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ABSTRACT
In this work we study distributed public key schemes secure
against continual memory leakage. The secret key will be
shared among two computing devices communicating over a
public channel, and the decryption operation will be com-
puted by a simple 2-party protocol between the devices.
Similarly, the secret key shares will be periodically refreshed
by a simple 2-party protocol executed in discrete time peri-
ods throughout the lifetime of the system. The leakage ad-
versary can choose pairs, one per device, of polynomial time
computable length shrinking (or entropy shrinking) func-
tions, and receive the value of the respective function on
the internal state of the respective device (namely, on its se-
cret share, internal randomness, and results of intermediate
computations).

We present distributed public key encryption (DPKE) and
distributed identity based encryption (DIBE) schemes that
are secure against continual memory leakage, under the Bi-
linear Decisional Diffie-Hellman and 2-linear assumptions.
Our schemes have the following properties:

1. Our DPKE and DIBE schemes tolerate leakage at all
times, including during refresh. During refresh the tol-
erated leakage is a (1/2 − o(1), 1)-fraction of the se-
cret memory of P1, P2 respectively; and at all other
times (post key generation) the tolerated leakage is a
((1− o(1)), 1)-fraction of the secret memory of P1, P2

respectively.

2. Our DIBE scheme tolerates leakage from both the mas-
ter secret key and the identity based secret keys.
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3. Our DPKE scheme is CCA2-secure against continual
memory leakage.

4. Our DPKE scheme also implies a secure storage sys-
tem on leaky devices, where a value s can be secretely
stored on devices that continually leak information
about their internal state to an external attacker. The
devices go through a periodic refresh protocol.

These properties improve on bounds and properties of known
constructions designed to be secure against continual mem-
ory leakage in the single processor model.

Categories and Subject Descriptors
F.m [Theory of Computation]: Miscellaneous

1. INTRODUCTION
The absolute privacy of secret keys is the basic underlying

assumption made in the security proof methodology of mod-
ern cryptography. Yet, as demonstrated by a large volume
of works on side channel attacks [27, 7, 3, 28, 35, 21, 24, 37],
when implementing cryptographic protocols in real world
hardware, some information on the secret key may leak to
the adversary. This turns out to completely compromise the
security of well known cryptographic protocols, including for
example the RSA cryptosystem and the AES [24]. To com-
bat such threats, much recent work [36, 9, 12, 19, 26, 31, 20,
23, 1, 2, 32, 16, 34, 33, 13, 11, 15] has been done on leakage
resilient cryptography, that is, designing cryptographic pro-
tocols that remain secure even when some information on
the secret key is leaked to the adversary.

The model of leakage resilience most relevant to our work
is the Continual memory leakage [11, 15]. In this model the
memory of the computing device is viewed as consisting of
two types of memory: (i) Public memory that stores the pub-
lic key, the public randomness used by the system, and the
inputs and outputs of the computation; and (ii) Secret mem-
ory that stores the secret key, the secret randomness used by
the system, and the intermediate steps in the computations.
An adversary attacking the system can see the contents of
the public memory in its entirety, and on top of that the ad-
versary is allowed to obtain a limited amount of information
about the secret memory as defined next. Specifically, time
is viewed as partitioned into discrete time periods, where
during each time period the adversary can choose an ar-
bitrary polynomial-time computable leakage function, and
obtain as a result the leakage function applied to the secret
memory of the device. The only restriction on the leakage



function is that it is length shrinking [1], namely, its output
length is at most a pre-specified fraction of the number of
bits of the secret memory.1 At the end of each time-period,
the secret key is refreshed; namely, a randomized procedure
is executed that takes as input a secret key sk corresponding
to a public key pk, and outputs a uniformly random secret
key sk′ for the same public key. We point out that leakage
could happen during key refresh, can depend on the random-
ness used for the refreshing procedure (among other things).
In summary, in this model the total leakage is unbounded,
but leakage is bounded within each time period.

1.1 Our Work
In this work we study distributed encryption schemes re-

silient against continual memory leakage:2 We propose that
the secret key will be shared among two computing devices
communicating over public channels, and the decryption and
key refresh operations will be computed by simple 2-party
protocols between the devices. The leakage adversary can
now choose pairs, one per device, of polynomial time length
shrinking functions, and receive the value of the respective
function on the secret memory of the respective device. The
secret memory contains: the secret share of the secret key
as well as the device’s internal randomness and results of
intermediate computations. (See a detailed description of
our model in Section 3.)

The advantage that this model offers is that the leakage
functions chosen by the adversary are limited now to only
apply to the shares of the secret memory rather than the
entire secret memory at once. We remark that the choice
of the leakage function can be adaptive based on all pub-
lic information up to and including the current time period
and all leakage bits from both devices obtained in earlier
time periods, but is chosen independently of the bits leaked
from the ”other” device during the current time period. We
believe that the limitation this model sets on leakage from
the entire secret memory at once is both useful and real-
istic. Examples in which the distributed leakage setting is
especially suitable are:

• Symmetric Encryption: Two processors would like
to set up a symmetric encryption scheme in presence of
leakage attacks. The classical solution calls for agree-
ing in person on a secret key based on which future
decryption (and encryption) can be computed. Both
processors store the common secret key in their local
memory, and as such an adversary can receive leakage
computed on the entire stored secret key. If instead the
processors agree in person on a common secret key but
each stores only a share of it, they could still decrypt
and refresh the secret key via an interactive protocol,
but the leakage will be restricted to be computed on
each share separately. We remark that splitting de-
cryption keys and doing distributed decryption is not
a new idea but was extensively pursued in the proac-
tive world. But the motivation as well as the adversary

1More generally, both in [11, 15] and in our work it suffices
to restrict the leakage function to be entropy shrinking [32],
namely, requiring that the secret key has non-trivial average
min-entropy conditioned on the leakage.
2Historical remark. An earlier version of this work (unpub-
lished manuscript) initiated the study of distributed schemes
resilient against continual memory leakage predating [29,
17].

model here are different. In the proactive setting the
fear was that one of the processors could be fully com-
promised whereas here both processors are partially
compromised in the sense that their secrets leak.

• Auxiliary Device: To battle leakage attacks in a
public key encryption scheme, do not store the secret
memory on the device in its entirety but instead add
an auxiliary simpler computing gadget (say, a smart
card) and store shares of the secret on the main proces-
sor and the auxiliary device respectively. To decrypt,
a protocol between the main processor and the auxil-
iary device ensues. This will be particularly attractive,
if one can make the computation on the auxiliary de-
vice much simpler than the computation on the main
processor, as shall indeed be the case in the schemes
proposed in this paper.

