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§1 Introduction

Let F be a non archimedean local field and G a reductive group defined over F . To study the
category R := R(G) of smooth representations of G, Bushnell and Kutzko [BK] formulated the
theory of types, which build on the theory of minimal K-types [HM] and a general framework due
to Bernstein [Be]. This category R is decomposed into a product of additive subcategories by the
theory of Bernstein center [Be]:

(1) R =
∏

s∈I

R
s(G),

where I is the set of inertial classes of cuspidal pairs. Moreover, each factor R
s := R

s(G) can
not be further decomposed (see [BK] for details). When we have a type in the sense of Bushnell
and Kutzko, we have the means to study a finite number of these R

s. To be effective, we would
like to have one type for each single R

s. The existence and the nature of such types has been a
fundamental problem.

In this article, we will give a construction of types for a general reductive p-adic group G. Our
method produces types corresponding to a single factor Rs. The construction here is not new:
it is the same construction used in [Yu] for supercuspidal representations, when certain obvious
constraints pertaining to supercuspidality are removed. What is new is that an additional constraint
must be imposed concerning the embeddings of buildings. For any (tamely ramified twist of a) Levi
subgroup G′ of G, there is a family of embeddings of the (extended) building B(G′) of G′ into that
B(G) of G. This family forms a Euclidean space. The choice of embeddings is unimportant for
almost all applications. But it is crucial here that we avoid a certain set of embeddings of measure 0.
This generic choice of embeddings allows us to construct our types as covers of supercuspidal types
on Levi subgroups in a uniform manner. To prove that this construction indeed yields G-covers
and thus types in the sense of Bushnell and Kutzko [BK], we use ideas from the work of [K, MP2].

In §9, we sketch a proof that our construction yields sufficiently many types to study all irre-
ducible admissible representations under a suitable “tameness” hypothesis on G and F .
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§2 Notation and conventions

2.1 We adopt all notation and conventions from [Yu, p. 582]. However, in this paper we do not
need to treat base field extensions extensively except in (4.3). Therefore, we work over a fixed non-
archimedean local field F , that is, F is either a p-adic field or a function field over finite field. If G
is an algebraic group over F , we will denote G’s group of rational points also by G for simplicity.
This should lead to no confusion.

2.2 Throughout this paper, G is a connected reductive group over F , split over a tamely ramified
extension of F . For any maximal F -split torus S, Φ(G,S, F ) denotes the corresponding set of
roots in G. For a ∈ Φ(G,S, F ), let Ua (resp. ua) be the root subgroup (resp. root subspace)
corresponding to a.

By a Levi subgroup of G, we mean an F -subgroup of G which is a Levi factor of a parabolic
F -subgroup of G. By a twisted Levi subgroup G, we mean an F -subgroup G′ of G such that
G′ ⊗F F̄ is a Levi subgroup of G⊗F F̄ .

2.3 We assume that the residue characteristic p of F is not a torsion prime for ψ(G)∨, the root
datum dual to the root datum ψ(G) of G⊗F F̄ . See [Yu, §7] and [St] for the relevant notions. By
[St, 2.3], p is not a torsion prime for ψ(G′)∨, for any (twisted) Levi subgroup G′ of G. From §7 on,
we also assume that p is odd.

2.4 Let ~G = (G0, . . . , Gd) be a tamely ramified twisted Levi sequence in G, that is, each Gi is a
E-Levi subgroup of G over a tamely ramified finite extension E of F ([Yu, p. 586]). Let M0 be an
F -Levi subgroup of G0. Let Zs(M

0) be the maximal F -split torus of the center Z(M0) of M0. We
define M i to be the centralizer of Zs(M

0) in Gi.

Lemma

(a) M i is an F -Levi subgroup of Gi.

(b) ~M := (M0,M1, . . . ,Md) is a generalized twisted Levi sequence in M := Md in the sense of
[Yu, page 616].

(c) Z(M0)/Z(Md) is F -anisotropic.

Proof. (a) follows from [Bo, 20.4]. It then follows that M i is a twisted Levi subgroup of Gj for
i ≤ j. Therefore, for i ≤ j, M i is the centralizer of Z(M i)◦ in Gj , hence is also the centralizer of
Z(M i)◦ in M j . Again by [Bo, 20.4], this implies that M i is a twisted Levi subgroup of M j. We
have proved (b).

Finally, since Z(Md) ⊂ Z(M0), the F -split rank of Z(Md)◦ is smaller than or equal to that
of Z(M0)◦. By construction, Z(Md)◦ ⊃ Zs(M

0). Therefore Z(Md)◦ and Z(M0)◦ have the same
F -split rank. This proves (c).

Remark We observe that ~M is a tamely ramified twisted Levi sequence in M .
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§3 Generic embeddings of buildings

3.1 We recall that, if G′ is a tamely ramified twisted Levi subgroup of G, then there exists a family
of natural embeddings of buildings B(G′) →֒ B(G), which is an affine space under X∗(Zs(G

′))⊗R.
All these embeddings have the same image. Two embeddings in the same orbit of X∗(Zs(G)) ⊗ R

can be regarded as the same for most purposes.

3.2 Definition LetM be a Levi subgroup of G, y ∈ B(M), and s ∈ R. We say that the embedding
ι : B(M) →֒ B(G) is (y, s)-generic, or s-generic with respect to y, if Ua,ι(y),s = Ua,ι(y),s+ for all
a ∈ Φ(G,S, F )rΦ(M,S,F ), where S is any maximal F -split torus of M such that y ∈ A(M,S,F ).
Here A(M,S,F ) is the apartment associated to S in B(M).

Once an embedding ι is fixed, we will identify B(M) as a subset of B(G).

Here, {Ua,ι(y),r}r∈R is the filtration on the root group Ua, a ∈ Φ(G,S, F ) so that Ua,ι(y),r =
Ua ∩Gι(y),r , where {Gι(y),r}r≥0 is the Moy-Prasad filtration (see [MP1], [MP2]). The following two
results illustrate the usefulness of the notion of generic embeddings.

3.3 Proposition Let G,M, y be as above and let ι : B(M) →֒ B(G) be 0-generic relative to y. Let
P =MU be a parabolic F -subgroup of G with Levi factor M . For any smooth representation V of
G, the natural map rU : V → VU from V to its Jacquet module induces a bijection

rU : V Gy,0+ → (VU )
My,0+ .

This is a reformulation of [MP2, Proposition 6.7]. Note that y ∈ B(M) and an embedding
B(M) →֒ B(G) is not always 0-generic with respect to y.

3.4 Remark We can use generic embeddings to gain some new insight for the result in [Yu, §17].
Indeed, when G′ is a Levi subgroup, one observes that the main result in [Yu, Theorem 17.1] is
obvious when the embedding ι : B(G′) →֒ B(G) implicitly used is (y, s)-generic, where s = r/2. In
this case, one can argue directly using the last paragraph of the proof [Yu, Corollary 17.3].

