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Abstract

The availability of vast amounts of data is changing how we can make medical discoveries,
predict global market trends, save energy, and develop new educational strategies. In certain
settings such as Genome Wide Association Studies or deep learning, the sheer size of data
(patient files or labeled examples) seems critical to making discoveries. When data is held
distributedly by many parties, as often is the case, they must share it to reap its full benefits.

One obstacle to this revolution is the lack of willingness of different entities to share their
data, due to reasons such as possible loss of privacy or competitive edge. Whereas cryptographic
works address the privacy aspects, they shed no light on individual parties’ losses and gains when
access to data carries tangible rewards. Even if it is clear that better overall conclusions can be
drawn fom collaboration, are individual collaborators better off by collaborating? Addressing
this question is the topic of this paper.

Our contributions are as follows.

• We formalize a model of n-party collaboration for computing functions over private inputs
in which the participants receive their outputs in sequence, and the order depends on
their private inputs. Each output “improves” on all previous outputs according to a score
function.

• We say that a mechanism for collaboration achieves a collaborative equilibrium if it guar-
antees a higher reward for all participants when joining a collaboration compared to not
joining it. We show that while in general computing a collaborative equilibrium is NP-
complete, we can design polynomial-time algorithms for computing it for a range of natural
model settings. When possible, we design mechanisms to compute a distribution of out-
puts and an ordering of output delivery, based on the n participants’ private inputs, which
achieves a collaborative equilibrium.

The collaboration mechanisms we develop are in the standard model, and thus require a
central trusted party; however, we show that this assumption is not necessary under standard
cryptographic assumptions. We show how the mechanisms can be implemented in a decentral-
ized way by n distrustful parties using new extensions of classical secure multiparty computation
that impose order and timing constraints on the delivery of outputs to different players, in ad-
dition to guaranteeing privacy and correctness.
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1 Introduction

The availability of vast amounts of data is changing how we can make medical discoveries, pre-
dict global market trends, save energy, improve our infrastructures, and develop new educational
strategies. Indeed, it is becoming clearer that sample size may be the most important factor in
making surprising new discoveries in a number of areas such as genome-wide association studies1

(GWAS) and machine learning (ML), as witnessed by the striking success of GWAS studies with
large samples for schizophrenia2 [BP12; PGC14; For11] and the success of deep learning in ML.

When large data is required, parts of the data are often held by different entities. Such entities
need to share their data, or at least engage in a collaborative computation where each entity manages
its own private data, in order for society to reap the benefit of large sample sizes. Referring back
to the GWAS example, success was explicitly attributed to such collaboration: “The schizophrenia
study was made possible due to unusually large scale collaborations among many institutes... This level
of cooperation between institutions is absolutely essential... If we are to continue elucidating the biology
of psychiatric disease through genomic research, we must continue to work together.” [Ins14]

Unfortunately, the above example is the exception rather than the rule. A major obstacle to
the big-data revolution is the lack of willingness of different entities to share data in collaborations
with each other: so-called “data hoarding”. One obstacle is privacy concerns, where parties refuse to
collaborate, in order to protect the privacy of their data. Privacy, however, is not the only obstacle.

An equally important obstacle is competition between entities holding data. When access to
data carries tangible rewards, say, if the entities are companies competing for a share of the same
market or research laboratories competing for scientific credit, it is unclear whether an individual
collaborator is better off, even if it is clear that better overall conclusions can be drawn from
collaboration. Stated in more game-theoretic terms, the entities face the following dilemma: whereas
the overall societal benefit of collaboration is clear, the utility for an individual collaborator may be
negative, so why collaborate? Addressing this question is the topic of this paper.

In this paper, we present a formal model for collaboration in which this question can be analyzed,
as well as design mechanisms to enable collaboration where all collaborators are provably “better
off”, when possible. The order in which collaborators receive the outputs of a collaboration will be a
crucial aspect of our model and mechanisms. We believe that timing is an important and primarily
unaddressed issue in data-based collaborations. For example, in the scientific research community,
data sharing can translate to losing a prior publication date. In financial enterprises, the timing of
investments and stock trading can translate to large financial gains or losses.

We show in Section 3 that the collaboration mechanisms we develop can be implemented in a
decentralized way by n distrustful parties even in the presence of a subset of colluding polynomial-
time parties who may deviate in an arbitrary fashion, under standard cryptographic assumptions.
To achieve this, we extend the theory of multi-party computation (MPC) to impose order and time
on the delivery of outputs to different players.

1A genome-wide association study is an investigation of common genetic variants in a population, in order to
identify genetic variants that are associated with a given trait.

2“Dramatic increase in patient data size enabled the discovery of more than 100 gene loci associated with the disease up
from a handful loci seen with small sets of patients. This was made possible due to an unusually large scale collaborations
among many institutes.”
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1.1 Summary of our contributions

1.1.1 A model of collaboration

We propose a model for collaboration which enables the determination of whether the utility ob-
tained by a collaborator outweighs the utility he may obtain without collaboration. The ultimate
desired outcome of a collaboration is to learn a parameter of the (unknown) joint distribution from
which the participants’ input data x1, . . . , xn is drawn. This can be expressed as y∗ = f(X ) where
X is the joint distribution of input data and f is a known function. In our model, the outcome of
a collaboration is a pair (π, ~Z) where π is a permutation of player identities and ~Z = (Z1, . . . ,Zn)
where each Zπ(i) is a distribution that corresponds to player i’s “estimate” of y∗. We think of Zπ(i)
as the public output of player i: for example, in the setting of scientific collaboration, Zπ(i) would
be player i’s academic publication. Our model setup assumes an underlying score function which
assigns scores to the players’ outputs.

The model includes a reward function Rt which characterizes the gain in utility for any given
party i in a collaboration. The reward that a party i gets depends on how much his score s(Zπ(i))
improves on the previous state of the art s(Zπ(i)−1), and on π(i), namely, when the party makes
his public output. Specifically, the reward function includes a multiplicative discount factor βt

where β ∈ [0, 1] and t is the time of publication, meaning that the reward from a publication is
“discounted” more as time goes on.

Rt(π, ~Z) = βt · (s(Zπ(t−1))− s(Zπ(t)))

To determine whether the utility of collaboration outweighs the utility of working on one’s own,
our model uses “outside payoff” values αi which are the score that party i would obtain without
collaborating. αi can be computed directly from the input xi of party i.

1.1.2 Mechanisms and collaborative equilibrium

We define a notion of collaborative equilibrium in which all parties are guaranteed a non-negative re-
ward, and develop mechanisms for collaboration that compute such equilibria. When an equilibrium
exists, our mechanism delivers a sequence of progressively improving “partial information” about
y∗ to the collaborating parties. More specifically, the mechanism will take as input the data of all
parties, and output a pair (π, ~Y) where π is a permutation of player identities and ~Y = (Y1, , . . . ,Yn)
specifies the outcomes to be delivered to the players: each Yπ(i) is the approximation to y∗ that is
given to player i at time-step π(i), such that the score of the outputs is increasing with time. That
is, s(Yπ(1)) > · · · > s(Yπ(n)). We emphasize that both the order π and the outputs Yi are computed
based on the inputs of all players.

When player i receives an output Yπ(i) from the central mechanism, she may combine Yπ(i) with
the information that she learned from prior public outputs and her own input xi, to generate a
public output Zπ(i). We first prove that the ability of the players to learn from others’ publications,
in general, will make the problem of deciding whether there exists an equilibrium is NP-complete
(see Theorem 2.13).

Next, we show that there is a polynomial-time mechanism that can output an equilibrium
whenever one exists (or output NONE if one does not exist) for a variety of model settings and
parameters which we characterize (see Theorem 2.11). An example of a setting when a polynomial-
time mechanism is possible is when

• there is an upper bound µj on the amount of information that any player can learn from a
given player j’s publication, and
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• it is possible to efficiently compute, for any y∗ and δ > 0, an “approximation” Y ′ such that
s(Y ′) = δ.

In a nutshell, the bounds µj can be used to define a weighted graph in which the weight of the
minimum-weight perfect matching determines the existence of a collaborative equilibrium.

1.1.3 Cryptographic protocols to implement the mechanisms

We develop cryptographic protocols for implementing the mechanisms without a centralized trusted
party and in the presence of a subset of colluding players who may deviate from the protocol in
an arbitrary fashion, under cryptographic assumptions. The protocols compute the collaboration
outcome (π, ~Y) via multi-party secure computation on players’ private inputs. Since a crucial aspect
of the mechanism’s ability to yield non-negative reward to all players is the delivery of outputs in
order, we need to extend the classical notion of MPC to incorporate guarantees on the order and
timing of output delivery. These extensions may be of interest independent of the application of
mechanisms for incentivizing collaborations.

We define ordered MPC as follows. Let f be an arbitrary n-ary function and p be an n-
ary function that outputs permutation [n] → [n]. An ordered MPC protocol is executed by n
parties, where each party i ∈ [n] has a private input xi ∈ {0, 1}∗, who wish to securely compute
f(x1, . . . , xn) = (y1, . . . , yn) where yi is the output of party i. Moreover, the parties are to receive
their outputs in a particular ordering dictated by p(x1, . . . , xn) = π where π is a permutation of the
player identities. Since the choice of π depends on private inputs, it may leak information: hence,
we formulate an enhanced privacy requirement for ordered MPC that each player should learn his
output and his own position in the output ordering, and nothing more (see Definition 3.1).