• Secure Storage on Leaky Hardware: Say one is
merely interested in long term secret storage of data s
on hardware that leaks. This problem can be solved
by a distributed encryption scheme resilient to leak-
age as follows. Store Encpk(s) on one leaky hardware
device and sk on another leaky hardware device. To
battle leakage the devices will periodically refresh the
ciphertext (stored on the first device) and the secret
key (stored on the second device) using a refresh pro-
tocol. We note that this case was addressed by an
independent work of Dodis et al [17] who designed a
private key encryption scheme Esk and proved it is
leakage resilient under the linear assumption in prime
order groups. They then store Esk(s) on one leaky
device and sk on another, and show how to refresh
Esk(s) and sk periodically without requiring interac-
tion between the devices.

In this work we construct a distributed public key en-
cryption (DPKE) scheme secure against continual memory
leakage, and a distributed identity based encryption (DIBE)
scheme secure against continual memory leakage. The secu-
rity of our schemes is under the Bilinear Decisional Diffie-
Hellman (BDDH) and 2-linear (2Lin) assumptions. The
schemes achieve the following properties:

Leakage Parameters: Our DPKE and DIBE schemes tol-
erate during key refresh periods a leakage of ((1/2−o(1)), 1)-
fraction of the secret memory of P1 and P2 respectively (note
that this is optimal as in these periods each device holds both
the current and the next secret key share, and hence the size
of the secret memory doubles); and during all other periods
(post key generation) ((1 − o(1)), 1)-fraction of the secret
memory of P1 and P2 respectively. Assuming leakage free-
ness during key generation is standard. We show neverthe-
less that this assumption can be relaxed: Our schemes can
tolerate leakage during key generation, where the leakage
is up to O(logn) bits under the standard BDDH and 2Lin
assumptions, and up to nε bits under the sub-exponential
BDDH and standard 2Lin assumptions (for n the security
parameter).

Leakage from Master Secret Key in IBE: Our DIBE
scheme tolerates leakage from both the master secret key
and the identity based secret keys.

CCA2 Security: Our DPKE scheme is CCA2-secure against
continual memory leakage. Namely, it is secure even when
the adversary has access to a decryption oracle (on top of



access to a leakage oracle). Leakage occurs only prior to
seeing the challenge ciphertext.

Simplicity of One of the Two Devices: In our schemes
the computation performed by one of the computing devices
is indeed quite simple; let’s call this device P2. All P2 does
is: (a) sample random coins s1, . . . , s` ∈ Zp, and (b) given
a list of group elements (sent from P1), P2 computes (and
returns to P1) the product of these elements to the power of
s1, . . . , s`, respectively. Thus, we may view the other device
P1 as being our main processing device (say, our computer),
while P2 can be an auxiliary device (say, a smart card) com-
municating with P1.

We remarks that our DPKE scheme can also be used for
securely storing data on leaky devices.

1.2 Related Works

1.2.1 Results in the Single Processor Model
There are several known constructions, which address con-

tinual memory leakage in the single processor model, of
public key encryption (PKE) and identity based encryp-
tion (IBE) schemes secure against continual memory leak-
age. These include the PKE and IBE schemes of Brakerski
et al. [11]; the PKE scheme of Lewko et al. [29] with a re-
cent followup work by Dodis et al. [17]; and the recent IBE
scheme (as well as Hierarchical IBE (HIBE) and attribute-
based encryption (ABE) schemes) of Lewko et al. [30]. We
also mention the work [15] that addresses identification and
authenticated key agreement schemes. All these schemes
consider continual memory leakage attacks, for leakage func-
tions that are length (similarly, min-entropy) shrinking, but
achieve different levels of security, leakage parameters, and
efficiency.

In terms of security our DPKE scheme achieves CCA2-
security, in contrast to semantic-security in [11, 29, 17]. Our
DIBE achieves the same security notion as the IBE of [30].

A central ingredient in all schemes secure against contin-
ual memory leakage is designing a mechanism for periodi-
cally refreshing the secret key, that is, replacing the secret
key by a new secret key while maintaining the same public
key. The fraction of leakage bits tolerated by [11, 15, 30]
differ greatly on whether or not the leakage is taking place
during refreshing of the secret key. As mentioned about,
during refresh our DPKE is resilient to the optimal leakage
of ((1/2− o(1)), 1)-fraction of the secret memory of P1 and
P2 respectively, in contrast to only o(1)-fraction in [11, 30],
1/258-fraction in [29], and 1/672-fraction in [17]. No leakage
during refresh is tolerated in [15].

Another key question in the IBE case is whether leakage is
allowed from the master secret key as well as the secret keys
of different identities. As mentioned above, our DIBE toler-
ates optimal leakage of ((1− o(1)), 1)-fraction of the bits of
the master secret key shares msk1,msk2 at all times other
than during refresh, and optimal leakage of ((1/2−o(1)), 1)-
fraction during refresh, in contrast to allowing no leakage
from the master secret key in [11], and restricting the leak-
age during the refresh period to o(1)-fraction in [30].

Finally, our DPKE scheme is more efficient than [11, 29,
30] when considering the parameters necessary to achieve
leakage fraction of (1 − o(1)) in [11, 29, 30]. In particular,
our scheme encrypts group elements rather than single bits,
encryption requires a single pairing operation (which can be
provided as part of the public key) and two exponentiations

(over a prime order group), and the size of our ciphertext is
two group elements.3

1.2.2 Leakage Resilience in Distributed Setting
In our setting the two processors are cooperating rather

than adversarial and are both being leaked on by an adver-
sary. The shares of the secret key are held by two parties as
means to fight the leakage adversary rather than being the
initial inputs of two processors.

In several recent papers, leakage resilience in a distributed
setting was considered where parties may have initial private
inputs, and some of which may be faulty. This is the case
in [10] where n processors want to toss a common coin in
the presence of both full corruption of processors and leak-
age on the private state of non-corrupted processors. The
works of [22, 4] consider two-party protocols with leakage
for the oblivious-transfer, commitment, and zero-knowledge
functionalities; identification protocols with leakage [2, 14,
15] were also considered.

1.3 Paper Organization
The rest of the paper is organized as follows. Preliminary

definitions and facts appear in Section 2. We formally define
our model in Section 3; state our main results and give an
overview of our constructions and proof techniques in Sec-
tion 4; present the construction of our DPKE semantically
secure against continual memory leakage in Section 5; and
give an overview of its security proof in Section 6.

2. PRELIMINARIES
We briefly review some standard definitions and facts.
A function p(n) is polynomial if ∃c > 0 s.t. ∀n, p(n) ≤ nc.

A function µ(n) is negligible if for every polynomial p(·), ∃N
s.t. ∀n > N, µ(n) < 1

p(n)
. We denote the security parameter

by n, and adopt the convention whereby a machine is said
to run in polynomial-time if its number of steps is polynomial
in its security parameter alone. We use the shorthand ppt
to denote probabilistic polynomial-time. Another shorthand
notation we use is [`] = {1, 2, . . . , `} (for natural numbers `).

