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ABSTRACT
In order to reduce the possibility of neural injury from seizures and
sidestep the need for a neurologist to spend hours on manually re-
viewing the EEG recording, it is critical to automatically detect and
classify “interictal-ictal continuum” (IIC) patterns from EEG data.
However, the existing IIC classification techniques are shown to be
not accurate and robust enough for clinical use because of the lack
of high quality labels of EEG segments as training data. Obtain-
ing high-quality labeled data is traditionally a manual process by
trained clinicians that can be tedious, time-consuming, and error-
prone. In this work, we propose Smile, an industrial scale system
that provides an end-to-end solution to the IIC pattern classification
problem. The core components of Smile include a visualization-
based time series labeling module and a deep-learning based ac-
tive learning module. The labeling module enables the users to
explore and label 350 million EEG segments (30TB) at interactive
speed. The multiple coordinated views allow the users to exam-
ine the EEG signals from both time domain and frequency domain
simultaneously. The active learning module first trains a deep neu-
ral network that automatically extracts both the local features with
respect to each segment itself and the long term dynamics of the
EEG signals to classify IIC patterns. Then leveraging the output
of the deep learning model, the EEG segments that can best im-
prove the model are selected and prompted to clinicians to label.
This process is iterated until the clinicians and the models show
high degree of agreement. Our initial experimental results show
that our Smile system allows the clinicians to label the EEG seg-
ments at will with a response time below 500 ms. The accuracy of
the model is progressively improved as more and more high quality
labels are acquired over time.
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1. INTRODUCTION
In contemporary medicine, a significant fraction of critically

ill patients in the intensive care unit (ICU) experience non-
convulsive seizures (NCS): seizures with few or no clinical man-
ifestations [15, 24]. NCS can cause neuronal injury or worsen ex-
isting injuries, and are correlated with poor neurologic outcomes
for patients.

In the Intensive Care Unit (ICU) setting, NCS can be detected
by analyzing electroencephalography (EEG) data obtained through
brain monitoring, because clear patterns associated with seizures
and NCS can be observed in the EEG data. These patterns,
known as “interictal-ictal-injury continuum” (IIC) patterns, reflect
increased risk of seizures and poor outcome in critically ill patients,
and can themselves damage the brain [20].

The American Clinical Neurophysiology Society (ACNS) [23]
divides IIC patterns into multiple classes such as “Periodic Dis-
charges” (PD) and “Rhythmic Delta Activity” (RDA). These pat-
terns can be further categorized as “Lateralized” (L) or “General-
ized” (G) based on whether the patterns present in a single (L) or
in both (G) hemispheres. Clinicians decide which of the available
treatments to administer after IIC patterns are detected and clas-
sified. In this project, we also include seizures (including NCS)
among IIC patterns.

In current clinical practice, detecting and classifying IIC patterns
relies on clinicians to manually examine the EEG. This is expensive
and challenging. First, these patterns are often present in a short
time interval, in some cases lasting only 10 seconds. Prolonged
continuous EEG monitoring (cEEG) is therefore important for de-
tecting IIC patterns. However, it is a complex and time-consuming
task for clinicians to routinely scrutinize the large amount of data
in cEEG. Second, correctly classifying IIC patterns requires special
expertise. In some cases, even for experienced neurology special-
ists, it is hard to capture and classify IIC patterns. The reason is
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that each type of IIC pattern can vary significantly across different
patients over different times.

Therefore, there is a critical need for automating the discovery
and classification of IIC patterns. Such a system can reduce the
possibility of neural injury by capturing the brain diseases as early
as possible. Moreover, potentially it could enable the small hospi-
tals lack of epilepsy specialists to diagnose seizures.

In this paper, we describe a system, Smile that asks clinicians to
label a few examples, using a scalable visualization and labeling
system for EEG data, and then employs a neural-network based
classifier to automate the task of finding IIC patterns in large scale
time-series data.
State-of-the-art. Previous studies have tried to break the EEG into
segments and cluster the EEG segments based on the features ex-
tracted from each segment [8, 2]. However, our evaluation shows
that these unsupervised methods do not work well. The resulting
clusters often were not related to a specific IIC pattern. This is
because clustering relies on a distance function to separate the ob-
jects belonging to different classes, while the diversity within each
class of IIC patterns make it hard to define an appropriate distance
function.

More recent studies have used supervised methods in classifying
EEG segments [16, 40]. However, due to the limited number of la-
beled EEG segments available to researchers, no convincing result
has been reported yet.

We estimate that EEG data from at least 1000 patients is needed
to cover the full range of variation encountered in practice. Dur-
ing the past decade, members of our group in the Neurology de-
partment of Massachusetts General Hospital (MGH) have collected
unlabeled EEG data from over 2500 subjects, totaling around 30
TBytes – the largest EEG dataset in the world to date. Were it pos-
sible to label this data, this would provide sufficient data to train an
accurate general-purpose IIC detection model for clinical use.
Challenges. Labeling and modeling large quantities of EEG data is
challenging. First, as previously mentioned, labeling EEG data is
difficult even for experts. To correctly label EEG segments, experts
need to visually see the waves of the EEG data in the time do-
main and the corresponding spectrogram images in the frequency
domain. Further, experts need to continuously pan the EEG sig-
nal over time to see how the to-be-labeled EEG segment looks in
contrast to adjacent segments. However, to the best of our knowl-
edge, no existing visualization tool can support the interactive ex-
ploration of 30T timeseries data on multiple pan/zoom views. Sec-
ond, even with such a visualization tool in hand, it is still extremely
time consuming for experts to label a large number of EEG seg-
ments, while the time of neurology specialists is precious. Ideally,
they should only be asked to label segments that are likely to en-
rich the feature representation of the existing label set. Third, even
if abundant labels are obtained, building an accurate classification
model is challenging due to the complex and dynamic nature of IIC
patterns. As the input to the classification model, the features ex-
tracted from each EEG segment have to reflect both the local char-
acteristics of each segment itself and its temporal dynamics over
longer time scales. This makes extraction of appropriate features
challenging.
Approach & Contributions. In this work, we describe Smile, the
system we have built to solve this problem at industrial scale. It em-
ploys scalable visualization, parallel data processing, and machine
learning techniques to provide an end-to-end solution to the IIC
pattern classification problem. Users can interactively label large
scale EEG time-series data, and then leverage the results of a clas-
sification model trained on those labels to progressively collect new
labels and improve the accuracy of the classification model. Smile

is in the active use of 16 medical institutes for the labelling of EEG
segments. Key contributions include:

• Smile leverages a set of scalable data processing and machine
learning techniques to prepare for the interactive exploration of the
big EEG data, including: (1) parallel loading of the EEG data to
key-value store; (2) embedding high dimensional EEG segments
for visualization in a 2D space in a way that similar objects are
modeled by nearby points and dissimilar objects are modeled by
distant points with high probability; and (3) change point detec-
tion [21, 41] to reduce the redundancy in the data.

• We develop a labeling system that for the first time allows users
to visually explore many terabytes of data (30 TB in our prototype)
at interactive speed. The key techniques include (1) a big data vi-
sualization system that ensures < 500 ms latency by employing a
series of optimizations such as caching and spatial indexing; (2)
and multiple coordinated views that allow users to simultaneously
pan the EEG data and the corresponding spectrogram images.

• We design a deep neural network structure consisting of a RNN
model [25] stacked on a CNN model [35, 33]. This model automat-
ically extracts local features with respect to each segment as well
as the long term characteristics of a series of adjacent EEG seg-
ments. Then, based on the output of the modeling, we use active
learning to suggest candidate segments to the labeling system that
could best improve the prediction of the model. This way, Smile
achieves high classification accuracy with minimal labeling effort.

• Our initial experimental evaluation confirms that our Smile
system is able to support the exploration and labeling of large-scale
EEG data with response times below 500 ms. Further, the quality of
the acquired labels and the accuracy of the classification model are
shown to be improved during the iterative active learning process.

• As an example application, Smile showcases how an end-to-
end system combining techniques from data processing to machine
learning can transform medicine. Our methodology is of potential
value to a much broader class of applications in addition to IIC clas-
sification, in particular applications dealing with time series data
captured in many medical domains.

2. PRELIMINARIES

Figure 1: Example of EEG data

2.1 Electroencephalography (EEG)
Electroencephalography (EEG) is an electrophysiological method

for monitoring electrical activity of the brain. It is typically non-
invasive, with electrodes placed on the scalp. EEG measures volt-
age fluctuations resulting from ionic currents within the neurons on
the brain surface [48]. In clinical use, EEG refers to recording of
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the brain’s spontaneous electrical activity over a period of time, as
recorded from multiple electrodes placed at standardized positions
on the scalp.

EEG data is one type of multivariate time series data produced
from multiple channels. Each channel corresponds to one univari-
ate time series. Fig. 1 shows an example of EEG data.

For EEG data, some signals are recognized based on their shape,
spatial distribution over the scalp, and symmetry properties. Rhyth-
mic and periodic patterns in EEG data the “ictal-interictal contin-
uum” (IIC) [13, 29] are often associated with seizures.

Using Fourier analysis, signals can be decomposed into a spec-
trum of frequencies over a continuous range. After smoothing to
remove noise, the resulting frequency-domain representation of the
signal is called its spectrum. By using a sliding window and com-
puting a series of spectra over time, and assembling these spec-
tra into a time-frequency matrix, called a spectrogram, it is possi-
ble to provide a “compressed” or “zoomed out” view of the EEG.
Whereas clinicians typically view “raw” EEG signals at a scale of
10-15 seconds / screen, spectrograms are typically viewed at a scale
of 1-4 hours, providing temporal context. Spectrograms help ex-
perts to recognize patterns like seizures, and to review long EEG
files efficiently [34, 47, 3].

3. SYSTEM OVERVIEW
As shown in Figure 2, our Smile system is composed of three

key modules: data processing, labeling, and modeling.
The data processing module produces data used by the labeling

module. In particular, the EEG data processing component divides
the raw EEG data into segments of fixed duration and then loads
the EEG segments into a key-value store. The spectrogram gener-
ation component computes the spectrum data with respect to each
segment. The spectrogram images are produced using the spectrum
data and stored in cloud storage. The change point detection com-
ponent divides the EEG signal of each patient into flat chunks. In
each chunk, only one segment is sampled for later labeling. This
effectively reduces redundancy in the labeling effort of domain ex-
perts. All of these operations are conducted in a fully distributed
fashion to cope with the big EEG data. The 2D coordinate gener-
ation component employs t-SNE [58] to embed the sampled high
dimensional EEG segments into a 2D space for visualization. The
2D coordinates are stored in Postgres.

The labeling module corresponds to a large-scale time series
data visualization system. It supports three views, namely the 2D
Map view, the EEG view, and the spectrogram view. The 2D map
view allows users to interactively explore and label the sampled
EEG segments. As long as an object is clicked in the 2D map view,
the labeling system extracts the key of this object and then uses the
key to pull out the corresponding raw EEG segment from the key-
value store and spectrogram images from the cloud storage. The
coordinated EEG view and spectrogram view then display the ac-
quired data. These two views are updated simultaneously as the
user pans the EEG signal through the EEG view. Labeled EEG
segments are stored in a Postgres table. Besides this free labeling
mode, the labeling module also supports a more controlled mode
that allows users to upload a list of labeling candidates, recom-
mended by the active learning component in modeling module.

The modeling module has two components, namely deep learn-
ing and active learning. First, using the labeled EEG segments pro-
duced by the labeling module, the deep learning component trains a
deep neural network to classify the IIC patterns. The active learning
component then recommends some EEG segments to the labeling
system based on the output of the deep neural network. Model-

ing and labeling recur iteratively until an accurate IIC classification
model is learned.

