `-tuple (X (1)
i , . . . ,X (`)

i ) is sampled according to P, independently of the
other coordinates i′ 6= i (see Figure 1 for an overview of the notation).

Definition 1.1. Let µ,δ ∈ (0,1]. We say that a distribution P is (µ,δ )-same-set hitting, if, for all n≥ 1,
whenever a function f : Ωn→ [0,1] satisfies E[ f (X ( j))]≥ µ for every j ∈ [`] := {1, . . . , `}, we have

E

[
`

∏
j=1

f (X ( j))

]
≥ δ .

We call P same-set hitting if for every µ ∈ (0,1] there exists δ ∈ (0,1] such that P is (µ,δ )-same-set
hitting.

It is not difficult to see that the definition of same-set hitting is equivalent to the one where functions
f are restricted to be set indicators f : Ωn→{0,1}. The value E

[
∏

`
j=1 f

(
X ( j)

)]
then can be interpreted

as Pr
[∧`

j=1 X ( j) ∈ S
]

for the respective set S := {x : f (x) = 1} of density at least µ . This special case
motivated the name “same-set hitting”, and all our theorems and proofs can be read with that case in
mind.

In this paper we address the question: which distributions P are same-set hitting? We achieve full
characterization for ` = 2 and answer the question affirmatively for a large class of distributions with
` > 2.

The question of set hitting was studied extensively in additive combinatorics and in the theory of
influences and noise stability. Perhaps the most well-studied case is that of random arithmetic progressions.
Let Z be a finite additive group and ` ∈ N. Then, we can define a distribution PZ,` of random `-step
arithmetic progressions in Z. Specifically, for every x,r ∈ Z we set:

PZ,`(x,x+ r,x+2r, . . . ,x+(`−1)r) := 1/|Z|2 .

Some of the distributions PZ,` can be shown to be same-set hitting using, e.g., the hypergraph
regularity lemma:
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Theorem 1.2 ([RS04], [RS06], [Gow07], cf. Theorem 11.27, Proposition 11.28 and Exercise 11.6.3 in
[TV06]). If |Z| is coprime to (`−1)!, then PZ,` is same-set hitting.

Taking `= p and Z = Fp we obtain the classical formulation of Szemerédi’s theorem for progressions
of length p in the finite field model. The special case ` = 3 is also known as the capset problem. As
is well known, the case ` = 3 follows from the arguments of Roth [Rot53] applied to the finite field
setup [Mes95], while the general case follows a long line of work, starting by Szemerédi’s regularity
lemma [Sze75], its proof by Furstenberg using the ergodic theorem [Fur77] as well as the finite group
and multi-dimensional versions, see, e.g., [Rot53, FK91, Gow01, Gre05a].

It is natural to consider a generalization of the question where different functions are applied to
different X ( j). This question was studied in the theories of Gaussian noise stability and hyper-contraction
as we explain next.

1.2 Set hitting

The generalization to multiple sets is defined as follows.

Definition 1.3. Let µ,δ ∈ (0,1]. We say that a distribution P is (µ,δ )-set hitting, if, whenever functions
f (1), . . . , f (`) : Ωn→ [0,1] satisfy E[ f ( j)(X ( j))]≥ µ for every j ∈ [`], we have

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ δ . (1)

We call P set hitting if for every µ ∈ (0,1] there exists δ ∈ (0,1] such that P is (µ,δ )-set hitting.

Borell [Bor85] established the set hitting property in the Gaussian case where (Xi,Yi)∼N(0,
(

1 ρ

ρ 1

)
)

are i.i.d and ρ ∈ (0,1). In fact [Bor85] does much more: it finds the optimal δ in terms of µ and ρ in this
case. (Note that in this case Ω is infinite).

In earlier work, [Bor82] Borell also proved some of the first reverse hypercontractive inequalities.
These give a different proof that the Gaussian example above is set hitting but also imply the same for the
binary analog where (Xi,Yi) ∈ {−1,1}2 satisfy E[Xi] = E[Yi] = 0 and E[XiYi] = ρ . See [MOR+06] for a
discussion of this result and some of its implications.

The full classification of set hitting distributions can be deduced from a paper on reverse hypercon-
tractivity1 by Mossel, Oleszkiewicz and Sen [MOS13]:

Theorem 1.4 ([MOS13]). A finite probability space P is set hitting if and only if:

β (P) := min
x(1)∈supp(X (1)

i ),
...,

x(`)∈supp(X (`)
i )

P(x(1), . . . ,x(`))> 0 . (2)

In many interesting settings, including the finite field models in additive combinatorics, the distribution
P does not have full support. In these settings, as we discuss next, the goal is to understand sufficient
conditions on the functions which imply that (1) does hold.

1That P is set hitting if (2) holds is a consequence of Lemma 8.3 in [MOS13]. If (2) does not hold, an appropriate combination
of dictators establishes a counterexample.
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1.3 Obstructions in additive combinatorics

In general much of the interest in additive combinatorics is in understanding what conditions on functions
f imply (1). For example, the starting point of the proof of Roth’s theorem [Rot53] on arithmetic

progressions of length three is that if the functions f (1), f (2), f (3) all satisfy that ‖ ̂f ( j)−E[ f ]‖∞ is small
then (1) holds. That is, the distribution of arithmetic progressions of length three is set hitting for all
functions f ( j) with all (positive degree) Fourier coefficients small in absolute value. As a matter of fact,
in that case f (1), f (2), f (3) are known to be pseudorandom in the sense that δ (µ)≈ µ3.

The proof of Roth’s theorem then proceeds roughly as follows: If a function f is pseudorandom, we
are done. Otherwise, we are guaranteed a large Fourier coefficient. This is then exploited in a density
increment argument: It turns out that a large Fourier coefficient implies that f must have increased
relative density on an affine subspace of Fn

p of codimension one. One iterates the density increment until
f becomes pseudorandom.

A similar situation arises in a more recent proof for longer arithmetic progression by Gowers: If the
functions f ( j) have low Gowers uniformity norm, then (1) holds, see e.g. [Gre05a].

In one of our main results (see Section 1.5.3 below) we show that in a pretty general setup (which
does not include the additive combinatorics setup), the only obstruction for (1) to hold is for f ( j) to have
a large low-degree Fourier coefficient.

1.4 Basic example

At this point we would like to introduce the simplest example that is not covered by either the theory
of influences or techniques from additive combinatorics. Let S ⊆ {0,1,2}n be a non-empty set of
density µ = |S|

3n . We pick a random vector X = (X1, . . . ,Xn) uniformly from {0,1,2}n, and then sample
another vector Y = (Y1, . . . ,Yn) such that for each i independently, coordinate Yi is picked uniformly in
{Xi,Xi +1 mod 3}. Our goal is to show that:

Pr[X ∈ S∧Y ∈ S]≥ c(µ)> 0 .

In other words, we want to bound away the probability from 0 by an expression which only depends on µ

and not on n. Similarly, given sets S and T of density at least µ , we want to find under what conditions
does it hold that the probability Pr[X ∈ S∧Y ∈ S] can be lower bounded effectively. We note that the
support of the distribution on {0,1,2}2 is not full (hence, Theorem 1.4 does not apply) and that the
distribution is not of arithmetic nature.

1.5 Our results

1.5.1 Same-set hitting for two steps

In case of `= 2 we establish the following theorem:

Theorem 1.5 (cf. Theorem 3.1). A two-step probability distribution with equal marginals P is same-set
hitting if and only if α(P) := minx∈ΩP(x,x)> 0.
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Of course, if β (P) > 0, then Theorem 1.5 follows from Theorem 1.4. Our work is novel in case
β (P) = 0, i.e., when the distribution is same-set hitting but not set hitting. In particular we establish
same-set hitting for the probability space from Section 1.4.

1.5.2 Same-set hitting for more than two steps

In a general case of an `-step distribution with equal marginals, it is still clear that, letting α(P) :=
minx∈ΩP(x,x, . . . ,x), the condition α(P)> 0 is necessary. However, it remains open if it is sufficient.

We provide the following partial results. Firstly, by a simple inductive argument based on Theorem
3.1, we show that multi-step probability spaces induced by Markov chains are same-set hitting (cf. Section
8).

Secondly, we show that P is same-set hitting if α(P) > 0 and its correlation ρ(P) is smaller than
1. The opposite condition ρ(P) = 1 is equivalent to the following: There exist j ∈ [`], S⊆Ω, T ⊆Ω`−1

such that 0 < |S|< |Ω| and:

X ( j)
i ∈ S ⇐⇒

(
X (1)

i , . . . ,X ( j−1)
i ,X ( j+1)

i , . . . ,X (`)
i

)
∈ T .

For the full definition of ρ(P), see Definition 2.1.

Theorem 1.6 (cf. Theorem 3.2). Let P be a probability distribution with equal marginals. If α(P)> 0
and ρ(P)< 1, then P is same-set hitting.

We are not aware of any general results in case ρ(P) = 1. In particular, let P be a three-step
distribution over Ω = {0,1,2} such that X (1)

i ,X (2)
i ,X (3)

i are uniform over {000,111,222,012,120,201}.
To the best of our knowledge, it is an open question whether this distribution P is same-set hitting. One
might conjecture that α(P)> 0 is the sole sufficient condition for same-set hitting. Unfortunately, the
techniques used to prove Theorem 1.2 do not seem to extend easily to spaces with less algebraic structure.

1.5.3 Set hitting for functions with no large Fourier coefficients

The methods developed here also allow to obtain lower bounds on the probability of hitting multiple sets.
In fact, we show that if ρ(P)< 1, then such lower bounds exist in terms of ρ , the measures of the sets
and the largest non-empty Fourier coefficient.

Theorem 1.7 (Informal, cf. Theorem 3.3). Let P be a probability distribution with ρ(P)< 1. Then, P is
set-hitting for functions f (1), . . . , f (`) : Ω→ [0,1] that have both:

• Noticeable expectations, i.e., E[ f ( j)(X ( j))]≥Ω(1).

• No large Fourier coefficients, i.e., maxσ

∣∣ f̂ ( j)(σ)
∣∣≤ o(1).

1.6 Other related work

In the case of symmetric two-step spaces (which can be thought of as product graphs) works by Dinur,
Friedgut and Regev [DFR08, FR18] establish a removal lemma: They show that if Pr[X ∈ S∧Y ∈ S]
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is small, then it must be possible to remove a small number of elements from S to obtain S′ with
Pr[X ∈ S′∧Y ∈ S′] = 0. They go on to use this result to characterize all sets with Pr[X ∈ S∧Y ∈ S] = 0:
It turns out that every such set must be almost contained in a junta. Interestingly, [FR18] obtain a
tower-type dependence between µ and δ in the removal lemma, in contrast to ours which is “merely”
triply exponential.

The case of ρ < 1 has also been studied in the context of extremal combinatorics and hardness of
approximation. In particular, Mossel [Mos10] uses the invariance principle to prove that if ρ(P) < 1,
then P is set hitting for low-influence functions. We use this result to establish Theorem 1.6. Additionally,
Theorem 1.7 can be seen as a strengthening of [Mos10].

Furthermore, Austrin and Mossel [AM13] establish the result equivalent to Theorem 1.7 assuming in
addition to ρ(P)< 1 also that P is pairwise independent (they also prove results for the case ρ(P) = 1
with pairwise independence but these involve only bounded degree functions).

Our work is related to problems and results in inapproximability in theoretical computer science.
For example, our theorem is related to the proof of hardness for rainbow colorings of hypergraphs by
Guruswami and Lee [GL15]. In particular, it is connected to their Theorem 4.3 and partially answers
their Questions C.4 and C.6.

There are works in additive combinatorics that treat specific classes of distributions with ρ = 1. For
example, one can take P to be uniform over solutions to a fixed full-rank system of r linear equations
with ` variables over Fp. There is extensive work on removal lemmas (which imply same-set hitting) for
different cases in this setting, see, e.g., [Gre05b, KSV09, Sha10, FLS18].

Follow-up work There are two subsequent preprints by some of the authors: [Mos17] strengthens
Theorem 3.3 to obtain precise Gaussian bounds for functions with small low-degree Fourier coefficients
in case ρ(P) < 1 (one can also use the technique from [Mos17] to deduce an alternative proof of
Theorem 3.2 with roughly the same dependence). Another author [Hąz18] shows same-set hitting for
symmetric sets for the distribution of arithmetic progressions with restricted differences mentioned in
Section 4.4.

1.7 Proof ideas: additive combinatorics and theory of influences

Interestingly, the proof of our results interpolates between additive combinatorics and the theory of
influences. Results of [Mos10] imply that if a collection of functions have low influences then they are
same-set hitting. In the proof of Theorem 3.2 we apply a variant of a density increment argument to
reduce to this case. First, we apply the standard density increment argument to assume without loss of
generality that conditioning on a small number of coordinates does not change the measure of the set by
much. Then we show, under this assumption, by applying another variant of density increment that we
can additionally assume w.l.o.g. that all influences are small.

1.8 Outline of the paper

The rest of the paper is organised as follows: the notation is introduced in Section 2, Section 3 contains
full statements of our theorems, and Section 4 sketches the proof of our main theorem.
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X X1 X2
. . . X i

. . . Xn

X (1) X (1)
1 X (1)

2
· · · X (1)

i
· · · X (1)

n

X (2) X (2)
1 X (2)

2
· · · X (2)

i
· · · X (2)

n

...
...

...
...

...
X ( j) X ( j)

1 X ( j)
2

· · · X ( j)
i

· · · X ( j)
n

...
...

...
...

...
X (`) X (`)

1 X (`)
2

· · · X (`)
i

· · · X (`)
n

Tuples X i are
i.i.d. according to P. Each
of the ` marginals of P is π .

Vectors X ( j) are
distributed
(dependently)
according to
π := πn.

Distributed
according to
P := Pn.

α(P) := min
x∈Ω

P(x,x, . . . ,x)

ρ(P) : See Definition 2.1

X ( j)
i ∈Ω

X ( j) ∈Ω := Ω
n

X i ∈Ω := Ω
`

X ∈Ω := Ω
n·`

S⊆Ω

Figure 1: Naming of the random variables in the general case. The columns X i are distributed i.i.d ac-
cording to P. Each X ( j)

i is distributed according to π . The overall distribution of X is P.

The full proof of the multi-step theorem follows in Section 5. The proof of the two-step theorem
is in Section 6 and the proof for functions with small Fourier coefficients in Section 7. A theorem for
Markov chains is introduced in Section 8 and better bounds for symmetric spaces in Section 9. Finally,
the modified proof of the low-influence theorem from [Mos10] is presented in the appendix. We note that
an extended abstract of our results appeared in [HHM16].

2 Notation and Preliminaries

2.1 Notation

We will now introduce our setting and notation. We refer the reader to Figure 1 for an overview.
We always assume that we have n independent coordinates. In each coordinate i we pick ` values X ( j)

i

for j ∈ [`] = {1, . . . , `} at random using some distribution. Each value X ( j)
i is chosen from the same fixed
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set Ω, and the distribution of the tuple X i = (X (1)
i , . . . ,X (`)

i ) of values from Ω` is given by a distribution P.

This gives us values X ( j)
i for i ∈ {1, . . . ,n} and j ∈ {1, . . . , `}. Thus, we have ` vectors X (1), . . . ,X (`),

where X ( j) = (X ( j)
1 , . . . ,X ( j)

n ) represents the j-th step of the random process. In case `= 2, we might call
our two vectors X and Y instead.

For reasons outlined in Section 3.4.2 we assume that all of X (1)
i , . . . ,X (`)

i have the same marginal
distribution, which we call π . We assume that Ω is the support of π .

Even though it is not necessary, for clarity of the presentation we assume that each coordinate
X i = (X (1)

i , . . . ,X ( j)
i , . . . ,X (`)

i ) has the same distribution P.

We consistently use index i to index over the coordinates (from [n]) and j to index over the steps
(from [`]).

As visible in Figure 1, we denote the aggregation across the coordinates by the underline and the
aggregation across the steps by the overline. For example, we write Ω = Ωn, Ω = Ω`, P = Pn and
X = (X1, . . . ,Xn) = (X (1), . . . ,X (`)).

We sometimes call P a tensorized, multi-step probability distribution as opposed to a tensorized,
single-step distribution π and single-coordinate, multi-step distribution P.

Furthermore, we extend the index notation to subsets of indices or steps. For example, for S⊆ [`] we
define X (S) to be the collection of random variables

{
X ( j) : j ∈ S

}
.

We also use the set difference symbol to mark vectors with one element missing, e.g., X\ j :=
(X (1), . . . ,X ( j−1),X ( j+1), . . . ,X (`)).

One should think of ` and |Ω| as constants and of n as large. We aim to get bounds which are
independent of n.

2.2 Correlation

In case ` > 2, the bound we obtain will depend on the correlation of the distribution P. This concept was
used before in [Mos10].

Definition 2.1. Let P be a single-coordinate distribution and let S,T ⊆ [`]. We define the correlation:

ρ(P,S,T ) := sup
{

Cov[ f (X (S)),g(X (T ))]
∣∣∣ f : Ω

(S)→ R,g : Ω
(T )→ R,

Var[ f (X (S))] = Var[g(X (T ))] = 1
}
.

The correlation of P is ρ(P) := max j∈[`] ρ (P,{ j}, [`]\{ j}).

2.3 Influence

A crucial notion in the proof of Theorem 1.6 is the influence of a function. It expresses the average
variance of a function, given that all but one of its n inputs have been fixed to random values:
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http://dx.doi.org/10.19086/da


PRODUCT SPACE MODELS OF CORRELATION: BETWEEN NOISE STABILITY AND ADDITIVE COMBINATORICS

Definition 2.2. Let X be a random vector over alphabet Ω and f : Ω→ R be a function and i ∈ [n]. The
influence of f on the i-th coordinate is:

Infi( f (X)) := E
[
Var
[

f (X) | X\i
]]

.

The (total) influence of f is Inf( f (X)) := ∑
n
i=1 Infi( f (X)).

Note that the influence depends both on the function f and the distribution of the vector X .