LetX = {Xn(a)}n∈N,a∈{0,1}∗ and Y = {Yn(a)}n∈N,a∈{0,1}∗
be distribution ensembles. We say that X and Y are com-
putationally indistinguishable, denoted X ≈c Y , if for ev-
ery family {Cn}n∈N of polynomial-size circuites, there ex-
ists a negligible function µ(·) such that for all a ∈ {0, 1}∗,
|Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

Let X = Xn and Y = Yn be random variables accepting
values taken from a finite domain D. The statistical dis-
tance between X and Y is SD(X,Y ) = 1

2

∑
v∈D |Pr[X =

v] − Pr[Y = v]|. We say that X and Y are ε-close if their
statistical distance is at most SD(X,Y ) ≤ ε(n). We say
that X and Y are statistically close, denoted X ≈s Y , if ε(n)
is negligible.

3For comparison, the scheme of [11] encrypts bit-by-bit, en-
cryption requires ω(n) exponentiations, and the ciphertext
size is ω(n) group elements; the scheme of [29] encrypts bit-
by-bit, the number of exponentiations for encryption (as well
as the number of group elements in the ciphertexts) is con-
stant, but these exponentiations are over composite order
groups of the order of a product of four primes; and the
scheme of [30] encrypts group elements, but requires ω(1)
exponentiations for encryption, and the ciphertexts size is
ω(1) group elements.



The min-entropy of X is H∞(X) = minv∈D(− log Pr[X =

v]). The average min-entropy [18] defined by: H̃∞(X|Y ) =

− log
(
Ev→Y

[
2−H∞(X|Y=v)

])
. captures the remaining un-

certainty of the random variable X conditioned on the value
of the random variable Y .

The leftover hash lemma says that ifX is a random variable
with min-entropy at leastH∞(X) ≥ k, andH = {h : D → R}
is a family of pairwise independent functions (i.e., for all x 6=
y ∈ D and a, b ∈ R, Prh∈H [h(x) = a & h(y) = b] = 1/ |R|2),
s.t. log |R| ≤ k − 2 log(1/ε), then SD((h, h(x)), (h′, r)) ≤ ε
for h, x chosen independently at random from H and X re-
spectively; and (h′, r) uniformly random in H ×R.

2.1 Hardness Assumptions
We define bilinear mappings and the Bilinear Decisional

Diffie-Hellman (BDDH) and k-Linear (kLin) assumptions.
An (admissible) bilinear map is a function e : G × G →

GT between two multiplicative prime order cyclic groups
G, GT satisfying the following: (1) Bi-linearity: ∀u, v ∈ G,
∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab. (2) Non-degeneracy: For
g a generator of G, e(g, g) generates GT . (3) e is efficiently
computable.

A parameters generating algorithm for a bilinear map e is
a PPT algorithm (p, g, e) ← G(1n) that, given a security
parameter n (in unary), outputs an n-bits prime number
p, a generator g of an order p group G, and an admissible
bilinear map e : G × G → GT (for GT the order p group
generated by e(g, g)).

The Bilinear Decisional Diffie-Hellman (BDDH) assumption
for G says that for (p, g, e)← G(1n) and a, b, c, r independent
and uniformly random elements in Zp,

(p, g, e, ga, gb, gc, e(g, g)abc) ≈c (p, g, e, ga, gb, gc, e(g, g)r).

We define the kLin and matrix kLin assumptions for k ≥ 1
a constant. The k-Linear (kLin) assumption for G says that
for (p, g, e)← G(1n), g1, . . . , gk ← G and r0, r1, . . . , rk inde-
pendent and uniformly random elements in Zp,

(p, g, g0, g1, . . . , gk, g
r1
1 , . . . , g

rk
k , g

∑k
i=1 ri

0 )

≈c (p, g, g0, g1, . . . , gk, g
r1
1 , . . . , g

rk
k , g

r0
0 ).

The matrix kLin assumption says that for every integers a
and b, and every k ≤ i < j ≤ min {a, b} the ensembles{

(p, g, gR)
}
R∈Rki(Z

a×b
p ),n∈N and

{
(p, g, gR)

}
R∈Rkj(Za×b

p ),n∈N

are computationally indistinguishable, where Rki(Za×bp ) is
the set of all rank i matrices. The kLin assumption implies
the matrix kLin assumption (see [32] Appendix A).

3. OUR MODEL
Our model extends the continual memory leakage model of

[11, 15] to distributed settings. We focus here on distributed
public key encryption (DPKE) schemes secure against con-
tinual memory leakage; our definitions for distributed iden-
tity based encryption (DIBE) are analogous.

3.1 Distributed Public Key Encryption
We propose that the secret key will be shared between

two computing devices communicating over a public chan-
nel, and decryption will be executed by a simple 2-party
protocol. Likewise, refreshing of the secret key shares will
be executed by a simple 2-party protocol.

To be concrete, let us denote the two computing devices
by P1 and P2, and their shares of the secret key by sk1 and
sk2 respectively. Time is viewed as partitioned into discrete
time periods; and refreshing of the secret key shares is exe-
cuted at the end of each time-period.4 Namely, at the end of
each time-period a 2-party protocol is executed that takes as
input secret key shares (sk1, sk2) corresponding to a public
key pk, and outputs new secret key shares (sk′1, sk

′
2) for the

same public key, where the new secret key shares are drawn
from the same distribution as the old ones. By the termi-
nation of the refresh protocol the old secret key share ski
has been erased from the secret memory of Pi, and the new
secret key share sk′i has been put in its place. We emphasize
that the public key remains unchanged throughout the life
time of the system. The definition below summarizes the
above and sets some notations:

Definition 3.1 (DPKE). Distributed public key encryp-
tion (DPKE) schemes are defined by a tuple of algorithms and
protocols Π = (Gen,Enc,Dec,Ref) where:

• Key generation (pk, sk1, sk2)← Gen(1n) is a random-
ized algorithm that given a security parameter n out-
puts the public key pk and the secret key shares sk1, sk2

given to devices P1 and P2 respectively.5

• Encryption c ← Encpk(m) is a randomized algorithm
that given the public key pk and a message m outputs a
ciphertext c. We denote c← Encpk(m; r) to emphasize
the randomness r used by the encryption algorithm.

• Decryption m ← Decpk,sk1,sk2(c) is a randomized 2-
party protocol executed by P1 and P2. The input of Pi
(i = 1, 2) is (pk, ski, c) for pk the public key, ski the
secret key share of Pi, and c a ciphertext. The output
(outputted by either P1 or P2 or both) is a message
m′. We require that for all m, c ← Encpk(m) and
m′ ← Decpk,sk1,sk2(c), it holds that m′ = m.