4. DATA PROCESSING
In this section, we introduce the data processing work done to

label the EEG signals. Generally speaking this is a parallel data
processing problem, since we are handling 30T time series data.
A number of scaling techniques have to be leveraged to make the
interactive labeling of EEG signals possible. Overall, the data pre-
processing includes the processing of raw EEG signals, the genera-
tion of the spectrogram, change point detection, and 2D coordinate
generation.

4.1 Raw EEG Data
First, the raw EEG data is uploaded into cloud storage as Par-

quet [9] files. Each Parquet file contains part of the EEG data
observed from one patient during their stay in ICU for a certain
time period. One patient’s data may be contained in multiple files.
The files from the same patient are organized in the same directory.
Each directory is named by the anonymized identity of the patient.
Each file is named by the patient ID, the date, and the start time
of the monitoring. For example, file ‘emu100 20170517 080831’
corresponds to the EEG data observed from patient emu100 start-
ing at 08:08:31 of May 17, 2017. Each record in the file has at most
20 columns. Each column of one record corresponds to the values
produced by one channel of the EEG in 5 milliseconds. Note dif-
ferent files maybe have different number of columns depending on
the number of channels used in the monitoring of the patients.

EEG signals typically are are indexed by segments instead of at
the individual record level, where each segment is composed of a
fixed number of consecutive records observed over time. Accord-
ingly, the typical lookup operation required for labeling is to find a
segment based on the patient ID and the segment ID. Based on this
observation, we store the EEG segments using Google Bigtable,
which as key-value store, supports the key-based look up operation
in constant time. Note the parquet files are still needed as the input
to train the deep learning model.
The Structure of the Bigtable. The table is composed of rows.
Each row describes a single entity with multiple columns. Each
row is indexed by a single row key. Columns that are related to
one another are typically grouped together into one column family.
Each column is identified by a combination of the column family
and a column qualifier unique within the column family.

Our Bigtable structure is shown in Figure 3. It contains one col-
umn family (eeg) and 20 columns under this column family. The
20 column qualifiers are [’fp1’, ’f3’, ’c3’, ’p3’, ’f7’, ’t3’, ’t5’, ’o1’,
’fz’, ’cz’, ’pz’, ’fp2’, ’f4’, ’c4’, ’p4’, ’f8’ ,’t4’ ,’t6’ ,’o2’ ,’ekg’]
representing data from 20 different channels. We use the column
names in the Parquet file as the column qualifiers of Bigtable. In
this way, when we ingest the data from file system, we are able to
quickly map the columns in the Parquet file to the corresponding
columns in the Bigtable. If one column does not exist in a Parquet
file, the corresponding column in the Bigtable will be set as null.
Given one record, each of its columns contains 400 values, corre-
sponding to the signals produced by one channel over 2 seconds.
The Design of the Row Key. The design of the row key is essential
for the efficiency of the look up operation. When labeling one EEG
segment, the users typically also need to see the adjacent segments
as the context. Therefore, ideally we want to make sure the adja-
cent segments are also next to each other in the Bigtable such that
the neighboring segments could be pulled out via one single look
up operation. Since in Bigtable the records are automatically sorted
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Figure 2: An overview of Smile system

Column family: eeg
Row Key fp1 f3 … ekg

abn10000_20140117_093552_000000 400 values 400 values 400 values 400 values

abn10000_20140117_093552_000001 400 values 400 values 400 values 400 values

abn10000_20140117_093552_000002 400 values 400 values 400 values 400 values

Figure 3: eegTable Structure

Figure 4: Spectrograms of different regions

in the alphabetical order of the row keys, for any two adjacent seg-
ments, we have to make sure their row keys also are next to each
other alphabetically. To satisfy this requirement, we design the row
key as follows.

The row key is composed of two parts, namely patient iden-
tifier and segment id. The key lesson learned here is that the
segment id should be represented as a string in fixed length instead
of a numerical integer value. For example, in the Bigtable, we
expect the segment next to ’abn10000 20140117 093552 1’
to be ’abn10000 20140117 093552 2’. However, if
we used integer to represent segment id, the seg-
ment next to ’abn10000 20140117 093552 1’ would be
’abn10000 20140117 093552 10’.
Parallel Data Loading. Based on our experiments on a small sam-
ple set, sequentially loading all 30 TB of EEG data into BigTable
will take more than 100 days. Therefore, we use a parallel mech-
anism to speed up the loading process. That is, we first divide the
Parquet files in the cloud storage into multiple groups. Each group
contains the similar number of files. Then the file groups are dis-
tributed to different compute nodes in a computing cluster to make
sure that each processor of each node has one group of files to pro-
cess. More specifically, we use a computing cluster with 40 com-
pute nodes, each of which has 4 processors. We then divide the
42,609 files into 160 groups and distribute 4 groups to one node.

However, since the sizes of the Parquet files vary dramatically,
this mechanism does not ensure a balanced workload across the

compute nodes even if the same number of files are assigned to
them. To solve this problem, we monitor the list of completed files
for each node. If one node becomes idle, we re-distribute the work
load by moving some of the files on the busy nodes to the idle
nodes.

Using parallel data loading, we are able to load all 30 TB of EEG
data within 24 hours.

4.2 Spectrogram Generation
In this section, we introduce the generation of the spectrograms

of EEG data, i.e., 2D time-frequency maps. The frequency spec-
trum of spectrogram image varies with time. Different colors in the
image represent different energy values. It corresponds to another
form of feature representation of the raw EEG signals. Using such
representations, we are able to visually demonstrate the temporal
dynamics of EEG signals. In our application, it is considered as
the long term context needed for the understanding of the to-be-
labeled EEG segment. The spectrogram is produced in two steps:
producing the spectrum data and then drawing the spectrogram im-
ages. Both steps are conducted in a fully distributed fashion, using
a strategy similar to the one used in the processing of raw EEG
data.

4.2.1 Spectrum Data
We generate 4 spectrograms with respect to 4 different regions.

Each region contains multiple channels. Accordingly, its spectro-
gram is generated based on the EEG signals produced by these
channels. As shown in Fig. 4, each region uses 4 channels of inter-
est (COI in short). For instance, in the first region COI-1 represents
the difference between channels ’fp1’ and ’f7’.