3 Our Results

Here we give precise statements of our results presented in the introduction.

3.1 The case of `= 2

Theorem 3.1. Let Ω be a finite set and P a probability distribution over Ω2 with equal marginals π . Let
pairs (Xi,Yi) be i.i.d. according to P for i ∈ {1, . . . ,n}.

Then, for every f : Ωn→ [0,1] with E[ f (X)] = µ > 0:

E[ f (X) f (Y )]≥ c(α(P),µ) , (3)

where the function c() is positive whenever α(P)> 0.

We remark that Theorem 3.1 does not depend on ρ(P) in any way. This is in contrast to the case
` > 2. It is possible to obtain an inverse polynomial bound c(µ)≥ µC for symmetric two-step spaces
(see Section 9).

To prove Theorem 3.1 we make a convex decomposition argument and then apply the multi-step
Theorem 3.2 (see Section 6). For completeness, we provide a proof of Theorem 1.5 assuming Theorem
3.1.

Proof of Theorem 1.5. The “if” part follows from Theorem 3.1. The “only if” can be seen by taking f to
be an appropriate dictator.

3.2 The general case

Theorem 3.2. Let Ω be a finite set and P a distribution over Ω` in which all marginals are equal. Let
tuples X i = (X (1)

i , . . . ,X (`)
i ) be i.i.d. according to P for i ∈ {1, . . . ,n}.

Then, for every function f : Ωn→ [0,1] with E[ f (X ( j))] = µ > 0:

E

[
`

∏
j=1

f (X ( j))

]
≥ c(α(P),ρ(P), `,µ) , (4)

where the function c() is positive whenever α(P)> 0 and ρ(P)< 1.
Furthermore, there exists some D(P) > 0 (more precisely, D depends on α , ρ and `) such that if

µ ∈ (0,0.99], one can take:

c(α,ρ, `,µ) := 1/exp
(

exp
(

exp
(
(1/µ)D

)))
. (5)
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Note that this bound does depend on ρ(P). We also obtain a bound that does not depend on ρ(P) for
multi-step probability spaces generated by Markov chains (see Section 8).

3.3 Hitting of different sets by uniform functions

Finally, we state the generalization of low-influence theorem from [Mos10]. We assume that the reader is
familiar with Fourier coefficients f̂ (σ) and the basics of discrete function analysis, for details see, e.g.,
Chapter 8 of [O’D14]. Note that this theorem requires neither equal marginals nor α(P)> 0. For the
proof see Section 7.

Theorem 3.3. Let X be a random vector distributed according to an `-step distribution P with ρ(P)≤
ρ < 1 and let µ(1), . . . ,µ(`) ∈ (0,1].

There exist k ∈ N and γ > 0 (both depending only on P and µ(1), . . . ,µ(`)) such that for all functions
f (1), . . . , f (`) : Ω→ [0,1], if E[ f ( j)(X ( j))] = µ( j) and maxσ :0<|σ |≤k | f̂ ( j)(σ)| ≤ γ , then

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ c(P,µ(1), . . . ,µ(`))> 0 . (6)

3.4 Assumptions of the theorems

3.4.1 Equal distributions: unnecessary

In Theorems 3.1, 3.2 and 3.3 we assumed that the tuples (X (1)
i , . . . ,X (`)

i ) are distributed identically for
each i. It is natural to ask if it is indeed necessary.

This is not the case. Instead, we made this assumption for simplicity of notation and presentation.
If one is interested in statements which are valid where coordinate i is distributed according to Pi, one
simply needs to assume that there are α > 0 and ρ < 1 such that α(Pi)≥ α and ρ(Pi)≤ ρ .

3.4.2 Equal marginals: necessary

We quickly discuss the case when P does not have equal marginals. Recall that β (P)=minx(1),...,x(`)∈Ω
P(x(1), . . . ,x(`)).

If β (P)> 0, then, by Theorem 1.4, P is set hitting, and therefore also same-set hitting.
In case β (P)= 0, we demonstrate an example which shows that E

[
∏

`
j=1 f (X ( j))

]
can be exponentially

small in n. For concreteness, we set ` := 2 and Ω := {0,1} and consider P which picks uniformly among
{00,01,11}. We then set

S1 := {(x1, . . . ,xn) | x1 = 1∧|wt(x)−n/3| ≤ 0.01n} (7)

S2 := {(x1, . . . ,xn) | x1 = 0∧|wt(x)−2n/3| ≤ 0.01n} (8)

where wt(x) is the Hamming-weight of x, i.e., the number of ones in x.
For large enough n, a concentration bound implies that Pr[X (1) ∈ S1]>

1
3 −0.01 and Pr[X (2) ∈ S2]>

1
3 −0.01. Hence, if we set f to be the indicator function of S := S1∪S2, the assumption of Theorem 3.2
holds. However, because of the first coordinate we have Pr[X (1) ∈ S∧X (2) ∈ S]≤ Pr[X (1) ∈ S2]+Pr[X (2) ∈
S1], and the right hand side is easily seen to be exponentially small.
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It is not difficult to extend this example to any distribution with β (P) = 0 that does not have equal
marginals.

4 Proof Sketch

In this section we briefly outline the proof of Theorem 3.2. For simplicity, we assume that the probability
space is the one from Section 1.4, i.e., (Xi,Yi) are distributed uniformly in {00,11,22,01,12,20}. Ad-
ditionally, we assume that we are given a set S ⊆ {0,1,2}n with µ(S) = |S|/3n > 0, so that we want a
bound of the form

Pr [X ∈ S∧Y ∈ S]≥ c(µ)> 0 .

The proof consists of three steps. Intuitively, in the first step we deal with dictator sets, e.g.,
Sdict = {x : x1 = 0}, in the second step with linear sets, e.g., Slin = {x : ∑

n
i=1 xi (mod 3) = 0} and in the

third step with threshold sets, e.g., Sthr = {x : |{i : xi = 0}| ≥ n/3}.

4.1 Step 1 — making a set resilient

We call a set resilient if Pr[X ∈ S] does not change by more than a (small) multiplicative constant factor
whenever conditioned on (Xi1 = xi1 , . . . ,Xis = xis) on a constant number s of coordinates.

In particular, Sdict is not resilient (because conditioning on x1 = 0 increases the measure of the set to
1), while Slin and Sthr are.

If a set is not resilient, using P(x,x) = 1/6 for every x ∈Ω, one can find an event E :≡ Xi1 = Yi1 =
xi1 ∧ . . .∧Xis = Yis = xis such that for some constant ε > 0 we have Pr[E] ≥ ε and, at the same time,
Pr[X ∈ S | E]≥ (1+ ε)Pr[X ∈ S].

Since each such conditioning increases the measure of the set S by a constant factor, S must become
resilient after a constant number of iterations. Furthermore, each conditioning induces only a constant
factor loss in Pr[X ∈ S∧Y ∈ S].

It is worth noting that this is the only stage of the proof where we assume the same-set property (and
utilize the assumption α(P)> 0).

4.2 Step 2 — eliminating high influences

In this step, assuming that S is resilient, we condition on a constant number of coordinates to transform it
into two sets S′ and T ′ such that:

• Both of them have low influences on all coordinates.

• Both of them are supersets of S (after conditioning).

The first property allows us to apply low-influence set hitting from [Mos10] to S′ and T ′. The second
one, together with the resilience of S, ensures that µ(S′),µ(T ′)≥ (1− ε)µ(S).

In fact, it is more convenient to assume that we are initially given two resilient sets S and T .
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Assume w.l.o.g. that Inf1(T ) ≥ τ for some i ∈ [n]. Given z ∈ {0,1,2}, let Tz := {(x1,x2, . . . ,xn) :
(z,x2, . . . ,xn) ∈ T}. Furthermore, let T ∗z := Tz∪Tz+1 (mod 3).

Since Inf1(T ) ≥ τ , we can show that there exists z ∈ {0,1,2} such that, after conditioning on
X1 = Y1 = z, the sum µ(Sz)+µ(T ∗z ) is strictly greater than the sum µ(S)+µ(T ):

Pr[X ∈ Sz | X1 = z]+Pr[Y ∈ T ∗z | Y1 = z]≥ Pr[X ∈ S]+Pr[Y ∈ T ]+ c(τ) . (9)

We choose to disregard the first coordinate and replace S with S′ := Sz and T with T ′ := T ∗z . Equation
(9) implies that after a constant number of such operations, neither S nor T has any remaining high-
influence coordinates.

Crucially, with respect to same-set hitting our set replacement is essentially equivalent to conditioning
on X1 = z and Y1 = z∨Y1 = z+1 (mod 3). Therefore, each operation induces only a constant factor loss
in Pr[X ∈ S∧Y ∈ T ].

4.3 Step 3 — applying low-influence theorem from [Mos10]

Once we are left with two low-influence, somewhat-large sets S and T , we obtain Pr[X ∈ S∧Y ∈ T ]≥
c(µ)> 0 by a straightforward application of a slightly modified version of Theorem 1.14 from [Mos10].
The theorem gives that ρ(P)< 1 implies that the distribution P is set hitting for low-influence functions:

Theorem 4.1. Let X be a random vector distributed according to (Ω,P) such that P has equal marginals,
ρ(P)≤ ρ < 1 and minx∈Ω π(x)≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε,ρ,α, `)> 0 such that if functions f (1), . . . , f (`) : Ω→ [0,1]
satisfy

max
i∈[n], j∈[`]

Infi( f ( j)(X ( j)))≤ τ , (10)

then, for µ( j) := E[ f ( j)(X ( j))]:

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

− ε . (11)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈ (0,1/2] one can take

τ :=
(
(1−ρ2)ε

`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (12)

The proof of Theorem 4.1 can be found in Appendix A. The first part of the appendix contains a short
explanation of differences between [Mos10] and our version.
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4.4 The case ρ = 1 : open question

Theorem 3.2 requires that ρ < 1 in order to give a meaningful bound. It is unclear whether this is an
artifact of our proof or if it is necessary. In particular, consider the three step distribution P which picks
a uniform triple from {000,111,222,012,120,201}. In other words, sampling from P picks a random
arithmetic progression x,x+d,x+2d with x ∈ Fn

3 and d ∈ {0,1}n. One easily checks that ρ(P) = 1 and
that all marginals are uniform. We do not know if this distribution is same-set hitting.

However, the method of our proof breaks down. We illustrate the reason in the following lemma.

Lemma 4.2. For every n > n0 there exist three sets S(1), S(2), and S(3) such that for the distribution P as
described above we have

• ∀ j : Pr[X ( j) ∈ S( j)]≥ 0.49.

• Pr[∀ j : X ( j) ∈ S( j)] = 0.

• The characteristic functions 1S( j) of the three sets all satisfy

max
i∈[n]

Infi(1S( j)(X ( j)))→ 0 as n→ ∞ .

While the lemma does not give information about whether P is same-set hitting, it shows that our
proof fails (since the analogue of Theorem 4.1 fails).

Proof. We let

S(1) := {x(1) : x(1) has less than n/3 twos} ,
S(2) := {x(2) : x(2) has less than n/3 ones} ,
S(3) := {x(3) : x(3) has less than n/3 zeros} .

Whenever we pick X (1),X (2),X (3), the number of twos in X (1) plus the number of ones in X (2) plus the
number of zeros in X (3) always equals n (there is a contribution of one from each coordinate). All three
properties are now easy to check.

5 Proof for General ` and ρ(P)< 1

The goal of this section is to prove our second main result, which we restate here for convenience.

Theorem 3.2. Let Ω be a finite set and P a distribution over Ω` in which all marginals are equal. Let
tuples X i = (X (1)

i , . . . ,X (`)
i ) be i.i.d. according to P for i ∈ {1, . . . ,n}.

Then, for every function f : Ωn→ [0,1] with E[ f (X ( j))] = µ > 0:

E

[
`

∏
j=1

f (X ( j))

]
≥ c(α(P),ρ(P), `,µ) , (4)
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where the function c() is positive whenever α(P)> 0 and ρ(P)< 1.
Furthermore, there exists some D(P) > 0 (more precisely, D depends on α , ρ and `) such that if

µ ∈ (0,0.99], one can take:

c(α,ρ, `,µ) := 1/exp
(

exp
(

exp
(
(1/µ)D

)))
. (5)

5.1 Properties of the correlation

Recall Definition 2.1. We now give an alternative characterization of ρ(P,{ j}, [`]\{ j}) which will be
useful later. For this, we first define certain random process and an associated Markov chain.

Definition 5.1. Let P be a single-coordinate distribution and let j ∈ [`]. We call a collection of random
variables (X\ j

= (X (1), . . . ,X ( j−1),X ( j+1), . . . ,X (`)),Y,Z) a double sample on step j from P if:

• X is first sampled according to P, ignoring step j.

• Assuming that X\ j
= x\ j, the random variables Y and Z are then sampled independently of each

other according to the j-th step of P conditioned on X\ j
= x\ j.

Sometimes we will omit X\ j from the notation and refer as double sample to (Y,Z) alone.

An equivalent interpretation of a double sample is that after sampling (X\ j
,Y ) according to P we

“forget” about Y and sample Z again from the same distribution (keeping the same value of X\ j). Therefore,
both (X\ j

,Y ) and (X\ j
,Z) are distributed according to P.

If we let
K(y,z) := Pr[Z = z|Y = y] = E

[
Pr
[
Z = z|Y = y,X\ j

]]
,

we see that

π(y)K(y,z) = Pr[Y = y∧Z = z] = Pr[Y = z∧Z = y] = π(z)K(z,y) , (13)

which means that K is the kernel of a Markov chain that is reversible with respect to π (see e.g., [LPW08,
Section 1.6]). Thus, K has an orthonormal eigenbasis with eigenvalues 1 = λ1(K) ≥ λ2(K) ≥ ·· · ≥
λ|Ω|(K)≥−1, (e.g., [LPW08, Lemma 12.2]). We will say that K is the Markov kernel induced by the
double sample (Y,Z).

A standard fact from the Markov chain theory expresses λ2(K) in terms of covariance of functions
f ∈ L2(Ω,π):

Lemma 5.2 (Lemma 13.12 in [LPW08]). Let Y,Z be two consecutive steps of a reversible Markov chain
with kernel K such that both Y and Z are distributed according to a stationary distribution of K. Then,

λ2(K) = max
f :Ω→R

E[ f (Y )]=0
Var[ f (Y )]=1

E [ f (Y ) f (Z)] . (14)
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Lemma 5.3. Let P be a single-coordinate distribution and let (X\ j
,Y,Z) be a double sample from P that

induces a Markov kernel K. Then,

λ2(K) = ρ(P,{ j}, [`]\{ j})2 .

Proof. For readability, let us write X instead of X\ j.
Consider first two functions f and g as in Definition 2.1 and assume without loss of generality

that E[ f (Y )] = E[g(X)] = 0. Of course, we also assume that Var[ f (Y )] = Var[g(X)] = 1 as specified by
Definition 2.1. We will show that

Cov
[

f (Y ),g(X)
]2 ≤ λ2(K) , (15)

and that there exists a choice of f and g that achieves equality in (15).
Let h(x) := E[ f (Y )|X = x] and observe that

E[ f (Y ) f (Z)] = ∑
x,y,z

Pr[X = x]Pr[Y = y | X = x]Pr[Z = z | X = x] f (y) f (z)

= E[h(X)2] . (16)

Now, by Cauchy-Schwarz, (16) and Lemma 5.2 we see that

Cov[ f (Y ),g(X)]2 = E[ f (Y )g(X)]2 = E[h(X)g(X)]2 ≤ E[h(X)2]E[g(X)2]

= E[h(X)2] = E[ f (Y ) f (Z)]≤ λ2(K) .

The equality is obtained for f that maximizes the right-hand side of (14) and g := c ·h for some c > 0.

For later use, we make the following implication of Lemma 5.3.

Corollary 5.4. Let (Y,Z) be a double sample on step j from a single-coordinate distribution (Ω,P) with
ρ(P) = ρ . Then, for every function f : Ω→ R,

E[( f (Y )− f (Z))2]≥ 2(1−ρ
2)Var[ f (Y )]. (17)

Proof. Assume w.l.o.g. that E[ f (Y )] = 0. By Lemmas 5.2 and 5.3,

E
[
( f (Y )− f (Z))2

]
= 2(Var[ f (Y )]−E[ f (Y ) f (Z)])≥ 2(1−ρ

2)Var[ f (Y )] .

5.2 Reduction to the resilient case

In this section, we will prove that we can assume that the function f is resilient in the following sense:
whenever we fix a constant number of inputs to some value, the expected value of f remains roughly the
same.

The intuitive reason for this is simple: if there is some way to fix the coordinates which changes the
expected value of f , we can fix these coordinates such that the expected value increases, which only
makes our task easier (and can be done only a constant number of times).

We first make the concept of “fixing” a subset of the coordinates formal.
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Definition 5.5. Let f : Ω→ [0,1] be a function. A restriction R is a sequence R = (r1, . . . ,rn) where
each ri is either an element ri ∈Ω, or the special symbol ri = ?.

The coordinates with ri = ? are unrestricted, the coordinates where ri ∈Ω are restricted. The size of
a restriction is the number of restricted coordinates.

A restriction R operates on a function f as

(R f )(x1, . . . ,xn) := f (y1, . . . ,yn) (18)

where yi = ri if ri 6= ? and yi = xi otherwise.

Next, we define what it means for a function to be resilient: restrictions do not change the expectation
too much.

Definition 5.6. Let X be a random vector distributed according to a (single-step) distribution (Ω,π). A
function f : Ω→ [0,1] is ε-resilient up to size k if for every restriction R of size at most k we have that
(1− ε)E[ f (X)]≤ E[R f (X)]≤ (1+ ε)E[ f (X)].

The function is upper resilient if the expectation cannot increase too much.

Definition 5.7. Let X be a random vector distributed according to a distribution (Ω,π). A function
f : Ω→ [0,1] is ε-upper resilient up to size k if for every restriction R of size at most k we have that
E[R f (X)]≤ (1+ ε)E[ f (X)].