• Refreshing (sk′1, sk
′
2) ← Refpk(sk1, sk2) is a random-

ized 2-party protocol executed by P1 and P2. The in-
put of Pi (i = 1, 2) is (pk, ski) for pk the public key
and ski the current secret key share of Pi. The out-
put is new secret key shares sk′1, sk

′
2 given to P1, P2

respectively (the old shares sk1, sk2 are erased). We
require that for all (pk, sk0

1, sk
0
2) ← Gen(1n), t∗ ∈ N,

and (skt1, sk
t
2) ← Refpk(skt−1

1 , skt−1
2 ) for t ∈ [t∗], it

holds that

SD((sk0
1, sk

0
2), (skt1, sk

t
2)) = 0

(where the probability is taken over the random coins
of Gen and Ref).

We point out that our modeling assumes that the devices
trust each other to follow the protocols specifications for
refreshing and decryption honestly.

4The partition to time-periods may in fact be defined by ex-
ecutions of the refresh protocol, where each execution marks
the end of a time-period.
5Without loss of generality Gen is executed by a trusted
third party; otherwise, replace the trusted party by a generic
2-party protocol revealing nothing except its output; where
the latter holds even if the adversary obtains during key gen-
eration the number of leakage bits considered in this work.



3.2 Continual Memory Leakage from DPKE
The memory of each computing device Pi (i = 1, 2) in

a DPKE scheme Π = (Gen,Enc,Dec,Ref) is viewed as com-
posed of two types of memory: (i) Public memory that stores
the public key, the public randomness used by the system,
and the public inputs and outputs of the computations ex-
ecuted by device Pi; and (ii) Secret memory that stores the
share ski of the secret key, as well as the secret random-
ness of Pi, and the intermediate steps in the computations
executed by Pi.

An adversary attacking the scheme can see all the fol-
lowing: (1) The transcript of communication to and from
the devices; (2) The contents of the public memory of both
devices in its entirety; and (3) A limited amount of infor-
mation about the secret memory of both devices as defined
next (aka, “leakage”).

Essentially, during each time-period the adversary can
choose a pair of polynomial time length shrinking (or en-
tropy shrinking) functions, one per device, and receive the
value of the respective function on the secret memory of the
respective device. Information leakage can happen at all
times, including during key refresh. The choice of the leak-
age function can be adaptive based on all public information
(including the communication transcript) up to and includ-
ing the current time period, and all leakage bits obtained in
earlier time periods. The precise details follow.

Leakage functions. We distinguish three phases throughout
the life time of the system: key generation phase, refresh
phase, all other times. The content of the secret memory
– and hence the input to the leakage function – varies be-
tween those phases. To address these varying inputs the
adversary actually chooses two (polynomial time and length
shrinking) functions per device Pi (i = 1, 2) at each time

period t, denoted by hti, h
t,Ref
i , where: hti is a function to be

applied on the secret memory of Pi at time period t other
than during refresh, and ht,Refi is a function to be applied
on the secret memory of Pi during refresh of time period t.
In addition, the adversary chooses a (polynomial time and
length shrinking) function hGen for the key generation phase.

Leakage functions can be chosen adaptively based on leak-
age and public information as said above. We point out that
dependence on leakage bits in this adaptive choice is on leak-
age obtained in earlier time periods, not in the current one.
Without loss of generality this is modeled by requiring a si-
multaneous choice of the leakage functions for the same time
period t, namely, (ht1, h

t,Ref
1 , ht2, h

t,Ref
2 ).

Inputs to leakage functions. For each of the aforementioned
phases we specify the content of the secret memory, or equiv-
alently, the input to the leakage function. Without loss of
generality we define the latter to be solely the essential parts
of the secret memory, namely, parts from which the entire
secret memory is efficiently computable (given the public
memory). The input to hGen is the secret randomness rGen

held in memory during the key generation algorithm. The
input to ht,Refi and hti is (skti , r

t,Ref
i ) and (skti , r

t
i) respectively,

where: skti is the secret key share of Pi at time t; rt,Refi is
the secret randomness held in memory of Pi during the exe-
cution of the refresh protocol at time t; and rti is the secret
randomness held in memory of Pi at time t other than during
the execution of the refresh protocol.

Looking ahead, to simplify the description of the secu-
rity game in our security definitions we include in the input

to the leakage function also the public information held in
memory during the current time period, denoted pubt. This
includes the communication transcript to and from both de-
vices and the content of their public memory. This captures
the adversary that first sees the public information and only
then chooses its leakage functions (by encoding both the
choice of leakage functions and their functionalities into the
submitted functions), while simplifying the security game
by allowing the leakage functions to be chosen once at the
beginning of each time period.

Outputs of leakage functions. The length shrinking restric-
tion on the leakage functions says that the sum of outputs
length of the functions leaking while the share skti is in

memory — that is, the functions hti and h
(t−1),Ref
i — is up-

per bounded by a pre-specified bound bi (i = 1, 2). Sim-
ilarly, the output length of hGen is upper bounded by a
pre-specified bound b0. Namely, the output length is up-
per bounded by

∣∣hGen(rGen)
∣∣ ≤ b0 and

∣∣hti(skti , rti , pubt)∣∣ +∣∣∣h(t−1),Ref
i (sk

(t−1)
i , r

(t−1),Ref
i , pub(t−1))

∣∣∣ ≤ bi for i = 1, 2 (for

|x| denoting the binary representation length of x).

Leakage rate is the ratio between the number of bits being
leaked (per device) per time period and the size of the secret
memory of the device at that time. Namely, the leakage
rate is specified by five parameters (ρGen, ρRef1 , ρRef2 , ρ1, ρ2) for
ρGen = b0/

∣∣rGen∣∣ the leakage rate during key generation; and

ρRefi = bi/(|ski| +
∣∣rRefi

∣∣) and ρi = bi/(|ski| + |ri|) the rates
of leakage from Pi (i = 1, 2) during key refresh, and during
all other (post key generation) times, respectively.

3.3 Security Definitions
Our security definitions are the natural augmentation of

the standard definitions by allowing the adversary to obtain
continual memory leakage for as long as it chooses:

A DPKE scheme is semantically secure against (b0, b1, b2)-
continual memory leakage (CPA-secure against (b0, b1, b2)-
CML, in short) if every PPT adversary has at most a negli-
gible advantage in winning the variant of the semantic secu-
rity game, where before seeing the challenge ciphertext the
adversary can receive leakage on the secret memory of both
devices (as described above) for as many time periods as the
adversary chooses. Here b0, b1, b2 are the upper bounds for
the length shrinking property as discussed above.

To model leakage on the memory state during decryption
we include in the semantic security game executions of the
decryption protocol. We remark that in the single processor
model [11, 15] such executions are not included, because
there the leakage functions is given the entire secret key
and thus can simulate such executions. In contrast, in our
distributed setting, the leakage function is given only one
of the two secret key shares as its input and thus it cannot
simulate such executions. The input ciphertexts for these
executions are drawn from a (polynomial-time sampleable)
distribution C. This distribution should be thought of as
modeling executions of the decryption protocol run in the
background, say, by other users of the scheme (note, the
adversary has no control on the choice of decryption input
in a semantic security game). To simplify the presentation
we assume that a single execution of the decryption protocol
occurs at each time period (as achieved, say, by frequent
refreshing). Extensions allowing multiple executions of the
decryption protocol at each time period are simple; details
omitted from this extended abstract.