The multitapering method [36] is then applied to compute spec-
trum estimates with respect to each channel. Essentially the or-
thogonal tapers used in the multitapering method correspond to
Discrete Prolate Slepian Sequences (or DPSS for short) on the win-
dowed time series. In our application, we set both the window size
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Figure 5: Spectrogram Example.

and the step size to 2 seconds. Each 2-second segment is decom-
posed into 50 frequencies. Given a patient file containing 1,200,000
records, where each record represents the signals produced in 5-
milliseconds, the multitapering method will generate 3000 × 50
data points for each channel, where 3000 stands for the number
of the 2-second segments and the 50 values per 2-second segment
stand for the amplitudes of the 50 frequencies.

At the end, the regional averages are computed by averaging the
spectrum data of all channels in this region.

4.2.2 Spectrogram Images
The spectrogram images could be produced by the visualization

tool on the fly. That is, we could first pre-compute all spectrum
data and then store the data in Bigtable. The visualization tool then
fetches the corresponding data from Bigtable and draws the spec-
trograms for the requested EEG segment. However, this method
cannot meet the response time requirement of interactive explo-
ration. The reason is that drawing the 4 spectrograms requires a
large number of data points. Specifically, to produce the spectro-
grams for one hour of EEG signals, we would have to retrieve 4 ×
× 50 × 1800 = 360K data points. Fetching and transferring these
many points from Bigtable takes around 4 seconds, while rendering
these points takes even longer on the front-end.

To solve this performance issue, we generate all spectrogram im-
ages beforehand store them in cloud storage. The visualization tool
is then able to directly load the spectrogram images from the cloud
storage via public image URLs provided by Google Cloud.

To increase the flexibility of the front end, we generate 3 in-
dependent sets of spectrogram images for consecutive windows at
15min, 30min, and 60min scales respectively. In this process, sev-
eral decisions are made mainly for the saving of storage. First,
no overlap is allowed between the adjacent windows. Second, the
window always starts from t=0. Zero pads for the right-end resid-
ual if necessary. Each time scale results in images of the same
dimensions, which are [150x450 pixels, 96dpi, 24bd]. The sizes
of the images vary from 1K to 60K. Moreover, in order to reduce
the storage costs, we format all images in ‘.jpg’ format instead of
‘.png’. Finally, we remove both boarders and white-spaces for the
convenience of seamless stitching. Fig. 5 shows an example of the
generated spectrogram images for an 1 hour EEG segment.

In order to produce the 2D map, the high dimensional EEG seg-
ments have to be mapped to a 2D space. This is a two-step process
including change point detection and dimension reduction.

4.3 Change Point Detection
Given the EEG signals from one patient, many adjacent 2-

second segments in fact have very similar distribution character-
istics. Therefore, they tend to share the same label. It is thus not

necessary to label each of these segments one by one. Instead, only
the segments that show different characteristics should be labeled.
In this work, we use change point detection to discover these seg-
ments. The redundancy among the EEG segments from different
patients is resolved in the active learning component as discussed
later in Sec. 6.

A change point is a time instant at which some statistical prop-
erty of a signal changes abruptly. Change point detection (CPD)
[21, 41] is a general method to find abrupt changes in time series.
The property in question can be the mean of the signal, its variance,
or a spectral characteristic, among others.

More formally, assume we have an ordered sequence of data
y = (y1 , y2 , . . . , yn). Suppose there are m change points together
with their positions, τ = (τ1, τ2, . . . , τm) where (1) each change
point position is an integer between 1 and n 1 inclusive; (2) τ0 = 0
and τm+1 = n; and (3) the change points are ordered such that
τi < τj if and only if i < j. Consequently the m change points
will split the data intom+1 chunks, with the i-th chunk containing
y(τi−1+1):τi . In this work, Pruned Exact Linear Time (Pelt) [31] is
applied to detect change points. Pelt is designed to minimize:

m+1∑
i=1

[C(y(τi−1+1):τi) + β] (1)

Here C is a cost function for a chunk. Pelt involves a pruning
step which reduces the computational cost of the method, while not
impacting the exactness of the final results. The essence of pruning
in this context is to remove those values of τ which can never be
minima.

In this work, Pelt is applied on the spectral estimate data. As
described in Sec. 4.2.1, 4 sets of spectral estimate data have been
computed with respect to 4 different regions. We first convert the
4 sets of spectral estimate data to decibel scale and compute the
total power average over the 4 regions. Then the total power av-
erage is smoothed by the Savitzky-Golay Filter [51] with window
size = 10-sec (5 2-sec segments) and order = 3. The smoothed to-
tal power average is further clipped to range [-1000dB, 1000dB].
A random additive white noise is added to make sure the change
point detection method works properly. Finally, the Pelt method is
applied with segment model ‘rbf’.

Between each pair of adjacent change points, only one EEG seg-
ment will be sampled for the later labeling. By this, in total 17M
segments are selected out of the 350M segments.

Again, the change point detection is executed in parallel using
the similar strategy to handling raw EEG data and producing the
spectrogram images.

4.4 2D Coordinate Generation
Next, we produce the 2D coordinate for each sampled EEG seg-

ment, which is used in the 2D map view for the experts to visually
select the segment to be labeled.

In visual analytics, t-SNE [58] is widely used to reduce the high
dimensional feature vectors to 2D for display purpose. However, t-
SNE scales quadratically in the number of objectsN . Therefore, its
applicability is limited to data sets with only a few thousand input
objects. Beyond that, learning becomes too slow to be practical and
the memory requirements become too large.

To solve this problem, many variations have been proposed to
improve the efficiency of t-SNE, such as tree-based t-SNE [57],
UMAP [45]. The key lesson learned here is that none of these ap-
proaches are able to handle the 17M EEG segments. These meth-
ods typically failed due to out-of-memory issues. Based on our ex-
perience, only parametric t-SNE [42] can handle data at this scale,
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Column Name Description Type Modifiers Example

recordid Record identifier, each record 
represents one segment

character 
varying(255) not null sid825_20141024_075301_024967

longitude Longitude at the 2D map numeric(6,3) 687.246

latitude Latitude at the 2D map numeric(6,3) 643.728

color Predicted label character 
varying(20) Others

Figure 6: Table Structure of 2D Coordinates.