Resilience and upper resilience are equivalent up to a multiplicative factor which depends only on k
and the smallest probability in the marginal distribution α(π). Intuitively the reason is that if there is
some restriction which decreases the 1-norm, then some other restriction on the same coordinates must
increase the 1-norm somewhat.

Lemma 5.8. Suppose that a function f is ε-upper resilient up to size k. Then, f is ε ′-resilient up to size
k, where ε ′ = ε/(α(π))k.

Proof. Fix a subset S⊆ [n] of the coordinates of size |S| ≤ k. We consider a random variable R whose
values are restrictions with restricted coordinates being exactly S. The elements ri ∈Ω for i∈ S are picked
according to the distribution π . We let p(R′) be the probability a certain restriction R′ is picked, and get

E[ f (X)] = ∑
R′

p(R′) ·E
[
R′ f (X)

]
, (19)

where we sum over all restrictions R′ that restrict exactly the coordinates in S.
Let now R∗ be one of the possible choices for R. Then,

p(R∗) ·E[R∗ f (X)] = E[ f (X)]− ∑
R′ 6=R∗

p(R′) ·E[R′ f (X)]

≥ E[ f (X)]− (1+ ε) ∑
R′ 6=R∗

p(R′) ·E[ f (X)]

= (1− (1+ ε)(1− p(R∗))) ·E[ f (X)]

≥ (p(R∗)− ε) ·E[ f (X)] ,
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and hence:

E[R∗ f (X)]≥
(

1− ε

p(R∗)

)
·E[ f (X)] .

Since p(R∗)≥ α(π)k we get the bound for the restriction R∗, which was chosen arbitrarily.

Lemma 5.9. Let X be a random vector distributed according to a distribution with equal marginals
(Ω,P) and f : Ω→ [0,1] be a function with E[ f (X (1))] = µ > 0.

Let ε ∈ (0,1],k ∈ N. Then, there exists a restriction R such that g := (R f ) is ε-resilient up to size k
and

E[g(X (1))]≥ µ , (20)

E

[
`

∏
j=1

f (X ( j))

]
≥ c ·E

[
`

∏
j=1

g(X ( j))

]
, (21)

where c := exp
(
−2ln1/µ

α2k·ε

)
with α := α(P)> 0.

In particular, c depends only on ε,k,α(P) and µ (requiring ε,α(P),µ > 0).

Proof. Let ε ′ := αk ·ε and choose a restriction R such that E[R f (X (1))]≥ E[ f (X (1))] ·(1+ε ′). We repeat
this, replacing f with (R f ), until there is no such restriction.

Since the expectation of f only increases, we get (20). Finally, once the process stops, the resulting
function is ε-resilient due to Lemma 5.8 (note that α(π)≥ α).

It remains to argue that (21) holds for the resulting function. Note first that the expectation cannot
exceed 1, and hence the process will be repeated at most p := ln(1/µ)/ ln(1+ ε ′) ≤ 2ln(1/µ)

ε ′ times.
Therefore, the final restriction R obtained after at most p iterations of the process above is of size at most
pk.

Define g := (R f ) and let E be the event that all strings X (1), . . . ,X (`) agree with the restriction R in
its restricted coordinates. We will use 1(E) to denote the function which is 1 if event E happens and 0
otherwise. We see that

E

[
`

∏
j=1

f (X ( j))

]
≥ E

[
`

∏
j=1

f (X ( j)) ·1(E)

]
= E

[
`

∏
j=1

g(X ( j)) ·1(E)

]

≥ α
pk ·E

[
`

∏
j=1

g(X ( j))

]
.

Finally,

α
pk ≥ exp

(
−2k ln(1/α) ln(1/µ)

αk · ε

)
≥ exp

(
−2ln1/µ

α2k · ε

)
.
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5.3 Reduction to the low-influence case

We next show that if f is resilient, we can also assume that it has only low influences. However, this part
of the proof actually produces a collection of functions g(1), . . . ,g(`) such that each of them has small
influences: it operates differently on each function. In turn, it is more convenient to do this part of the
proof also starting from a collection f (1), . . . , f (`), as long as all of them are sufficiently resilient.

As in the previous section, we use restrictions. Here, however, we are only interested in restrictions of
size one. Consequently, we write R[i,a] to denote the restriction R= (r1, . . . ,rn) with ri = a and ri′ = ?
for i′ 6= i.

Furthermore, we require a new operator.

Definition 5.10. Let f : Ω→ [0,1], i ∈ [n], and fix values y,z ∈Ω.
We define the operator M[i,y,z] as

(M[i,y,z] f )(x1, . . . ,xn) := max
(

f (x1, . . . ,xi−1,y,xi+1, . . . ,xn),

f (x1, . . . ,xi−1,z,xi+1, . . . ,xn)
)
.

The operator M[i,y,z] is useful for two reasons. First, if Infi( f ( j)) is “large”, then E
[
M[i,y,z] f ( j)(X ( j))

]
≥

E[ f ( j)(X ( j))]+ c for some y,z ∈Ω and c > 0. This implies that we can use this operator to increase the
expectation of a function unless all of its influences are small. We will prove this property later.

Second, fix a step j∗ ∈ [`] and assume that for some values x\ j∗ =(x(1), . . . ,x( j∗−1),x( j∗+1), . . . ,x(`)),y,z∈
Ω both conditional probabilities Pr[X ( j∗)

i = y | X\ j∗
i = x\ j∗ ] and Pr[X ( j∗)

i = z | X\ j∗
i = x\ j∗ ] are “somewhat

large” (larger than some constant). We imagine now that X (\ j∗)
i = x\ j∗ and that we have also picked

all values X ( j∗)
\i = (X ( j∗)

1 , . . . ,X ( j∗)
i−1 ,X

( j∗)
i+1 , . . . ,X

( j∗)
n ). We then hope that X ( j∗)

i is picked among y and z

such that it maximizes f ( j∗). Since this happens with constant probability, we conclude the following:
Suppose we replace f ( j∗) with M[i,y,z] f ( j∗) and then prove that afterwards E[∏ f ( j)(X ( j))] is large. Then,
E[∏ f ( j)(X ( j))] was large before.

This second point is formalized in the following lemma:

Lemma 5.11. Let X be a random vector distributed according to (Ω,P). Fix i ∈ [n], j∗ ∈ [`] and
x\ j∗ = (x(1), . . . ,x( j∗−1),x( j∗+1), . . . ,x(`)),y,z ∈Ω. Suppose that:

P(x\ j∗ ,y)≥ β , (22)

P(x\ j∗ ,z)≥ β . (23)

Let f (1), . . . , f (`) : Ω→ [0,1], and for j ∈ [`] define:

g( j) :=

{
R[i,x( j)] f ( j) if j 6= j∗,
M[i,y,z] f ( j) if j = j∗.

(24)

Then:

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ β ·E

[
`

∏
j=1

g( j)(X ( j))

]
. (25)
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Proof. We first define a random variable A, which is the value among y and z which X ( j∗)
i needs to take

in order to maximize f ( j∗). Formally,

A =

{
y if f

(
X ( j∗)
\i ,y

)
> f

(
X ( j∗)
\i ,z

)
,

z otherwise.
(26)

Consider now the event E which occurs if X i = (x\ j,A). We get

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ E

[
`

∏
j=1

f ( j)(X ( j)) ·1(E)

]

= E

[
`

∏
j=1

g( j)(X ( j)) ·1(E)

]

= E

[
E

[
`

∏
j=1

g( j)(X ( j)) ·1(E)

∣∣∣∣∣X\i
]]

= E

[
`

∏
j=1

g( j)(X ( j)) ·E
[
1(E)

∣∣∣X\i]
]

≥ β ·E

[
`

∏
j=1

g( j)(X ( j))

]
.

The equality from the first to the second line follows because if the event E happens, then the functions
f ( j)(X ( j)) and g( j)(X ( j)) are equal. From the third to the fourth line we use that conditioned on X\i the
functions g( j)(X ( j)) are constant. Finally, the last inequality follows because by (22) and (23), for every
choice of X\i = (X1, . . . ,X i−1,X i+1, . . . ,Xn) event E has probability at least β .

The obvious idea for the next step would be to find values x\ j,y,z such that

E
[
M[i,y,z] f ( j∗)(X ( j∗))

]
≥ E

[
f ( j∗)(X ( j∗))

]
+ c

and fix them.
Unfortunately, there is a problem with this strategy. To replace the function f ( j∗) with M[i,y,z] f ( j∗),

Lemma 5.11 also replaces f ( j) with R[i,x( j)] f ( j) for j 6= j∗ (and this is required for the proof to work).
Unfortunately, it is possible that E

[
R[i,x( j)] f ( j)(X ( j))

]
� E

[
f ( j)(X ( j))

]
. We remark that we cannot use

that f ( j) is resilient here: while f ( j) is resilient the first time we condition, the functions M[i,y,z] f ( j)

obtained in the subsequent steps are not resilient in general, so later steps will not have the guarantee.

Our solution is to pick the values (X\ j∗
,Y,Z) at random, as a double sample on coordinate j∗

(cf. Definition 5.1). Let:

G( j) :=

{
R[i,X ( j)] f ( j) if j 6= j∗,
M[i,Y,Z] f ( j) if j = j∗.
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JAN HĄZŁA, THOMAS HOLENSTEIN, AND ELCHANAN MOSSEL

Note that the random variable X ( j) is part of the double sample (X\ j∗
,Y,Z) and sampled separately (and

independently) from the random vector X . In particular, it should not be confused with the “input” random
variable X ( j)

i . We prove that (in expectation over X (\ j)
,Y,Z) the sum of expectations ∑

`
j=1 E[G( j)(X ( j))]

is greater by a constant than the sum ∑
`
j=1 E[ f ( j)(X ( j))]. To argue that the sum of expectations increases,

the key part is to show that E
[
G( j∗)(X ( j∗))

]
increases by a constant.

Lemma 5.12. Let (X\ j∗
,Y,Z) be a double sample from a single-coordinate distribution P.

Let X be a random vector, independent of this double sample and distributed according to a single-step
distribution (Ω,π) such that π is the j∗-th marginal distribution of P.

Then, for every i ∈ [n] and every function f : Ω→ [0,1] we have

E [M[i,Y,Z] f (X)]≥ E[ f (X)]+ τ(1−ρ
2(P)) , (27)

where τ = Infi( f (X)).

Recall that the distribution of (Y,Z) depends on j∗. We do not need to consider the full multi-step
process in this lemma, but when applying it later we will set X = X ( j∗) and f = f ( j∗).

Proof. Fix a vector x\i for X\i, and define the function h : Ω→ [0,1] as h(x) := f (x\i,x). By Corollary 5.4,

E[|h(Y )−h(Z)|]≥ E[(h(Y )−h(Z))2]≥ 2(1−ρ
2)Var[h(Y )] ,

and hence, averaging over X\i,

E
[∣∣∣ f (X\i,Y )− f (X\i,Z)

∣∣∣]≥ 2(1−ρ
2) Infi( f (X\i,Y )) = 2τ(1−ρ

2) . (28)

Since Y and Z are symmetric (i.e., they define a reversible Markov chain, cf. remarks after Definition
5.1) and by (28),

E [(M[i,Y,Z] f − f )(X)] = E
[
max( f (X\i,Y ), f (X\i,Z))− f (X\i,Y )

]
=

1
2

E
[∣∣∣ f (X\i,Y )− f (X\i,Z)

∣∣∣]≥ τ(1−ρ
2) ,

as claimed.

Lemma 5.13. Let a random vector X be distributed according to (Ω,P) and functions f (1), . . . , f (`) :
Ω→ [0,1]. Let i, j∗ and τ be such that Infi( f ( j∗))≥ τ ≥ 0 and let ρ(P)≤ ρ ≤ 1.

Pick a double sample (X\ j∗
,Y,Z) from P and let:

G( j) :=

{
R[i,X ( j)] f ( j) if j 6= j∗

M[i,Y,Z] f ( j∗) if j = j∗.
(29)

Then:

E

[
`

∑
j=1

E[G( j)(X ( j)) | G( j)]

]
≥

`

∑
j=1

E
[

f ( j)(X ( j))
]
+ τ · (1−ρ

2) . (30)
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Note that (29) defines the functions G( j) as random variables which is why we use capital letters.

Proof. If j 6= j∗ we have

E
[
E[G( j)(X ( j)) | G( j)]

]
= E[ f ( j)(X ( j))] , (31)

since the marginal distribution of X ( j) is exactly as in the marginal π of P. Hence, it suffices to show that

E
[
E[G( j∗)(X ( j∗)) | G( j∗)]

]
= E

[
M[i,Y,Z] f ( j∗)(X ( j∗))

]
≥ E[ f ( j∗)(X ( j∗))]+ τ(1−ρ

2) ,

but this is exactly Lemma 5.12.

Lemma 5.14. Let X be a random vector distributed according to (Ω,P) and also let f (1), . . . , f (`) : Ω→
[0,1], i ∈ [n], j∗ ∈ [`], Infi( f ( j∗))≥ τ ≥ 0, ρ(P)≤ ρ ≤ 1.

Then, there exist values x\ j∗ = (x(1), . . . ,x( j∗−1),x( j∗+1), . . . ,x(`)),y,z such that the functions

g( j) :=

{
R[i,x( j)] f ( j) if j 6= j∗

M[i,y,z] f ( j) if j = j∗
(32)

satisfy

`

∑
j=1

E[g( j)(X ( j))]≥
`

∑
j=1

E[ f ( j)(X ( j))]+ τ(1−ρ
2)/2 , (33)

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ τ(1−ρ2)

2`|Ω|`+1 ·E

[
`

∏
j=1

g( j)(X ( j))

]
. (34)

While (33) is immediate from Lemma 5.13, we have to do a little bit of work to guarantee that it
holds simultaneously with (34).

Proof. Choose (X\ j∗
,Y,Z) as a double sample from P and let G( j) be defined as in (29).

Define p(x\ j∗ ,y,z) := Pr[X\ j∗
= x\ j∗ ∧Y = y∧Z = z], β := τ(1−ρ2)

2`|Ω|`+1 , an event E :≡ p(X\ j∗
,Y,Z)< β

and a random variable

A :=
`

∑
j=1

E[G( j)(X ( j)) | G( j)]−E[ f ( j)(X ( j))] .

By Lemma 5.13, we have E[A]≥ τ(1−ρ2).
Since there are |Ω|`+1 possible tuples (x\ j,y,z), by union bound we have Pr[E]≤ |Ω|`+1β = τ(1−

ρ2)/2`. Bearing in mind the above and that A ∈ [−`,`],

E[A ·1(¬E)]≥ E[A]− `Pr[E]≥ τ(1−ρ
2)/2 .

As a consequence, we can choose (x\ j∗ ,y,z) such that A≥ τ(1−ρ2)/2 and E does not happen. (33)
is now immediate, while for (34) observe that ¬E implies P(X\ j∗

,Y )≥ β and P(X\ j∗
,Z)≥ β and apply

Lemma 5.11.
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We can now repeat the process from Lemma 5.14 multiple times to get the result of this section.

Corollary 5.15. Let X be a random vector distributed according to (Ω,P) with ρ(P)≤ ρ < 1. Then, for
every τ > 0 there exist k ∈ N and β > 0 such that:

For every ε ∈ [0,1] and functions f (1), . . . , f (`) : Ω→ [0,1] such that each f ( j) is ε-resilient up to size
k, there exist g(1), . . . ,g(`) : Ω→ [0,1] with the following properties:

1. max j∈[`] maxi∈[n] Infi(g( j)(X ( j)))≤ τ .

2. E
[
∏

`
j=1 f ( j)(X ( j))

]
≥ β ·E

[
∏

`
j=1 g( j)(X ( j))

]
.

3. For all j ∈ [`]: E[g( j)(X ( j))]≥ (1− ε)E[ f ( j)(X ( j))].

Furthermore, one can take k := b 2`
τ(1−ρ2)

c and β :=
(

τ(1−ρ2)
2`|Ω|`+1

)k
.

In particular, both k and β depend only on τ and P (requiring τ > 0 and ρ(P)< 1).

Proof. We repeat the process from Lemma 5.14, always replacing the collection of functions f (1), . . . , f (`)

with g(1), . . . ,g(`) until condition 1 is satisfied. Since ∑
`
j=1 E[ f ( j)(X ( j))] cannot exceed ` and every time it

increases by τ(1−ρ2)/2, we have to do this at most 2`
τ(1−ρ2)

times.
The first point is then obvious, and the second point follows from Lemma 5.14.
Finally, the third point follows because the functions f ( j) are all ε-resilient up to size k, and each

of the functions g( j) can be written as a maximum of restrictions of size at most k of f ( j). Since the
maximum only increases expectations, the proof follows.

5.4 Finishing the proof

Proof of Theorem 3.2. Let us assume that µ ∈ (0,0.99], the computations being only easier if this is
not the case. To establish (5), whenever we say “constant”, in the O() notation or otherwise, we mean
“depending only on P (in particular, on α , ρ , |Ω| and `), but not on µ”.

The proof consecutively applies Lemma 5.9, Corollary 5.15 and Theorem 4.1.
Given f : Ω→ [0,1] with E[ f (X (1))] = µ , first apply Lemma 5.9 to f with ε := 1/2 and k :=

exp
(
(1/µ)D

)
for a constant D large enough (where “large enough” will depend on another constant D′

to be defined later). This gives us a function g : Ω→ [0,1] such that:

• g is ε-resilient up to size k.

• E[g(X (1))]≥ µ .

•

E

[
`

∏
j=1

f (X ( j))

]
≥ c ·E

[
`

∏
j=1

g(X ( j))

]
, (35)
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where:

c = 1/exp
(
(1/α)2k ·4ln1/µ

)
≥ 1/exp(exp(O(k)) ·4ln1/µ)

≥ 1/exp
(

exp
(

exp
(
(1/µ)O(1)

))
·4ln1/µ

)
≥ 1/exp

(
exp
(

exp
(
(1/µ)O(1)

)))
.