We show a simple transformation from classical MPC protocols for general functionalities f
to ordered MPC protocols for general functionalities f and permutation functions p that achieve
enhanced privacy, even when a minority of the n players may be colluding to sabotage the protocol
(see Theorem 3.4). The assumptions necessary are the same as for the classical MPC constructions
(e.g. [GMW87]). When the colluding players are in majority, it is well known that output delivery
to all honest parties cannot be guaranteed [Cle86].

Next, we define timed-delay MPC, where explicit time delays are introduced into the output
delivery schedule. Time delays between the outputs may be crucial to enable parties to reap the
benefits of their position in the order. We give two constructions of timed-delay MPC in the honest
majority setting3. First, we give a conceptually simple protocol which runs “dummy rounds” of
communication in between issuing outputs to different players, in order to measure time-delays.
The simple protocol has the flaw that all (honest) players must continue to interact until the last
party receives his output (that is, they must stay online until all the time-delays have elapsed).
To address this issue, we present a second protocol assuming the existence of time-lock puzzles
[RSW96] in addition to the classical MPC [GMW87] assumptions (see Theorem 4.6). Informally, a
time-lock puzzle is a primitive which allows “locking” of data, such that it will be released after a
pre-specified time delay, and no earlier. Our second timed-delay MPC protocol, instead of issuing
outputs to players in the clear, gives to each party his output locked into a time-lock puzzle; and
in order to enforce the desired ordering, the delays required to unlock the puzzles are set to be
an increasing sequence. An issue that arises when giving out time-lock puzzles to many parties is
that different parties may have different computing power, and hence solve their puzzles at different
speeds: for example, it is clear that we cannot guarantee that players learn their outputs in the

3We cannot hope to achieve timed-delay MPC in the case of dishonest majority since, as mentioned in the preceding
paragraph, even output delivery cannot be guaranteed in this setting.
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desired ordering if some players compute arbitrarily faster than others. Still, we show that our
protocol is secure and achieves ordered output delivery in the case that the difference between any
two players’ computing power is known to be bounded by a logarithmic factor. If the assumption
about computing power does not hold, then the protocol still achieves security (i.e. correctness and
privacy), but the ordering of outputs is not guaranteed.

The definition of ordered and timed-delay MPC inspire new notions unrelated to the central
topic of this paper. In particular:

• Time-lines. Inspired by the application of time-lock puzzles to time-delayed MPC, we pro-
pose the new concept of a time-line, where multiple data items can be locked so that their
unlocking must be serialized in (future) time. See Section 4.4 for details.

• Prefix-fairness. In the traditional MPC landscape, fairness is the one notion that addresses
the idea that either all parties participating in an MPC should benefit, or none should. Fairness
requires that either all players receive their output, or none do. However, it is well-known that
fairness is achievable when a majority of the players are honest, but it is not achievable for
general functionalities when a majority of players are faulty [Cle86]. We propose a refinement
of the classical notion of fairness in the setting of ordered MPC, called prefix-fairness, where
players are to receive their outputs one after the other according to a given ordering π, and
the guarantee is that either no players receive an output or those who do strictly belong to a
prefix of the mandated order π (see Definition 3.3). Prefix-fairness can be achieved for general
functionalities and any number of faulty players, under the same assumptions as classical
MPC [GMW87] (see Theorem 3.5).

1.2 Discussion and interpretation of our work

Slowing down scientific discovery? Intuitively, the mechanisms we develop always take the
following form: the mechanism computes the “best possible estimate” Y∗ of y∗ given the input data
of the players, and then hands out a sequence of successively more accurate (according to the score
function) outcomes, where the final party receives Y∗.

One may ask: why slow down scientific progress and hand out inferior results when better
ones are available? We argue that progress will in fact be enhanced, not slowed down, by this
methodology, as it will be a decisive factor in parties’ willingness to collaborate in the first place.
This bears great similarity to the original philosophy of differential privacy and privacy-preserving
data analysis more generally. In these fields, accuracy (so-called utility) of answers to aggregate
queries over items in database is partially sacrificed in order to preserve privacy of individual data
items, as a way to encourage individuals to contribute their data items to the database. In an
analogous way, in order to get results based on the large data sets held by potential collaborators,
we sacrifice the speed of discovery of the “ultimate” collaboration outcome: we are willing to pay
this price to incentivize parties to collaborate and contribute their data. In contrast to differential
privacy, we do not sacrifice ultimate accuracy. The last collaborator to receive an output, receives
the ideal outcome Y∗. Namely, Yn = Y∗.

The Fort Lauderdale example: the importance of time. A recurring idea in this work is the
importance of time and ordering of research discoveries, which is inspired in part by the following
striking example from the field of genomics. In the 2003 Fort Lauderdale meeting on large-scale
biological research [Wel03], the gathering of leading researchers in the field recognized that “pre-
publication data release can promote the best interests of [the field of genomics]” but “might conflict
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with a fundamental scientific incentive – publishing the first analysis of one’s own data”. Researchers at
the meeting agreed to adopt a set of principles by which although data is shared upon discovery,
researchers hold off publication until the original holder of the data has published a first analysis.
Being a close-knit community in which reputation is key, this was a viable agreement which has led
to great productivity and advancement of the field. However, more generally, their report states
that “ incentives should be developed by the scientific community to support the voluntary release of
[all sorts of] data prior to publication”. This example teaches us to focus on three key aspects of
collaboration: the incentive to collaborate has to be clear to all collaborators; there must be a way
to ensure adherence to the rules of collaboration; and timing is of the essence.

Privacy implies increased utility. Although the goal of our work is to design mechanisms
to incentivize collaboration by increasing the utility of collaborations rather than focusing on the
privacy of individual entities’ input data, MPC protocols prove to be an important technical tool
to implement the mechanisms which guarantee increased utility. As a by-product, the use of MPC
provides our mechanisms with the additional guarantee of privacy.

Future directions When collaboration is feasible, each party i in our model is guaranteed a
reward from collaborating that is greater than the reward αi they could get on their own. However,
the contributions of the players’ data to the computation of the final output Y∗ may be asymmetric:
some special player i∗ may have some data that helps solve the “puzzle”, but this player i∗ may
not be known a priori before the participants decide to collaborate4 An interesting future direction
would be developing mechanisms where, even without a priori knowledge of which players have
higher quality data, we can still design collaborations where the players whose contribution turned
out most valuable get most credit.

Another future direction of interest to design truthful mechanisms so that collaborating parties
will be provably incentivized to submit their true and accurate data as input. In our work, we assume
that, while we can incentivize the players to collaborate or not, once they decide to collaborate they
are truthful about the value of their dataset xi. From the point of view of scientific publications, this
assumption is reasonable if we believe that the experiments that generate this data can be verified or
replicated, and that a failure to replicate would hurt a scientific group’s reputation. However, there
are many settings, such as businesses pooling their data together to generate larger profits, where
the parties may be incentivized to lie about their output xi. Since we are already assuming that
parties are rational, a future direction would be to develop mechanisms where, even when parties
can lie about xi (because xi cannot be verified by others), they are still incentivized to report it
truthfully. One possible direction is where xi is the output of some long #P computation (for
example, a Markov Chain Monte-Carlo simulation), where (a) replicating the computation would
take a very long time and delay publication for everyone in the group and (b) player i cannot prove
in a classical way that their output xi is correct. Even in this case, player i can be incentivized to
give the right answer via a rational proof [AM12; AM13; GHRV14].

Our setting is useful and most likely to lead to collaboration when there are increasing marginal
returns from adding new data. It will be interesting to discover new settings where this is provably
the case.

4An example in the same vein is the following. In the medical setting, a hospital with a larger patient population
will clearly have more patient data than a small facility, and yet access to data of small but homogeneous or rare
communities can at times be more valuable than access to larger heterogeneous sets of data.
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1.3 Other related work

The problem of how to make progress in a scientific community has been studied in other contexts.
Banerjee, Goel and Krishnaswamy [BGK14] consider the problem of partial progress sharing, where
a scientific task is modeled as a directed acyclic graph of subtasks. Their goal is to minimize the
time for all tasks to be completed by selfish agents who may not wish to share partial progress.

Kleinberg and Oren [KO11] study a model where researchers have different projects to choose
from, and can work on at most one. Each researcher i has a certain probability of being able to solve
a problem j, and she gets a reward wj if she is the only person to solve it. If multiple researchers solve
the problem, they study how to split the reward in a socially optimal way. They show that assigning
credit asymmetrically can be socially optimal when researchers seek to maximize individual reward,
and they suggest implementing a “Matthew Effect”, where researchers who are already credit-rich
should be allocated more credit than in an even-split system. Interestingly, this is coherent with
the results of our paper, where it is socially optimal to obfuscate data so that researchers who are
already “ahead” (in terms of data), end up “ahead” in terms of credit.