Column Name Description Type Modifiers Example

recordid Record identifier, each record 
represents one segment

character 
varying(255) not null sid1228_20141113_134623_019

810

doctorname The doctor initials character 
varying(20) not null ah

label Doctor’s Label numeric(6,3) Other

timestamp The date & time for this label timestamp with 
time zone not null 2018-10-30 23:18:42.303335+00

Figure 7: Table Structure of Labeled Segments.

because it uses a neural network to reduce dimension. Since neural
networks use batch processing, it is not necessary to hold all data in
memory. However, parametric t-SNE is extremely slow. Using 10
high-end GPUs, it still takes one week to process the 17M objects.

Finally, the 2D coordinates produced by parametric t-SNE are
re-scaled into range [0, 10000] for the display of the 2D bubble
map. These coordinates are then loaded into Postgres with a ta-
ble structure shown in Fig. 6. In this table, the ‘color’ attribute
represents the label of the segment. Currently, we see 6 classes
of label, namely ’Others’, ’Seizure’, ’GPD’, ’LRDA’, ’GRDA’ and
’Artifact’. More classes could be supported in the future.

One important observation here is that to date no distributed t-
SNE exists in the literature. Designing effective distributed solution
to scale t-SNE to big data is a promising research problem.

4.5 The Label Table
The labeled segments are stored in a Postgres table. The table

structure is shown in Fig. 7. In this table, one segment might cor-
respond to multiple rows, because multiple doctors might label the
same segment. In addition, one doctor might label one segment
multiple times to correct the mistakes they made before. There-
fore, to distinguish the labels marked by different doctors at dif-
ferent time, in this table we maintain the name of the doctor who
labels the segment and the timestamp when the segment is labeled.
Essentially we are recording the whole history of labeling for the
future analysis.

5. A WEB-BASED VISUALIZATION PLAT-
FORM FOR LABELING

To facilitate model training, we built a visualization platform for
efficient labeling. This platform was created using Kyrix [56], a
web-based toolkit for developing large-scale data visualization ap-
plications. Kyrix makes use of a simple client-server architecture.
We host the server on Google Cloud.

In this section, we first describe the basic user interface in Sec-
tion 5.1. We then describe in Section 5.2 how we apply Kyrix to
build our labeling platform for visualizing large amounts of data.
Lastly, Section 5.3 describes how our unique requirements drive
the development of several new features of Kyrix.

5.1 UI Design
We designed our user interface (Figure 8) to enable quick re-

trieval of information necessary to make labels, and to accommo-
date doctors’ habits when using commercial EEG viewers. Our UI
is composed of four coordinated views as highlighted by the dashed
boxes in Figure 8. We describe them in detail in the following.
2D bubble map. In the upper left-hand corner, we visualize the
2D bubble t-SNE map. This multi-class map shows two-second
segments as colored circles. Each color represents a particular IIC
pattern category. This 2D map is pannable and zoomable. The
labeler can use simple mouse-based controls to navigate in this map
(e.g. double click to zoom in). Clicking on any of the segment
populates the EEG and spectrogram view with EEG/spectrogram
centered at the selected segment.
Spectrogram view. The spectrogram view (lower left-hand cor-
ner) displays the spectrogram images stored in Google Cloud. Kyrix
stitches the image segments to form a consecutive spectrogram.
The panning of this view is coordinated with the panning of the
EEG view.
EEG view. The EEG view displays eight two-second segments
at a time. The segment in the middle is highlighted which indi-
cates to the labeler that a label can be made to this segment. We
implemented a set of fine controls over this EEG viewer to assist
the labeler in tweaking the time series to make better labeling deci-
sions. For example, by pressing up/down arrows, the labeler is able
to increase/decrease the magnitude of the time series. The labeler
can also switch between different montages of the EEG by pressing
the key M.
Labeling box. The box in the upper right-hand corner is where
the labeler makes labels. On the top, an identifier of the highlighted
2-second segment is shown. Following that are radio buttons for
making the labels. Every time a radio button is clicked, a request
is sent to the server to record the label in the database. The labeler
can click on a cancel button to revert his/her last made label.

5.2 Using Kyrix to Handle Large Data
The key challenge in building this web UI is to enable interactive

browsing of large amounts data for the labeler. As demonstrated by
prior research [38], it is important to bound the response times to
user interactions (e.g. pan and zoom) within 500 ms to obtain a
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Figure 8: An illustration of our web-based platform, created using Kyrix. Four main parts of the UI: (1) the 2D bubble map showing 2-second
segments; (2) the spectrogram view centered at a selected 2-second segment; (3) EEG time series centered at a selected 2-second segment;
(4) the panel for making labels.

fluid visual experience. To meet this latency requirement, we apply
Kyrix [56], an open-source visualization system designed to ease
the creation of large-scale pan/zoom data visualizations. Kyrix em-
ploys a client-server architecture, where the client communicates
with the server to fetch data in the user’s viewing region to ren-
der the visualizations. The server then fetches data from storage
systems (i.e. PostgreSQL and Bigtable in our application).

Kyrix allows the visualization developer to declaratively spec-
ify the visualizations using a visualization grammar. Our UI per-
fectly fits into the type of visualization that Kyrix supports, so it
is straightforward to write the specifications. The Kyrix backend
server applies a suite of optimization techniques (e.g. prefetch-
ing, spatial indexing) to ensure only data in the viewport is fetched.
These optimization techniques are crucial to ensure the 500 ms la-
tency requirement and are completely transparent to the visualiza-
tion developer. Interested readers can refer to the paper [56] or the
Github repo1 for more technical details of the Kyrix system.