Next, apply Corollary 5.15. Set g(1) := . . . := g(`) := g and τ := 1/exp
(
(1/µ)D′

)
for a constant D′

large enough. We need to check if k we have chosen satisfies the assumption of Corollary 5.15:

2`
τ(1−ρ2)

≤ O
(

exp
(
(1/µ)D′

))
≤ exp

(
(1/µ)O(1)

)
≤ k .

Therefore, Corollary 5.15 is applicable and yields h(1), . . . ,h(`) : Ω→ [0,1] such that:

• max j∈[`] maxi∈[n] Infi(h( j)(X ( j)))≤ τ .

• ∀ j ∈ [`] : E[h( j)(X ( j))]≥ µ/2.

•

E

[
`

∏
j=1

g(X ( j))

]
≥ β ·E

[
`

∏
j=1

h( j)(X ( j))

]
, (36)

where:

β =

(
τ(1−ρ2)

2`|Ω|`+1

)k

≥ 1/O
(

exp
(
(1/µ)D′

))k

≥ 1/exp
(
(1/µ)O(1) · k

)
≥ 1/exp

(
exp
(
(1/µ)O(1)

))
.

Finally, we need to apply Theorem 4.1. To this end, set:

ε := (µ/2)`
2/(1−ρ2) /2≥ µ

O(1)

and verify (12):(
(1−ρ2)ε

`5/2

)O
(

ln(`/ε) ln(1/α)
(1−ρ)ε

)
≥Ω(ε)(O(1)+ln1/ε)·O(1/ε)

≥ 1/exp
(
(O(1)+ ln1/ε)2 ·O(1/ε)

)
≥ 1/exp

(
(1/ε)O(1)

)
≥ 1/exp

(
(1/µ)O(1)

)
.

Hence, from Theorem 4.1:

E

[
`

∏
j=1

h( j)(X ( j))

]
≥ ε/2≥ µ

O(1) . (37)
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(35), (36) and (37) put together give:

E

[
`

∏
j=1

f (X ( j))

]
≥ c ·β ·µO(1) ≥ 1/exp

(
exp
(

exp
((

(1/µ)O(1)
))))

,

as claimed.

6 Proof for Two Steps

Our goal in this section is to prove Theorem 3.1 assuming Theorem 3.2.
In the following we will sometimes drop the assumption that Ω is necessarily the support of a

probability distribution P. One can check that this will not cause problems.

6.1 Correlation of a cycle

Assume we are given a support set Ω of size |Ω| = k. Let s ≥ 2, p ∈ (0,1) and let (x0, . . . ,xs−1) be a
sequence of distinct xi ∈Ω.

Definition 6.1. We call a probability distribution C over Ω an (s, p)-cycle if

C(x,y) =


p/s if x = y = xi for i ∈ {0, . . . ,s−1} ,
(1− p)/s if x = xi∧ y = x(i+1) mod s for i ∈ {0, . . . ,s−1} ,
0 otherwise.

Lemma 6.2. Let C be an (s, p)-cycle. Then

ρ(C)≤ 1− 7p(1− p)
s2 .

Proof. Let K be the Markov kernel induced by a double sample on C (K is the same whether a sample is
on the first or the second step, cf. Section 5.1). Observe that

K(y,z) :=

{
p2 +(1− p)2 if y = z = xi,
p(1− p) if y = xi and z = x(i±1) mod s.

Let αk := 2πk
s . One can check that the eigenvalues of K are λ0, . . . ,λs−1 with λk := 1−2p(1− p)(1−

cosαk). This is easiest if one knows the respective (complex) eigenvectors vk :=(1,exp(αkı), . . . ,exp((s−
1)αkı)) (where ı is the imaginary unit).

Using cosx≤ 1− x2/5 for x ∈ [0,π] and
√

1− x≤ 1− x/2 for x ∈ [0,1] we obtain that if k > 0, then

√
λk ≤

√
1−2p(1− p)(1− cosα1)≤

√
1−2p(1− p)

4π2

5s2 ≤ 1− 7p(1− p)
s2 .

The bound on ρ(C) now follows from Lemma 5.3.
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6.2 Convex decomposition of P

In this section we show that if a distribution P can be decomposed into a convex combination of
distributions P= ∑

r
k=1 αkPk and each distribution Pk is same-set hitting, then also P is same-set hitting.

Definition 6.3. We say that a probability distribution with equal marginals P has an (α,ρ)-convex
decomposition if there exist β1, . . . ,βr > 0 with ∑

r
k=1 βk = 1 and distributions with equal marginals

P1, . . . ,Pr such that

P=
r

∑
k=1

βk ·Pk .

and α(Pk)≥ α and ρ(Pk)≤ ρ for every k ∈ [r].

Lemma 6.4. Let an `-step distribution P with equal marginals have an (α,ρ)-convex decomposition for
some α > 0 and ρ < 1.

Then, for every function f : Ω→ [0,1] with E[ f (X (1))] = µ > 0:

E

[
`

∏
j=1

f (X ( j))

]
≥ c(α,ρ, `,µ)> 0 .

Proof. Let us write the relevant decomposition as P= ∑
r
k=1 βkPk. The existence of this decomposition

implies that there exists a random vector Z = (Z1, . . . ,Zn) such that:

• The variables Zi ∈ [r] are i.i.d. with Pr[Zi = k] = βk.

• For every i ∈ [n] and k ∈ [r], conditioned on Zi = k, the tuple X i is distributed according to Pk.

Let z be an arbitrary assignment to Z and let µz := E[ f (X (1)) | Z = z]. If µz ≥ µ/2, by Theorem 3.22

E

[
`

∏
j=1

f (X ( j)) | Z = z

]
≥ c(α,ρ, `,µ)> 0 . (38)

Since E[µZ] = E[E[ f (X (1)) | Z]] = E[ f (X (1))] = µ , by Markov

Pr [µZ ≥ µ/2]≥ µ/2 . (39)

(38) and (39) together give

E

[
`

∏
j=1

f (X ( j))

]
≥ µ/2 · c(α,ρ, `,µ)> 0 .

2Technically, Theorem 3.2 requires the distributions to be the same for each coordinate, which is not the case in our setting.
However, this is not a problem, cf. Section 3.4.1.
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6.3 Decomposition of P into cycles

Definition 6.5. Let us consider weighted directed graphs with non-negative weights over a vertex set Ω.
We will identify such a digraph G with its weight matrix.

We say that such a weighted digraph is regular, if for every vertex the total weight of the incoming
edges is equal to the total weight of the outgoing edges.

We call a weighted digraph a weighted cycle, if it is a directed cycle over a subset of Ω with all edges
of the same weight w > 0. We call w the weight of the cycle and number of its edges s the size of the
cycle.

We say that a weighted digraph G can be decomposed into r weighted cycles if there exist weighted
cycles C1, . . . ,Cr such that G = ∑

r
k=1Ck.

Lemma 6.6. Every regular weighted digraph G over a set Ω of size k can be decomposed into at most k2

weighted cycles.

Proof. Since the digraph is regular, it must have a cycle. Remove it from the graph (taking as weight w
the minimum weight of the edge on this cycle).

Since the resulting graph is still regular, proceed by induction until the graph is empty.
At each step at least one edge is completely removed from the graph, therefore there will be at most

k2 steps.

To see that a two-step distribution P can be decomposed into cycles, it will be useful to take
P′ := P−α · Id and look at it as a weighted directed graph (Ω,P′), where P′ is interpreted as a weight
function P′ : Ω×Ω→ R≥0.

Lemma 6.7. Let P be a two-step distribution with equal marginals over an alphabet Ω with size t.
Then, P has a convex decomposition P= ∑

r
k=1 βkPk such that each Pk either has support of size 1 or

is an (s, p)-cycle with 2≤ s≤ t and p ∈ [α(P)3,1/2].
Consequently, P has an (α,ρ)-convex decomposition with α := α(P)4 and ρ := 1−3α(P)5.

Proof. Throughout this proof we will treat P as a weight matrix of a digraph. Since P has equal marginals,
this weighted digraph is regular. Use Lemma 6.6 to decompose P−α(P) · Id into weighted cycles, which
allows us to write

P= α(P) · Id+
r

∑
k=1

Ck ,

where Ck is a weighted cycle with weight wk and size sk and r ≤ t2. Take βk := min(wk,α(P)/t2) and let
Idk be the identity matrix restricted to the support of Ck. Now we can write P as

P=

(
α(P) · Id−

r

∑
k=1

βk Idk

)
+

(
r

∑
k=1

sk(wk +βk) ·
βk Idk+Ck

sk(wk +βk)

)
.

Firstly, (α(P) · Id−∑
r
k=1 βk Idk) can be decomposed into distributions with support size 1.

As for the other term, note that Ck := βk Idk +Ck
sk(wk+βk)

is a probability distribution that either has support of
size 1 (iff Ck has support of size 1) or is an (s, p)-cycle with 2≤ s≤ t and p = βk/(βk +wk).
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If βk = wk, then p = 1/2. If βk < wk, then 1/2 ≥ p = βk/(βk +wk) ≥ βk = α(P)/t2 ≥ α(P)3.
Therefore, p ∈ [α(P)3,1/2], as stated.

Consequently, α(Ck) = p/sk ≥ α(P)4 and, by Lemma 6.2, ρ(Ck) ≥ 1− 3α(P)5 and, since every
(s, p)-cycle has equal marginals, we obtained an (α,ρ)-convex decomposition of P.

6.4 Putting things together

Proof of Theorem 3.1. From Lemmas 6.7 and 6.4.

Remark 6.8. One can see that see that, as in Theorem 3.2, we obtain a triply exponential explicit bound,
i.e, there exists D(α(P))> 0 such that if µ ∈ (0,0.99], then

E [ f (X) f (Y )]≥ 1/exp
(

exp
(

exp
(
(1/µ)D

)))
.

7 Local Variance

In this section we state and prove a generalization of the low-influence theorem from [Mos10]. We
assume that the reader is familiar with Fourier coefficients f̂ (σ) and the basics of discrete function
analysis, for details see, e.g., Chapter 8 of [O’D14].

[Mos10] shows that ρ(P)< 1 implies that P is set hitting for low-influence functions. We extend this
result to a weaker notion of influence. In particular, we show that P is set hitting for functions with Ω(1)
measure and o(1) largest Fourier coefficient. The main result of this section is Theorem 3.3.

We remark that Theorem 3.3 does not require equal marginals. The rest of this section contains the
proof of Theorem 3.3. First, from Corollary 5.15 and Theorem 4.1 it is easy to establish3 the following:

Theorem 7.1. Let X be a random vector distributed according to an `-step distribution P with ρ(P)≤
ρ < 1 and let ε ∈ [0,1).

Then, for all µ(1), . . . ,µ(`) ∈ (0,1] there exists k(P,ε,µ(1), . . . ,µ(`)) ∈ N such that for all functions
f (1), . . . , f (`) : Ω→ [0,1], if E[ f ( j)(X ( j))] = µ( j) and if f (1), . . . , f (`) are all ε-resilient up to size k, then

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥ c(P,ε,µ(1), . . . ,µ(`))> 0 . (40)

Definition 7.2. Let π be a single-step distribution and let f : Ω→ R be a function. Let S ⊆ [n] with
|S|= k. We define f⊆S : Ω→ R as

f⊆S(x) := E[ f (xS,XS)] , (41)

where S := [n]\ S, xS is the vector x restricted to coordinates in S, and XS is a random vector of n− k
elements with each coordinate distributed i.i.d. in π .

A proof of the following claim can be found, e.g., in [O’D14]:

3One needs to check that the assumption about equal marginals is not necessary, but that turns out to be the case (the bound
in Theorem 4.1 then depends on min j∈[`],x∈supp(X ( j)) π( j)(x)).
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Claim 7.3. Let π be a single-step distribution and let f : Ω→ R, S ⊆ [n]. If a random vector X is
distributed according to π and φ0, . . . ,φm−1 form a Fourier basis for π and f = ∑σ∈Nn

<m
f̂ (σ)φσ , then

f⊆S = ∑σ :supp(σ)⊆S f̂ (σ)φσ . In particular,

Var
[

f⊆S(X)
]
= ∑

σ :supp(σ)⊆S,
σ 6=0n

∣∣ f̂ (σ)
∣∣2 .

Lemma 7.4. Let a random vector X be distributed according to a single-step distribution π with
minx∈Ω π(x)≥ α and let ε ∈ [0,1], k ∈ N.

Then, for every f : Ω→ R≥0 with E[ f (X)] = µ , if for every S⊆ [n] with |S|= k it holds that

Var
[

f⊆S(X)
]
≤ α

k(εµ)2 ,

then f is ε-resilient up to size k.

Proof. We prove the contraposition.
If f is not ε-resilient up to size k, by definition of f⊆S it implies that there exist S⊆ [n] with |S|= k

and x such that ∣∣ f⊆S(x)−E[ f⊆S(X)]
∣∣> ε E[ f⊆S(X)] = εµ .

But this gives

Var
[

f⊆S(X)
]
≥ α

k ( f⊆S(x)−E[ f⊆S(X)]
)2

> α
k(εµ)2 ,

as required.

Using Lemma 7.4 we can weaken the assumption in Theorem 7.1 such that it only requires that all
Fourier coefficients of degree at most k are small:

Proof of Theorem 3.3. From Theorem 7.1, there exists k := k(P,µ(1), . . . ,µ(`)) such that if f (1), . . . , f (`)

are all 1/2-resilient up to size k, then (6) holds. Therefore, it is sufficient to show that the functions f ( j)

are indeed 1/2-resilient up to size k if the parameter γ is chosen small enough.
By Claim 7.3, if maxσ :0<|σ |≤k | f̂ ( j)(σ)| ≤ γ , then for any S⊆ [n] with |S|= k we have Var

[
( f ( j))⊆S(X ( j))

]
≤

|Ω|kγ2. With that in mind it is easy to choose γ such that Lemma 7.4 can be applied to each f ( j).

8 Multiple Steps of a Markov Chain

Next, we consider the case where the distribution P is such that the random variables X (1),X (2), . . . ,X (`)

form a Markov chain.

Definition 8.1. Let P be a an `-step distribution with equal marginals and let X = (X (1), . . . ,X (`)) be a
random variable distributed according to P. We say that P is generated by Markov chains4 if for every
j ∈ {2, . . . , `} and x(1), . . . ,x( j) ∈Ω we have

Pr[X ( j) = x( j)|X (1) = x(1)∧·· ·∧X ( j−1) = x( j−1)]

= Pr[X ( j) = x( j)|X ( j−1) = x( j−1)] .
4Note that our definition allows for different Markov chains in different steps.
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Observe that since we still require P to have equal marginals, the marginal π is then simply a
stationary distribution of the chain.

In this case, we give a reduction to Theorem 3.1 to prove a bound that does not depend on ρ(P):

Theorem 8.2. Let Ω be a finite set and P a probability distribution over Ω` with equal marginals
generated by Markov chains. Let tuples X i = (X (1)

i , . . . ,X (`)
i ) be i.i.d. according to P for i ∈ {1, . . . ,n}.

Then, for every f : Ωn→ [0,1] with E[ f (X (1))] = µ > 0:

E

[
`

∏
j=1

f (X ( j))

]
≥ c(α(P), `,µ) , (42)

where the function c() is positive whenever α(P)> 0.

Proof. Let P be a distribution generated by Markov chains with α := α(P) > 0 and let f : Ω→ [0,1]
with E[ f (X (1))] = µ > 0.

The proof is by induction on `. For `= 2, apply Theorem 3.1 directly. For ` > 2, define the function
g : Ω→ [0,1] as

g(x) := E
[

f (X (`−1)) f (X (`)) | X (`−1) = x
]
= f (x) ·E

[
f (X (`)) | X (`−1) = x

]
.

Applying Theorem 3.1 for the distribution of the last two steps,

E[g(X (1))] = E[g(X (`−1))] = E[ f (X (`−1)) f (X (`))]≥ c(α,µ)> 0 . (43)

Now we have

E

[
`

∏
j=1

f (X ( j))

]
= E

[(
`−2

∏
j=1

f (X ( j))

)
g(X (`−1))

]
(44)

≥ E

[
`−1

∏
j=1

g(X ( j))

]
(45)

≥ c(α, `−1,c(α,µ)) = c(α, `,µ)> 0, (46)

where (44) holds since P is generated by Markov chains, (45) is due to f ≥ g pointwise and (46) is an
application of the induction and (43).

Remark 8.3. Unfortunately, this proof worsens the explicit bound. One can check that for a Markov-
generated distribution with ` steps the dependence on µ is a tower of exponentials of height 3(`−1).

9 Polynomial Same-Set Hitting

The property of set hitting establishes a lower bound on E
[
∏

`
j=1 f ( j)(X ( j))

]
that is independent of n.

However, it might be the case that this bound is very small, perhaps far from the best possible one. In
particular, our bound from Theorem 3.2 is triply exponentially small, and the bound from Theorem 1.2 is
not even primitive recursive.
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Definition 9.1. A distribution P is polynomially set hitting (resp. polynomially same-set hitting) if there
exists C ≥ 0 such that P is (µ,µC)-set hitting (resp. same-set hitting) for every µ ∈ (0,1].

As a matter of fact, [MOS13] (cf. Theorem 1.4) establishes that all distributions that are set hitting
are also polynomially set hitting. We suspect that this is also the case for two-step same-set hitting, but
this remains an open problem.

However, it is possible to harness reverse hypercontractivity to show that all symmetric two-step
distributions are polynomially same-set hitting:

Theorem 9.2. Let a two-step probability distribution with equal marginals P be symmetric, i.e., P(x,y) =
P(y,x) for all x,y ∈Ω. If α(P)> 0, then P is polynomially same-set hitting.

We omit the proof of Theorem 9.2, noting that the idea is similar as in Section 6: one performs an
obvious convex decomposition of P into cycles of length two and applies the result of [MOS13] to each
term of this decomposition.

A Appendix: Proof of Theorem 4.1

Our proof of Theorem 4.1 follows in this appendix. It is only a slight adaptation of the argument from
[Mos10], but we include it in full for the sake of completeness.