Cai, Daskalakis and Papadimitriou [CDP14] study the problem of incentivizing n players to
share data, in order to compute a statistical estimator. Their goal is to minimize the sum of
rewards made to the players, as well as the statistical error of their estimator. In contrast, our
goal is to give a decentralized mechanism through which players can pool their data, and distribute
partial information to themselves in order so as to increase the utility of every collaborating player.

Boneh and Naor [BN00] construct timed commitments that can be “forced open” after a certain
time delay, and discuss applications of their timed commitments to achieve fair two-party contract
signing (and coin-flipping) under certain timing assumptions including bounded network delay and
the [RSW96] assumption about sequentiality of modular exponentiation.

Roadmap Section 2 covers the scientific collaboration model, mechanisms, and feasibility the-
orems. Section 3 covers the definitions and constructions of ordered MPC, and Section 4 covers
definitions and constructions of timed-delay MPC, and associated primitives such as time-line puz-
zles.

2 Data sharing model

In this section, we present and analyze mechanisms for scientific collaboration in our model. In our
exposition, we focus primarily on the setting of scientific collaboration and publication. However,
we want to highlight that our results apply to more broad collaboration and discovery in general,
in which case a “publication” should be thought of as any kind of public output.

Notation We denote by [n] the set {1, ..., n} of integers between 1 and n, and by [n] → [n] the
set of all permutations of [n]. For a set X, we write ∆(X) to denote the set of all distributions over
X. The symbol t denotes the disjoint union operation. An efficient algorithm is one which runs in
probabilistic polynomial time (ppt).

2.1 The model

We propose a model of collaboration between n research groups which captures the following fea-
tures. Groups may pool their data, but each group will publish their own results. Moreover, only
results that improve on the “state of the art” may be published. That is, a new result must im-
prove on prior publications. However, more credit may be given to earlier publications. Finally, a
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group will learn not only from pooling their data with other groups, but also from other groups’
publications.

To formalize the intuitions outlined above, we specify a model as follows.

• There is a set [n] of players.

• Each player i has a dataset xi which is sampled as follows.

– For each i ∈ [n], there is a set Xi of possible datasets, which is common knowledge. Let X
denote X1 × · · · ×Xn.

– There is a distribution X ∈ ∆(X) over X, from which the xi are sampled: (x1, . . . , xn)← X .
– The distribution X is not known to any of the players, but comes from a commonly known

distribution D. That is, X ← D, for some D ∈ ∆(∆(X)).

• There is an output space Y , and a function f : ∆(X1×· · ·×Xn)→ Y such that ŷ = f(X ) is the value
which the players wish to learn. That is, the players want to learn some property of the unknown
distribution X from which their datasets were sampled. Y and f are common knowledge.

• Y0 denotes the distribution of ŷ given f and D .

• There is a score function s : ∆(Y ) → R+, which varies with f and D. The score function s(·) is
maximized by the distribution Ŷ which puts probability 1 on the true value ŷ. The score function s
is common knowledge.

– We require a natural monotonicity property of the score function. Namely, let Y and Z be any
distributions, and let z be a value in the support of Z. Then

s(Y) ≤ s(Y|z ← Z),

where z ← Z denotes the event that z is sampled from the distribution Z.
– Remark. Let {ŷ|x1, . . . , xn} denote the distribution of ŷ given certain datasets (x1, . . . , xn) ∈ X.

A consequence of the monotonicity condition is that given all of the datasets x1, . . . , xn of all
players in the model, the best achievable score is s ({ŷ|x1, . . . , xn}).

• A collaboration outcome is given by a permutation π : [n] → [n] and a vector of output distributions
(Z1, . . . ,Zn) ∈ (∆(Y ))n such that s(Y0) < s(Zπ(1)) < · · · < s(Zπ(n)).
The intuition behind this condition is that, at time t, player π(t) will publish Zπ(t). Since only results
that improve on the “state of the art” can be published, we must have that the score s(Zπ(t)) increases
with the time of publication t.

• For a collaboration outcome ω = (π, ~Z), the player who publishes at time t obtains a reward

Rt(π, ~Z) = βt · (s(Zπ(t))− s(Zπ(t−1)))

where β ∈ (0, 1] is a discount factor which penalizes later publications.5

• For each player i, we define αi = s({ŷ|xi}) − s(Y0) ∈ R+, where {ŷ|xi} is the distribution of ŷ given
that the ith dataset is xi. This models the “outside payoff” that player i could get if she does not
collaborate and simply publishes on her own.

• Players may learn information not only from their own data, but also from the prior publications of
others. A learning bound vector {λπ,i}π∈([n]→[n]),i∈[n] characterizes, for any publication order π, the
maximum amount that each player i can learn from prior publications. This notion is defined formally
in Section 2.3.

• We define CK to be the collection of all common-knowledge parameters of the model:

CK = (D, f, s, β).

5This is motivated by market scoring rules [Han12], where experts are rewarded according to how much they
improve existing predictions.
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2.2 Examples

To illustrate the range of settings to which our model applies, we describe several concrete model
instantiations.

Recall that our goal is to build mechanisms to enable collaborations by sharing data, in settings
where such collaboration would be beneficial to all parties. Intuitively, such settings occur when
the result that can be obtained based on the union of all players’ datasets is “much better” than the
results that can be obtained based on the individual datasets: in other words, the “size of the pie”
to be split between the collaborating players is at least as large as the sum of the “slices” obtained
by players working individually. This intuition is made rigorous in Lemma 2.10, where we discuss
score functions which satisfy a superadditivity condition (Property 2.9).

Toy Example I: Secret-sharing. We begin with a “toy example” based on secret-sharing. This
artificial first example is a dramatic illustration that the size of reward from collaboration can be
much larger than the sum of individual rewards without collaborating.

Consider a stylized secret-sharing model with a secret ŷ drawn uniformly at random from {0, 1}n.
Each player’s data consists of a share xi ∈ {0, 1}n such that ŷ = x1 ⊕ ... ⊕ xn be the secret the
players are trying to reconstruct. The shares are correlated and drawn from a distribution X as
follows:

• For each i ∈ [n− 1], xi is uniformly random in {0, 1}n.

• The last share is chosen such that xn = ŷ ⊕ x1 ⊕ . . .⊕ xn−1.

The players want to learn f(X ) = ŷ. The score from publishing a distribution Y is s(Y) =
H(ŷ)−H(ŷ|Y) where H(ŷ) = n is the entropy of the uniformly random string ŷ and H(ŷ|Y) is the
entropy of ŷ given the distribution Y.

Without collaborating, each player i only knows a uniformly random string xi. Thus, H(ŷ|xi) =
H(ŷ) = n and αi = H(ŷ|xi) − H(ŷ) = 0 for each player i. Consider the following collaboration
mechanism:

• Each player contributes share xi to the mechanism.

• The mechanism computes ŷ = x1 ⊕ . . .⊕ xn.

• The mechanism reveals ith digit ŷi to each player i.

When participating in this mechanism, the first player will publish a guess Y1 which is a distri-
bution over {0, 1}n where the first bit of y ← Y1 is always ŷ1. All other players learn ŷ1 from player
1’s publication. Proceeding inductively, the ith player will publish a guess Yi such that the first i
bits are correct, that is, (y1, . . . , yi) = (ŷ1, . . . , ŷi) for any y ← Yi. Note that since αi = 0 for each
player i, and H(ŷ|Yi)−H(ŷ|Yi−1) = 1 > αi, this mechanism incentivizes players to collaborate.

Toy Example II: Network flow. Let G = (V,E) be a graph. Let s̃, t̃ ∈ V be vertices which
are connected by some number of disjoint paths. Consider a model where V , s̃, and t̃ are common
knowledge, and each player’s data consists of a disjoint subset of edges in xi ⊆ E. More precisely,
(x1, . . . , xn)← X (E) where X samples a partition of E.

The players want to learn the set of paths from s̃ to t̃. That is, f(X (E)) is the set of paths in
E from s̃ to t̃. The score from publishing a distribution Z over edges is

s(Z) = |{p : p is a path in E from s̃ to t̃, and Pr
z←Z

[p ⊆ z] = 1}|.
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In other words, the player’s score is given by how many paths from s̃ to t̃ she knows with certainty
to exist in E. In some cases, it may be that no player knows any path from s̃ to t̃ based only on
her own data, as illustrated by the simple example in the diagram below.

S

T

x1

x3
x2

x4

Consider the following collaboration mechanism:

• Each player contributes their edges xi to the mechanism.

• The mechanism computes E = x1 ∪ · · · ∪ xn, and the set P = {p1, . . . , pk} of paths in E that
start at s̃ and end at t̃.

• The mechanism reveals the ith path pi to player i. If k < n, then the last k − n players will
get no output. If k > n, the “extra” paths are allocated arbitrarily to players.6

When participating in this mechanism, the first player will publish a guess Z1 which (always)
samples the set {p1}. All other players learn p1 from player 1’s publication. Then, the ith player will
publish a guess Zi that samples the set {p1, . . . , pi}. As long as s(Zi)− s(Zi−1) ≥ αi for all i ∈ [n]
(note that this is the case in the diagram), this mechanism incentivizes players to collaborate.