Definition 3.2. A DPKE scheme Π = (Gen,Enc,Dec,Ref)
is semantically secure against (b0, b1, b2)-continual memory leak-
age (CPA-secure against (b0, b1, b2)-CML) if for every PPT
algorithm C = C(n, pk, t) for sampling ciphertexts, every
PPT adversary has at most a negligible advantage over 1/2
in wining the following game:

1. Key Generation Phase. The challenger generates
(pk, sk0

1, sk
0
2)← Gen(1n), and sends the adversary pk.

2. Leakage on Key Generation. The adversary chooses
a polynomial-time computable function hGen.

Denote the requested leakage by `Gen = hGen(rGen) for
rGen the secret randomness held in memory during the
execution of the key generation algorithm.

If
∣∣`Gen∣∣ ≤ b0 then the challenger returns to the adver-

sary `Gen, and sets L0
i ←

∣∣`Gen∣∣, L0,Ref
i ←

∣∣`Gen∣∣ (for
i = 1, 2) and t← 0; otherwise, the challenger aborts.

3. Leakage at Every Time Period. The adversary
chooses a tuple (ht1, h

t,Ref
1 , ht2, h

t,Ref
2 ) of polynomial-time

computable functions. In response the challenger draws
a random ciphertext c ← C(n, pk, t), and executes the
decryption and the key refresh protocols

m← Decpk,skt1,skt2(c)

(skt+1
1 , skt+1

2 )← Refpk(skt1, sk
t
2)

Denote the requested leakage from computing device Pi
(i = 1, 2) by

`ti = hti(sk
t
i , r

t
i , pub

t)

`t,Refi = ht,Refi (skti , r
t,Ref
i , pubt)

for skti the secret key share of Pi at time t; (rt,Refi , rti)
the secret randomness held in memory of Pi at time t
during and not during the execution of the refresh pro-
tocol, respectively; and pubt = (commt, c,m) the public
information at time t consisting of the communication
transcript commt to and from devices P1, P2, and of
the input/output to the decryption protocol c and m
held in their public memory.

If Lti +
∣∣`ti∣∣ +

∣∣∣`t,Refi

∣∣∣ ≤ bi for i = 1, 2, then the chal-

lenger returns to the adversary (`t1, `
t,Ref
1 , `t2, `

t,Ref
2 ), sets

L
(t+1)
i ←

∣∣∣`t,Refi

∣∣∣ for i = 1, 2, and sets t ← t + 1; oth-

erwise, the challenger aborts.

4. Challenge Phase. The adversary sends to the chal-
lenger two messages m0,m1 of equal length |m0| =
|m1|. The challenger sends to the adversary the ci-
phertext c ← Encpk(mb) for a uniformly random bit
b ∈ {0, 1}. The adversary outputs b′ ∈ {0, 1}. The
adversary wins if b′ = b.

We call (b0, b1, b2) the leakage parameter of the game.

Likewise, a DPKE scheme is CCA2-secure against (b0, b1, b2)-
continual memory leakage (CCA2-secure against (b0, b1, b2)-
CML, in short), if every PPT adversary has at most a negli-
gible advantage in winning the extension of the game spec-
ified in Definition 3.2, where the adversary is given extra
power in the form of access to a decryption oracle (namely,
an oracle that given ciphertexts c′ returns messages m ←

Dec(c′)); where the only restriction is that the adversary
does not query the decryption oracle on the challenge ci-
phertext. Note that leakage occurs only prior to seeing the
challenge ciphertext (as in the semantic-security game).

4. RESULTS & TECHNIQUES OVERVIEW
We give an overview of our constructions: Our DPKE

scheme semantically secure against continual leakage (Sec-
tion 4.1); our DIBE scheme semantically secure against con-
tinual leakage (Section 4.2); Our DPKE scheme CCA2-secure
against continual leakage (Section 4.3). We name these
schemes DLR, DLRIBE and DLRCCA2, respectively (for
distributed leakage resilient). The theorem below summa-
rizes our main results.

Theorem 4.1 (Main). The following holds under BDDH
and 2Lin assumptions:

1. DLR is a DPKE scheme that is CPA-secure against
(b0, b1, b2)-CML

2. DLRIBE is a DIBE scheme that is CPA-secure against
(b0, b1, b2)-CML

3. DLRCCA2 is a DPKE scheme that is CCA2-secure
against (b0, b1, b2)-CML

where (b0, b1, b2) =
(

Ω(logn),
(

1− cn
λ+cn

)
m1,m2

)
for m1,m2

the size of the secret key shares of P1, P2 respectively;6 n, λ
the security and leakage parameters of our schemes; and
c > 0 a constant.

Proof: The heart of our analysis is the proof of part 1 of
the theorem; details appear in section 6. Proving parts 2
and 3 is simple given the former (cf. Sections 4.2-4.3 and
the full version of this paper).

The leakage rate tolerated by our schemes as derived from
Theorem 4.1 is: ρGen = o(1), (ρ1, ρ2) = (1 − o(1), 1) and
(ρRef1 , ρRef2 ) = (1/2 − o(1), 1/2). This holds because in our
schemes the size of the secret memory of P1 and P2 (other
than during refresh) is m1 + log p and m2 respectively; and
it is 2m1 + log p and 2m2 respectively during refresh (when
P1, P2 hold both the current and the next secret key shares).
Our proof shows also a stronger bound on the leakage rate
tolerated during refresh, showing it is ρRef2 = 1.

Remark 4.1. For our DIBE scheme DLRIBE, we note
the following. First, the above leakage bounds hold both when
P1, P2 are sharing the master secret key and when they are
sharing an identity based secret key. Second, when gener-
ating the identity based secret key the leakage upper bound
is b1, b2 bits from the secret memory of P1, P2 respectively.
That is, the more restrictive leakage upper bound of b0 bits
applies only during generation of the master secret key.

4.1 Overview of DPKE
The scheme DLR = (Gen,Enc,Dec,Ref) builds on (mod-

ifications of) the IBE scheme of Boneh-Boyen (BB) [5] and
the key-dependent/leakage-resilient encryptions of Boneh-
Halevy-Hamburg-Ostrovsky (BHHO) [8] / Naor-Segev (NS)
[32] as described next.

6Our schemes tolerate leakage of b0 = nε bits during key gen-
eration when assuming sub-exponential hardness of BDDH.



The public key of DLR is pk = (p, g, e, g1 = gα, g2) for
g, e(g, g) generating groups G,GT of prime order p that are
connected by a bilinear map e : G → GT , and for indepen-
dent and uniformly random α ∈ Zp and g2 ∈ G. Note that
the public key is the public parameters in BB’s IBE.