We first restate the theorem and discuss the differences between our proof and the one in [Mos10]:

Theorem 4.1. Let X be a random vector distributed according to (Ω,P) such that P has equal marginals,
ρ(P)≤ ρ < 1 and minx∈Ω π(x)≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε,ρ,α, `)> 0 such that if functions f (1), . . . , f (`) : Ω→ [0,1]
satisfy

max
i∈[n], j∈[`]

Infi( f ( j)(X ( j)))≤ τ , (10)

then, for µ( j) := E[ f ( j)(X ( j))]:

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

− ε . (11)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈ (0,1/2] one can take

τ :=
(
(1−ρ2)ε

`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (12)

Theorem 4.1 is very similar to a subcase of Theorem 1.14 from [Mos10]. We make a stronger claim
with one respect: in [Mos10] the influence threshold τ depends among others on:

α
∗ := min

(x(1),...,x(`))∈supp(P)
P(x(1), . . . ,x(`)) , (47)
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while our bound depends only on the smallest marginal probability:

α = min
x∈Ω

π(x) . (48)

The main differences to the proof in [Mos10] are:

• [Mos10] proves the base case ` = 2 and then obtains the result for general ` by an inductive
argument (cf., Theorem 6.3 and Proposition 6.4 in [Mos10]). Since the induction is applied to
functions f (1) and g := ∏

`
j=2 f ( j), where g is viewed as a function on a single-step space, the

information on the smallest marginal is lost in the case of g. To avoid this, our proof proceeds
directly for general `. However, the structure and the main ideas are really the same as in [Mos10].

• In Section A.4, in hypercontractivity bounds for Gaussian and discrete spaces (Theorem A.42 and
Lemma A.43) we are slightly more careful to obtain bounds which depend on α rather than α∗

(as defined in (48) and (47)). This better bound is then propagated in the proof of the invariance
principle.

• Another change is not related to the dependency on the smallest marginal. In Section A.8, in
the Gaussian reverse hypercontractivity bound (Theorem A.76) instead of using the result of
Borell ([Bor85], Theorem 5.1 in [Mos10]) for a bound expressed in terms of the cdf of bivariate
Gaussians, we utilize the results of [CDP15] and [Led14] for a more convenient bound of the form(
∏

`
j=1 µ( j)

)c(ρ,`)
.

The proof can be generalized in several directions, but for the sake of clarity we present the simplest
version sufficient for our purposes.

A.1 Preliminaries — the general framework

We start with explaining the notation of random variables and L2 spaces that we will use throughout the
proof.

Definition A.1. Let (Ω,F,P) be a probability space. We define the real inner product space L2(Ω,P) as
the set of all square-integrable functions f : Ω→ R, i.e., the functions that satisfy∫

Ω

f 2 dP<+∞ , (49)

with inner product defined as

〈 f ,g〉 :=
∫

Ω

f gdP . (50)

Remark A.2. As we will see shortly, if X is a random variable sampled from Ω according to P, the
equations (49) and (50) can be written as

E[ f 2(X)]<+∞ ,

〈 f ,g〉= E[ f (X)g(X)] .
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JAN HĄZŁA, THOMAS HOLENSTEIN, AND ELCHANAN MOSSEL

Remark A.3. We omitted the event space F in the definition of L2(Ω,P). This is because F is always
implicit in the choice of the measure P.

In particular, when P is discrete, of course we choose F to be the powerset of Ω. When P is continuous
over Rn, we use the “standard” real event space, i.e., the completion of the Borel algebra.

While this will not be our usual way of thinking, at this point it makes sense to introduce the formal
definition of a random variable: a function from a probability space to some set.

Definition A.4. Let (Σ,F,P) be a probability space. We say that X is a random variable over a set Σ′ if it
is a measurable function X : Σ→ Σ′.

As usual, we will assume throughout the proof that all random variables are induced by some
underlying probability space (Σ,F,P).

Using this, a random variable induces some distribution, which we can study.

Definition A.5. We say that a random variable X over a set Ω is distributed according to a probability
space (Ω,P) if for every event A ∈ F:

Pr[X ∈ A] = P(A) .

Definition A.6. Let X be a random variable distributed over Ω. By L2(X) we denote the inner product
space of random variables that correspond to square-integrable functions f : Ω→ R:

L2(X) := {Z | Z = f ◦X for some f : Ω→ R with E[ f (X)2]<+∞} ,

with the inner product given as

〈Z1,Z2〉 := E[Z1 ·Z2] .

Remark A.7. We consider the formal setting again, i.e., suppose (Σ,F,P) is the underlying probability
space, and X : Σ→Ω a random variable. Then, L2(X) is a subspace of L2(Σ,P). Intuitively, it contains
all real valued functions which “depend only on X”.

Example A.8. Fix (Ω,P) to be the uniform distribution on Ω := {0,1,2} and let X be distributed
according to (Ω,P). Then L2(X) has dimension three and one of its orthonormal bases is

Z0 :≡ 1

Z1 :=


√

6/2 if X = 0,
−
√

6/2 if X = 1,
0 if X = 2.

Z2 :=

{√
2/2 if X ∈ {0,1},
−
√

2 if X = 2.

After this point, we will have no need to refer explicitly to the underlying probability space (Σ,F,P)
anymore. Nevertheless, it will be useful to remember that random variables are functions of this underlying
space.

It immediately follows from the definitions that:

Lemma A.9. Let X be a random variable distributed according to (Ω,P). Then L2(X) is isomorphic to
L2(Ω,P).
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A.2 Preliminaries — orthonormal ensembles and multilinear polynomials

In this section we introduce orthonormal ensembles and multilinear polynomials over them.

Definition A.10. We call a finite family (X0, . . . ,Xp) of random variables orthonormal if they satisfy
E[X2

k ] = 1 for every k and E[X jXk] = 0 for every j 6= k.

Definition A.11. We call a finite family of orthonormal random variables X= (X?,0 = 1,X?,1, . . . ,X?,p)
an orthonormal ensemble. We call p the size of the ensemble.

An ensemble sequence is a sequence of independent families of random variables X= (X1, . . . ,Xn)
such that each Xi is an orthonormal ensemble Xi = (Xi,0 = 1,Xi,1, . . . ,Xi,p) of the same size p. We call n
the size of the sequence.

The notation X?,k is a little awkward, but we do not need to use it often. The reason for it is that we
want to to make sure that one cannot confuse one of the random variables X?,k within an orthonormal
ensemble with the orthonormal ensemble Xi itself. Whenever a random variable Xi,k is part of an
ensemble Xi, there is no reason to use the ?-symbol. Instead we use the index of the ensemble.

Note that in an orthonormal ensemble for k > 0 we have E[X?,k] = E[X?,kX?,0] = 0.

Definition A.12. We call two ensemble sequences X= (X1, . . . ,Xn) and Y= (Y1, . . . ,Ym) compatible if
n = m and the sizes of the individual ensembles Xi and Yi are the same.

Definition A.13. Let X= (X1, . . . ,Xn) be an ensemble sequence such that each ensemble Xi is of size p.
A monomial compatible with X is a term

xσ :=
n

∏
i=1

xi,σi ,

where σ = (σ1, . . . ,σn) with σi ∈ {0, . . . , p}.
A (formal) multilinear polynomial compatible with X is a sum of compatible monomials, i.e., a

polynomial P of the form

P(x) = ∑
σ∈{0,...,p}n

α(σ)xσ = ∑
σ∈{0,...,p}n

α(σ)
n

∏
i=1

xi,σi ,

where the sum goes over all tuples σ = (σ1, . . . ,σn) as above, and α(σ) ∈ R.
For a tuple σ we define its support as supp(σ) := {i ∈ [n] : σi 6= 0} and its degree as the size of its

support: |σ | := |supp(σ)|. Also, we will write the tuple (0, . . . ,0) as 0n.

Let a multilinear polynomial P compatible with X be given. Then, P(X) is what one expects: the
random variable obtained by evaluating the polynomial on the given input. Analogously, if σ is a tuple as
above we write Xσ for the random variable corresponding to the evaluation of the monomial xσ .

Lemma A.14. Let X be an ensemble sequence and σ , τ two tuples whose monomials xσ , xτ are
compatible with X. Then,

E[XσXτ ] =

{
1 if σ = τ

0 otherwise
(51)
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and

E[Xσ ] =

{
1 if σ = 0n

0 otherwise.
(52)

Proof. By independence of the coordinates we have E[XσXτ ] = ∏
n
i=1 E[Xi,σi ·Xi,τi ] and now we can use

the orthonomality of each ensemble Xi. For the second part, we apply the first on τ = 0n.

Definition A.15. Given a multilinear polynomial P(x) = ∑σ α(σ)xσ we define its following properties:

deg(P) :=

{
maxσ :ασ 6=0 |σ | if P is non-zero
−∞ if P is the zero polynomial

(53)

E[P] := α(0n) (54)

E[P2] := ∑
σ

α(σ)2 (55)

Var[P] := E[P2]−E2[P] (56)

Infi(P) := ∑
σ :σi 6=0

α(σ)2 (57)

Inf(P) :=
n

∑
i=1

Infi(P) (58)

The next lemma states that the formal expressions defined above are consistent with the corresponding
probabilistic interpretations for every ensemble sequence.

Lemma A.16. For an ensemble sequence X and a multilinear polynomial P compatible with it we have

E[P] = E[P(X)] (59)

E[P2] = E[(P(X))2] (60)

Var[P] = Var[P(X)] . (61)

Furthermore, if all random variables in X are discrete, then

Infi(P) = E [Var [P(X) | X1, . . . ,Xi−1,Xi+1, . . . ,Xn]] . (62)

Proof. Linearity of expectation and (52) yield E[P(X)] = ∑σ α(σ)E[Xσ ] = α(0n), which is (59). Next,
(51) gives E[P2(X)] = ∑σ ,τ α(σ)α(τ)XσXτ = ∑σ α(σ)2, i.e. (60), and hence (61) by the definition of
the variance.

As for (62), fix an assignment x\i = (x1, . . . ,xi−1,xi+1, . . . ,xn) to the ensemble sequence X\i =

(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).5 We suppose that this tuple has a non-zero probability of occurence. Since
Xi is an orthornormal ensemble,

Var[P(X) | X\i = x\i] =
p

∑
k=1

(
∑

σ :σi=k
α(σ) ·∏

j 6=i
x j,σ j

)2

5Note that each entry in this tuple is itself a tuple: xi = (xi,0 = 1,xi,1, . . . ,xi,p), where p is the size of the ensemble.
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From Lemma A.14, for a fixed k ∈ {1, . . . , p},

E

( ∑
σ :σi=k

α(σ) ·∏
j 6=i

X j,σ j

)2
= ∑

σ :σi=k
α(σ)2 .

Together this gives

E
[
Var
[
P(X) | X\i

]]
= ∑

σ :σi 6=0
α(σ)2 ,

as claimed.

Definition A.17. For a multilinear polynomial P(x) = ∑σ α(σ)xσ and S⊆ [n] we let PS be P restricted
to tuples σ with supp(σ) = S, i.e., PS := ∑σ :supp(σ)=S α(σ)xσ .

Then, let P>d := ∑S:|S|>d PS be P restricted to tuples with the degree greater than d. We also define
P=d , P≤d etc. in the analogous way.

Lemma A.18. Let P and Q be multilinear polynomials compatible with an ensemble sequence X. Then,

E [P(X)Q(X)] = ∑
S⊆[n]

E [PS(X)QS(X)] .

Proof. It is enough to show that for S 6= T

E [PS(X)QT (X)] = 0 .

Let P(X) = ∑σ α(σ) ·Xσ and Q(X) = ∑σ β (σ) ·Xσ . Assume w.l.o.g. that there exists i∗ ∈ S\T . Then,

E [PS(X)QT (X)] =

= ∑
σ :supp(σ)=S

σ ′:supp(σ ′)=T

α(σ)β (σ ′)E
[
Xi∗,σi∗

]
E

[
∏
i6=i∗

Xi,σiXi,σ ′i

]
= 0 .

Corollary A.19. Let P be a multilinear polynomial. Then, E[P2] = ∑S⊆[n] E[P2
S ].

Proof. Taking any ensemble sequence X compatible with P,

E[P2] = E[P(X)2] = ∑
S⊆[n]

E[PS(X)
2] = ∑

S⊆[n]
E[P2

S ] .

Claim A.20. Let P be a multilinear polynomial. Then, Var[P] = ∑S⊆[n] Var[PS].

Proof. Observing that Var[P/0] = 0, E[P2
/0 ] = α(0n)2 and Var[PS] = E[P2

S ] for S 6= /0, by Corollary A.19

Var[P] = E[P2]−α(0n)2 = ∑
S⊆[n],S 6= /0

E[P2
S ] = ∑

S⊆[n]
Var[PS] .
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Lemma A.21. Let P be a multilinear polynomial with deg(P)≤ d. Then,

Inf(P)≤ d ·Var[P] .

Proof.

Inf(P) = ∑
σ

|σ | ·α(σ)2 ≤ d · ∑
σ 6=0n

α(σ)2 = d ·Var[P] .

Definition A.22. Let ρ ∈R. We define the operator Tρ as follows: let P(x) = ∑σ α(σ)xσ be a multilinear
polynomial. Then,

(TρP)(x) := ∑
σ

ρ
|σ |

α(σ)xσ .

We will mostly use the operator Tρ with ρ ∈ [0,1].

Definition A.23. We call an orthonormal ensemble G? of size p Gaussian if random variables G?,1, . . . ,G?,p

are independent N(0,1) Gaussians.
We say that an ensemble sequence G= (G1, . . . ,Gn) is Gaussian if for each i ∈ [n] the ensemble Gi is

Gaussian.

We remark than as in all ensemble sequences, in a Gaussian ensemble sequence we have Gi,0 ≡ 1 for
all i.

Definition A.24. For tuples of multilinear polynomials P = (P(1), . . . ,P(`)) such that each polynomial
P( j) is compatible with an ensemble sequence X we write P(X) for the tuple (P(1)(X), . . . ,P(`)(X)).

Similarly, given multilinear polynomials P = (P(1), . . . ,P(`)) and a collection of ensemble sequences
X= (X(1), . . .X(`)) such that P( j) is compatible with X( j) we write P(X) for (P(1)(X(1)), . . . ,P(`)(X(`))).

A.3 Preliminaries — ensemble collections

In this section we recall the setting of Theorem 4.1 and introduce some other concepts we will need
throughout the proof.

From now on we will always implicitly assume that all multi-step distributions P have equal marginals
(denoted as π). This assumption is not necessary, but sufficient for our main purpose, while making the
notation easier.

Definition A.25. Let X be a random variable distributed according to a single-step, single-coordinate
distribution (Ω,π). We say that an orthonormal ensemble X? is constructed from X if the elements of X?

form an orthonormal basis of L2(X).
Similarly, let X be a random vector distributed according to (Ω,π). We say that an ensemble sequence

X= (X1, . . . ,Xn) is constructed from X if for each i ∈ [n] the ensemble Xi is constructed from Xi.

The definition of ensemble sequences requires that Xi,0 ≡ 1 for every i; of course we can find a basis
of L2(Xi) which satisfies this requirement, so that ensemble sequences constructed from X indeed exist.
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Lemma A.26. Let X be an ensemble sequence constructed from a random vector X distributed according
to (Ω,π). Assume that the size of each ensemble Xi is p. Then the set of monomials

B := {Xσ | σ = (σ1, . . . ,σn),σi ∈ {0, . . . , p}}

is an orthonormal basis of L2(X).

Proof. Observe that the dimension of L2(Xi) is p+ 1, (note that it is the support size of the single-
coordinate distribution (Ω,π)). Hence, the dimension of L2(X) is (p+1)n, which equals the size of B.
Therefore, it is enough to check that B is orthonormal, which is done in Lemma A.14.

Definition A.27. Let X be an ensemble sequence constructed from a random vector X distributed
according to (Ω,π).

For a function f : Ω→ R and a multilinear polynomial P compatible with X we say that f (X) is
equivalent to P if it always holds that

f (X) = P(X) .

Recall the operator Tρ from Definition A.22. We show that it has a natural counterpart in L2(Ω,π).

Definition A.28. Let ρ ∈ [0,1] and let (Ω,π) be a single-step probability space (with (Ω,π) a corre-
sponding single-coordinate probability space).

We define a linear operator Tρ : L2(Ω,π)→ L2(Ω,π) as

Tρ f (x) := E [ f (Y ρ,x)] ,

where Y ρ,x = (Y ρ,x
1 , . . . ,Y ρ,x

n ) is a random vector with independent coordinates distributed such that
Y ρ,x

i = xi with probability ρ and Y ρ,x
i is (independently) distributed according to (Ω,π) with probability

(1−ρ).

The next lemma states that taking operator Tρ preserves the equivalence of functions and polynomials:

Lemma A.29. Let X be an ensemble sequence constructed from a random vector X distributed according
to (Ω,π).

Let ρ ∈ [0,1], f : Ω→ R and P be a multilinear polynomial equivalent to f . Then, TρP and Tρ f are
equivalent, i.e.,

Tρ f (X) = TρP(X) .

Proof. Fix an input x ∈Ω in the support of P. Let Yρ,x = (Y
ρ,x
1 , . . . ,Y

ρ,x
n ) be the random sequence where

for each coordinate i ∈ [n], independently

Y
ρ,x
i :=

{
Xi(xi) with probability ρ ,
a random ensemble distributed as Xi with probability 1−ρ .
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Note that Yρ,x is not an ensemble sequence, but this will not cause problems.
Writing P(x) = ∑σ α(σ) · xσ we can calculate

Tρ f (x) = E[ f (Y ρ,x)] = E[P(Yρ,x)] = ∑
σ

α(σ)E[Yρ,x
σ ]

= ∑
σ

ρ
|σ |

α(σ) ·Xσ (x) = TρP(x) .

Since x was arbitrary, the claim is proved.

Recall Definition A.23. In the proof we will construct a tuple of ensemble sequences X=(X(1), . . . ,X(`))
from a random vector X and consider relations between those sequences and compatible Gaussian ensem-
ble sequences. To this end, we need to introduce the Gaussian equivalent of marginal ensemble sequences
X( j).