Example III: Correlating gene loci with disease This example is inspired by successful
GWAS studies to identify gene loci associated with schizophrenia. Consider a model where each
player holds a set of patients’ medical (and in particular, genetic) data xi which comes from some
unknown patient distribution X . The players wish to learn the set f(X ) of gene loci that are
correlated with the occurrence of schizophrenia in patients.

Let Γ be the set of all gene loci. For γ ∈ Γ, define Iγ to be 1 if γ ∈ f(X ) and 0 otherwise. The
score from publishing a distribution Z over P(Γ) (i.e. over subsets of gene loci) could be:7

s(Z) =
∑

γ∈f(X )

Pr
z←Z

[γ ∈ z]−
∑

γ /∈f(X )

Pr
z←Z

[γ ∈ z].

This score function rewards players for assigning high probabilities to gene loci γ which are actually
correlated with schizophrenia, and penalizes them for assigning high probabilities to those which are
not. As in our previous examples, it turns out that in this setting, the reward that can be obtained
based on pooling all the players’ data is much greater than the sum of the rewards that could be
obtained individually, as illustrated in Figure 1.

6It may be beneficial to allocate the “extra” paths strategically in order to reward players more fairly, or in order
to make collaboration possible when the outside option values αi are nonzero. However, in this example, we allocate
them arbitrarily for simplicity.

7In practice, a more realistic scenario might be to model the extent to which particular gene loci are found to
be correlated with the occurrence of schizophrenia, rather than classifying into binary categories “correlated” and
“not correlated”. This case could be modeled, for example, by letting f(X ) be a vector ((γ1, p1), . . . , (γN , pN )) where
Γ = {γ1, . . . , γN} is the set of gene loci, and for each j ∈ [N ], pj is the correlation coefficient between γ1 and
occurrence of schizophrenia. While Example IV presents the simpler “binary” model for ease of exposition, we remark
that with appropriate modifications to the score function and mechanism, our model can accommodate the more
complex case of estimating correlations, too.
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Figure 1: GWAS study success: the y-axis is the number of gene loci correlated with schizophrenia,
and the x-axis is time (which corresponds to amount of data, since the reason for the improved
findings was accumulation of data over time). Image c©Stephan Ripke

Consider the following collaboration mechanism:8

• Each player contributes some patient data xi.

• The mechanism computes Y∗ = {f(X )|x1, . . . , xn}, i.e. the distribution of f(X ) given all
players’ input data. Let Γ∗ = {γ ∈ Γ : Pry←Y∗ [γ ∈ y] > 0.5}, that is, the set of gene loci that
are more likely than not to be in f(X ), according to Y∗.

• The mechanism reveals to player i the ith gene locus γi in Γ∗. If |Γ∗| < n, then the last k− n
players will get no output. If |Γ∗| > n, the “extra” gene loci are allocated arbitrarily.9

When participating in this mechanism, the first player will publish a guess Z1 which (always)
samples the set {γ1}. All other players learn γ1 from player 1’s publication. Then, the ith player
will publish a guess Zi that samples the set {γ1, . . . , γi}. Provided that s(Zi)− s(Zi−1) ≥ αi for all
i ∈ [n] (note that Figure 1 depicts exactly such a scenario), this mechanism incentivizes players to
collaborate.

Example IV: Statistical estimation Our last example is one where – in contrast to the ex-
amples so far – there are decreasing marginal returns from adding new information, and thus
collaboration will not be feasible.

We consider a simple Bayesian model where the distribution X is itself drawn from a “distribution
over distributions” D. More concretely, each player i receives a vector of ki samples (xi,1, ..., xi,ki)
drawn independently from a normal distributionN(µ, σ2) with unknown mean µ and known variance
σ2. The mean µ is itself drawn from a commonly known prior distribution D = N(m, 1) with known

8This is just one example of a reasonable mechanism for this model; we do not mean to claim that it is a canonical
or optimal one. There are many variants which could make sense: for example, a simple modification would be to
change the threshold 0.5 in the second step.

9As remarked in Footnote 6, it can be beneficial to allocate the “extra” gene loci in a way which is not arbitrary,
but instead optimized for making collaboration possible. In this example, for simplicity, we allocate them arbitrarily.
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mean m and variance 1. In this case, the ground set Xi is Rki . The distribution X (µ, σ) is a product
distribution over R

∑n
i=1 ki , where each component of (x1,1, ..., xn,kn) is drawn independently from

N(µ, σ). The players want to learn f(X (µ, σ)) = µ.
An estimator for µ is a random variable µ̂. The score of such a guess µ̂ is s(µ̂) = −E[(µ̂− µ)2].

It is well known that if we have a vector (xi,1, ..., xi,ki) of random samples drawn from N(µ, σ), the
estimator that minimizes the expected squared error to µ is µ̂i = 1

ki

∑ki
j=1 xi,j . Note that this is a

normal random variable since each xi,j is sampled from normal random variable. The expectation
of µ̂i is 1

ki
· ki · µ = µ and the variance of µ̂i is 1

k2
i
· ki · σ2 = 1

ki
· σ2. Thus, s(µ̂i) = 1

ki
· σ2. If a player

published by herself and did not collaborate, her reward would be the difference αi = σ2 − 1
ki
· σ2

between the priorly known variance σ2 and the variance 1
ki
· σ2 of player i’s estimate.

If the players collaborate, they can obtain the estimator µ̂∗ = 1∑n
i=1 ki

∑n
i=1

∑ki
j=1 xi,j which

has variance s(µ̂∗) = 1∑n
i=1 ki

σ2. The reward for µ̂∗ is the reduction in variance σ2 − s(µ̂∗) =

σ2 · (1 − 1∑n
i=1 ki

). Note that in this case, the reward from an estimator only depends on the
number of data points N used to construct this estimator (in the above notation, N =

∑n
i=1 ki).

Furthermore, the reward R(N) = σ2(1− 1
N ) that one could obtain with N data points is concave in

N . Intuitively, if one only has N = 2 data points, and gets 10 new ones, those 10 new data points
are very valuable. However, if one already has N = 2000000 data points and gets 10 new ones,
those 10 new data points do not increase the score very much.

This setting is in contrast to our Example III, where the score seemed to increase in a convex
way with the number of data points. Indeed, in this Bayesian example, we will always have that

R(

n∑
i=1

ki) = σ2(1− 1∑n
i=1 ki

) ≤ σ2
n∑
i=1

(1− 1

ki
) =

n∑
i=1

R(ki).

In Section 2.5 we elaborate on why the above inequality is bad for collaboration. Intuitively,
the left-hand side is the “size of the pie” if all players were to collaborate, and the right-hand side is
the sum of the rewards that each player could receive on her own. The inequality implies there is
no way to “slice the pie” so that every player has a bigger reward than the αi they can get without
collaborating, and thus collaboration is impossible.

In this simple Bayesian example, the marginal value of extra information will be decreasing.
This raises the interesting question of when the value of information is (and is not) not convex with
the amount of information available. For example, consider machine learning: learning problems
whose objectives can be stated as minimizing a convex loss function (or maximizing a concave value
function) seem to induce natural score functions which do not have increasing marginal returns, so
our model may be more applicable to problems with non-convex objectives. We remark that such
non-convex learning problems, in which our model seems more applicable, are an area of interest
in machine learning as solving them is lately becoming practical – we refer to Bengio and LeCun
[BL+07] for a more thorough discussion of this situation.

2.3 Data-sharing mechanisms

We now return to the general formulation of our collaboration model, and we seek to design a
general data-sharing mechanism that takes as input the data of all the parties, computes an output
distribution Yi ∈ ∆(Y ) for each i ∈ [n], and outputs Yi to each player i. The mechanism will output
the Yi values to players sequentially, in a particular order. Upon receiving Yi, player i produces a
public output (i.e a publication in the research collaboration example) which we denote by Zi ∈ Y .
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We note that the public output of player i will not necessarily be the same as what was delivered
by the data-sharing mechanism. Since player i wants to maximize her reward, she will publish a
result Zi that will maximize her reward, conditional on the information she has at the time of
publication. This information includes, in addition to the output Yi which she receives from the
mechanism (and her knowledge of how the mechanism works10), also her own dataset xi ∈ Xi, and
all the outputs Zj of other players that published before her.

Recall that a collaboration outcome (π, ~Z) is given by a permutation π : [n]→ [n] and a vector
of output distributions ~Z = (Z1, . . . ,Zn) ∈ (∆(Y ))n such that s(Y0) < s(Zπ(1)) < · · · < s(Zπ(n)).
We now define a proposed collaboration outcome (π, ~Y) as a permutation π : [n]→ [n] together with
a vector of proposed outputs ~Y = (Y1, . . . ,Yn) ∈ (∆(Y ))n generated by a data-sharing mechanism,
satisfying s(Y0) < s(Yπ(1)) < · · · < s(Yπ(n)).

Recall also that we need to bound how much player i can learn from previous publications (and
from her own dataset). We formally capture this with the notion of learning bound vectors λπ,i,
which give an upper bound on the amount that player i learns from all previous publications when
the order of publication is determined by permutation π.