The secret key shares are a sharing of the master secret key
in BB’s IBE msk = gα2 using a secret sharing scheme that
we construct to be refreshable, leakage resilient, and with
the special property that it allows to decrypt ciphertexts of
DLR without reconstructing its underlying secret key gα2 .
This secret sharing scheme is constructed using a secondary
symmetric key encryption scheme Πss = (Genss,Encss,Decss),
where the key generation algorithm Genss chooses skss =
(s1, . . . , s`) for independent and uniformly random si ∈ Zp;
the encryption algorithm (a1, . . . , a`,m·

∏
i∈[`] a

si
i )← Encss(m)

outputs ciphertexts for independent and uniformly random
ai ∈ G; and the decryption algorithm Decss(c1, . . . , c`, c0)

outputs c0
/(∏

i∈[`] ci
si
)

. We use Πss to secret share gα2 as

follows. Device P2 is given (s1, . . . , s`) the secret key of Πss,
whereas P1 is given (a1, . . . , a`, g

α
2 ·
∏
i∈[`] a

si
i )← Encss(g

α
2 ) a

ciphertext Πss encrypting gα2 . We note that those secret key
shares are a sharing of the aforementioned master secret key
msk = gα2 in a leakage resilient way inspired by BHHO/NS
techniques. Consequently, Πss is resilient to bounded leak-
age (by the leftover hash lemma); this will be crucial for our
security proof for DLR.

Encryption is a simplified version of BB’s IBE encryption.
Specifically, given a message m ∈ GT , the encryption algo-
rithm outputs a ciphertext (gt,m · e(g1, g2)t) ← Encpk(m)
for a uniformly random t ∈ Zp.

Decryption and Refreshing are executed via 2-party proto-
cols. We describe the refresh protocol in details. At the
outset of the refresh protocol P1 holds a ciphertext of Πss

encrypting gα2 and P2 holds the secret key of Πss. After each
refresh stage, P1 will hold a new random encryption of gα2
in Πss under a new random key skss to be held by P2. To
this end, we make use of yet another encryption scheme, de-
noted by Πcomm = (Gen′,Enc′,Dec′), with useful homomor-
phic properties that allow us to do the following. During
refresh P1 runs Gen′ and generates a secret key skcomm, to-
gether with fresh new randomness a′i (aimed to replace the
ai’s), and sends ciphertexts of Πcomm encrypting its share
and a′i’s to P2. Upon receiving these, P2 picks fresh new
s′i’s (aimed to replace the si’s) and sends back a ciphertext

of Πcomm encrypting (a′1, . . . , a
′
`, g

α
2 ·
∏
i∈[`] a

′s′i
i ). P2 will be

able to do so, although skcomm is unknown to it, due to the
homomorphic nature of Πcomm. Note that si’s and ai’s are
never stored unencrypted on the same device.

For our scheme to be secure we require yet one more prop-
erty of Πcomm. Specifically, we require that ` independent
and uniformly random plaintexts have sufficient (pseudo av-
erage min-) entropy even when conditioned on their cipher-
texts in Πcomm together with bounded leakage from the se-
cret key skcomm and random coins used to generate these
ciphertexts, as well as leakage on the plaintexts themselves.
This property allows us to prove security against the adver-
sary that chooses leakage functions based on the communi-
cation between the devices (i.e., the ciphertexts of Πcomm),
and where the leakage is on the secret key of Πcomm, the
random coins used for generating the ciphertexts, and on
the plaintexts themselves (as all are held in the memory of

P1). We name secret key encryption schemes Πcomm achiev-
ing the above two properties homomorphic proxy secret key
encryption (HPSKE); cf. Definition 5.1, Section 5.1.

Decryption follows in a similar manner where the parties
run a protocol implementing BB’s decryption algorithm.

4.2 DIBE Semantically Secure against CML
Our distribute identity based encryption semantically se-

cure against continual leakage, named, DLRIBE, is an ex-
tension of our DPKE scheme DLR, where both the mas-
ter secret key and the identity based secret keys are shared
among two computing devices. The master secret key shares
and their refreshing protocol are identical to the secret key
shares and their refreshing in DLR. The identity based se-
cret key shares are a sharing of the identity based secret
keys in BB’s IBE, while following our leakage resilient tech-
niques for key sharing discussed above. Specifically, the
BB’s identity based secret key is skID = (gr1 , . . . , grn ,M =
gα2 ·

∏
j∈[n] u

rj
j,bj

) where H(ID) = (b1, . . . , bn) ∈ Znp is the

evaluation of an appropriate hash function H on the un-
derlying identity ID, and U = (ui,j) ∈ Gn×2 is a uni-
formly random matrix. Our sharing of skID is with the two

shares sk1
ID = (gr1 , . . . , grn , a′1, . . . , a

′
`,M ·

∏
i∈[`] a

′
i
s′i) and

sk2
ID = (s′1, . . . , s

′
`). Refreshing these shares is a straightfor-

ward extension of the protocol for refreshing the secret key
shares in DLR. Likewise, decryption is a straightforward
extension of DLR decryption protocol.

4.3 DPKE CCA2-Secure against CML
Our DPKE CCA2-secure against continual memory leak-

age, named, DLRCCA2, is derived from our DIBE seman-
tically secure against continual memory leakage discussed
above by using a general purpose transformation from se-
mantically secure IBE to CCA2-secure PKE. For the single
processor setting where there is no leakage, such a trans-
formation was given by Boneh et al. [6]. We use the same
transformation, while extending their proof to show that
CCA2-security holds even in the presence of continual leak-
age (as long the IBE is secure against continual leakage).
Our proof (straightforwardly) extended to the distributed
setting as well.

4.4 Secure Storage on Leaky Devices
Our DPKE scheme can also be used for securely storing

data on continually leaky devices. We point out that stor-
ing a secret on continually leaky devices is a special case
of our problem as we must implicitly maintain the secret
“decryption key” of the decryption algorithm throughout its
continual execution in a way that still allows to decrypt.

5. DPKE CPA-SECURE AGAINST CML
We present the details of our DPKE scheme semantically

secure against continual memory leakage, named, DLR. For
this purpose we first present the HPSKE that we use.

Throughout this section λ > 0 is a leakage parameter of
the scheme; n is the security parameter; (p, g, e)← G(1n) is
the output of a parameters generating algorithm (cf. Section
2) with G,GT denoting the order p groups generated by
g and e(g, g) respectively; G′ is a group of order p (to be

thought of as either G or GT ); and ` = 7 + 3κ+ 2 log(1/ε)
log p

for

ε = 2−n and κ = 1 + λ+2 log(1/ε)
log p

.



5.1 Building Block: HPSKE
We present the primitive we named: homomorphic proxy

secret key encryption (HPSKE), and a construction for it.