In general, one argues that there is an embedding ι1 : B(G′) →֒ B(G) close to ι which is (y, s)-
generic (see (3.6) below), and (J, φ̃) = (J, indJJ1 φ̃1) where (J1, φ̃1) is constructed in the same way

as (J, φ̃) but using ι1 in place of ι. Then the theorem follows immediately from the generic case.
In fact, this is just rephrasing the proof in [Yu, §17]. Our J1 is the ad hoc object J⊢ used there.
However, now we view [Yu, Lemma 17.2] as a literal special case of [Yu, Theorem 9.4] by varying
the embedding, and we should regard [Yu, Theorem 17.1] in the case of a generic embedding as the
essential result.

3.5 We now work in the setting of 2.4. Consider a commutative diagram of embeddings:

B(G0) �
� // B(G1) �

� // · · · �
� // B(Gd)

B(M0) �
� //

?�

OO

B(M1) �
� //

?�

OO

· · · �
� // B(Md)

?�

OO

{ι} :

To specify such a diagram of embeddings, it suffices to give the image of a fixed y ∈ B(M0) in
B(M i), 1 ≤ i ≤ d and in B(Gi), 0 ≤ i ≤ d. We will denote this whole diagram by {ι}, and we will
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denote by ι any composite embedding in this diagram (from B(M i) to B(M j) or B(Gj), or from
B(Gi) to B(Gj), for i ≤ j).

Definition Let ~s = (s0, . . . , sd) be a sequence of real numbers, and y ∈ B(M0). We say that {ι} is
~s-generic (relative to y) if ι : B(M i) → B(Gi) is si-generic relative to ι(y) ∈ B(M i) for 0 ≤ i ≤ d.

3.6 We now establish the abundance of generic embeddings.
Let {ι} be a commutative diagram of embeddings as in §3.5, and y ∈ B(M0). Denote the image

of y in B(M i) by yi, and that in B(Gi) by zi, 0 ≤ i ≤ d. Let v ∈ X∗(Zs(M
0)) ⊗ R. There is a

commutative diagram of embeddings, to be denoted by {ι}v , in which the image of y in B(M i) is
yi, and that in B(Gi) is zi + v, 0 ≤ i ≤ d.

Lemma Fix ~s ∈ R
d+1.

(a) ~s-generic commutative diagrams of embeddings exist.

(b) Assume that G 6= M . For 0 ≤ i ≤ d, let Si be a maximal F -split torus of M i. Let γ ∈
X∗(Zs(M

0))⊗R be such that 〈a, γ〉 6= 0 for a ∈ Φ(Gi, Si, F )rΦ(M i, Si, F ), 0 ≤ i ≤ d. Then
the set of t ∈ R such that the commutative diagram of embeddings {ι}tγ is not ~s-generic is an
infinite discrete subset of R.

Proof. For i = 0, 1, · · · , d and a ∈
(

Φ(Gi, Si, F ) r Φ(M i, Si, F )
)

, there exist infinite discrete
subsets Γi,a of R such that the set of v ∈ V = X∗(Zs(M

0))⊗R with {ι}v not ~s-generic is the union
of hyperplanes in V defined by a(v) = c, c ∈ Γi,a. Both statements follow easily from this.

§4 Covers and decompositions

4.1 Iwahori-type decompositions Let P = MU be a parabolic F -subgroup of G with Levi
factor M , and P̄ = MŪ the opposite parabolic. A compact open subgroup K of G is said to
decompose with respect to U,M, Ū if

K = (K ∩ U).(K ∩M).(K ∩ Ū).

4.2 Covers Let M be a Levi subgroup of G, K (resp. KM ) a compact open subgroup of G
(resp.M), and ρ (resp. ρM ) an irreducible smooth representation of K (resp. KM ). The pair (K, ρ)
is called a G-cover of (KM , ρM ) if for any opposite pair of parabolic subgroups P =MU, P̄ =MŪ
with Levi factor M , we have

(i) K decomposes with respect to (U,M, Ū ).

(ii) ρ|KM = ρM and K ∩ U,K ∩ Ū ⊂ ker(ρ).

(iii) For any smooth representation V of G, the natural map from V to its Jacquet module VU
induces an injection on V (K,ρ), the (K, ρ)-isotypic subspace of V .

This definition is due to Bushnell and Kutzko [BK], although we have used a reformulation given
in [Bl, Théorème 1] (see also [GR, §4.1]).
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4.3 We now give a useful (probably well-known) class of compact open subgroups with the decom-
position property with respect to (U,M, Ū ).

Fix ι : B(M) →֒ B(G) and consider B(M) as a subset of B(G). Let E/F be a finite Galois
extension such that G⊗ E is split. Let T be a maximal torus of M , defined over F and split over
E. Let y be a point of A(M,T,E) ∩ B(G). Put Φ0 = Φ(G,T,E) ∪ {0} and let f : Φ0 → R̃ be a
Gal(E/F )-stable and concave function. Then we can define G(E)y,f and K = Gy,f = G(E)y,f ∩G
as in [Yu, page 608].

In addition, let K+ = Gy,f+ , where f+ is the concave function a 7→ max(f(a), 0+) [Yu, Lemma
13.1 (ii)].

Proposition Suppose that f(a) ≥ 0 for all a ∈ Φ0 and f(a) > 0 for all a ∈ Φ0 r Φ(M,T,E).

(a) K = Gy,f and K+ = Gy,f+ decompose with respect to (U,M, Ū ).

(b) Let K̂M be a compact open subgroup of M containing K+ ∩M such that K̂M normalizes K+.
Then K̂ := (K ∩U)K̂M (K ∩ Ū) is an open compact subgroup, which decomposes with respect
to (U,M, Ū ). Moreover, K̂/K+ ≃ K̂M/(K+ ∩M).

Proof. (a) It suffices to prove the assertion for KE = G(E)y,f . Indeed, if KE decomposes with
respect to (U,M, Ū ), and g ∈ Gy,f , then g = umū for unique elements u ∈ KE ∩ U(E),m ∈
KE ∩ M(E), ū ∈ KE ∩ Ū(E). For any σ ∈ Gal(E/F ), umū = g = σ(g) = σ(u)σ(m)σ(ū). By
the uniqueness of the decomposition (a consequence of the big cell theorem [Bo, 14.21]), we have
u ∈ U(E)Gal(E/F ) = U(F ), etc. It follows that K = Gy,f decomposes with respect to (U,M, Ū ). A
similar remark applies to K+.

We now prove (a) with the additional assumption that E = F and T is split over F . The
statement about K+ is then a special case of [BT1, 6.4.48]. Write Φ0 = ΦU ⊔ ΦM ⊔ ΦŪ , where
ΦM = Φ(M,T, F )∪{0}, and ΦU (resp. ΦŪ ) is the set of roots for the action of T on LieU (resp. on
Lie Ū)). For H = U,M, Ū , let

fH(a) =

{

f(a) if a ∈ ΦH ,

∞ otherwise.

Then fH is concave by [Yu, Lemma 13.1 (iv)], and KH = Gy,fH ⊂ K ∩H.
By [BT1, 6.4.43], KM normalizes KU . Therefore, KUKM is a subgroup of G, and is the same as

Gy,fUM
, where fUM = inf(fU , fM ). Again by [BT1, 6.4.43], KUKM ⊂ K normalizesK+. Therefore,

KUKMK+ is a subgroup of G. Since K+ = KU (K+ ∩M)KŪ and KU(K+ ∩M) ⊂ KUKM , we
have KUKMK+ = KUKMKŪ is a subgroup of G. It follows that this subgroup is Gy,f = K, and
KH = K ∩H for H = U,M, Ū . This proves (a).