Definition 2.1. A learning bound vector ~λ = (λπ,i)π∈([n]→[n]),i∈[n] is a non-negative vector such
that, if (π, ~Y) is a collaboration outcome proposed by a data-sharing mechanism, and Zi is the best
(i.e. highest-scoring) distribution that player i can compute at the time π−1(i) of her publication,
then s(Zi) ≤ s(Yi) + λπ,i. Let Λ = Rn!×n+ denote the set of all learning bound vectors.

Definition 2.2. For a learning bound vector ~λ, the set of inferred output distributions derived from
a proposed collaboration outcome (π, ~Y) is given by the following expression:

I~λ(π, ~Y) = {(Z1, . . . ,Zn) : ∀t ∈ [n], s(Yπ(t)) ≤ s(Zπ(t)) ≤ s(Yπ(t)) + λπ,π(t)}.

The intuition behind the above definition is that the amount of information that player π(t)
(namely, the player who publishes at time t) can learn from prior outputs is measured by how much
her score increases based on these prior outputs. This increase in score is bounded by λπ,π(t). Thus,
her eventual output will be some Zπ(t) with score between s(Yπ(t)) and s(Yπ(t)) + λπ,π(t).

Remark 1. In certain cases, λπ,π(t) measures exactly the amount of information that player π(t)
can learn from her data. However, in our definition λπ,π(t) is an upper bound, and we emphasize
that it may be a loose upper bound on the amount of information π(t) can learn. Our emphasis on
this point comes from the following two reasons.

• In general, the vector ~λ ∈ Rn!×n has very high dimension, and finding such a vector is infea-
sible. We may want to approximate this vector via a low-dimensional encoding (as we will
do below, where we encode learning bounds using n-dimensional vectors). Since this low-
dimensional encoding will lose information, we will not be able to represent λπ,π(t) exactly,
but may get a reasonable upper bound on its value.

• For some other settings, we may not be able to derive a precise expression for λπ,π(t) in terms of
expectations, but we may still be able to derive an upper bound on the amount of information
that player π(t) learns.

Now that we have established a formal definition of learning bound vectors, we proceed to
formally define a data-sharing mechanism.

10The mechanism description is common knowledge.
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Definition 2.3. For model parameters CK, a data sharing mechanism is a function

M : X × Λ→ ([n]→ [n])× (∆(Y ))n

which takes as inputs a vector ~x = (x1, . . . , xn) of datasets and ~λ = (λπ,i)π∈([n]→[n]),i∈[n] a learning
bound vector, and outputs an ordering π of the players and an output vector (Y1, . . . ,Yn) ∈ (∆(Y ))n.

Remark 2. In the definition, for the sake of generality, we assume that the ~λ values are given as
input to the mechanism. We remark that in certain settings, these values can be computed directly
from the inputs xi of the parties, as discussed in the examples of Section 1.1.2. In this case, one
may think of the mechanism M : X → ([n]→ [n])× (∆(Y ))n as having input domain X only.

2.4 Collaborative equilibria

In our model, each research group π(t) will collaborate only if the credit they obtain from doing so
is greater than the “outside option” reward απ(t). We want to design a mechanism that guarantees
collaboration whenever possible. Accordingly, we define the following equilibrium concept.

Definition 2.4. Let CK be the model parameters. Let (~x,~λ) ∈ X × Λ and let (π, (Y1, . . . ,Yn)) ∈
([n]→ [n])× (∆(Y ))n. We say that (π, (Y1, . . . ,Yn)) is a collaborative equilibrium with respect to
(~x,~λ) if for all inferred output distributions ~Z = (Z1, . . . ,Zn) ∈ I(π, (Y1, . . . ,Yn)) and all t ∈ [n],
it holds that Rt(π, ~Z) ≥ απ(t).

Our goal is to find data-sharing mechanisms for which collaboration is an equilibrium. Intuitively,
since we are searching for a feasible permutation over a very high-dimensional space (n!-dimensional,
to be precise), the problem will be NP-complete (this is proven in Theorem 2.13). However, there
is a very natural condition on the learning vectors for which we can reduce the dimension of the
search space and efficiently find a collaborative equilibrium. The feasible case corresponds to the
case where, for any player j, there is a bound on the amount of information that player j could teach
any other players. We denote this bound by µj . Analogously, we could define µj to be a bound on
the amount that player j can learn from any other player. In this work, we describe only the first
case, when µj represents a bound on how much information player j can teach other players. The
other case is analogous.

We define a learning bound vector to be n-dimensional if it satisfies the following property.

Definition 2.5. A learning vector ~λ ∈ Λ is n-dimensional if there is a non-negative vector (µ1, . . . , µn)
such that λπ,π(t) =

∑t−1
τ=1 µπ(τ). Let Λ1 ⊂ Λ denote the set of all n-dimensional learning vectors.

When ~λ is an n-dimensional learning vector, the total amount that player π(t) learns from
all prior outputs is

∑t−1
τ=1 µπ(τ). In this case, we can give necessary and sufficient conditions for an

equilibrium to exist (detailed in Theorem 2.6 below), provided that the following Output Divisibility
Condition is satisfied.

Output Divisibility Condition. Given the model parameters CK and any real 0 < δ ≤ 1,11

there exists a distribution Y ∈ ∆(Y ) such that s(Y) = δ.

Remark 3. The Output Divisibility Condition holds for a wide variety of natural score functions.
In general, score functions which reward “how close” a distribution is to the true value ŷ = f(X )

11Recall (from the model description) that s({ŷ|X}) = maxY∈∆(Y )(s(Y)). Without loss of generality, we assume
in our analysis that the score function is normalized so that its maximum value s({ŷ|X}) = 1.
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will decrease (continuously) with the addition of random noise to a distribution. Provided that this
holds, the Output Divisibility Condition can be satisfied by taking the optimal distribution {ŷ|X}
and perturbing it with random noise: the exact amount of noise to be added depends on the desired
value of δ. To give a concrete example: in Example III (Gene loci), the perturbed distribution
could simply add noise to the probabilities that each gene locus is sampled. Here, “adding noise”
can mean simply adding some η ← N(0, σ2) to the relevant parameters, where the magnitude of σ
depends on the precise formulation of the score function and the desired value of δ.

Theorem 2.6. Suppose that the Output Divisibility Condition holds. Let ~x be a vector of inputs
and ~λ be an n-dimensional learning bound vector. Let λπ,π(t) =

∑t−1
τ=1 µπ(τ). Then for (π, ~Y) to be

a collaborative equilibrium, it is necessary and sufficient that

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ s(Yπ(n))− s(Y0).

Proof. Necessity. Let (π, ~Y) be a proposed collaborative equilibrium, and let ~Z ∈ I(π, ~Y) be a
possible vector of inferred outputs. For every t, we must have that:

βt · (s(Zπ(t))− s(Zπ(t−1))) ≥ απ(t).

This is equivalent to:
s(Zπ(t))− s(Zπ(t−1)) ≥

απ(t)

βt
.

The worst case for player π(t) is when player π(t− 1) learns as much as possible from prior publi-
cations and player π(t) learns as little as possible. That is, when

s(Zπ(t−1)) = s(Yπ(t−1)) + µπ(1) + · · ·+ µπ(t−2) and s(Zπ(t)) = s(Yπ(t)).

In this case, the equilibrium condition becomes:

s(Yπ(t))− s(Yπ(t−1))−
t−2∑
τ=1

µπ(τ) ≥
απ(t)

βt
.

Rearranging slightly, we obtain: s(Yπ(t−1))− s(Yπ(t)) ≤ −
απ(t)

βt −
∑t−2

τ=1 µπ(τ). Let us abuse notation
slightly and define π(0) = 0. Then, summing over all t yields

s(Yπ(0))− s(Yπ(n)) ≤ −
n∑
t=1

απ(t)

βt
−

n∑
t=1

(n− t)µπ(t).

Flipping the signs in the inequality, the existence of a collaborative equilibrium implies:

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ s(Yπ(n))− s(Y0).

Sufficiency. To prove that the condition is sufficient: given Yπ(n) satisfying the inequality in
the theorem statement, we need to construct ~Y = (Y1, . . . ,Yn) such that (π, ~Y) is a collaborative
equilibrium. We construct ~Y inductively as follows: let δπ(n) = s(Yπ(n)), and for any t such that
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2 ≤ t ≤ n, let δπ(t−1) = δπ(t)−
απ(t)

βt −
∑t−2

τ=1 µπ(τ). Now that we have defined {δπ(t)}nt=1 in this way,
it follows that if we set Yπ(t) such that s(Yπ(t)) = δπ(t), then for all t ≥ 2 we have

s(Yπ(t))− s(Yπ(t−1)) = δπ(t) − δπ(t−1) =
απ(t)

βt
+

t−2∑
τ=1

µπ(τ).

Note that it is possible to set Yπ(t) in the required way, by the Output Divisibility Condition.
Rearranging the above equation, it follows that:

βt · (s(Yπ(t))− s(Yπ(t−1))−
t−2∑
τ=1

µπ(τ)) = απ(t).

Since for any inferred outcome Zπ(t) we have (by the definition of the learning bound vector) that

s(Yπ(t)) ≤ s(Zπ(t)) ≤ s(Yπ(t)) + λπ,π(t−1) = s(Yπ(t)) +

t−2∑
τ=1

µπ(τ),

we conclude that for all t ≥ 2,

βt · (s(Zπ(t))− s(Zπ(t−1))) ≥ απ(t).