5.3 Extending Kyrix to Support New Features
When we started building our visualization, there were several

desired features that were not supported by Kyrix. In the following,
we describe these features in detail and discuss how we extended
Kyrix to support them.
Multiple coordinated views. Kyrix was originally only able to
produce single-view visualizations. In our UI design, we desire
to have multiple coordinated pan/zoom views so that it is easier
for the labeler to grab information. More specifically, we require
a “load coordination” (e.g. load the EEG view when the labeler
clicks on the 2D map view) and “synchronized scrolling” between

1https://github.com/tracyhenry/Kyrix

the spectrogram view and the EEG view. The change made to sup-
port coordinated view has been contributed back to the open source
community via GitHub.

To support multiple views with aforementioned coordinations,
we have made a major extension to Kyrix. Here we give an overview
of the changes we made to the three main components of Kyrix: (1)
the compiler that parses visualization specifications, (2) the back-
end that precomputes database indexes and (3) the frontend for ren-
dering the visualizations.

The compiler offers a concise declarative visualization grammar,
which employs two main abstractions canvas and jump. A canvas
can be seen as a zoom level, whereas a jump indicates there is a
zoom transition between two canvases. To support multiple coordi-
nated views, we add to the grammar a view abstraction that allows
specifications of views, their sizes and relative positions, canvases
initially assigned to a view, etc. We also allow specifications of
view coordinations by associating a jump to some views.

The backend server precomputes indexes on a per-canvas ba-
sis. Also, the frontend only requests data in a particular canvas,
although the canvas may be displayed in different views. There-
fore, there was little change made to the backend code, except some
part of the data fetching logic where view-specific information (e.g.
size, position) was needed.

The frontend underwent two major changes. First, we needed
to set up multiple views based on user specifications and add one
view id argument to almost every frontend function to enable view-
dependent rendering. Second, we enriched the implementation of
the jump function to support coordinations between views.
An automatic drill-down system. To organize the 2D bubble map
into multiple canvases (zoom levels) where the labeler can zoom in
(out) to see more (fewer) segments, we needed to manually sample
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the segments for each canvas. This turned out to be a tedious pro-
cess because the distribution of the segments was fairly skewed and
simple random sampling could easily lead to crowded display. We
desired to avoid large visual density because it could slow down
both the frontend and the backend. We ended up repeatedly exper-
imenting with different setups (e.g. number of zoom levels, zoom
factors between levels) in order to find a satisfying configuration.

This experience has driven us to look for algorithms that can
automatically organize a potentially skewed dataset into multiple
zoom levels. We are working on using sampling methods [6, 11, 17]
to generate non-overlapping designs where visual objects on each
zoom level do not occlude each other. We plan to investigate dif-
ferent methods, compare their performance and integrate the algo-
rithms into Kyrix’s declarative grammar as high level abstractions.
Parallel PostgreSQL. To handle larger datasets which cannot be
accommodated by one single machine, we needed to support clus-
ters of machines running in parallel. At the time, Kyrix only sup-
ported single-node PostgreSQL and MySQL, so we had to hard-
code some logic to fetch data from Bigtable. We have experimen-
tally extended Kyrix to support Citus [1], an open source system
for running PostgreSQL across clusters of machines and automati-
cally parallelizing queries. For system administration and deploy-
ment, we have extended Citus to inside Docker containers on Ku-
bernetes, which allows any developer to quickly deploy this multi-
node system on rented cloud computing facilities, including Ama-
zon Web Services, Google Cloud, Microsoft Azure, Digital Ocean
and others. Note that Citus is implemented as a standard Postgres
extension, and virtually all single-node features continue to work as
normal, including the spatial indexing methods required by Kyrix
as well as hundreds of traditional RDBMS features. Because of
this, basic support for parallelism only required one additional SQL
statement to distribute the data across the cluster.

In the future the EEG Bigtable will be migrated from Bigtable
to Citus, while the Kyrix team will add configuration options and
tools for development and system administration, etc.

One interesting decision is how to distribute (“shard”) the Kyrix
data across a cluster. One method is to shard geospatially, where
visual objects “near” each other are co-located in the same shard
(i.e. on the same server). On one hand, this improves multi-user
performance by only burdening a smaller number of servers with
that user’s request traffic. On the other hand, if there is skew in
the data or skew in the popularity of the data, then a large percent-
age of servers will be idle. Moreover, in the case where the Kyrix
deployment has ample resources (nodes) per user, then geospatial
sharding does not improve that individual user’s performance. An-
other method is random sharding (e.g. round-robin), which has
the benefit of potentially improving per-user performance by per-
forming less work per node. The final sharding option we are con-
sidering is data-dependent sharding, where the Kyrix administra-
tor who uploads the dataset chooses a per-dataset method to shard,
optionally including a function (code) to determine the shard. In
terms of performance, data dependent sharding is the best option
and can be used to implement the geospatial and random options,
but it comes at the cost of adding substantial complexity for admin-
istrators. Benchmark testing is needed to evaluate these strategies.

6. ACTIVE LEARNING
Although we have large volumes of EEG data obtained in the

course of monitoring ICU patients, high-quality labels (Section 4.5)
are not initially available. Moreover, inter-rater agreement among
multiple experts regarding EEG segment patterns is often low. There-
fore, we need an efficient framework to collect and update the seg-
ment labels iteratively, using human time as judiciously as possi-

Figure 9: An overview of the active learning framework. This
process is iteratively performed until it reaches a certain level of
convergence.

ble. Inspired by active learning [53], we use a framework where
the trained machine learning model, a deep neural network in our
case, suggests candidate objects to be labeled again, and multiple
domain experts review and relabel them. During each iteration, we
improve the quality of the labels as well as inter-rater agreement,
leading to more accurate classification.

Figure 9 shows the overall process of our relabeling framework:
Assume we have a small set of labels provided by the physicians
during an initial labeling pass. We then cluster the EEG segments
and propagate these labels within the “pure” clusters, namely the
clusters in which the labeled segments share the same label. By
this we get a set of “noisy” labels.