(b) Since K̂M ⊂ M normalizes U , K̂M normalizes KU and KUK̂M is a subgroup of G. This
subgroup normalizes K+ since both KU and K̂M do. Therefore, KUK̂MK+ is a subgroup of G.
Clearly, this subgroup is equal to KUK̂MK

Ū .
The natural morphism K̂M → K̂/K+ is surjective with kernel K̂M ∩ K+ = (K+ ∩M). This

gives the asserted isomorphism and finishes the proof of (b).
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§5 Heisenberg triples

5.1 Definition Let J ⊃ J+ be compact, open, pro-p subgroups of G, and let ϕ : J+ → C× be
a smooth character such that ϕ(J+) = µp := {ζ ∈ C

× : ζp = 1}. We say that (J, J+, ϕ) is a
Heisenberg triple if

(i) J+ is a normal subgroup of J and J/J+ is an abelian group of exponent p.

(ii) The commutator subgroup [J, J+] ⊂ ker(ϕ).

(iii) The symplectic pairing (J/J+)× (J/J+) → µp, (a, b) 7→ ϕ(aba−1b−1) is non-degenerate.

Notice that (i) and (ii) imply that the pairing in (iii) is well-defined. It follows that J/ ker(ϕ)
is a Heisenberg p-group. Such triples often occur in the representation theory of p-adic groups.

5.2 Example We now recall the fundamental Heisenberg triple used in [Yu]. The setting of this
example will be in force through the rest of this section. Let (G′, G) be a tamely ramified twisted
Levi sequence in G, and y ∈ B(G′). Fix an embedding B(G′) →֒ B(G) to identify B(G′) as a
subset of B(G). Let r be a positive real number and φ : G′

y,r:r+ → C
× a G-generic character in

the sense of [Yu, §9]. Put s = r/2, J = (G′, G)y,(r,s), J+ = (G′, G)y,(r,s+), and ϕ : J+ → C× the
character obtained by extending the restriction of φ to G′

y,r trivially across a subgroup of G that
is ‘perpendicular’ to G′ in a suitable sense (see [Yu, §4]). Then (J, J+, ϕ) is a Heisenberg triple by
[Yu, Lemma 11.1].

5.3 Keep the settings in (5.2). In addition, let M ′ be a Levi subgroup of G′ such that y ∈ B(M ′).
LetM be the centralizer in G of Zs(M

′). Then, if we put (G0, G1) = (G′, G), (M0,M1) := (M ′,M)
is a Levi sequence as in 2.4. We also fix a commutative diagram of embeddings of buildings extending
B(G′) →֒ B(G):

B(G′) �
� // B(G)

B(M ′) �
� //

?�

OO

B(M)
?�

OO

We treat these embeddings as inclusions.

Lemma φM := φ|M ′
y,r is M -generic of depth r relative to y.

Proof. By definition, φ|G′
y,r:r+ is realized by a G-generic element X∗ ∈ (Lie∗ Z(G′))−r. Let E/F

be a finite extension over which M ′,M,G′ and G are all split, and T a maximal E-split torus
of M ′ such that y ∈ A(M ′, T,E). Then the genericity of X∗ means: ord(X∗(Ha)) = −r for all
a ∈ Φ(G,T,E) r Φ(G′, T,E) (recall that Ha = da∨(1) and a∨ : Gm → T is the coroot of a). This
is condition GE1 in [Yu, §8]. By (2.3) and [Yu, Lemma 8.1], GE2 holds automatically.

Clearly, φM |M ′
y,r:r+ is realized by X∗

M := the image of X∗ under Lie∗G′ → Lie∗M ′. So we
have X∗

M (Ha) = X∗(Ha) has valuation −r for all a ∈ Φ(M,T,E) r Φ(M ′, T,E) ⊂ Φ(G,T,E) r
Φ(G′, T,E) (notice that, for a ∈ Φ(M,T,E) ⊂ Φ(G,T,E), Ha is the same whether we consider a
as a root of M or of G). Again by (2.3) and [Yu, Lemma 8.1], this shows that φM is M -generic of
depth r relative to y.
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5.4 Keep the settings in (5.2) and (5.3). We now give the crucial construction of a new Heisenberg
triple needed in this paper. Let

J̃ = (M,G)y,(r,s) ∩ (G′, G)y,(r,s), J̃+ = (M,G)y,(r,s) ∩ (G′, G)y,(r,s+), ϕ̃ = ϕ|J̃+,

where ϕ is the character used in 5.2. By [Yu, Lemma 13.2], the groups J̃ and J̃+ can be described
by concave functions in a suitable way.

Lemma

(a) (J̃ , J̃+, ϕ̃) is a Heisenberg triple.

(b) Let P =MU be a parabolic F -subgroup of G with Levi factor M and unipotent radical U . Let
Ū be the unipotent radical of the opposite parabolic subgroup. Let W and W̄ be the images
of J̃U := J̃ ∩ U and J̃ Ū := J̃ ∩ Ū in Ṽ := J̃/J̃+ respectively. Then W and W̄ are maximal
isotropic subspaces of Ṽ , and Ṽ = W + W̄ . In other words, W and W̄ form a complete
polarization of Ṽ .

(c) Let C be the center of H := J̃/ ker(ϕ̃). Let A, Ā be the images of J̃U and J̃ Ū in H. Then
A ∩C = Ā ∩C = {1}.

(d) (G′, G)y,(0,s) ∩ U normalizes J̃U .

Proof. Let (J, J+, ϕ) be the triple in 5.2, so that J̃ ⊂ J and J̃+ = J̃ ∩J+. Thus conditions (i) and
(ii) in 5.1 follow from the corresponding statements for (J, J+, ϕ). It is also clear that ϕ̃(J̃+) = µp.

Denote by (JM , JM
+ , ϕM ) the Heisenberg triple obtained by applying the construction of 5.2 to

(M ′,M, y, φM ). Then JM ⊂ J , JM
+ = JM ∩ J+. Put V = J/J+, VM = JM/JM

+ , Ṽ = J̃/J̃+. Then

we have embeddings of VM →֒ V and Ṽ →֒ V , which are compatible with the symplectic pairings
on these spaces. We will regard these embeddings as inclusions.

By [Yu, Lemma 13.3], J = JM J̃ . This implies VM + Ṽ = V . We now claim VM ⊥ Ṽ . Since VM
is non-degenerate, this will imply V = VM ⊕ Ṽ (orthogonal direct sum of symplectic spaces) and
Ṽ is non-degenerate. So condition (iii) in 5.1 will follow.

By Proposition 4.3,

J̃ = J̃UMy,rJ̃
Ū .

It follows that we have Ṽ = W + W̄ . To prove the claim, it suffices to show that both W and W̄
are perpendicular to VM in V .

Indeed, if a ∈ JM , b ∈ J̃U , then aba−1b−1 ∈ J+∩ J̃U ⊂ J̃+∩ J̃U ⊂ ker(ϕ). This shows VM ⊥W .
The same argument proves VM ⊥ W̄ . This finishes the proof of (a).