Definition A.30. Let G? = (G?,0, . . . ,G?,p) be a Gaussian orthonormal ensemble of size p. We define an
inner product space V (G) as

V (G) :=

{
p

∑
k=0

αk ·Gk | α0, . . . ,αk ∈ R

}

with the inner product of A,B ∈V (G) given by 〈A,B〉 := E[A ·B].
Similarly, given a Gaussian ensemble sequence G such that each of its ensembles is of size p we let

V (G) :=

{
∑
σ

α(σ) ·Gσ | σ = (σ1, . . . ,σn) ∈ {0, . . . , p},α(σ) ∈ R

}
,

with the inner product 〈A,B〉 := E[A ·B].

Lemma A.31. Let a random tuple X = (X (1), . . . ,X (`)) be distributed according to a single-coordinate
distribution (Ω,P). Let X? = (X

(1)
? , . . . ,X

(`)
? ) be such that X( j)

? is an orthonormal ensemble constructed
from X ( j).

Then, there exist Gaussian orthonormal ensembles G? = (G
(1)
? , . . . ,G

(`)
? ) compatible with X? such that

for all j1, j2 ∈ [`], and all k1,k2 ≥ 0 we have

Cov
[
X
( j1)
?,k1

,X
( j2)
?,k2

]
= Cov

[
G
( j1)
?,k1

,G
( j2)
?,k2

]
. (63)

Proof. Consider (Ω,P) as a single-step probability space, and let X be the corresponding random variable.
Let now Z? be an orthonormal ensemble constructed from X . Recall that this means that the elements of
Z? form an orthonormal basis of L2(X).

Let H? be a Gaussian ensemble sequence compatible with Z?. Define the map Ψ : L2(X)→V (H?)
by linearly extending Ψ(Z?,k) := H?,k. In this way Ψ becomes an isomorphism between L2(X) and
V (H?) (and as such it preserves inner products).

Since L2(X ( j)) is a subspace of L2(X), we can define G
( j)
?,k as G

( j)
?,k := Ψ(X

( j)
?,k). Since Ψ preserves

inner products we get (63).
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We still need to argue that for each j ∈ [`] the orthonormal ensemble G
( j)
? is Gaussian. The fact that

G
( j)
? is an ensemble sequence follows from (63) for j1 = j2 = j (note that Ψ(1) = 1).

The variables G
( j)
?,k are clearly jointly Gaussian, since they can be written as sums of independent

Gaussians. By (63), their covariance matrix is identity. This finishes the proof, since joint Gaussians with
the identity covariance matrix must be independent.

Since the proof of Lemma A.31 is somewhat abstract, we illustrate the construction of G? with an
example.

Example A.32. Consider (X (1),X (2)) distributed according to P over Ω= {0,1}with P(0,0)=P(1,1)=
1/8 and P(0,1) = P(1,0) = 3/8. We can take the following for the ensemble Z?:

(X (1),X (2)) := (0,0) (0, 1) (1, 0) (1, 1)
Z?,0 1 1 1 1
Z?,1 2 0 0 -2
Z?,2 0 2

√
3/3 −2

√
3/3 0

Z?,3
√

3 −
√

3/3 −
√

3/3
√

3

For the marginal ensemble X
(1)
? we can take

X (1) := 0 1

X
(1)
?,0 1 1

X
(1)
?,1 1 −1

Now one can check that X(1)
?,0 = Z?,0 and X

(1)
?,1 = 1/2 ·Z?,1 +

√
3/2 ·Z?,2. Defining the ensemble X

(2)
?

in the same way we get X(2)
?,0 = Z?,0 and X

(2)
?,1 = 1/2 ·Z?,1−

√
3/2 ·Z?,2.

Let H? = (H?,0 ≡ 1,H?,1,H?,2,H?,3) be a Gaussian ensemble sequence compatible with Z. One
easily checks that our construction gives

G
(1)
?,0 = G

(2)
?,0 =H?,0

G
(1)
?,1 = 1/2 ·H?,1 +

√
3/2 ·H?,2

G
(2)
?,1 = 1/2 ·H?,1−

√
3/2 ·H?,2 .

Since the covariances between independent coordinates are always zero, Lemma A.31 applied to each
coordinate separately gives:

Corollary A.33. Let a random vector X = (X (1), . . . ,X (`)) be distributed according to a distribution
(Ω,P). Let X= (X(1), . . . ,X(`)) be such that X( j) is an ensemble sequence constructed from X ( j).

Then, there exist Gaussian ensemble sequences G= (G(1), . . . ,G(`)) compatible with X such that for
all i1, i2 ∈ [n], j1, j2 ∈ [`], and all k1,k2 ≥ 0 we have

Cov
[
X
( j1)
i1,k1

,X
( j2)
i2,k2

]
= Cov

[
G
( j1)
i1,k1

,G
( j2)
i2,k2

]
. (64)
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Definition A.34. An ensemble collection for (Ω,P) is a tuple(
X ,X= (X(1), . . . ,X(`)),G= (G(1), . . . ,G(`))

)
where

• X is a random vector distributed according to (Ω,P),

• X(1), . . . ,X(`) are ensemble sequences constructed from X (1), . . . ,X (`), respectively,

• and G(1), . . . ,G(`) are obtained from Corollary A.33.

A.4 Hypercontractivity

In this section we develop a version of hypercontractivity for products of multilinear polynomials. Our
goal is to prove Lemma A.43.

Recall the operator Tρ from Definition A.22.

Definition A.35. Let X be an ensemble sequence and let 1≤ p≤ q < ∞ and ρ ∈ [0,1]. We say that the
sequence X is (p,q,ρ)-hypercontractive if for every multilinear polynomial P compatible with X we have

E
[∣∣TρP(X)

∣∣q]1/q ≤ E [|P(X)|p]1/p

Definition A.36. Let X be an orthonormal ensemble and let 1 ≤ p ≤ q < ∞ and ρ ∈ [0,1]. We say
that the ensemble X is (p,q,ρ)-hypercontractive if the one-element ensemble sequence X := (X) is
(p,q,ρ)-hypercontractive.

We start with stating without proofs the hypercontractivity of orthonormal ensembles that we use in
the invariance principle:

Theorem A.37 ([Bon70, Nel73, Gro75, Bec75]). Let G be a Gaussian orthonormal ensemble and ρ ∈
[0,
√

2/2]. Then, G is (2,3,ρ)-hypercontractive.

Theorem A.38 (Special case of Theorem 3.1 in [Wol07]). Let X be an orthonormal ensemble constructed
from a random variable X distributed according to a (single-coordinate, single-step) probability space
(Ω,π) with minx∈Ω π(x)≥ α ≥ 0.

Then, X is (2,3,α1/6/2)-hypercontractive.

Subsequently, we observe that an ensemble sequence constructed from hypercontractive ensembles is
itself hypercontractive:

Theorem A.39. Let 1 ≤ p ≤ q < ∞, ρ ∈ [0,1] and let X := (X1, . . . ,Xn) be an ensemble sequence
such that for every i ∈ [n], the ensemble Xi is (p,q,ρ)-hypercontractive. Then, the sequence X is also
(p,q,ρ)-hypercontractive.

Yet again, we omit the proof of Theorem A.39. We remark that it is well-known as the tensorization
argument. The argument can be found, e.g., in the proof of Proposition 3.11 in [MOO10].
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Definition A.40. Let X be a random vector distributed according to a (single-step, tensorized) probability
space (Ω,π). We say that an ensemble sequence X = (X1, . . . ,Xn) is X-Gaussian-mixed if for each
i ∈ [n]:

• Either Xi is constructed from the random variable Xi,

• or Xi is a Gaussian ensemble.

Theorems A.37, A.38 and A.39 immediately imply:

Corollary A.41. Let X be a random vector distributed according to a probability space (Ω,π) with
minx∈Ω π(x)≥ α ≥ 0 and let X be an X-Gaussian-mixed ensemble sequence.

Then, X is (2,3,α1/6/2)-hypercontractive.

Theorem A.42. Let X be a random vector distributed according to a probability space (Ω,π) with
minx∈Ω π(x) ≥ α > 0 and let X be an X-Gaussian-mixed ensemble sequence. Let P be a multilinear
polynomial compatible with X of degree at most d. Then,

E
[
|P(X)|3

]1/3
≤
(

2
α1/6

)d√
E [P2] .

Proof. Let ρ := α1/6/2 and write P(X) = ∑σ β (σ)Xσ . By Corollary A.41, definitions of Tρ and E[P2],
and the degree bound on P,

E
[
|P(X)|3

]1/3
= E

[∣∣TρT1/ρP(X)
∣∣3]1/3

≤
√

E
[
(T1/ρP)2

]
=
√

∑
σ

ρ−2|σ |β (σ)2 ≤
√

∑
σ

ρ−2dβ (σ)2 = ρ
−d
√

E[P2] .

Lemma A.43. Let X be a random vector distributed according to a (multi-step) probability space with
equal marginals (Ω,P) with minx∈Ω π(x)≥ α > 0.

Let S(1), . . . ,S(`) be ensemble sequences such that S( j) is X ( j)-Gaussian-mixed. Let P(1), . . . ,P(`) be
multilinear polynomials such that P( j) is compatible with S( j) and also deg(P( j))≤ d.

Then, for every triple j1, j2, j3 ∈ [`]:

E

[∣∣∣∣∣ 3

∏
k=1

P( jk)(S( jk))

∣∣∣∣∣
]
≤
(

8√
α

)d

·

√
3

∏
k=1

E
[
(P( jk))2

]
.

Proof. Let ρ := α1/6/2. By Hölder’s inequality and Theorem A.42,

E

[∣∣∣∣∣ 3

∏
k=1

P( jk)(S( jk))

∣∣∣∣∣
]
≤

3

∏
k=1

E
[∣∣∣P( jk)(S( jk))

∣∣∣3]1/3

≤ ρ
−3d ·

√
3

∏
k=1

E
[
(P( jk))2

]
.
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A.5 Invariance principle

In this section we prove a basic version of invariance principle for multiple polynomials.
We say that a function is B-smooth if all of its third-order partial derivatives are uniformly bounded

by B:

Definition A.44. For B ≥ 0 we say that a function Ψ : R` → R is B-smooth if Ψ ∈ C3 and for every
j1, j2, j3 ∈ [`] and every x = (x(1), . . . ,x(`)) ∈ R` we have∣∣∣∣ ∂ 3

∂x( j1)∂x( j2)∂x( j3)
Ψ(x)

∣∣∣∣≤ B .

Theorem A.45 (Invariance Principle). Let (X ,X,G) be an ensemble collection for a probability space
(Ω,P) with minx∈Ω π(x)≥ α > 0.

Let P = (P(1), . . . ,P(`)) be such that P( j) is a multilinear polynomial compatible with the ensemble
sequence X( j).

Let d ∈ N and τ ∈ [0,1] and assume that deg(P( j))≤ d and Var[P( j)]≤ 1 for each j ∈ [`], and that
∑
`
j=1 Infi(P( j))≤ τ for each i ∈ [n].

Finally, let Ψ : R`→ R be a B-smooth function. Then,

∣∣E[Ψ(P(X))−Ψ(P(G))
]∣∣≤ `5/2dB

3

(
8√
α

)d√
τ .

Remark A.46. A typical setting of parameters for which Theorem A.45 might be successfully applied is
constant `, d, B, and α , while τ = o(1) (as n→ ∞).

The rest of this section is concerned with proving Theorem A.45.
For i∈{0, . . . ,n} and j∈ [`] let the ensemble sequence U( j)

(i) be defined as U( j)
(i) :=(G

( j)
1 , . . . ,G

( j)
i ,X

( j)
i+1, . . . ,X

( j)
n ).

Claim A.47. ∣∣E[Ψ(P(X))−Ψ(P(G))
]∣∣≤ n

∑
i=1

∣∣∣E[Ψ(P(U(i−1)))−Ψ(P(U(i)))
]∣∣∣ .

Proof. By the triangle inequality.

Due to Claim A.47, we will estimate∣∣∣E[Ψ(P(U(i−1)))−Ψ(P(U(i)))
]∣∣∣

for every i ∈ [n]. Fix i ∈ [n] and write T( j) := U
( j)
(i−1) and U( j) := U

( j)
(i) for readability. For j ∈ [`] we can

write

P( j)(T( j)) = A( j)+ ∑
k>0

X
( j)
i,k ·B

( j)
k = A( j)+P( j)

i (T( j)) , (65)
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where A( j) and B( j)
k do not depend on the coordinate i and, if P( j)(T( j)) = ∑σ α(σ)T

( j)
σ , then P( j)

i (T( j)) =

∑σ :i∈supp(σ) α(σ)T
( j)
σ . At the same time, since A( j) and B( j)

k do not depend on the i-th coordinate,

P( j)(U( j)) = A( j)+ ∑
k>0

G
( j)
i,k ·B

( j)
k = A( j)+P( j)

i (U( j)) .

We note for later use that the construction gives us

deg(P( j)
i )≤ d (66)

E
[(

P( j)
i

)2
]
= Infi

(
P( j)
)
. (67)

The rest of the proof proceeds as follows: we calculate the multivariate second order Taylor expansion
(i.e., with the third-degree rest) of the expression, getting

Ψ(P(T))−Ψ(P(U)) =

= Ψ

(
A(1)+ ∑

k>0
X
(1)
i,k B(1)

k , . . . ,A(`)+ ∑
k>0

X
(`)
i,k B(`)

k

)

−Ψ

(
A(1)+ ∑

k>0
G
(1)
i,k B(1)

k , . . . ,A(`)+ ∑
k>0

G
(`)
i,k B(`)

k

)

around the point A := (A(1), . . . ,A(`)). We will see that:

• All the terms up to the second degree cancel in expectation due to the properties of ensemble
sequences.

• The remainder, which is of the third degree, can be bounded using that Ψ is B-smooth, properties
of P( j)

i , and hypercontractivity, in particular Lemma A.43.

We proceed with a detailed description. The first result we will need is multivariate Taylor’s theorem
for B-smooth functions:

Theorem A.48. Let Ψ : R`→ R be a B-smooth function and let x = (x(1), . . . ,x(`)),ε = (ε(1), . . . ,ε(`)) ∈
R`. Then, ∣∣∣∣∣Ψ(x(1)+ ε

(1), . . . ,x(`)+ ε
(`)
)
−(

Ψ(x)+ ∑
j∈[`]

ε
( j) ∂

∂x( j)
Ψ(x)+

1
2 ∑

j1, j2∈[`]
ε
( j1)ε( j2) ∂ 2

∂x( j1)∂x( j2)
Ψ(x)

)∣∣∣∣∣
≤ B

6 ∑
j1, j2, j3∈[`]

∣∣∣ε( j1)ε( j2)ε( j3)
∣∣∣ .

We omit the proof of Theorem A.48.
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Lemma A.49. Fix i ∈ [n] and write T( j) := U
( j)
(i−1) and U( j) := U

( j)
(i) . Then,

E
[
Ψ(P(T))

]
=

= E

[
Ψ(A)+

1
2 ∑

j1, j2∈[`]

(
∑

k1,k2>0
X
( j1)
i,k1

X
( j2)
i,k2

B( j1)
k1

B( j2)
k2

∂ 2

∂A( j1)∂A( j2)
Ψ(A)

)
+RT

]
, (68)

and

E
[
Ψ(P(U))

]
=

= E

[
Ψ(A)+

1
2 ∑

j1, j2∈[`]

(
∑

k1,k2>0
G
( j1)
i,k1

G
( j2)
i,k2

B( j1)
k1

B( j2)
k2

∂ 2

∂A( j1)∂A( j2)
Ψ(A)

)
+RU

]
, (69)

where random variables RT and RU are such that

E
[∣∣RT

∣∣] ,E[∣∣RU

∣∣]≤ `3/2B
6

(
8√
α

)d
(

`

∑
j=1

Infi(P( j))

)3/2

. (70)

Proof. We show only (68) and the bound on E[|RT|], the proofs for the ensemble sequence U being
analogous.

As a preliminary remark, note that since all the random ensembles we are dealing with are hypercon-
tractive, and since Ψ is B-smooth, all the terms in the expressions above have finite expectations.

Keeping in mind both decompositions from (65), by Theorem A.48

Ψ(P(T)) = Ψ(A)+ ∑
j∈[`]

(
∑
k>0

X
( j)
i,k B( j)

k
∂

∂A( j)
Ψ(A)

)
+

+
1
2 ∑

j1, j2∈[`]

(
∑

k1,k2>0
X
( j1)
i,k1

X
( j2)
i,k2

B( j1)
k1

B( j2)
k2

∂ 2

∂A( j1)∂A( j2)
Ψ(A)

)
+RT , (71)

where

E[|RT|]≤
B
6 ∑

j1, j2, j3∈[`]
E

[∣∣∣∣∣ 3

∏
k=1

P( jk)
i (T( jk))

∣∣∣∣∣
]
. (72)

Since E[X( j)
i,k ] = 0, and all other terms are independent of coordinate i, we have

E

[
∑
j∈[`]

∑
k>0

X
( j)
i,k B( j)

k
∂

∂A( j)
Ψ(A)

]
= 0 ,

which together with (71) yields (68).
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As for the bound on E[|RT|], since T ( j) is X ( j)-Gaussian-mixed ensemble sequence, due to (72),
Lemma A.43 (note that the degree is bounded due to (66)), and (67),

E[|RT|]≤
B
6

(
8√
α

)d

∑
j1, j2, j3∈[`]

√
3

∏
k=1

E
[(

P( jk)
i

)2
]

=
B
6

(
8√
α

)d

∑
j1, j2, j3∈[`]

√
3

∏
k=1

Infi(P( jk))

≤ `3/2B
6

(
8√
α

)d
(

`

∑
j=1

Infi(P( j))

)3/2

,

where the last inequality uses ∑ j1, j2, j3 ν( j1, j2, j3)≤
√
`3
√

∑ν2( j1, j2, j3) for the vector ν with entries

ν( j1, j2, j3) =
√

∏
3
k=1 Infi(P( jk)).