First, we use a subset of the labeled data as training set to train
a deep neural network model. All labeled segments are then exam-
ined at inference time by the trained model. We then extract the k
segments where the neural net had highest confidence but disagreed
with the labels. These segments are given to domain experts to re-
view and potentially update their labels.

In addition, the inference results can also be used to acquire new
labels, such as suggesting the experts to label the unlabeled seg-
ments on which the model has a low confidence.

6.1 Model Training
Deep neural networks. We use a deep neural network model in
the active learning framework for relabeling the EEG segments.
Overall, the model consists of two parts: a convolutional neural
network (CNN) module [35, 33] to recognize local patterns and a
recurrent neural neural network (RNN) module [25] to capture the
global characteristics of the given EEG signal.

CNNs have shown impressive representational power over the
past decade, especially in computer vision applications [35, 33].
Inspired by previous works that successfully apply CNNs in clini-
cal signal processing applications such as arrhythmia detection us-
ing electrocardiogram (ECG) [22] and EEG analysis [52], we use a
CNN module to extract local pattern features that represents short
term patterns over a few seconds.

While CNNs have shown their great representational power for
local feature extraction, it has been shown that RNNs, especially
the gated variants such as Long Short-term Memory (LSTM) [25]
and Gated Recurrent Units (GRUs) [14], typically have better abil-
ities than CNNs in settings with sequential or temporal dynamics
such as machine translation [55]. Therefore, we utilize a RNN
module to summarize long term (over a few minutes) trends in
EEG segments. In addition, we stack the RNN module on top of
our CNN module to take advantage of each module simultaneously,
following the motivation of the previous work on sleep staging us-
ing spectrograms of EEG signals [7].
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Figure 10: Unrolled depiction of the deep neural network architecture used in the active learning for relabeling process. Here a concat
block represents a concatenation of outputs from each direcion of LSTM module and a FC block refers to a fully-connected layer.

Implementation. Figure 10 depicts the architecture of the deep
neural network used. For the CNN module, we adapt a DenseNet-
BC architecture [26] with 7 dense blocks each of which consists
of 4 layers with a growth rate of k = 32. On top of it, a layer of
bidirectional long short-term memory (LSTM), which contains 8
hidden units for each direction, is stacked for the RNN module.

To label each 2 second target EEG segment xt, 77 segments be-
fore and after xt are provided as context, meaning a total of 155
segments, each 310 seconds in length (xt−155:t+155) are used as
input data to the model. Specifically, these segments are split into
5-segment chunks, and each chunk is passed into the DenseNet
module that generates 255-dimensional local features. Then, the
bidirectional LSTM module uses 31 local features to calculate a
global temporal characteristic. The hidden states of each direction
at the middle of the sequence are and input to a 16-dimensional
fully connected layer. Finally, the class probabilities are calculated
using a softmax function.

6.2 Relabeling
Once the model is trained on the current dataset, all labeled 2-sec

EEG segments (in training, validation, and test sets) are evaluated
by the model and relabeled through the following procedure: First,
all segments having incorrect model predictions are gathered into
groups having the same pair of label and model prediction. Second,
a clustering algorithm, e.g., k-means [44], is applied to each group
to create a certain number of clusters, e.g, 1000, in total across the
groups. Third, the data points closest to each cluster center are ex-
tracted, while all cluster membership information is also recorded
for updating labels in a later phase. Fourth, the domain experts
are asked to review and relabel only the closest data points from
the cluster centers. Similar to change point detection introduced
in Sec. 4.3 which avoids the labeling of the similar segments from
the same patient, this reduces the labeling load by avoiding review
of many similar segments from different patients. Finally, the la-
bels for all cluster members are updated together using the labels
reassigned to the center-closest data points by the domain experts.
Then, the model is fine-tuned or retrained using the updated dataset.

The similar strategy can also be applied to label the unlabeled seg-
ments on which the model has low confidence.

7. EXPERIMENTAL EVALUATION
In the experiments, we evaluate both the effectiveness of our

active learning strategy and the response time of the visualization
component for labelling EEG segments.
Active Learning Evaluation. We conducted experiments that clin-
ical experts iteratively relabel the EEG segments through the active
learning framework described in the previous section. At the begin-
ning of the experiment, called iteration 0, the deep neural network
model described in the Section 6.1 was trained using the labeled
portion of the EEG segments data with the initial labels. Combin-
ing the two classes of Others and Artifact, we used the five classes:
’O/A’, ’Seizure’, ’LPD’, ’GPD’, ’LRDA’, and ’GRDA’. In addi-
tion, we split the entire labeled dataset into three disjoint subsets of
training, validation, and test set with a ratio of 5:1:2 respectively.
Although the EEG segments from any of those three subsets can be
relabeled over the iterations, their membership is not changed.

After the initial model had been trained at iteration 0, the rela-
beling process was executed for the next two iterations with three
neurological experts. Each expert reviewed and relabeled the same
segments suggested by the model at each iteration; majority votes
were used when the labels were actually updated. We use Fleiss’
kappa (κ) [19] to assess the inter-rater agreement among the three
experts. Figure 11a shows that the inter-rater agreement measured
by Fleiss’ kappa increases over the two iterations of relabeling.

For the model performance on the given dataset at each iteration,
we use F1 score, which is a popular metric on a classification prob-
lem especially with an unbalanced dataset, i.e., the distribution of
the classes is not uniform. In a binary classification problem, F1

score is given by the harmonic mean of precision and recall:

F1 = 2 · Precision · Recall
Precision + Recall

.