Similarly, if a, b ∈ J̃U , then aba−1b−1 ∈ J̃+ ∩ J̃U ⊂ ker(ϕ). Therefore W is a totally isotropic
subspace of Ṽ . The same goes for W̄ . Since V = W + W̄ , both W and W̄ are maximal isotropic
subspaces. This proves (b).

(c) is obvious since J̃+ ∩ J̃U , J̃+ ∩ J̃ Ū ⊂ ker(ϕ).
To prove (d), it suffices to prove the analogous statement when F is replaced by a finite, tamely

ramified, Galois extension field E. Therefore, we may and do assume that M ′ is split over F , and
that there is a maximal F -split torus T of M ′ such that y ∈ A(M ′, T, F ). Then we can write
J̃U = Gy,f , (G

′, G)y,(0,s) ∩ U = Gy,g for suitable concave functions f, g on Φ0 = Φ(G,T, F ) ∪ {0}.
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Explicitly, let v ∈ X∗(Zs(M)) ⊗ R be such that 〈a, v〉 > 0 for all roots a of Zs(M) on the Lie
algebra of U . Then

f(a) =











r if 〈a, v〉 > 0, a ∈ Φ(G′, T, F ),

s if 〈a, v〉 > 0, a /∈ Φ(G′, T, F ),

∞ if 〈a, v〉 ≤ 0;

g(a) =











0 if 〈a, v〉 > 0, a ∈ Φ(G′, T, F ),

s if 〈a, v〉 > 0, a /∈ Φ(G′, T, F ),

∞ if 〈a, v〉 ≤ 0;

According to [BT1, 6.4.43], it suffices to check

f(pa+ qb) ≤ pf(a) + qg(b)

whenever p, q ∈ Z>0, a, b, pa+ qb ∈ Φ0. This condition is easily verified and hence (d) is proved.

5.5 Lemma Let H be a finite Heisenberg p-group with center C. Assume that A, Ā are subgroups
of H such that A ∩ C = Ā ∩ C = {1}, and the image of A and Ā in V := H/C form a complete
polarization. Let ψ be a non-trivial character of C and (X, ρ) a complex representation of H such
that ρ|C is ψ-isotypic. Let v ∈ XA be non-zero. Then

∑

b∈Ā b.v is also non-zero.

Proof. This is [K, Lemma 16.4]. For completeness, we produce a proof here. Assume v 6= 0 is
fixed by A. For b ∈ Ā, a ∈ A, we have

ab.v = aba−1b−1ba.v = ψ(aba−1b−1)(b.v).

Therefore, b.v is an eigenvector for A for the character ψb : a 7→ ψ(aba−1b−1). As these characters
are distinct, the list of (non-zero) vectors {b.v}b∈Ā is linearly independent. It follows that their
sum is non-zero.

§6 Some covers of linear characters

6.1 Setup We now work in the setting of 2.4. Assume in addition:

(i) for each 0 ≤ i ≤ d − 1, we have a quasi-character φi : G
i → C× such that φi is G

i+1-generic
of depth ri relative to any x ∈ B(G′); and

(ii) these depths satisfy

0 < r0 < r1 < · · · < rd−1; and

(iii) we have a point y ∈ B(M0) and a commutative diagram of embeddings {ι} as in 3.5, which
is ~s-generic relative to y, where

~s = (0, s0, . . . , sd−1) =
(

0,
r0
2
,
r1
2
, . . . ,

rd−1

2

)

(notice that si = ri/2 is the (i+ 1)-st component of ~s while ri is the i-th component of ~r).
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We can now form compact subgroups similarly as in [Yu, §3]:

Ki = G0
y,0G

1
y,s0 · · ·G

i
y,si−1

, Ki
+ = G0

y,0+G
1
y,s0+ · · ·Gi

y,si−1+.

Let θi : K
i
+ → C

× be the character defined as in [Yu, §4]. Put K = Kd, K+ = Kd
+, θ = θd,

KM
+ = K+ ∩M , θM = θ|KM

+ . We caution the reader that these groups do depend on the choice
of {ι}, although the dependency is suppressed in the above notation following [Yu]. We will write
Ki{ι}, Ki

+{ι}, etc., when we need to make the dependency clear.

Remark 1. In (i), if φi is G
i+1-generic of depth ri relative to an y ∈ B(Gi), it is Gi+1-generic

of same depth relative to any yB(Gi). This follows from the definition of the genericity of φi.

2. Note that this Ki and Ki in §7.4 are different from the Ki = G0
[y]G

1
y,s0 · · ·G

i
y,si−1

in [Yu, p591]

in general. While Ki and Ki here are compact, Ki in [Yu] is compact mod center in general.

6.2 Lemma Let P =MU be a parabolic F -subgroup of G with Levi factor M and unipotent radical
U , and P̄ =MŪ the opposite parabolic. Then we have

(a) K and K+ decompose with respect to (U,M, Ū ).

(b) The character θ is trivial on K+ ∩ U and K+ ∩ Ū .

Proof. (a) follows from Proposition 4.3 (a). We first observe that φi(U ∩Gi) = {1} since U ∩Gi

lies in the commutator subgroup of Gi. Assertion (b) follows from this and the definition of φ̂i and
θi in [Yu, §4].

6.3 Theorem The pair (K+, θ) is a G-cover of (KM
+ , θM ).

Proof. We proceed by induction on d. The argument here is similar to that in [K, Proposition
17.2]: the case d = 0 is a reformulation of Proposition 3.3 and the inductive step when d ≥ 1 follows
the method of [MP2], using Lemma 5.5 to play the role of [MP2, Proposition 6.1].

Now assume d ≥ 1 and also G 6= M , since there is nothing to prove if G = M . Among the
three defining conditions for a cover (4.2), (i) and (ii) are just the preceding lemma. It remains to
prove (iii): for any parabolic F -subgroup P = MU of G with Levi factor M , and for any smooth
representation V of G, the canonical map from V to its Jacquet module VU is injective on the
(K+, θ)-isotypic subspace of V .

Let v ∈ V be a non-zero (K+, θ)-isotypic vector. It suffices to show that
∫

Ni
g.v dg 6= 0 for an

increasing family of open compact subgroups {Ni} of U whose union is the whole of U .
Choose γ ∈ X∗(Zs(M

0)) ⊗ R such that 〈a, γ〉 > 0 for all roots a of Zs(M
0) on the Lie algebra

of U . For t ∈ R, form the groups K(t) = K{ι}tγ and K+(t) = K+{ι}tγ (see 3.6 for the notation).
Put N(t) = K+(t) ∩ U and N̄(t) = K+(t) ∩ Ū . Then N(t) ⊂ N(t′), N̄(t) ⊃ N̄(t′) for t < t′ and
⋃

t∈RN(t) = U .
By Lemma 3.6, there is an infinite sequence · · · < t−1 < t0 < t1 < t2 < · · · such that tn → +∞

and t−n → −∞ as n → +∞, and K+(t) is constant on the open intervals ti−1 < t < ti (i ∈ Z).
Therefore, we will denote by K+(ti−1, ti) the group K+(t) for any t ∈ (ti−1, ti).