Definition 5.1 (HPSKE.). A homomorphic proxy se-
cret key encryption (HPSKE) for `,G′ is a secret key encryp-
tion scheme Πcomm = (Gen′,Enc′,Dec′) with message space
G′ and ciphertexts that are tuples of elements from G′, such
that the following holds for skcomm ← Gen′(1n):

1. For every two messages m0,m1 ∈ G′ and their cipher-
texts ci ← Enc′skcomm

(mi) (i = 0, 1), it holds that

m0m1 ← Dec′skcomm
(c0c1)

(where the product c0c1 is computed coordinate-wise).

2. Given ciphertexts c1 ← Enc′skcomm
(m1; r1), . . . , c` ←

Enc′skcomm
(m`; r`) for independent and uniformly ran-

dom plaintexts m1, . . . ,m` ∈ G′, and given leakage
L = h(skcomm,m1, . . . ,m`, r1, . . . , r`) for h a polynomial-
time computable function of output length upper bounded
by λ, there is still sufficient pseudo average min-entropy
left in the plaintexts. Namely: There exists a compu-
tationally indistinguishable distribution

((mi, c
′
i)i∈[`], L

′) ≈c ((mi, ci)i∈[`], L)

for ciphertexts c′i ← Enc′skcomm
(mi; r

′
i) and leakage L′ =

h(skcomm,m1, . . . ,mt, r
′
1, . . . , r

′
t) such that

H̃∞(m1, . . . ,mt | c′1, . . . , c′t, L′) ≥ log p+ 2 log(1/ε)

We say that Πcomm is a “HPSKE for `,G,GT ” if it is a
HPSKE for both `,G and `,GT .

Remark 5.1. Definition 5.1, Part 2, does not follow from
existing notions of security against leakage (to the best of
our knowledge). For example, the bounded leakage model [1,
32] does not allow leakage to depend on the challenge ci-
phertexts; and the after-the-fact leakage model [25] does not
allow leakage to depend on the encryption randomness.

Lemma 5.2 (HPSKE exists). There exists a HPSKE
scheme for `,G,GT (under 2Lin assumption).

Proof: Fix G′ ∈ {G,GT }. We show that the scheme Πcomm

defined next is a HPSKE for `,G′ (the proof is omitted
from this extended abstract): The key generation algorithm
Gen′(1n) outputs a uniformly random secret key skcomm =
(σ1, ..., σκ) in Zκp . The encryption algorithm Enc′skcomm

(m)
outputs ciphertexts (b1, . . . , bκ,m ·

∏
i∈[κ] b

σi
i ) for indepen-

dent and uniformly random bi ∈ G′. The decryption algo-

rithm Dec′skcomm
(b1, ..., bκ, b0) outputs b0/

(∏
i∈[κ] b

σi
i

)
.

5.2 Construction of DLR

We present the scheme DLR. As a building block we use a
HPSKE scheme Πcomm = (Gen′,Enc′,Dec′) for `,G,GT (say,
as given in Section 5.1, Lemma 5.2).

Construction 5.3 (DLR). The DPKE scheme DLR =
(Gen,Enc,Dec,Ref) is defined by the following algorithms
and protocols:

• Gen(1n) is an algorithm that, given a security param-
eter n, outputs the public key and secret key shares:

pk = (p, g, e, e(g1, g2))

sk1 =
(
a1, . . . , a`,Φ = gα2 ·

∏
i∈[`] ai

si
)

sk2 = (s1, . . . , s`)

for independent and uniformly random α ∈ Zp, g2 ∈
G, si ∈ Zp, and ai ∈ G; and for g1 = gα.

• Encpk(m) is an algorithm that, given a message m ∈
GT , outputs

(
gt,m · e(g1, g2)t

)
for a uniformly random

t ∈ Zp.

• Decpk,sk1,sk2(c) is the following 2-party protocol exe-
cuted by P1 and P2 on a given ciphertext c = (A,B):

1. P1 samples a key skcomm ← Gen′(1n), and sends to
P2 the ciphertexts of Πcomm: Enc′skcomm

(e(A, a1)) ,
. . . ,Enc′skcomm

(e(A, a`)), Enc′skcomm
(e(A,Φ)), and

Enc′skcomm
(B).

2. Upon receiving (d1, ..., d`, dΦ, dB) from P1, P2 sends
to P1 the coordinate-wise product dB ·

∏
i∈[`] d

si
i /dΦ.

3. Upon receiving c′ from P2, P1 outputs Dec′skcomm
(c′).

• Refpk(sk1, sk2) is the following 2-party protocol exe-
cuted by P1 and P2 on their secret key shares sk1 =
(a1, . . . , a`,Φ = gα2

∏
i∈[`] a

si
i ) and sk2 = (s1, . . . , s`):

1. P1 chooses independent and uniformly random a′1,
. . . , a′` ∈ G, and sends to P2 the ciphertext of
Πcomm: (Enc′skcomm

(ai), Enc′skcomm
(a′i)) for i ∈ [`]

and Enc′skcomm
(Φ).

2. Upon receiving
(
(fi, f

′
i)i∈[`], fΦ

)
, P2 chooses a uni-

formly random (s′1, . . . , s
′
`) ∈ Z`p, and sends to

P1 the coordinate-wise product:
(∏

i∈[`] f
′
i
s′i/fsii ·

fΦ

)
. Next, P2 replaces its old secret key share by

sk2 =
(
s′1, . . . , s

′
`

)
.

3. Upon receiving f , P1 computes Φ′ = Dec′skcomm
(f)

and replaces its old secret key share by

sk1 =
(
a′1, .., a

′
`,Φ
′) .

Remarks
To ease the reading of our scheme in the above we overlooked
some necessary implementation choices. We next specify
those choices.

Optimal leakage rate. To achieve a better leakage rate we
slightly change the above: In the above, we defined P1 as
holding both the secret key share sk1 and the secret key
skcomm for encrypting the communication. To reach leak-
age rate (1− o(1)) from P1 we reduce the size of the secret
memory of P1 by defining it to hold only skcomm; whereas in-
stead of holding the secret key share sk1, P1 holds the pub-
lic (coordinate-wise) encryption of sk1 under Πcomm. (The
latter is public as it is to be transmitted over the public
channel.) We then adapt the decryption and refresh proto-
col so that P1 never holds in its memory more than a single
un-encrypted coordinate of sk1. With these modifications,
the secret memory of P1 is of size |skcomm| + log p, and our
tolerated leakage is a (1− o(1))-fraction of this size.