Lemma A.50. Fix i ∈ [n] and write T( j) := U
( j)
(i−1) and U( j) := U

( j)
(i) . Then,

∣∣E[Ψ(P(T))−Ψ(P(U))
]∣∣≤ `3/2B

3

(
8√
α

)d
(

`

∑
j=1

Infi(P( j))

)3/2

.

Proof. First, we need to show that the second-order terms in (68) and (69) cancel out. Since by Lemma
A.31 for every j1, j2 ∈ [`] and k1,k2 > 0:

E
[
X
( j1)
i,k1

X
( j2)
i,k2

]
= Cov

[
X
( j1)
i,k1

,X
( j2)
i,k2

]
= Cov

[
G
( j1)
i,k1

,G
( j2)
i,k2

]
= E

[
G
( j1)
i,k1

G
( j2)
i,k2

]
,

and since all the other terms are independent of coordinate i, we have

E

[
∑

j1, j2∈[`]
∑

k1,k2>0
X
( j1)
i,k1

X
( j2)
i,k2

B( j1)
k1

B( j2)
k2

∂ 2

∂A( j1)∂A( j2)
Ψ(A)

]

= E

[
∑

j1, j2∈[`]
∑

k1,k2>0
G
( j1)
i,k1

G
( j2)
i,k2

B( j1)
k1

B( j2)
k2

∂ 2

∂A( j1)∂A( j2)
Ψ(A)

]
.

Therefore, by (68), (69) and (70),∣∣E[Ψ(P(T))−Ψ(P(U))
]∣∣≤ E[|RT|]+E[|RU|]

≤ `3/2B
3

(
8√
α

)d
(

`

∑
j=1

Infi(P( j))

)3/2

,

as claimed.
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Proof of Theorem A.45. Recall that ∑
`
j=1 Infi(P( j))≤ τ and that Var[P( j)]≤ 1. By Claim A.47, Lemma

A.50 and Claim A.21,∣∣E[Ψ(P(X))−Ψ(P(G))
]∣∣≤ n

∑
i=1

∣∣∣E[Ψ(P(U(i−1)))−Ψ(P(U(i)))
]∣∣∣

≤ `3/2B
3

(
8√
α

)d n

∑
i=1

(
`

∑
j=1

Infi(P( j))

)3/2

≤ `3/2B
3

(
8√
α

)d√
τ

n

∑
i=1

`

∑
j=1

Infi(P( j))

=
`3/2B

3

(
8√
α

)d√
τ

`

∑
j=1

Inf(P( j))≤ `5/2dB
3

(
8√
α

)d√
τ .

A.6 A tailored application of invariance principle

Definition A.51. Define φ : R→ R as

φ(x) :=


0 if x≤ 0,
x if x ∈ (0,1),
1 if x≥ 1,

and χ : R`→ R as χ(x) := ∏
`
j=1 φ(x( j)).

Definition A.52. Let P be a multilinear polynomial and γ ∈ [0,1]. We say that P is γ-decaying if for each
d ∈ N we have

E
[(

P≥d
)2
]
≤ (1− γ)d .

We also say that a tuple of multilinear polynomials P = (P(1), . . . ,P(`)) is γ-decaying if P( j) is
γ-decaying for each j ∈ [`].

Note that if a multilinear polynomial P is γ-decaying, then, in particular, Var[P]≤ E[P2]≤ 1.
Our goal in this section is to prove a version of invariance principle for γ-decaying multilinear

polynomials and the function χ:

Theorem A.53. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with minx∈Ω π(x)≥
α , α ∈ (0,1/2].

Let P = (P(1), . . . ,P(`)) be such that P( j) is a multilinear polynomial compatible with the ensemble
sequence X( j).

Let γ ∈ [0,1], τ ∈ (0,1] and assume that P is γ-decaying and that ∑
`
j=1 Infi(P( j))≤ τ for each i ∈ [n].

There exists an absolute constant C ≥ 0 such that∣∣E[χ(P(X))−χ(P(G))
]∣∣≤C`5/2 · τ

γ

C ln1/α .
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Two obstacles to proving Theorem A.53 by direct application of Theorem A.45 are:

1. The function χ is not C3.

2. A γ-decaying multilinear polynomial does not have bounded degree.

We will deal with those problems in turn.

A.6.1 Approximating χ with a C3 function

To apply Theorem A.45, we are going to approximate φ and χ with C3 (in fact, C∞) functions.
For that we need to introduce the notion of convolution and a basic calculus theorem, whose proof we

omit (see, e.g., Chapter 9 in [Rud87]):

Definition A.54. Let f : R→ R and S⊆ R. We say that S is a support of f if x /∈ S implies f (x) = 0.
We say that f has compact support if there exists a bounded interval I that is a support of f .

Definition A.55. The convolution f ∗g of two continuous functions f ,g : R→ R, at least one of which
has compact support, is ( f ∗g)(x) :=

∫
∞

−∞
f (x− t)g(t)dt.

Theorem A.56. Let functions f ,g : R→R be such that f is continuous on R, g ∈ C∞ and g has compact
support. Then, ( f ∗g) ∈ C∞. Furthermore, for every k ∈ N and x ∈ R:

∂ k

∂xk ( f ∗g)(x) =
(

f ∗ ∂ kg
∂xk

)
(x) .

We also need a special density function with support [−1,1]:

Theorem A.57. There exists a function ψ : R→ R≥0 such that all of the following hold:

• ψ ∈ C∞.

• ψ has support [−1,1].

• ∀x : ψ(x) = ψ(−x).

•
∫

∞

−∞
ψ(x)dx =

∫ 1
−1 ψ(x)dx = 1.

Proof. Consider

Ψ(x) :=

{
exp(− 1

(x+1)2 ) · exp(− 1
(x−1)2 ) if x ∈ (−1,1)

0 otherwise
(73)

and set ψ(x) := Ψ(x)/c where c :=
∫ 1
−1 Ψ(x)dx.

For any λ > 0 we can rescale ψ to an analogous distribution with support [−λ ,λ ]:

Definition A.58. Let λ > 0 and define ψλ : R→ R≥0 as ψλ (x) := 1
λ

ψ
( x

λ

)
.
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It is easy to see that ψλ has properties analogous to ψ:

Claim A.59. Let λ > 0. ψλ has the following properties:

• ψλ ∈ C∞.

• ψλ has support [−λ ,λ ].

• ∀x : ψλ (x) = ψλ (−x).

•
∫

∞

−∞
ψλ (x)dx =

∫
λ

−λ
ψλ (x)dx = 1.

We see that convoluting φ with ψλ for a small λ results in a smooth function that is still very close to
φ :

Definition A.60. Let λ ∈ (0,1/2) and define φλ : R→ R as φλ := φ ∗ψλ .

To start with, we state some easy to verify properties of φλ :

Claim A.61. Let λ ∈ (0,1/2). The function φλ has the following properties:

• φλ (x) =
∫

λ

−λ
ψλ (y)φ(x+ y)dy.

• x≤−λ ∨ x ∈ [λ ,1−λ ]∨ x≥ 1+λ =⇒ φλ (x) = φ(x).

• x ∈ [−λ ,λ ] =⇒ φλ (x) ∈ [0,λ ].

• x ∈ [1−λ ,1+λ ] =⇒ φλ (x) ∈ [1−λ ,1].

• x≤ y =⇒ φλ (x)≤ φλ (y).

Lemma A.62. Let λ ∈ (0,1/2):

1) ∀x : |φλ (x)−φ(x)| ≤ λ .

2) φλ ∈ C∞. Furthermore, for each k ∈ N there exists a constant Bk ≥ 0 such that ∀x :
∣∣∣ ∂ k

∂xk φλ (x)
∣∣∣≤ Bk

λ k .

Proof. 1) From Claim A.61.

2) Since φλ = φ ∗ψλ , due to Theorem A.56 we have φλ ∈ C∞.

For x /∈ [−λ ,1+λ ] the function φλ is constant with
∣∣∣ ∂ k

∂xk φλ (x)
∣∣∣≤ 1.

For x ∈ [−λ ,1 + λ ], first note that for every k ∈ N, since ψ has support [−1,1], also all of its
derivatives have support [−1,1] and therefore

∣∣∣ ∂ k

∂xk ψ(x)
∣∣∣≤ Bk. Together with Theorem A.56 this gives

(substituting z := y/λ )∣∣∣∣ ∂ k

∂xk φλ (x)
∣∣∣∣= ∣∣∣∣ ∂ k

∂xk (φ ∗ψλ )(x)
∣∣∣∣= ∣∣∣∣∫ +∞

−∞

φ(x− y)
∂ k

∂yk ψλ (y)dy
∣∣∣∣

=

∣∣∣∣∫ λ

−λ

φ(x− y)
∂ k

∂yk ψλ (y)dy
∣∣∣∣

=
1

λ k+1

∣∣∣∣∫ λ

−λ

φ(x− y)
∂ k

∂ zk ψ(z)dy
∣∣∣∣≤ 2Bk

λ k ,
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as claimed.

Now we are ready for the approximation of χ:

Definition A.63. Let λ ∈ (0,1/2). Define function χλ : R`→ R as

χλ (x) :=
`

∏
j=1

φλ (x
( j)) .

From Lemma A.62 we easily get:

Corollary A.64. Let λ ∈ (0,1/2). The function χλ has the following properties:

1) ∀x ∈ R` : |χ(x)−χλ (x)| ≤ `λ .

2) There exists a universal constant B≥ 0 such that χλ is B
λ 3 -smooth.

After developing the approximation we are ready to prove the invariance principle for the function χ :

Theorem A.65. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with minx∈Ω π(x)≥
α > 0.

Let P = (P(1), . . . ,P(`)) be such that P( j) is a multilinear polynomial compatible with the ensemble
sequence X( j).

Let d ∈ N and τ ∈ [0,1] and assume that deg(P( j))≤ d and Var[P( j)]≤ 1 for each j ∈ [`], and that
∑
`
j=1 Infi(P( j))≤ τ for each i ∈ [n].

There exists a universal constant C ≥ 0 such that∣∣E[χ(P(X))−χ(P(G))
]∣∣≤C · `

5/2τ1/8

α4d .

Proof. Let λ := τ1/8/3. By the triangle inequality we get∣∣E[χ(P(X))−χ(P(G))
]∣∣≤ ∣∣E[χ(P(X))−χλ (P(X))

]∣∣
+
∣∣E[χλ (P(X))−χλ (P(G))

]∣∣
+
∣∣E[χλ (P(G))−χ(P(G))

]∣∣ . (74)

From Corollary A.64.1 and the definition of λ we get both∣∣E[χ(P(X))−χλ (P(X))
]∣∣≤ `λ ≤ O

(
`5/2τ1/8

α4d

)
(75)∣∣E[χλ (P(G))−χ(P(G))

]∣∣≤ `λ ≤ O
(
`5/2τ1/8

α4d

)
. (76)

By Theorem A.45 and Corollary A.64.2 we get

∣∣E[χλ (P(X))−χλ (P(G))
]∣∣≤ O

(
`5/2d8dτ1/2

λ 3αd/2

)
. (77)
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We can assume w.l.o.g. that α ≤ 1/2 (otherwise the theorem is trivial). Using the definition of λ ,
d8d ≤ 9d+1 and 9≤

( 1
α

)3.5 we see that

`5/2d8dτ1/2

λ 3αd/2 ≤ O

(
`5/2d8dτ1/8

αd/2

)
≤ O

(
`5/2τ1/8

α4d

)
. (78)

Inserting (75), (76), and the combination of (78) and (77) into (74) gives the result.

A.6.2 Invariance principle for γ-decaying polynomials

Let P = (P(1), . . . ,P(`)) be a tuple of mutlilinear polynomials and let P<d :=
((

P(1)
)<d

, . . . ,
(
P(`)
)<d

)
.

We will deal with a γ-decaying P by estimating |E[χ(P<d
(X))−χ(P(X))]| for appropriately chosen d.

First, we need a bound on the change of χ:

Lemma A.66. For all x = (x(1), . . . ,x(`)),ε = (ε(1), . . . ,ε(`)) ∈ R`:∣∣∣χ(x(1)+ ε
(1), . . . ,x(`)+ ε

(`))−χ(x(1), . . . ,x(`))
∣∣∣≤ `

∑
j=1
|ε( j)| .

Proof. Letting y( j) := (x(1), . . . ,x( j),x( j+1)+ ε( j+1), . . .x(`)+ ε(`)),∣∣∣χ(x(1)+ ε
(1), . . . ,x(`)+ ε

(`))−χ(x(1), . . . ,x(`))
∣∣∣

≤
`

∑
j=1

∣∣∣χ(y( j−1))−χ(y( j))
∣∣∣≤ `

∑
j=1

∣∣∣ε( j)
∣∣∣ .

Proof of Theorem A.53. Let d := b ln1/τ

64ln1/α
c. By the triangle inequality,∣∣E[χ(P(X))−χ(P(G))
]∣∣≤ ∣∣∣E[χ(P(X))−χ(P<d

(X))
]∣∣∣

+
∣∣∣E[χ(P<d

(X))−χ(P<d
(G))

]∣∣∣
+
∣∣∣E[χ(P<d

(G))−χ(P(G))
]∣∣∣ . (79)

We proceed to demonstrate that all three terms on the right hand side of (79) are O
(
`4τ

Ω

(
γ

ln1/α

))
,

which will finish the proof.

Lemma A.67. ∣∣∣E[χ(P(X))−χ(P<d
(X))

]∣∣∣≤ `(1− γ)d/2 ≤ O
(
`τ

Ω

(
γ

ln1/α

))
(80)

and, similarly, ∣∣∣E[χ(P(G))−χ(P<d
(G))

]∣∣∣≤ `(1− γ)d/2 ≤ O
(
`τ

Ω

(
γ

ln1/α

))
(81)
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Proof. We prove only (80), the argument for (81) being the same. Using Lemma A.66, Cauchy-Schwarz,
the fact that P is γ-decaying and the definition of d,∣∣∣E[χ(P(X))−χ(P<d

(X))
]∣∣∣≤ `

∑
j=1

E
[∣∣∣∣(P( j)

)≥d
(X( j))

∣∣∣∣]

≤
`

∑
j=1

√
E
[((

P( j)
)≥d
)2
]
≤ `(1− γ)d/2 ≤ 2`τ

γ

128ln1/α .

Lemma A.68. ∣∣∣E[χ(P<d
(X))−χ(P<d

(G))
]∣∣∣≤ O

(
`5/2

τ
Ω

(
γ

ln1/α

))
.

Proof. From Theorem A.65,

∣∣∣E[χ(P<d
(X))−χ(P<d

(G))
]∣∣∣≤ O

(
`5/2τ1/8

α4d

)
.

From the definition of d (recall that α ≤ 1/2),

`5/2τ1/8

α4d ≤ `5/2
τ

1/16 ≤ `5/2
τ

Ω

(
γ

ln1/α

)
,

as claimed.

This finishes the proof of Theorem A.53.

A.7 Reduction to the γ-decaying case

To apply Theorem A.53 we need to show that “smoothing out” of multilinear polynomials P(1), . . . ,P(`)

does not change the expectation of their product too much.
Recall Definitions A.22 and A.28 for the operator Tρ . Our goal in this section is to prove:

Theorem A.69. Let X be a random vector distributed according to (Ω,P) with ρ(Ω,P)≤ ρ ≤ 1. Let Z
be an ensemble sequence constructed from X and X(1), . . . ,X(`) be ensemble sequences constructed from
X (1), . . . ,X (`), respectively.

Let ε ∈ (0,1/2] and γ ∈
[
0, (1−ρ)ε

` ln`/ε

]
.

Then, for all multilinear polynomials P(1), . . . ,P(`) such that P( j)(X( j)) ∈ [0,1]:∣∣∣∣∣E
[

`

∏
j=1

P( j)(X( j))−
`

∏
j=1

T1−γP( j)(X( j))

]∣∣∣∣∣≤ ε .
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Let us start with an intuition: Due to Lemma A.18, it is enough to bound

E

[
`

∏
j=1

P( j)
S −

`

∏
j=1

T1−γP( j)
S

]

for every S⊆ [n]. If |S| is small, we use the fact that P( j)
S −T1−γP( j)

S shrinks by a factor of 1− (1− γ)|S|

for every j. If |S| is large, we exploit that both

E

[
`

∏
j=1

P( j)
S

]
,E

[
`

∏
j=1

T1−γP( j)
S

]

are small (roughly ρ |S| times smaller compared to their variances).
To give a formal argument, we use yet another ensemble sequence: let j ∈ [`]. We define Y( j) to be an

ensemble sequence constructed from X [`]\{ j}. Furthermore, let

A( j) := ∏
j′< j

T1−γP(X( j′)) ∏
j′> j

P(X( j′)) .

Note that since A( j) ∈ L2(X [`]\{ j}), there exists a multilinear polynomial Q( j) compatible with Y( j) such
that

A( j) = Q( j)(Y( j)) .

Lemma A.70.

`

∏
j=1

P( j)(X( j))−
`

∏
j=1

T1−γP( j)(X( j)) =
`

∑
j=1

(Id−T1−γ)P( j)(X( j)) ·Q( j)(Y( j)) .

Proof. By definition of Q( j).

Lemma A.71. For every j ∈ [`] and S⊆ [n], S 6= /0:∣∣∣E[P( j)
S (X( j)) ·Q( j)

S (Y( j))
]∣∣∣≤ ρ

|S|
√

Var[P( j)
S ]Var[Q( j)

S ] .