9



In fact,M∩K+(t) = KM
+ ,M∩K(t) = KM := K∩M for all t. For i ∈ Z, let Ni = U∩K+(ti−1, ti),

N̄i = Ū ∩K+(ti−1, ti). Then by Proposition 4.3, we have

K+(ti−1, ti) = NiK
M
+ N̄i,

K+(ti) = NiK
M
+ N̄i+1,

K(ti) = Ni+1K
M N̄i.

Since {ι} = {ι}0γ is ~s-generic, the value t = 0 lies on one of the open intervals (ti, ti+1). We
may and do asssume that 0 ∈ (t0, t1). Now put v1 = v, and for i ≥ 1, define inductively

vi+1 =

∫

Ni+1

x.vi dx.

We make two claims: (i) vi is a non-zero multiple of
∫

Ni
x.v dx, and (ii) vi is

(

K+(ti−1, ti), θ(ti−1, ti)
)

-
isotypic, where θ(ti−1, ti) is the character of K+(ti−1, ti) obtained by using the construction of 6.1
but with the embeddings {ι}tγ , t ∈ (ti−1, ti) in place of {ι}.

We prove the claims by induction. (i) is a simple consequence of Fubini’s theorem and the
unimodularity of U .

We have seen thatK+(ti, ti+1) = Ni+1K
M
+ N̄i+1. SinceNi+1, N̄i+1 ⊂ ker

(

θ(ti, ti+1)
)

by Lemma 6.2,
it follows that ker

(

θ(ti, ti+1)
)

= Ni+1 ker(θM )N̄i+1. In particular, Ni+1 ker(θM )N̄i+1 is a subgroup.
Now we prove (ii). By the induction hypothesis, vi is fixed by ker(θM )N̄i ⊃ ker(θM )N̄i+1. Since
Ni+1 ker(θM )N̄i+1 is a compact subgroup, it follows that vi+1 is fixed by this compact subgroup.
To finish the proof of (ii), it suffices to show that KM

+ acts on vi+1 via the the character θM . Indeed,
for g ∈ KM

+ ,

g.vi+1 =

∫

Ni+1

gxg−1.g.vi dx =

∫

Ni+1

(gxg−1).θM (g)vi dx = θM (g)vi+1.

The last equality is because the compact group KM
+ normalizes Ni+1.

It remains to prove the most important statement:

Lemma vi+1 6= 0 for all i ≥ 0.

Proof. We prove this by induction on i. The case i = 0 holds by assumption. Let (J̃ , J̃+, ϕ̃) be
the triple constructed in (5.4) with (M ′,M,G′, G, φ, r) = (Md−1,M,Gd−1, G, φd−1, rd−1) and the
embeddings {ι}tiγ . By Lemma 5.4 (d), Ni+1 = K(ti) ∩ U ⊂ (G′, G)y,(0,s) ∩ U normalizes J̃ ∩ U ,

where (G′, G)y,(0,s) is formed using the embeddings {ι}tiγ . It follows that (Ni+1 ∩ G
′)(J̃ ∩ U) is a

subgroup, and in fact

(Ni+1 ∩G
′)(J̃ ∩ U) = Ni+1

by [Yu, Lemmas 13.3 and 13.4].
It follows that vi+1 is a non-zero multiple of

∫

Ni+1∩G′

∫

J̃∩U
y.x.vi dx dy

10



We make two more claims: (iii) v′ =
∫

J̃∩U x.vi dx is non-zero; (iv) v′ is
(

K+(ti−1, ti)∩G
′, θ(ti−1, ti)

)

-
isotypic.

To prove (iii), let W be the (J̃+, ϕ̃)-isotypic subspace of V . This is naturally a representation
of J̃ . It is easy to verify that J̃+ ⊂ K+(ti−1, ti) and θ(ti−1, ti)|J̃+ = ϕ̃. Therefore, vi ∈ W and
the integral defining v′ can be calculated within the J̃-representation W . The image of N̄i ∩ J̃ in
J̃/ ker(ϕ̃) is the same as that of J̃ Ū , and the image of Ni+1 ∩ J̃ in J̃/ ker(ϕ̃) is the same as that of
J̃U , where J̃U and J̃ Ū are as in 5.4. By (ii), N̄i fixes vi. This implies v′ 6= 0 by Lemmas 5.4 and
5.5.

The proof of (iv) is similar to the proof of (ii) above.
Finally, we prove the lemma. We can regard V as a smooth representation of G′. We may also

regard v′ as a vector in the representation V ⊗φ−1
d−1 of G′. The integral

∫

Ni+1∩G′ y.v
′ dy is the same

whether we use the action of G′ on V or on V ⊗ φ−1
d−1, since φd−1(Ni+1 ∩G

′) = {1}.

We can now apply the setting of this section toG′ = Gd−1, the twisted Levi sequence (G0, . . . , Gd−1),
the characters (φ0, . . . , φd−2), and the (0, r0/2, . . . , rd−2/2)-generic embeddings {ι}tγ , where t ∈
(ti, ti+1). Then we form the group K′

+ and θ′ as in 6.1, and these are nothing butK′
+ = K+(ti−1, ti)∩

G′, and θ′ = (θ(ti−1, ti)|K
′
+)⊗ φ−1

d−1. Recall that v
′ ∈ V ⊗ φ−1

d−1 is (K′
+, θ

′)-isotypic by (iv). There-
fore, we can apply the induction hypothesis (for the induction on d) to conclude vi+1 6= 0. This
proves the lemma, and hence the theorem.

6.4 Corollary Let K be a compact open subgroup of G and ρ an irreducible smooth representation
of K. Suppose that (K, ρ) satisfies conditions (i) and (ii) in (4.2), K ⊃ K+, and ρ|K+ is θ-isotypic.
Then (K, ρ) is a G-cover of (K ∩M,ρ|K ∩M).

Proof. For an irreducible smooth representation V of G, let V ρ (resp. V θ) denote the ρ-isotypic
(resp. θ-isotypic) component in V . Then, V ρ ⊂ V θ. Since the natural map V → VU on V θ is
injective, it is also injective on V ρ.

§7 Construction of types

From now on we assume that p is odd.

7.1 Depth-zero datum We now review the construction of types of depth zero by [MP2]. We
define a depth-zero datum to be a triple

(

(G,M), (y, ι), (KM , ρM )
)

such that

(i) G is a connected reductive group over F and M a Levi subgroup of G.

(ii) y ∈ B(M) is such that My,0 is a maximal parahoric subgroup of M , and ι : B(M) →֒ B(G)
is a 0-generic embedding relative to y.

(iii) KM is a compact open subgroup of M containing My,0 as a normal subgroup, and ρM is an
irreducible smooth representation ofKM such that ρM |My,0 contains a cuspidal representation
of My,0:0+.