Reusing ciphertexts and hiding discrete logs of random coins.
We observe that the ciphertexts fi’s and di’s encrypt the
same set of values, only in two different groups, and reuse
the ciphertexts fi’s to compute the ciphertexts di’s. This
enables us to simplify our security proof. Specifically, for
every time period t, P1 first computes the fi’s to be cipher-
texts fi = (bi1, . . . , biκ, ai ·

∏
j∈[κ] b

σj
j ) ← Enc′skcomm

(ai; bi)

computed using fresh randomness bi = (bi1, . . . , biκ) and
the secret key skcomm = (σ1, . . . , σκ); then computes di =
(e(A, bi1), . . . , e(A, biκ), e(A, ai) ·

∏
j∈[κ] e(A, bj)

σj ) to be the

coordinate-wise pairing of fi with A (for c = (A,B) the ci-
phertext given as input to the decryption protocol at time
period t). P1 then sends these di’s and fi’s during the de-
cryption and refresh protocol (respectively) of time t.

Looking ahead, for proving DLR is secure we require that
the discrete logarithms of the random coins bij (similarly, the
ai’s) are not exposed to leakage. To achieve this we sample
these elements directly as random group elements (rather
than first choosing a random exponent rij and then defining
bij = grij ). This is feasible in the groups used in our scheme.

6. OUR SECURITY PROOF FOR DLR
We give an overview of our proof of Theorem 4.1, Part 1,

stating that our scheme DLR is semantically secure against
continual memory leakage.

Our proof is by a reduction to the BDDH and 2Lin as-
sumptions: We assume for contradiction that there exists
a PPT adversary A winning the semantic security game
for DLR (aka, the real game) with non-negligible advan-
tage over half; and where the leakage parameter for this
semantic security game is (b0 = 0, b1 = λ, b2 = |sk2|) for
λ the leakage parameter of DLR, and |sk2| the size of the
secret key share of P2.7 We then show that there exists
a distinguisher D that breaks either the BDDH assump-
tion or the 2Lin assumption; details below. We conclude
therefore that there exists no such adversary A. Namely,
DLR is CPA-secure against (b0, b1, b2)-CML (under BDDH
and 2Lin assumptions). To conclude the proof observe that

b1 =
(

1− 3n
λ+3n

)
m1 for m1 = |skcomm| the size of the se-

cret key share of P1 (as |skcomm| = κ log p = λ + 3n for our
parameters setting).

In the following we first define the distinguisher D, and
then outline our proof showing that D breaks either the
BDDH or the 2Lin assumptions.

Defining the distinguisher D. The distinguisherD, given
a BDDH tuple (p, g, e, ga, gb, gc, T ), plays a fake semantic se-
curity game for DLR with A playing the role of the adver-
sary, and outputs 1 iffA wins this fake game and 0 otherwise.
When running this fake game, the distinguisher D simulates
the role of the challenger, while deviating from the latter in
how it generates the random variables used in the game:

First, the distinguisher D plants the BDDH tuple as part
of the public key and the challenge ciphertext. Specifically,
the public key is pk = (p, g, e, e(ga, gb)); and the challenge
ciphertext is C fake = (gc,mb · T ) for m0,m1 the messages
sent to the challenger from the adversary A, and b ∈ {0, 1}
uniformly random.

7Extending our proof to address leakage b0 > 0 during key
generation is simply by guessing those leakage bits; details
omitted from this extended abstract.

Second, the distinguisher D samples the remaining ran-
dom variables from a new distribution where, most notably,
sk1 is chosen uniformly at random, and yet, despite using
this flawed share, the decryption protocol produces the cor-
rect output. To specify this distribution we fix a time period
t and drop its indices (albeit the sampling itself actually
takes place at once for all time periods of the game): (a)
sk1 = (a1, . . . , a`,Φ) ∈ G`+1 and skcomm ∈ Zκp are chosen in-
dependently and uniformly random; (b) c′, dΦ, dB , fΦ, fi, f

′
i

are ciphertexts of Πcomm encrypting the plaintextsM , e(A,Φ),
B, Φ, ai, a

′
i under secret key skcomm (where C = (A,B) and

M are the input and output in the execution of the de-
cryption protocol at time t, given to the distinguisher as
advice; and a′i is the i-th component in skt+1); (c) di is
the coordinate-wise pairing of fi and A (for i = 1, . . . , `);
(d) sk2 = (s1, . . . , s`) ∈ Z`p is chosen uniformly at random
subject to the constraint that c′ = dB ·

∏
i∈[`] d

si
i /dΦ. Sat-

isfying this constraint boils down to solving a system of
κ + 1 linear equations (one equation per each component
of c′) in unknowns s1, . . . , s` and with coefficients the dis-
crete logarithms of the corresponding ciphertexts. (e) f =∏
i∈[`]

(
f ′
s′i
i /f

si
i

)
·fΦ when denoting by skt+1

2 = (s′1, . . . , s
′
`)

the next secret key share of P2.
We elaborate on step (d). First, to ensure a solution to the

said constraint exists D imposes a full rank requirement on
the coefficients matrix (satisfied via re-sampling). Second, to
ensure the solution can be found efficiently the distinguisher
D keeps track of the discrete logarithms involved in stages
(a)-(c).

D breaks BDDH or 2Lin. To prove that D breaks the
BDDH or 2Lin assumptions we do the following.

First, we show that, when T = e(g, g)abc in the given
BDDH tuple, the view of the adversary in the fake and real
games is computationally indistinguishable (under 2Lin as-
sumption). For this purpose, we define an auxiliary game
that is identical to the real game except for imposing the full
rank requirement as in the fake game (see above); denote
by real, fake and aux the adversary’s view in the real, fake,
and auxiliary games, respectively. We prove that real ≈c
aux with overwhelming probability (under 2Lin assumption).
We then prove that aux ≈s fake by observing that the cor-
responding two games differ only in how they generate the
random variables (pk, Cchallenge, skt2,Φt)t (for Φt the last com-
ponent of skt1), and proving that the following holds (even
conditioned on the rest of the view): (i) The joint distribu-
tion of (pk, Cchallenge, skt2)t is identical in aux and fake; (ii)
The distribution of (Φt)t is statistically close in aux and
fake; details are omitted from this extended abstract. We
conclude that real ≈c fake with overwhelming probability
(under 2Lin assumption).

Now, as by our contradiction assumption A wins the real
game with a non-negligible advantage over half, we conclude
that — when T = e(g, g)abc — the adversary A wins the
fake game with a non-negligible advantage over half (un-
der 2Lin assumption). Namely, when T = e(g, g)abc, the
distinguisher D outputs 1 with a non-negligible advantage
over half. Second, we observe that, when T is uniformly
random, the distinguisher D outputs 1 with probability at
most half, because in this case the challenge ciphertext in
the fake game is uniformly random and independent of the
rest of the view of the adversary, namely, the adversary A
cannot win the game with any advantage over half. Third,



we observe that when A is a PPT algorithm, then the dis-
tinguisher D is also a PPT algorithm. We conclude that
(under 2Lin assumption) D is a PPT algorithm that dis-
tinguishes BDDH tuples with T = e(g, g)abc from BDDH
tuples with uniform T . Namely, D breaks either the BDDH
or the 2Lin assumptions.
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