Proof. For ease of notation let us write P := P( j), Q := Q( j), X := X( j) and Y := Y( j).
Let P(X) = ∑σ α(σ)Xσ and Q(Y) = ∑σ β (σ)Yσ .
We know that Xi,k ∈ L2(X ( j)

i ) and Yi,k ∈ L2(X ([`]\{ j})
i ) for every i ∈ [n], k,k′ ≥ 0. Furthermore, if

k,k′ > 0, then E[Xi,k] = E[Yi,k′ ] = 0 and Var[Xi,k] = Var[Yi,k′ ] = 1. By definition of ρ , this implies∣∣E[Xi,k ·Yi,k′
]∣∣= ∣∣Cov

[
Xi,k,Yi,k′

]∣∣≤ ρ. (82)
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Expanding the expectation and using (82) and Cauchy-Schwarz,

|E [PS(X)QS(Y)]|=

∣∣∣∣∣E
[(

∑
σ :supp(σ)=S

α(σ)Xσ

)(
∑

σ ′:supp(σ ′)=S
β (σ ′)Yσ ′

)]∣∣∣∣∣
≤ ∑

σ ,σ ′:
supp(σ)=supp(σ ′)=S

∣∣∣∣∣α(σ)β (σ ′)∏
i∈S

E
[
Xi,σiYi,σ ′i

]∣∣∣∣∣
≤ ρ

|S|
∑

σ ,σ ′:
supp(σ)=supp(σ ′)=S

|α(σ)β (σ ′)|

≤ ρ
|S|√Var[PS]Var[QS] ,

Lemma A.72. Let k ∈ N. Then, min(1− (1− γ)k,ρk)≤ ε/`.

Proof. If ρ ∈ {0,1} we are done, therefore assume that ρ ∈ (0,1). If k ≥ logρ ε/`, then ρk ≤ ε/`.
If 0≤ k < logρ ε/`, then by Bernoulli’s inequality,

1− (1− γ)k ≤ γk ≤ 1−ρ

ln(1/ρ)
· ε
`
≤ ε

`
.

Lemma A.73. For every j ∈ [`] and S⊆ [n], S 6= /0:∣∣∣E[(Id−T1−γ)P
( j)
S (X( j)) ·Q( j)

S (Y( j))
]∣∣∣≤ ε

`
·
√

Var[P( j)
S ]Var[Q( j)

S ] .

Proof. As in the proof of Lemma A.71, we will write P := P( j), Q := Q( j), X := X( j) and Y := Y( j).
By definition of T1−γ ,

(Id−T1−γ)PS(X) = (1− (1− γ)|S|)PS(X) . (83)

From (83), Lemma A.71 and Lemma A.72,∣∣E[(Id−T1−γ)PS(X) ·QS(Y)
]∣∣≤min

(
1− (1− γ)|S|,ρ |S|

)√
Var[PS]Var[QS]

≤ ε

`

√
Var[PS]Var[QS] .

Lemma A.74. Fix j ∈ [`]. Then,∣∣∣E[(Id−T1−γ)P( j)(X( j)) ·Q( j)(Y( j))
]∣∣∣≤ ε/` .
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Proof. For ease of notation write P := P( j), Q := Q( j), X := X( j) and Y := Y( j).
Observe that since P(X),Q(Y) ∈ [0,1], also Var[P],Var[Q]≤ 1.
From Lemma A.18, Lemma A.73 and Cauchy-Schwarz,∣∣E[(Id−T1−γ)P(X) ·Q(Y)

∣∣]≤ ∑
S⊆[n]

∣∣E[(Id−T1−γ)PS(X) ·QS(Y)
]∣∣

≤ ε

` ∑
S 6= /0

√
Var[PS]Var[QS]

≤ ε

`

√
Var[P]Var[Q]≤ ε/` .

Proof of Theorem A.69. By Lemma A.70 and Lemma A.74,∣∣∣∣∣E
[

`

∏
j=1

P( j)(X( j))−
`

∏
j=1

T1−γP( j)(X( j))

]∣∣∣∣∣≤ `

∑
j=1

∣∣∣E[(Id−T1−γ)P( j)(X( j)) ·Q( j)(Y( j))
]∣∣∣

≤ ε .

A.8 Gaussian reverse hypercontractivity

Definition A.75. Let L2(Rn,γn) be the inner product space of functions with standard N(0,1) Gaussian
measure.

Our goal in this section is to prove the following bound:

Theorem A.76. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with ρ(P)≤ ρ < 1
and such that each orthonormal ensemble in G has size p.

Then, for all f (1), . . . , f (`) ∈ L2(Rpn,γ pn) such that f (1), . . . , f (`) : Rpn→ [0,1] and E
[

f ( j)(G( j))
]
=

µ( j):

E

[
`

∏
j=1

f ( j)(G( j))

]
≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

.

Remark A.77. Since the random variables G
( j)
i,0 are constant, it suffices to consider consider f ( j) as

functions of pn rather than (p+1)n inputs.

In order to prove Theorem A.76, we will use a multidimensional version of Gaussian reverse
hypercontractivity stated as Theorem 1 in [CDP15] (cf. also Corollary 4 in [Led14]).

Theorem A.78 ([CDP15]). Let p > 0 and let G = (G(1), . . . ,G(`)) be a jointly Gaussian collection of `
random vectors such that:
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• For each j ∈ [`], G( j) = (G( j)
1 , . . . ,G( j)

n ) is a random vector distributed as n independent N(0,1)
Gaussians.

• For every collection of real numbers {α( j)
i } ∈ R:

Var

[
∑
i, j

α
( j)
i ·G

( j)
i

]
≥ p ·∑

i, j

(
α
( j)
i

)2
. (84)

Then, for all functions f (1), . . . , f (`) ∈ L2(Rn,γn) such that f (1), . . . , f (`) :Rn→ [0,1] and E
[

f ( j)(G( j))
]
=

µ( j):

E

[
`

∏
j=1

f ( j)(G( j))

]
≥

(
`

∏
j=1

µ
( j)

)1/p

.

Remark A.79. An equivalent formulation of the condition in (84) is that the matrix (T − p Id) is positive
semidefinite, where T is the covariance matrix of G.

To reduce Theorem A.76 to Theorem A.78 we first look at a single-coordinate variance bound for
ensembles from X. Next, we will extend this bound to multiple coordinates and ensembles from G.

Lemma A.80. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with ρ(P)≤ ρ < 1
and such that each orthonormal ensemble in X has size p.

Fix i ∈ [n] and for ease of notation let us write X( j) = (X
( j)
0 , . . . ,X

( j)
p ) for the random ensemble

X
( j)
i = (X

( j)
i,0 , . . . ,X

( j)
i,p ).

Then, for every collection of real numbers {α( j)
k } ∈ R:

Var

[
∑

j≥1,k>0
α
( j)
k ·X

( j)
k

]
≥ 1−ρ2

`
· ∑

j≥1,k>0

(
α
( j)
k

)2
.

Proof. For any j ∈ [`] we define A j := ∑k>0 α
( j)
k ·X

( j)
k and B j := ∑ j′∈[`]\{ j}∑k>0 α

( j′)
k ·X( j′)

k .
We compute

Var[B j] ·Var[A j +B j] = Var[A j] ·Var[B j]+ (Var[B j])
2 +2Var[B j]Cov[A j,B j]

= Var[A j] ·Var[B j]+ (Var[B j]+Cov[A j,B j])
2−Cov[A j,B j]

2

≥ Var[A j] ·Var[B j]−Cov[A j,B j]
2

≥ Var[A j]Var[B j](1−ρ
2) ,

where in the last inequality we used that the definition of ρ implies∣∣Cov[A j,B j]
∣∣≤ ρ

√
Var[A j]Var[B j]
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since A j ∈ L2(X ( j)
i ) and Bi ∈ L2(X ([`]\{ j})

i ).
Therefore,

Var

[
∑

j≥1,k>0
α
( j)
k ·X

( j)
k

]
=

1
`

`

∑
j=1

Var[A j +B j]≥
1−ρ2

`

`

∑
j=1

Var[A j]

=
1−ρ2

`

`

∑
j=1

∑
k>0

(
α
(k)
j

)2
.

Lemma A.81. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with ρ(P)≤ ρ < 1.

Then, for every collection of real numbers {α( j)
i,k } ∈ R:

Var

[
∑

i, j≥1,k>0
α
( j)
i,k ·X

( j)
i,k

]
≥ 1−ρ2

`
· ∑

i, j≥1,k>0

(
α
(k)
i, j

)2
.

Proof. Since ensembles Xi are independent, by Lemma A.80,

Var

[
∑

i, j≥1,k>0
α
( j)
i,k ·X

( j)
i,k

]
=

n

∑
i=1

Var

[
∑

j≥1,k>0
α
( j)
i,k ·X

( j)
i,k

]

≥ 1−ρ2

`
· ∑

i, j≥1,k>0

(
α
( j)
i,k

)2
.

Lemma A.82. Let (X ,X,G) be an ensemble collection for a probability space (Ω,P) with ρ(P)≤ ρ < 1.

Then, for every collection of real numbers {α( j)
i,k } ∈ R:

Var

[
∑

i, j≥1,k>0
α
( j)
i,k ·G

( j)
i,k

]
≥ 1−ρ2

`
· ∑

i, j≥1,k>0

(
α
(k)
i, j

)2
.

Proof. By Corollary A.31 and Lemma A.81.

Proof of Theorem A.76. By application of Theorem A.78 to G = (G(1), . . . ,G(`)), where G( j) = (G
( j)
i,1 ,

. . . ,G
( j)
i,p , . . . ,G

( j)
n,1, . . . ,G

( j)
n,p).

Since G( j) is a Gaussian ensemble sequence, G( j) is distributed as pn independent N(0,1) Gaussians.

Condition (84) for p := 1−ρ2

` is fulfilled due to Lemma A.82.

A.9 The main theorem

We recall the low-influence theorem that we want to prove:
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Theorem 4.1. Let X be a random vector distributed according to (Ω,P) such that P has equal marginals,
ρ(P)≤ ρ < 1 and minx∈Ω π(x)≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε,ρ,α, `)> 0 such that if functions f (1), . . . , f (`) : Ω→ [0,1]
satisfy

max
i∈[n], j∈[`]

Infi( f ( j)(X ( j)))≤ τ , (10)

then, for µ( j) := E[ f ( j)(X ( j))]:

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

− ε . (11)

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈ (0,1/2] one can take

τ :=
(
(1−ρ2)ε

`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (12)

We need to define some new objects in order to proceed with the proof. Let (X ,X,G) be an ensemble
collection for (Ω,P).

For j ∈ [`], let P( j) be a multilinear polynomial compatible with X( j) and equivalent to f ( j)(X ( j)).
For some small γ > 0 to be fixed later let Q( j) := T1−γP( j). Finally, letting p be the size of each of the
ensembles X( j)

i and G
( j)
i , define a function R( j) : Rpn→ R as

R( j)(x) :=


0 if Q( j)(x)< 0,
Q( j)(x) if Q( j)(x) ∈ [0,1],
1 if Q( j)(x)> 1.

Note that it might be impossible to write R( j) as a multilinear polynomial, but it will not cause problems
in the proof. Finally, let µ ′( j) := E

[
R( j)(G( j))

]
.

The proof proceeds by decomposing the expression we are bounding into several parts:

E

[
`

∏
j=1

f ( j)(X ( j))

]
= E

[
`

∏
j=1

P( j)(X( j))

]
=

= E

[
`

∏
j=1

P( j)(X( j))−
`

∏
j=1

Q( j)(X( j))

]
+ (85)

+E

[
`

∏
j=1

Q( j)(X( j))−
`

∏
j=1

R( j)(G( j))

]
+ (86)

+E

[
`

∏
j=1

R( j)(G( j))

]
. (87)
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JAN HĄZŁA, THOMAS HOLENSTEIN, AND ELCHANAN MOSSEL

We use the theorems proved so far to bound each of the terms (85), (86) and (87) in turn. First, we apply
Theorem A.69 to show that (85) has small absolute value. Then, we use the invariance principle (Theorem
A.53) to argue that (86) has small absolute value. Finally, using Gaussian reverse hypercontractivity

(Theorem A.76) we show that (87) is bounded from below by (roughly)
(
∏

`
j=1 µ( j)

)`/(1−ρ2)
.

We proceed with a detailed argument in the following lemmas. In the following assume w.l.o.g that
ε ≤ 1/2 and α ≤ 1/2.

Lemma A.83. Set γ := (1−ρ)ε
2` ln2`/ε

. Then,∣∣∣∣∣E
[

`

∏
j=1

P( j)(X( j))−
`

∏
j=1

Q( j)(X( j))

]∣∣∣∣∣≤ ε/2 .

Proof. By Theorem A.69.

Lemma A.84. There exists an absolute constant C > 0 such that∣∣∣∣∣E
[

`

∏
j=1

Q( j)(X( j))−
`

∏
j=1

R( j)(G( j))

]∣∣∣∣∣≤C`5/2 · τ
γ

C ln1/α .

Proof. Note that for every j ∈ [`] the polynomial Q( j) is γ-decaying and that it has bounded influence for
every i ∈ [n]:

Infi(Q( j))≤ Infi(P( j)) = Infi( f ( j)(X ( j))≤ τ .

By definition of χ (Definition A.51) and Theorem A.53,∣∣∣∣∣E
[

`

∏
j=1

Q( j)(X( j))−
`

∏
j=1

R( j)(G( j))

]∣∣∣∣∣= ∣∣E[χ (Q(X)
)
−χ

(
Q(G)

)]∣∣
≤C`5/2 · τ

γ

C ln1/α .

Lemma A.85.

E

[
`

∏
j=1

R( j)(G( j))

]
≥

(
`

∏
j=1

µ
′( j)

)`/(1−ρ2)

.

Proof. By Theorem A.76.

Lastly, we need to show that the difference between ∏
`
j=1 µ ′( j) and ∏

`
j=1 µ( j) is small.

Claim A.86. Let a≥ 0,ε ≥ 0,a+ ε ≤ 1,β ≥ 1. Then, (a+ ε)β −aβ ≤ βε .
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Proof. The function hβ ,ε(a) := (a+ε)β −aβ is non-decreasing (since d
da hβ ,ε = β ((a+ε)β−1−aβ−1)≥

0). Hence,

(a+ ε)β −aβ ≤ 1− (1− ε)β ≤ βε ,

where in the last step we applied Bernoulli’s inequality.

Lemma A.87. There exists an absolute constant C > 0 such that∣∣∣∣∣∣
(

`

∏
j=1

µ
( j)

)`/(1−ρ2)

−

(
`

∏
j=1

µ
′( j)

)`/(1−ρ2)
∣∣∣∣∣∣≤ C`2

1−ρ2 · τ
γ

C ln1/α .

Proof. By Claim A.86,∣∣∣∣∣∣
(

`

∏
j=1

µ
( j)

)`/(1−ρ2)

−

(
`

∏
j=1

µ
′( j)

)`/(1−ρ2)
∣∣∣∣∣∣≤ `

1−ρ2 ·

∣∣∣∣∣ `

∏
j=1

µ
( j)−

`

∏
j=1

µ
′( j)

∣∣∣∣∣ . (88)

Since µ( j),µ ′( j) ∈ [0,1], ∣∣∣∣∣ `

∏
j=1

µ
( j)−

`

∏
j=1

µ
′( j)

∣∣∣∣∣≤ `

∑
j=1

∣∣∣µ( j)−µ
′( j)
∣∣∣ . (89)

For a fixed j ∈ [`], from the definition of χ and Theorem A.53 applied with `= 1,∣∣∣µ( j)−µ
′( j)
∣∣∣= ∣∣∣E[χ (Q( j)(X( j))

)
−χ

(
Q( j)(G( j))

)]∣∣∣≤C · τ
γ

C ln1/α . (90)

Inequalities (88), (89) and (90) together give the claim.

Proof of Theorem 4.1. Following the decomposition of ∏
`
j=1 f ( j)(X ( j)) into subexpressions (85), (86)

and (87), from Lemma A.83, Lemma A.84, Lemma A.85 and Lemma A.87,

E

[
`

∏
j=1

f ( j)(X ( j))

]
≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

− ε/2−C`5/2 · τ
γ

C ln1/α − C`2

1−ρ2 · τ
γ

C ln1/α

≥

(
`

∏
j=1

µ
( j)

)`/(1−ρ2)

− ε/2− 2C`5/2

1−ρ2 · τ
γ

C ln1/α .

By choosing τ(ε,ρ,α, `,γ) small enough we get

2C`5/2

1−ρ2 · τ
γ

C ln1/α ≤ ε/2 , (91)

which is the main part of the theorem (recall that γ = (1−ρ)ε
2` ln(2`/ε) ).
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To see that we can choose τ as in (12), note that for D > 0 big enough we have

τ :=
(
(1−ρ2)ε

`5/2

)D ` ln(`/ε) ln(1/α)
(1−ρ)ε

≤
(
(1−ρ2)ε

`5/2

)D′ 2C` ln(2`/ε) ln(1/α)
(1−ρ)ε

=

(
(1−ρ2)ε

`5/2

)D′ C ln(1/α)
γ

for D′ > 0 as needed. Hence, we obtain

2C`5/2

1−ρ2 · τ
γ

C ln1/α = 2C · `5/2

1−ρ2 ·
(
(1−ρ2)ε

`5/2

)D′

≤ 2Cε
D′ ≤ ε/2 ,

which establishes (91) for this choice of τ .
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JAN HĄZŁA, THOMAS HOLENSTEIN, AND ELCHANAN MOSSEL

[MOR+06] Elchanan Mossel, Ryan O’Donnell, Oded Regev, Jeffrey E. Steif, and Benny Sudakov.
Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse
Bonami-Beckner inequality. Israel Journal of Mathematics, 154(1):299–336, 2006. 3

[Mos10] Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and
Functional Analysis, 19(6):1713–1756, 2010. 6, 7, 8, 10, 11, 12, 27, 30, 31

[MOS13] Elchanan Mossel, Krzysztof Oleszkiewicz, and Arnab Sen. On reverse hypercontractivity.
Geometric and Functional Analysis, 23(3):1062–1097, 2013. 3, 30

[Mos17] Elchanan Mossel. Gaussian bounds for noise correlation of resilient functions.
arXiv:1704.04745, 2017. 6

[Nel73] Edward Nelson. The free Markoff field. Journal of Functional Analysis, 12(2):211–227,
1973. 40

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 10, 27

[Rot53] Klaus F. Roth. On certain sets of integers. Journal of the London Mathematical Society,
s1-28(1):104–109, 1953. 3, 4
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