Remark Since My,0 is a normal subgroup of KM , the restriction ρM |My,0 is ρ′-isotypic where ρ′

is any irreducible cuspidal representation occurring in ρM |My,0. It follows that ρM |My,0+ is trivial
(1-isotypic).
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This datum encodes not only a type of depth 0 in G but also how it arises from a cover, as
follows. By [MP6, Proposition 6.8] and [BK, Proposition 5.4], (KM , ρM ) is an S-type where S is a
finite set of the form {[M,π1], . . . , [M,πn]} with the πi’s irreducible supercuspidal representations
of M . Note that when KM is the maximal compact subgroup fixing y of M , S is a singleton.

By Proposition 4.3 (b), KG := KMGι(y),0 is a subgroup such that

KG/Gι(y),0+ ≃ KM/My,0+.

Let ρG be the representation of KG obtained by composing the above isomorphism with ρM . Then
(KG, ρG) is a G-cover of (KM , ρM ). Therefore, by [BK, Theorem 8.3], it is an S(G)-type, where
S(G) is defined in [BK, §8].

7.2 The datum The datum Σ from which we will construct a type is a 5-tuple

Σ :=
(

( ~G,M0), (y, {ι}), ~r, (KM0 , ρM0), ~φ
)

entirely analogous to that in [Yu, §3], as follows:

D1 ~G = (G0, . . . , Gd) is a tamely ramified twisted Levi sequence in G, and M0 a Levi subgroup
of G0. Unlike [Yu, §3], we impose no assumption on Z(G0)/Z(G). We construct a Levi
subgroup M of G and a generalized twisted Levi sequence ~M in M as in 2.4.

D2 y is a point in B(M0), and {ι} is a commutative diagram of embeddings of buildings as in
(3.5), ~s-generic relative to y, where ~s = (0, r0/2, . . . , rd−1/2).

D3 ~r = (r0, . . . , rd) is a sequence of real numbers satisfying 0 < r0 < r1 < · · · < rd−1 ≤ rd if
d > 0, 0 ≤ r0 if d = 0.

D4
(

G0,M0, y, ι : B(M0) →֒ B(G0), (KM0 , ρM0)
)

is a depth zero datum.

D5 ~φ = (φ0, . . . , φd), where φi is a quasi-character of Gi such that φi is G
i+1-generic of depth ri

relative to x for all x ∈ B(Gi).

7.3 Remark Again, the datum encodes not just the type itself but also how the type arises as
a cover. In practice, one may start with a 5-tuple ( ~G, y,~r, ρ, ~φ) similar to [Yu, §3], but with no
assumption on Z(G0)/Z(G), and instead of D4 of [Yu, §3], we assume that (G0

y,0, ρ) is an unrefined

minimal K-type of depth 0 in the sense of Moy-Prasad. We then construct M0 and {ι} as follows.
By [MP2, 6.3], to the parahoric subgroup G0

y,0 of G0, we can attach a Levi subgroup M0 of G0,

unique up to conjugacy by G0
y,0. From the construction there, we see that there is an embedding

ι : B(M0) →֒ B(G0) whose image contains y, M0
y,0 is maximal parahoric, and ι is 0-generic relative

to y. One can then extend/modify ι to a family {ι} which is ~s-generic by Lemma 3.6.
Of course, there are choices involved in this procedure. Also, in order to get the finest S-types,

i.e., S-types with S = {s} a singleton, we need to refine the datum ρ a little bit. Eventually we
end up with a datum as defined above.

7.4 The construction We now put K0 = KG0 = KM0G0
y,0 = KM0K0 and ρ = ρG0 as in (7.1),

and for i ≥ 1, put

Ki = K0G1
y,s0 · · ·G

i
y,si−1

= KM0Ki, Ki
+ = Ki

+.
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Again we remind the reader that these groups depend on the choice of {ι}, and this Ki may be
different from the one used in [Yu, §3 and §4]. Nevertheless, it is easy to see that the construction
in [Yu, §4] can be carried out literally without any modification to give a representation ρi for each
Ki, i ≥ 0, with ρ0 = ρ.

Moreover, ΣM := ( ~M, y,~r, ρM , ~φ) is a datum for constructing a supercuspidal type inM ; see [Yu,
Remark 15.4] and the discussions following [Yu, Theorem 15.7]. So we can construct supercuspidal
types (Ki

M , ρ
M
i ), for each i ≥ 0, where K0

M = KM0 ,

Ki
M = KM0M1

y,s0 · · ·M
i
y,si−1

, i ≥ 1.

Write

T
i := (Ki, ρi), T := T

d = (Kd, ρd); T
i
M := (Ki

M , ρ
M
i ), TM := T

d
M = (Kd

M , ρ
M
d ).

Let Si be the finite set such that Ti
M is an Si-type in M i. If KM0 is the fixer of y in M0, Si is a

singleton.
For π ∈ R(Gi), we write Ti < π if ρi occurs in π|Ki.

7.5 Theorem For i ≥ 0, Ti is a Gi-cover of Ti
M . Hence T

i is an Si(G
i)-type in Gi.

Proof. The second statement follows from the first and [BK, Theorem 8.3].
Condition (i) in 4.2 follows from Proposition 4.3 (b).
We now verify condition (ii) in 4.2 by induction. The case of i = 0 is just the definition.

The inductive construction of ρi from ρi−1 in [Yu, §4] relies on the Heisenberg triple (J i, J i
+, ϕi),

where ϕi = φ̂i−1|J
i
+. Similarly, to construct ρMi from ρMi−1 we use an analogous Heisenberg triple

(J i
M , J

i
M,+, ϕ

M
i ). It follows from the definitions of these objects that J i

M = J i ∩ Mi, J
i
M,+ =

J i
+ ∩Mi, and ϕM

i = ϕi|J
i
M,+. Moreover, J i and J i

+ decompose with respect to (U i,M i, Ū i) by

Proposition 4.3, where U i = U ∩Gi, Ū i = Ū ∩Gi. Since {ι} is s-generic, we have J i∩U i = J i
+∩U i

and J i ∩ Ū i = J i
+ ∩ Ū i. It follows that the inclusion J i

M ⊂ J i induces an isomorphism

J i
M/J

i
M,+ ≃ J i/J i

+.

Let N i = ker(ϕi), N
i
M = ker(ϕM

i ). We can verify that the following diagram is commutative:

J i
M/N

i
M

≀

��

∼ // (J i
M/J

i
M,+)

♯

≀

��

J i/N i ∼ // (J i/J i
+)

♯,

where (J i
M/J

i
M,+)

♯ and (J i/J i
+)

♯ are defined as in [Yu, §10]. The vertical arrows are the isomor-
phisms induced by inclusion, and the horizontal arrows are the canonical special isomorphisms
constructed in [Yu, Proposition 11.4]. In addition, the following diagram is also commutative:

Ki−1
M� __�

// Sp(J i
M/N

i
M )

��

Ki−1 // Sp(J i/N i),
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where the horizonal arrows are induced by conjugations, and the vertical arrow on the right is
induced by the isomorphism J i

M/J
i
M,+ ≃ J i/J i

+. It follows from these and the definitions of ρi and

ρMi that we do have ρi|K
i
M = ρMi .

Define (Ki
+, θi) as in the preceding section. Note that this Ki

+ is identical to the Ki
+ used in

[Yu]. By [Yu, Proposition 4.4], ρi|K
i
+ is θi-isotypic. By Proposition 6.2, Ki

+∩U i,Ki
+∩Ū i ⊂ ker(ρi).