Finally, we need to check that player π(1) is incentivized to collaborate. Note that player π(1)
publishes first, so she cannot learn anything from previous publications. She will be incentivized to
publish if

β · (δπ(1) − s(Y0)) ≥ απ(1).

This condition is equivalent to
δπ(1) − s(Y0) ≥

απ(1)

β
.

Replacing δπ(t−1) = δπ(t) −
απ(t)

βt −
∑t−2

τ=1 µπ(τ) iteratively, we get that player π(1) is incentivized to
collaborate if and only if

δπ(n) − s(Y0) ≥
n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t)

which is guaranteed by assumption.

Recall from the definition of the score function that the best score that can be attained given
datasets x1, . . . , xn is equal to s({ŷ|x1, . . . , xn}). Based on Theorem 2.6, we can now characterize
the datasets and learning bound vectors for which a collaborative equilibrium is possible.

Definition 2.7. Let CK be the model parameters and let (~x,~λ) ∈ X×Λ. We say that (~x,~λ) supports
a collaborative equilibrium if it holds that

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).
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2.4.1 How do the model parameters affect feasibility of collaborative equilibria?

Consider for a moment the simple case where β = 1 and ~λ = ~0, that is, there is no discount
factor and players do not learn from others’ publications. We can show that in this case, if the
score function satisfies the following Property 2.9, then it holds that for all ~x ∈ X, (~x,~λ) supports
a collaborative equilibrium. That is, in this simple case, the condition for (~x,~λ) to support an
equilibrium reduces to the superadditivity of the auxiliary score function s given in Property 2.9.

Definition 2.8. Let S be a set. A function f : S → R is superadditive if for all disjoint S1, S2 ⊆ S,
it holds that f(S1) + f(S2) ≤ f(S1 ∪ S2).

Property 2.9 (Superadditive Differences). Let CK be the model parameters. We define an auxiliary
score function s : X1t· · ·tXn → R+ which maps a set of datasets to a real-valued score, as follows:

s ({(i1, xi1), . . . , (ik, xik)}) = s({ŷ|xi1 , . . . , xik})− s(Y0),

where {ŷ|xi1 , . . . , xik} denotes the distribution of ŷ given that the datasets xi1 , . . . , xik were sampled12

from X . The score function s satisfies the Superadditive Differences Property if s is superadditive.

We observe that this precisely captures the intuition initially described in Section 2.2, that our
model is designed to promote collaboration in situations where the reward that can be obtained
from pooling all players’ data is more than the sum of the individual rewards that players can get.

Lemma 2.10. Let CK be model parameters such that β = 1, let ~x ∈ X be arbitrary, and let
~λ = ~0 ∈ Λ. If s is a superadditive function on the input data, then (~x,~λ) supports a collaborative
equilibrium.

Proof. Recall the inequality from Definition 2.7:
n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

Since β = 1 and µπ(t) = 0, the left-hand side is simply
∑n

t=1 απ(t). Using the definitions of απ(t)
and s, and the fact that π is a permutation, this can be rewritten as:

n∑
t=1

απ(t) =
∑
t∈[n]

(
s({ŷ|xπ(t)})− s(Y0)

)
=
∑
i∈[n]

s({(i, xi)}).

Substituting back into the inequality, we obtain:∑
i∈[n]

s({(i, xi)}) ≤ s({ŷ|x1, . . . , xn}))− s(Y0).

The right-hand side of the inequality is, by definition, equal to s({(1, x1), . . . , (n, xn)}). Thus,
the superadditivity of s implies that the inequality holds, and it follows that (~x,~λ) supports a
collaborative equilibrium.

Finally, we remark that either decreasing the discount factor β or increasing the learning bound
vector ~λ will make it harder to support a collaborative equilibrium (i.e. a lower value of β means
there will be fewer (~x,~λ) which support an equilibrium), since these cause the left-hand side of
the inequality to increase. So, while superadditivity is a sufficient condition in the simplest case,
we observe that determining which (~x,~λ) support a collaborative equilibrium is a more complex
problem when the model parameters are varied.

12More precisely: {ŷ|xi1 , . . . , xik} is the distribution of ŷ given that each xij was sampled in the ijth position.
(Recall that the distribution X is over tuples of datasets (x1, . . . , xn).)
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2.5 The polynomial-time mechanism

We show a polynomial-time mechanism that computes a collaborative equilibrium in the case that
learning bounds are given by a n-dimensional vector, provided that the following Efficient Output
Divisibility Condition is satisfied. The Efficient Output Divisibility Condition is a natural extension
of the Output Divisibility Condition, which requires not only existence but also efficient computabil-
ity of distributions with arbitrary score, while taking into account that the best possible score for
given input datasets x1, . . . , xn is equal to s({ŷ|x1, . . . , xn}).

Efficient Output Divisibility Condition. Given model parameters CK, datasets x1, . . . , xn ∈
X, and any real 0 < δ < s({ŷ|x1, . . . , xn}), it is possible to efficiently compute a distribution
Y ∈ ∆(Y ) such that s(Y) = δ.

Remark 4. The above condition holds for a wide variety of score functions, too: in particular, it
holds for the class of score functions described in Remark 3. Suppose that the score function is
continuous and decreases with the addition of random noise to a distribution. Then the condition
can be satisfied by taking the “best computable” distribution {ŷ|x1, . . . , xn} and perturbing it with
random noise: the amount of noise to add will depend on the desired value of δ.

Theorem 2.11. Suppose the Efficient Output Divisibility Condition holds. Then there is a polynomial-
time mechanism SHARE-DATA : X ×Λ1 that, given inputs (~x, ~µ) where ~µ = (µ1, . . . , µn) represents
a n-dimensional learning vector, outputs a collaborative equilibrium (π, ~Y) whenever an equilibrium
is supported by the inputs (~x, ~µ) (as defined in Definition 2.7), and outputs NONE otherwise.

Algorithm 1 SHARE-DATA((x1, . . . , xn), (µ1, . . . , µn))

1. Let Y∗ = {ŷ|x1, . . . , xn} and δ∗ = s(Y0).

2. Construct a complete weighted bipartite graph G = (L,R,E) where L = [n], R = [n], E = L×R. For
each edge (i, t), assign a weight w(i, t) = αi

βt + (n− t)µi.

3. Let M be the minimum-weight perfect matching on G. For each node t ∈ R, let π(t) ∈ L be the node
that it is matched with. If the weight of M is larger than δ∗, output NONE. Else, define δπ(n) = δ∗,
Yπ(n) = Y∗.

4. For t from n to 2:

• Let δπ(t−1) = δπ(t) −
απ(t)

βt −
∑t−2
τ=1 µπ(τ).

• Let Yπ(t−1) be such that s(Yπ(t−1)) = δπ(t−1).

5. Output ω = (π, (Yπ(1), . . . ,Yπ(n))).

Proof. The fact that the algorithm runs in polynomial time is immediate, since:

• additions, comparisons, and finding minimum weight matchings in a graph [Edm65] can all
be done in (randomized) polynomial time; and

• the Efficient Output Divisibility Condition implies that computing a distribution Yπ(t−1) such
that s(Yπ(t−1)) = δπ(t−1) is efficient.
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Recall that (~x,~λ) supports a collaborative equilibrium if and only if there exists a permutation
π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

Note that our algorithm constructs a complete bipartite graph G = (L∪R,E) where the weight
on every edge is w(i, t) = αi

βt + (n − t)µi. A matching M on this graph induces a permutation π

where, for every t ∈ R, we have π(t) = i such that (i, t) ∈M . The weight of such a matching is
n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t).

Thus, (~x,~λ) supports a collaborative equilibrium if and only if the maximum-weight matching in
G has weight less than or equal to w∗ def

= s({ŷ|x1, . . . , xn})−s(Y0). Note that when the weight of the
maximum-matching is greater than w∗, our algorithm outputs NONE, indicating that an equilibrium
is not supported by the inputs.

Finally, when the weight of the maximum matching is less than or equal to w∗, the algorithm
outputs a pair (π, ~Y) which (by construction) satisfies s(Yπ(t−1))− s(Yπ(t)) =

απ(t)

βt +
∑t−2

τ=1 µπ(τ) for
all t ∈ [n], so the sufficient conditions for (π, ~Y) to be a collaborative equilibrium are satisfied.

2.6 General NP-completeness

One may wonder if we can get an efficient mechanism for learning vectors which are not n-dimensional.
We show that this is unlikely, since finding a collaborative equilibrium is NP-complete even under
a weak generalization of n-dimensional learning vectors.

Definition 2.12. We say that a learning vector λ ∈ Λ is n2-dimensional if there exists a non-
negative matrix (µi,j)(i,j)∈[n]×[n] such that λπ,π(t) =

∑t−1
τ=1 µπ(t),π(τ). We denote by Λ2 ⊂ Λ the set of

all n2-dimensional learning vectors.

When λ is an n2-dimensional learning vector, the amount that player π(t) learns from π(τ)’s
output is bounded above by µπ(t),π(τ). Thus, the total amount that player π(t) learns from all prior
outputs is

∑t−1
τ=1 µπ(t),π(τ). The corresponding necessary condition for a collaborative equilibrium

to be supported by some (~x,~λ) is that there is a permutation π such that
n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

We show that even checking whether this condition holds is NP-complete.