In a multi-class problem like our case, one may use either macro-
average or micro-average to obtain a single score for each metric,
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(a) Inter-rater agreement by Fleiss’ κ (b) F1 scores on the entire test set (c) F1 scores on the relabeled test set only

Figure 11: Performance metrics measured on the inter-rater agreements and the model predictions.

precision and recall, in the equation above. Macro-average is ob-
tained by calculating a metric for each class separately and taking
their unweighted mean value. On the other hand, micro-average
can be found by counting the total true positives, false negatives
and false positives for all classes and calculating a metric. While
macro-average gives an overview of the performance without con-
sidering the class imbalance, micro-average implicitly considers
the contribution of each class. We report both macro-averaged and
micro-averaged F1 score to avoid either overestimation or under-
estimation of the model performance. Figure 11b shows both F1

scores for entire test data. While both scores increase as more re-
labeling iterations are performed, the micro-averaged F1 score is
consistently higher than the macro-averaged one. This is because
the model has a better prediction performance on the majority class
than the other classes. Figure 11c shows the same F1 scores but on
the test segments that were relabeled. Both scores were very low
before any relabeling process, and they rapidly increase as relabel-
ing progresses. This gives us important intuition that the relabeled
segments were initially either incorrectly labels or very difficult for
the model to correctly classify. These labels have been corrected
by the experts as more relabeling iterations are executed, and the
model becomes more accurate as it is trained and evaluated on the
corrected labels. Overall, this shows that we are able to achieve bet-
ter model performance by incrementally reviewing and correcting
the labels.
Visualization Response Times. We also conducted experiments
to evaluate the average response times (to client requests) of our
visualization platform. Response time is composed of two parts:
network and data fetching. Data fetching time is defined as the time
elapsed from the Kyrix backend receiving the request to the Kyrix
backend getting the data from the storage systems. Network time
is defined as the time it takes to send the data back to the frontend.

Table 1: Average response times of the visualization platform.

View Avg network
time (ms)

Avg data
fetching time (ms)

Avg response
time (ms)

2D Map 67.1 23.8 90.9 (σ = 174.4)
EEG 202.2 211.5 413.7 (σ = 174.7)

Spectrogram 0.2 331.8 331.9 (σ = 117.1)

A clinical expert labeled 63 2-second segments using the visual-
ization platform. The average response time on each of the three
main views (i.e. 2D map, EEG, and spectrogram) is reported in Ta-
ble 1. We can see from the table that our average response time was
below 500 ms, which ensured interactive visual browsing for the la-
beler. Note that the data fetching took much longer than network
for the spectrogram view. The reason was that the Kyrix backend
needed to communicate with Google Cloud whether a spectrogram

image exists (which contributes to the long data fetching time) and
that only small-sized image links were sent back to the frontend.

8. RELATED WORK
IIC pattern classification. Small scaled analysis has been con-

ducted on IIC pattern classification. In [28], unsupervised machine
learning methods were applied to pre-clustering the EEG segments
to facilitate the labeling by experts. Although this method could
significantly speed up the labeling process, the produced labels tend
to be noisy due to inter-rater disagreement and ambiguous cluster
boundaries. In this work, we use a large scale visualization system
and active learning to improve the quality of labeling.

Labeling. As the key component of a machine learning system,
labeling has drawn a lot of research attentions in recent years. In
[50], Snorkel was proposed to efficiently produce a large amount of
labels based on the business rules written down by the users. Statis-
tical methods are then applied to remove the noises in the produced
labels. However, in our complex IIC classification context, it is ex-
tremely hard even for the Neurology specialists to write down rules
to explicitly define the characteristics of different IIC patterns. Fol-
lowing a different direction, Snuba [59] first uses a small number of
labels to train a bunch of lightweight machine learning models. A
large number of labels are then produced leveraging the inferences
results from these small models. More specifically, given one test-
ing object, if most of the models agree on the prediction, then the
prediction will be used as the ground truth of this object. However,
this methodology tends to produce a large number of redundant
labels which not necessarily lead to an enriched model covering
complex and subtle cases. In many cases, labels from the boundary
or ambiguous cases are more desired than the ease cases to improve
the predication accuracy of a classification model. In this work, our
Smile system employs active learning to discover and resolve the
boundary cases. Furthermore, none of these approaches consider
the labeling of time series data.

Active Learning. Active learning [53, 27, 46, 61, 18] studies
the problem of recommending the most promising objects for la-
beling based on the output of the modeling. Typically, these tech-
niques recommend objects based on the uncertainty, namely label-
ing the objects that the current model is unsure about. The diver-
sity of the labeled objects are also taken into consideration. In this
project, we will further investigate how to leverage various active
learning techniques to reduce the noises in the labels and save the
labeling efforts of the experts.

Visualization. Big data visualization has been a hot research
topic for more than a decade. Multiple efforts have studied or
built systems/toolkits to support scalable visualizations of various
kinds. A long line of research has studied how to apply data cube
or sampling algorithms to efficiently render aggregate visualiza-
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tions (e.g. bar charts) [39, 54, 37, 49, 60, 32, 43]. A number of
systems also focus on pan/zoom-based details-on-demand visual-
izations [4, 10, 12, 30]. Despite the seemingly abundance of the
tools/systems, very few of them can fully support the unique re-
quirements posed by our design. For one, a great deal of gen-
eral visual analytics tools cannot support data size larger than main
memory [5]. For another, many pan/zoom systems (e.g. ForeCache
[4], HiGlass [30] and Google Maps) are hardcoded for specific data
types and visualizations. In addition, most of them do not support
multiple coordinated views. We pick Kyrix [56] for implementing
our visualization platform due to its support for general-purpose
pan/zoom applications at scale. New features such as multiple co-
ordinated views are designed to enhance Kyrix to meet the cus-
tomized requirements of exploring and labeling EEG data.

9. CONCLUSION
In this work, we explore big data analysis, visual analytics, and

cutting-edge deep learning techniques to solve a hard yet important
medical problem, namely automatically detecting the seizures and
non-convulsive seizures by analyzing the EEG signals. Big data
techniques are leveraged to slice the EEG data and load the EEG
segments to key-value store, transfer the time series to frequency
domain for producing the spetrogram images, and embed the EEG
segment to 2D space for visualization, etc. A visualization based
labeling system is developed for the users to interactively explore
and label the big EEG data with the support of multiple coordinated
views. Active learning techniques are then employed that based on
the output of a deep learning model, iteratively produce more and
more high quality labels and improves the classification accuracy.
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