Since Ki
+∩U i = Ki∩U i and Ki

+∩ Ū i = Ki∩ Ū i by the genericity of {ι}, we have proved condition
(ii) of 4.2 completely.

Now we see that all hypotheses for Corollary 6.4 are satisfied. The theorem is proved.

§8 Support of Hecke algebras

Let (Ki, ρi) be as in §7.4. Let ρ̌i be the contragradient of ρi. Then the Hecke algebra H(Gi, ρi)
associated to (Ki, ρi) is defined as follows:

H(Gi, ρi) = {f ∈ Cc(G
i,End(ρ̌i)) | f(jgj

′) = ρ̌i(j)f(g)ρ̌i(j
′) for g ∈ Gi, j, j′ ∈ Ki}.

As in [Yu, §17], we write Ȟ(Gi, ρi) for H(Gi, ρ̌i). For g ∈ Gi, let Ig(ρi) denote the space of
intertwining maps HomKi∩gKig−1( gρi, ρi) where gρi is a representation of gKig−1 with gρi(h) =
ρi(g

−1hg) for h ∈ gKig−1 (see also [Yu, p582]).

8.1 Theorem

(a) The support of Ȟ(Gi, ρi) is contained in KiG0Ki.

(b) For g ∈ G0, we have

Ig(ρi) = Ig(ρ0 | K
0)⊗ Ig(φ̃0)⊗ · · · ⊗ Ig(φ̃i−1)

where Ig(φ̃j) is 1-dimensional for j = 0, · · · , d− 1.

Again the proof in [Yu, §15] can be carried out without change.

8.2 Corollary The support of Ȟ(Gi, ρi) is contained in KiNG0(M0)Ki.

Proof. By [Mo, Theorem 4.15], for g ∈ G0, we have Ig(ρ0 | K0) 6= 0 only if g ∈ K0NG0(M0)K0.
Hence, combining with the above theorem, the corollary follows.

§9 Exhaustion

Recall that in [K], it is proved that all supercuspidal representations arise from the construction
given in [Yu] under some hypotheses (see [K, §3.4]). In this section, we prove that our construction
gives all types parameterizing Rs, s ∈ I (see (1) in §1) under the same hypotheses (Hk), (HB), (HGT)
and (HN) (see [K, §3.4] for details). We adopt notation and terminologies from [K].

9.1 Theorem Suppose (Hk), (HB), (HGT) and (HN) are valid. For each inertial class s ∈ I, there
is a datum

(

( ~G,M0), (y, {ι}), ~r, (KM0 , ρM0), ~φ
)

so that (Kd, ρd) is an s-type.
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Sketch of the proof. Let Et(G) be the set of irreducible smooth tempered representations.
Note that for any s = [(Ms, πs)] ∈ I, the Plancherel measure of Et(G) ∩ R

s is nonzero. Hence, it is
enough to show that there are π ∈ Et(G) ∩Rs and a datum

(

( ~G,M0), (y, {ι}), ~r, (KM0 , ρM0), ~φ
)

so
that (Kd, ρd) gives a G-cover of the supercuspidal type of the cuspidal pair (Ms, πs) which supports
π. We sketch a proof in several steps below:

(1) Recall from [KM, §4], for a given strongly good datum ( ~G, x,~r, ~φ), upon fixing embeddings
of buildings, B(G0) →֒ B(G1) →֒ · · · →֒ B(Gd), one can associate a strongly good type (Kd

x+, θd)
where Kd

x+ = G0
x,0+G

1
x,s0+ · · ·Gd

x,sd−1+
and θd is constructed as in 6.1 (see [KM, §4] for details).

Then, by [K, Theorem 11.4], there are π ∈ E
t(G) ∩ R

s and a strongly good type (Kd
x+, θd) such

that (Kd
x+, θd) < π.

(2) Let V θd
π be the θd isotypic component of Vπ. Then, V

θd
π is stabilized by G0

x,0. Let y ∈ B(G0)

be such that (i) G0
y,0 ⊂ G0

x,0, (ii) V
θd
π has nontrivial G0

y,0+ -invariants, and (iii) G0
y,0 is minimal

satisfying (i) and (ii). Such a y exist since θd is trivial on G0
x,0+ .

(3) Let M0 be a Levi subgroup of G0 so that M0
y,0 is a maximal parahoric subgroup of M0, and

M the Levi subgroup given by the centralizer of Zs(M
0). Let P =MU be the parabolic subgroup

of G so that (P ∩G0
x,0)G

0
y,0+ = G0

y,0. Let U be the opposite unipotent radical.

(4) Form K⊢ = (UM ∩ Kd
x+)(U ∩ (G0

y,0+G
1
x,s0 · · ·G

d
x,sd−1

)), which is defined in [K, §13]. Note

that Kx+ ⊂ K⊢ and ~φ defines a character θ′d of K⊢ such that θ′d|K
d
x+ = θd. Then, by [K, Corollary

13.12], (K⊢, θ
′
d) < Vπ, and V

θ′
d

π ⊂ V θd
π .

(5) Consider V
θ′
d

π . Note that V
θ′
d

π is stabilized by Ky,M = M0
[y](M ∩ (G1

y,s0 · · ·G
d
y,sd−1

)) =

M0
[y]M

1
y,s0 · · ·M

d
y,sd−1

where M0
[y] is the stabilizer of the image [y] of y in the reduced building of M

and M i = M ∩ Gi. Let θ̂′d be an irreducible representation of Ky,M such that θ̂′d|K⊢ is θ′d-isotypic

as in [K, §13] (θ̂′d is denoted by κ in [K, §13]). Then, by [K, Corollary 18.6], there is an irreducible

representation τ ′ of M0
[y] factoring through ZMM

0
y,0+ such that τ ′ ⊗ θ̂′d is contained in V

θ′
d

π . Then,

τ ′|M0
y,0 induces a cuspidal representation ofM0

y,0/M
0
y,0+ since otherwise, there is a smaller parahoric

subgroup G0
z,0 ⊂ G0

x,0 with nontrivial G0
z,0+ invariants in V θd

π , which is a contradiction to the choice

of G0
y,0 in (2).

(6) From the proof of [K, Theorem 19.1], πM := c-IndMKy,M
τ ′ ⊗ θ̂′d is a supercuspidal represen-

tation of M associated to a generic datum ( ~M, y,~r, ~φM , τ
′) where ~M = (M0,M1, · · · ,Md) and

~φM = (φ0|M, · · · , φd|M). Moreover, (M,πM ) is equivalent to s in I.
(7) Let KM0 be the maximal compact subgroup of M0

[y] and ρM0 a subrepresentation of τ ′ when

restricted to KM0 . Then, (( ~M,M0), y, ~r, (KM0 , ρM0), ~φM ) gives a supercuspidal type (Kd
M , ρ

M
d ).

(8) Consider (( ~G,M0), (y, {ι}), ~r, (KM0 , ρM0), ~φ) where {ι} is (0, s0, · · · , sd−1)-generic. Then,
by construction, (Kd, ρd) is a cover of (Kd

M , ρ
d
M ), hence an s-type.