Theorem 2.13. Given model parameters CK, input datasets (x1, . . . , xn) ∈ X, and a n2-dimensional
learning bound vector (µi,j)(i,j)∈[n]×[n], it is NP-complete to decide whether there exists π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

Proof. It is clear that the problem is in NP, since given a permutation π, the left-hand side can be
efficiently computed and compared to the right-hand side of the inequality.

To show that the problem is NP-hard, we reduce it to the minimum weighted feedback arc set
problem. The unweighted version of this problem was shown to be NP-complete by Karp [Kar72],
and the weighted version is also NP-complete [ENSS95].
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Minimum-Weight-Feedback-Arc-Set

inputs: A graph G = (V,E) and a weight function w : E → R≥0, a threshold γ ∈ R≥0.

output: Whether or not there exists a set S ⊂ E of edges which intersects every cycle of G
and has weight less than γ.

All that we need to show is that, given a graph G, a set S of edges is a feedback arc set if and
only if there exists a permutation π of the vertices of V such that S = {(π(t), π(s)) ∈ E : s < t}.

To see this, note that if π is a permutation and S = {(π(t), π(s)) ∈ E : s < t} then the set S
intersects every cycle of G. This is because, if C = {(π(i1), π(i2)), (π(i2), π(i3)), . . . , (π(ik), π(i1))}
is a cycle in G, then there must exist s, t such that s < t and (π(t), π(s)) ∈ C, so S intersects C.
Thus, S is a feedback arc set.

Conversely, if S is a feedback arc set, then G′ = (V,E − S) is a directed acyclic graph, and we
can induce an ordering π on V following topological sort. Any edge (π(t), π(s)) ∈ E−S must satisfy
t < s. Thus, any edge (π(t), π(s)) where s < t must be in S. Thus, given π from the topological
sort, we must have S ⊃ {(π(t), π(s)) ∈ E : s < t}. Since weights are non-negative, the minimal
feedback arc set S∗ will correspond to a permutation π∗ such that S∗ = {(π∗(t), π∗(s)) ∈ E : s < t}.

We show how to reduce Minimum-Weight-Feedback-Arc-Set to our problem. Given G = (V,E),
w : E → R≥0 and t ∈ R≥0, let s({ŷ|x1, . . . , xn})− s(Y0) = γ and let µi,j = w(i, j) if (i, j) ∈ E and
µi,j = 0 otherwise. Suppose there exists a permutation π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

Then, since the αi and β are positive,
n∑
t=1

∑
s>t

µπ(s),π(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0).

Plugging in our choices of µi,j and s({ŷ|x1, . . . , xn})− s(Y0), this becomes∑
(π(s),π(t))∈E:s>t

w(π(s), π(t)) ≤ γ.

Since the set S = {(π(s), π(t)) ∈ E : s > t} is a feedback arc set, we have that there exists a
feedback arc set with weight less than γ.

Conversely, assume no such permutation π exists. That is,∑
(π(s),π(t)):s>t

µπ(s),π(t) > s({ŷ|x1, . . . , xn})− s(Y0)

for all permutations π. Note that whether s comes before t or vice-versa does not matter, since this
inequality holds for all permutations. Thus, we can also write∑

(π(s),π(t)):s<t

µπ(s),π(t) > s({ŷ|x1, . . . , xn})− s(Y0)

for all permutations π. From the argument above, the minimum weight feedback arc set S∗ induces
a permutation π∗ such that S∗ = {(π∗(t), π∗(s)) ∈ E : s < t}. The weight of S∗ is∑

(π∗(s),π∗(t))∈E:s<t

w(π∗(s), π∗(t)) =
∑

(π∗(s),π∗(t)):s<t

µπ∗(s),π∗(t) > s({ŷ|x1, . . . , xn})− s(Y0) = γ.
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Thus, there does not exist a feedback arc set with weight less than or equal to γ.
We conclude that if we can efficiently check whether

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ s({ŷ|x1, . . . , xn})− s(Y0),

then we can efficiently check whether there exists a feedback arc set S with weight less than γ.
Thus, the feedback arc set problem reduces to ours, and our problem is NP-complete.

We have shown that in our model of scientific collaboration, it can indeed be very beneficial to
all parties involved to collaborate under certain ordering functions, and such beneficial collaboration
outcomes can be efficiently computed under certain realistic conditions (but probably not in the
general case).

3 Ordered MPC

We introduce formal definitions of ordered MPC and associated notions of fairness and ordered
output delivery, and give protocols that realize these notions. Our definitions build upon the
standard security notion13 for traditional MPC, which is described formally in Appendix A.

Notation For a finite set A, we will write a← A to denote that a is drawn uniformly at random
from A. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The operation ⊕ stands for exclusive-or. The
relation

c
≈ denotes computational indistinguishability. negl(n) denotes a negligible function in n,

and poly(n) denotes a polynomial in n. ◦ denotes function composition, and for a function f , we
write f t to denote f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t

.

Throughout this work, we consider computationally bounded (rushing) adversaries in a syn-
chronous complete network, and we assume the players are honest-but-curious, since any protocol
secure in the presence of honest-but-curious players can be transformed into a protocol secure against
malicious players [GMW87].

3.1 Definitions

Let f be an arbitrary n-ary function and p be an n-ary function that outputs permutation [n]→ [n].
An ordered MPC protocol is executed by n parties, where each party i ∈ [n] has a private input
xi ∈ {0, 1}∗, who wish to securely compute f(x1, . . . , xn) = (y1, . . . , yn) ∈ ({0, 1}∗)n where yi is
the output of party i. Moreover, the parties are to receive their outputs in a particular ordering
dictated by p(x1, . . . , xn) = π ∈ ([n]→ [n]). That is, for all i < j, party π(i) must receive his output
before party π(j) receives her output. Note that the output ordering π is data-dependent, as p is a
function of the parties’ inputs.

Following [GMW87], the security of ordered MPC with respect to a functionality f and permuta-
tion function p is defined by comparing the execution of a protocol to an ideal process FOrdered-MPC

where the outputs and ordering are computed by a trusted party who sees all the inputs. An or-
dered MPC protocol F is considered to be secure if for any real-world adversary A attacking the
real protocol F , there exists an ideal adversary S in the ideal process whose outputs (views) are
indistinguishable from those of A. Note that this implies that no player learns more information
about the other players’ inputs than can be learned from his own input and output, and his own

13Note that throughout this work, we use “stand-alone” security notions rather than “universally composable” ones.
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position in the output delivery order. The latter condition is important because the output ordering
depends on parties’ private inputs, and thus we require that the protocol reveals as little information
as possible about the ordering.

Many rather than one view In the ordered MPC setting, the ideal adversary S and the real-
world adversary A each output a view after each output phase. This is in contrast to standard
MPC, where the adversaries simply output one view at the end of the protocol execution.

Ideal functionality FOrdered-MPC

In the ideal model, a trusted third party T is given the inputs, computes the functions f, p on the inputs, and
outputs to each player i his output yi in the order prescribed by the ordering function. In addition, we model
an ideal process adversary S who attacks the protocol by corrupting players in the ideal setting.
Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to compute; and p : ({0, 1}∗)n → ([n]→ [n]), the ordering function.
Private parameters. Each player i ∈ [n] has input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T .

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn) and π = p(x1, . . . , xn).

3. Output. The output proceeds in n sequential output rounds. At the start of the jth round, T sends
the output value outi,j to each party i, where outj,j = yπ(j) and outi,j = ⊥ for all i 6= j. When party
π(j) receives his output, he responds to T with the message ack. (The players who receive ⊥ are not
expected to respond.) Upon receipt of the ack, T proceeds to the (j + 1)th round – or, if j = n, then
the protocol terminates.

4. Output of views. At each output round, after receiving his message from T , each party produces
an output, as follows. Each uncorrupted party i outputs yi if he has already received his output, or
⊥ if he has not. Each corrupted party outputs ⊥. Additionally, the adversary S outputs an arbitrary
function of the information that he has learned during the execution of the ideal protocol.
Let the output of party i in the jth round be denoted by Vi,j, and let the view outputted by S in the jth
round be denoted by VS,j. Let V ideal

Ordered-MPC denote the collection of all views for all output rounds:

V ideal
Ordered-MPC = ((VS,1,V1,1, . . . ,Vn,1), . . . , (VS,n,V1,n, . . . ,Vn,n)) .

(If the protocol is terminated early, then views for rounds which have not yet been started are taken to
be ⊥.)

Definition 3.1 (Security). A multi-party protocol F is said to securely realize FOrdered-MPC, if the
following conditions hold.

1. The protocol description specifies n check-points C1, . . . , Cn corresponding to events during the
execution of the protocol.