Remark 1. The above proof starts with π ∈ Rs and a strongly good type contained in π,
proceeds toward nailing down a supercuspidal type (KM , ρ

M
d ) out of the strongly good type,

and then finally finds a type as a cover (Kd, ρd) of (KM , ρ
M
d ). On the other hand, we note

that it is possible to start with a supercuspidal type datum for s and work toward getting a
cover. However, to nail down ~G in the datum, we find the proof above more efficient.
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2. A priori, we can not assume our choices of y in (2) or embeddings B(G0) →֒ B(G1) →֒ · · · →֒
B(Gd) in (1) satisfy any genericity condition. Hence, we still need to work with an auxiliary
group K⊢ in (4) (cf. Remark 3.4).

§10 Equivalence

10.1 Definition Let Σ and Σ̇ be two data as in §7.2. Let T = (K, ρ) (resp. Ṫ) be the type
constructed in §7.4 associated to Σ (resp. Σ̇).

(i) Define RT to be the category of smooth representations π which are generated by the ρ isotypic
components of Vπ.

(ii) Let Ṫ be the type associated to Σ̇. We say that T and Ṫ are equivalent if there is S ⊂ I such
that RS = RT = R

Ṫ
where R

S =
∏

s∈S R
s.

From now on, we assume that our data Σ satisfy the hypothesis C( ~G) in [HaMu, §2.6].

10.2 Theorem Let Σ :=
(

( ~G,G0), (y, {ι}), ~r, (KG0 , ρG0), ~φ
)

and Σ̇ :=
(

( ~̇G, Ġ0), (ẏ, {ι̇}),~̇r, (KĠ0 , ρĠ0), ~φ
)

be two data such that ZG0/ZG (resp. ZĠ0/ZG) is F -anisotropic and KG0 (resp. KĠ0) is the maxi-

mal compact subgroup of G0
[y] (resp. Ġ

0
[ẏ]). Let T := (K, ρ) and Ṫ := (K̇, ρ̇). Let φ =

∏d
i=0 φi and

φ̇ =
∏ḋ

i=0 φ̇i be characters of G0 and Ġ0 respectively. Then, T and Ṫ are equivalent if and only if
there is g ∈ G such that gy = ẏ, gKG0 = KĠ0 and g(ρG0 ⊗ φ) ≃ (ρ̇Ġ0 ⊗ φ̇) as KĠ0 representations.

Proof. Note that T and Ṫ are supercuspidal types.
Suppose RT = R

Ṫ
. Let π ∈ RT = R

Ṫ
be irreducible supercuspidal. Then, let ρ̃G0 (resp. ˜̇ρĠ0)

be a representation of G0
[y] (resp. Ġ

0
[ẏ]) containing ρG0 (resp. ρ̇Ġ0) so that ( ~G, y,~r, ~φ, ρ̃G0) (resp.

( ~̇G, ẏ, ~̇r,
~̇
φ, ˜̇ρĠ0)) is a supercuspidal datum for π. Then, [HaMu, Theorem 6.7], there is g ∈ G so

that gy = ẏ, gG0 = Ġ0, and g(ρ̃G0 ⊗ φ) ≃ (ρ̃Ġ0 ⊗ φ̇) as Ġ0
[ẏ] representations. Since both g(ρG0 ⊗ φ)

and (ρ̇Ġ0 ⊗ φ̇) are subrepresentations of (ρ̃Ġ0 ⊗ φ̇) and KĠ0 is a normal subgroup of Ġ0
[y], there is

a ġ ∈ Ġ0
[ẏ] so that ġg(ρG0 ⊗ φ) ≃ (ρ̇Ġ0 ⊗ φ̇).

Conversely, suppose there is g ∈ G such that gy = ẏ, gKG0 = KĠ0 and g(ρG0 ⊗φ) ≃ (ρ̇Ġ0 ⊗ φ̇) as
KĠ0 representations. It is enough to show that there is a supercuspidal representation π ∈ RT∩R

Ṫ
.

Let ρ̃G0 (resp. ˜̇ρĠ0) be a representation of G0
[y] (resp. Ġ0

[ẏ]) containing ρG0 (resp. ρ̇Ġ0) so that

g(ρ̃G0 ⊗ φ) ≃ (ρ̃Ġ0 ⊗ φ̇) as Ġ0
[ẏ] representations. Then, ( ~G, y,~r, ~φ, ρ̃G0) and ( ~̇G, ẏ, ~̇r,

~̇
φ, ˜̇ρĠ0) are

supercuspidal data, and their associated supercuspidal representations are isomorphic, which are
in RT ∩ R

Ṫ
. Hence, RT = R

Ṫ
.

10.3 Theorem Let Σ :=
(

( ~G,M0), (y, {ι}), ~r, (KM0 , ρG0), ~φ
)

and Σ̇ :=
(

( ~̇G, Ṁ0), (ẏ, {ι̇}), ~̇r, (KṀ0 , ρṀ0), ~φ
)

be two data such that KM0 (resp. KṀ0) is the maximal compact subgroup of M0
[y] (resp. Ṁ

0
[ẏ]). Let

T := (K, ρ) and Ṫ := (K̇, ρ̇). Let φ =
∏d

i=0(φi|M
0) and φ̇ =

∏ḋ
i=0(φ̇i|Ṁ

0) be characters of M0 and
Ṁ0 respectively. Then, T and Ṫ are equivalent if and only if there is g ∈ G such that gKM0 = KṀ0

and g(ρM0 ⊗ φ) ≃ (ρ̇Ṁ0 ⊗ φ̇) as KṀ0 representations.
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Proof. LetM (resp. Ṁ) be the centralizer of Zs(M
0) (resp. Zs(Ṁ

0)) in G as in §2.4. Let s (resp.
ṡ) be the inertial class of (M,πM ) (resp. (Ṁ, π̇Ṁ )) where πM (resp. π̇Ṁ ) is the supercuspidal

representation such that TM < πM (resp. ṪṀ < π̇Ṁ ). Then, we have RT = R
s and R

Ṫ
= R

ṡ.
Suppose RT = R

Ṫ
, thus Rs = Rṡ. Then, there is an unramified character χ of M0 so that

gM = Ṁ and gπM ≃ π̇Ṁ⊗χ. By Theorem 10.2, there is ṁ ∈ Ṁ so that ṁg(ρM0⊗φ) ≃ ρṀ0⊗(φ̇χ) =

ρṀ0 ⊗ φ̇. Since χ is trivial on K̇, we have ṁg(ρM0 ⊗ φ) ≃= ρṀ0 ⊗ φ̇ as representations of K̇.

Conversely, suppose there is g ∈ G such that gKM0 = KṀ0 and g(ρM0 ⊗ φ) ≃ (ρ̇Ṁ0 ⊗ φ̇). By

Theorem 10.2, RgTM
= R

Ṫ
Ṁ

⊂ R(M). Since g
T and Ṫ are covers of g

TM and ṪṀ respectively, we

have RT = RgT = R
Ṫ
.

Remark In [Ka], Kaletha studied the equivalence of regular representations. His methodology,
especially in §3.5, may allow the replacement of the hypothesis C( ~G) by a weaker one.
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