2. Take any ppt adversary A who corrupts a subset of players S ⊂ [n], and let VA,j be the result
of an arbitrary function A applies to his view after each check-point Cj. Let

V real
A = ((VA,1, V1,1, . . . , Vn,1), . . . , (VA,n, V1,n, . . . , Vn,n))

be the tuple consisting of the adversary A’s outputted views along with the outputs of the real-
world parties as specified in the ideal functionality description. Then there is a ppt ideal
adversary S which, attacking FOrdered-MPC by corrupting the same subset S of players, can
output views VS,j such that for each j ∈ [n], it holds that VS,j

c
≈ VA,j.
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In the context of ordered MPC, the standard guaranteed output delivery notion is insufficient.
Instead, we define ordered output delivery, which requires in addition that all parties receive their
outputs in the order prescribed by p.

Definition 3.2 (Ordered output delivery). An ordered MPC protocol satisfies ordered output de-
livery if for any inputs x1, . . . , xn, functionality f , and ordering function p, it holds that all parties
receive their outputs before protocol termination, and moreover, if π(i) < π(j), then party i receives
his output before party j receives hers, where π = p(x1, . . . , xn).

We also define a natural relaxation of the fairness requirement for ordered MPC, called prefix-
fairness. Although it is known that fairness is impossible for general functionalities in the presence
of a dishonest majority, we show in the next subsection that prefix-fairness can be achieved even
when a majority of parties are corrupt. We emphasize that this notion relaxes only the fairness
requirement: that is, prefix-fair protocols satisfy full privacy (and correctness) guarantees.

Definition 3.3 (Prefix-fairness). An ordered MPC protocol is prefix-fair if for any inputs x1, . . . , xn,
it holds that the set of parties who have received their outputs at the time of protocol termination
(or abortion) is a prefix of (π(1), . . . , π(n)), where π = p(x1, . . . , xn) is the permutation induced by
the inputs.

Prefix-fairness can be useful, for example, in settings where it is more important for one party to
receive the output than the other; or where there is some prior knowledge about the trustworthiness
of each party (so that more trustworthy parties may receive their outputs first).

3.2 Construction

Ordered MPC is achievable by using standard protocols for general MPC, as described in Protocol 1
below. The protocol has n sequential output phases, so that the n outputs can be issued in order. A
subtle point is that because the ordering is a function of the input data, knowledge of the ordering
may reveal information about the input data. Thus, we have to “mask” the output values such that
each party only learns the minimal possible amount of information about the ordering: namely, his
own position in the ordering.

Protocol 1. Ordered MPC

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; k ∈ N, an upper
bound on the number of corrupt parties; f : ({0, 1}∗)n → ({0, 1}∗)n, the function to be computed; and
p : ({0, 1})∗ → ([n]→ [n]), the ordering function.

1. Computing shares of (π,y): Using any general secure MPC protocol (such as [GMW87]) on
inputs x1, . . . , xn, jointly compute a k-out-of-n secret-sharing14of (π,y) where y = (y1, . . . , yn) =
f(x1, . . . , xn) and π = p(x1, . . . , xn) is a permutation of [n]. At the end of this step, each player
possesses a share of the outputs y = (y1, . . . , yn) and of the permutation π.

2. Outputting y1, . . . , yn in n phases: In the ith output phase, player π−1(i) will learn his output. In
phase i the parties run a new instance of a general secure MPC protocol such that:

• Player j’s inputs to the protocol are: the shares of y and π that he got in step 1, and a random
string ri,j.

• The functionality computed is:
for j from 1 to n: if π(j) = i then zi,j := yj ⊕ ri,j else zi,j = ⊥⊕ ri,j.
output zi = (zi,1, . . . , zi,n).
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where ⊥ is a special string that lies outside the output domain.
• To recover his output, each player j computes y′i,j = zi,j ⊕ ri,j for all i. By construction, there

is exactly one i ∈ [n] for which y′i,j 6= ⊥, and that is equal to the output value yj for player j.

Check-points. There are n check-points. For i ∈ [n], the check-point Ci is at the end of the ith output
phase, when zi is learned by all players.

In case of abort. When running the protocol for the honest majority setting, the honest players continue
until the end of the protocol regardless of other players’ behavior. When running the protocol for dishonest
majority, if any party aborts in an output phase15, then the honest players do not continue to the next phase.

In proving the security of Protocol 1, we refer to the security of modular composition of general
protocols shown by [Can00], Theorem 5.

Theorem 3.4. Protocol 1 securely realizes FOrdered-MPC.

Proof. Let ρ0 denote the general MPC protocol execution in step 1, and let ρi be the general
MPC protocol execution in phase i of step 2, for i ∈ [n]. For j ∈ [n], let the protocol πj be the
concatenation of the protocols ρ0, . . . , ρj . To prove security at each check-point, it is sufficient to
prove that πj satisfies security for all j ∈ [n]: in other words, that the view outputted by any
adversary in the real protocol execution at check-point j can be simulated in the ideal execution.
Finally, for all j ∈ [n], the security of πj follows directly from the security of modular composition
of general protocols ([Can00], Theorem 5).

Theorem 3.5. In the case of honest majority, Protocol 1 achieves fairness. In the dishonest ma-
jority setting, prefix-fairness is achieved.

Proof. Fairness holds in the honest majority case, since the honest players complete all output
phases, and the shares that the honest players hold are sufficient to reconstruct each output yi
(recall that the secret-sharing threshold k is dn/2e in the honest majority case). In the dishonest
majority setting, prefix-fairness holds since for all i ∈ [n], all n shares are required in order to
reconstruct the output yπ(i) in output phase i, and

• if the corrupt parties do not abort during the ith output phase, then by the security of Protocol
1, the output yπ(i) associated with the ith output phase is delivered correctly to party i;

• if the corrupt parties abort during the ith output phase, then no outputs yπ(j) for j > i will be
learned by any player, since the honest parties will not execute subsequent output phases.

4 Timed-delay MPC

In this section, we implementing time delays between different players receiving their outputs. The
model is exactly as before, with n players wishing to compute a function f(x1, . . . , xn) in an ordering
prescribed by p(x1, . . . , xn) – except that now, there is an additional requirement of a delay after
each player receives his output and before the next player receives her output. To realize the timed-
delay MPC functionality, we make use of time-lock and time-line puzzles, which are introduced in
Sections 4.3.1 and 4.4.

14The standard definition of a secret-sharing scheme can be found in Appendix B.
15Each output phase consists of an execution of the underlying general MPC protocol. If a party aborts at any

time during (and before the end of) the execution of the underlying general MPC protocol, this fact will be detected
by all honest parties by the end of the phase.
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4.1 Ideal functionality with time delays

We measure time delay in units of computation, rather than seconds of a clock: that is, rather than
making any assumption about global clocks (or synchrony of local clocks)16, we measure time by
the evaluations of a particular function (on random inputs), which we call the clock function.

Ideal functionality FTimed-Delay-MPC

In the ideal model, a trusted third party T is given the inputs, computes the functions f, p on the inputs,
and outputs to each player i his output yi in the order prescribed by the ordering function. Moreover, T
imposes delays between the issuance of one party’s output and the next. In addition, we model an ideal
process adversary S who attacks the protocol by corrupting players in the ideal setting.
Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1}∗)n → ([n]→ [n]), the ordering function; and G = G(κ) ∈
N, the number of time-steps between the issuance of one party’s output and the next.
Private parameters. Each player i ∈ [n] has input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T . If, instead of sending his input, any player sends the
message quit, then the computation is aborted.

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn) and π = p(x1, . . . , xn).

3. Output. The output proceeds in n sequential output phases. At each phase j, T waits for G time-
steps, then sends the jth output, yπ(j), to party π(j).

4. Output of views. At the end of each output phase, each party produces an output as follows. Each
uncorrupted party i outputs yi as his view if he has already received his output, or ⊥ if he has not.
Each corrupted party outputs ⊥. Additionally, the adversary S outputs an arbitrary function of the
information that he has learned during the execution of the ideal protocol, after each check-point.
Let the output of party i in the jth round be denoted by Vi,j, and let the view outputted by S in the jth
round be denoted by VS,j. Let V ideal

Timed-Delay-MPC denote the collection of all views for all output phases:

V ideal
Timed-Delay-MPC = ((VS,1,V1,1, . . . ,Vn,1), . . . , (VS,n,V1,n, . . . ,Vn,n)) .

For an algorithm A, let the run-time17 of A on input inp be denoted by timeA(inp). If A is
probabilistic, the run-time will be a distribution over the random coins of A. Note that the exact
run-time of an algorithm will depend on the underlying computational model in which the algorithm
is run. In this work, all algorithms are assumed to be running in the same underlying computational
model, and our definitions and results hold regardless of the specific computational model employed.

16A particular issue that arises when considering a clock-based definition is that it is not clear that we can reasonably
assume or prove that clocks are in synchrony between the real and ideal world – but this seems necessary in order to
prove security by simulation in the ideal functionality.
We remark that if one is happy to assume the existence of a global clock (or synchrony of local clocks), then there

are other ways to implement timed-delay MPC which sidestep many of the issues inherent in the arguably more
realistic model where clocks may not be perfectly synchronized between different (adversarial) parties. One example
is the “Bitcoin model” where the assumption is that the Bitcoin block-chain can serve as a global clock: in this model,
existing protocols such as [BK14] implement some time-delays in MPC, and it seems likely that such protocols can
be adapted to achieve our notion of timed-delay MPC.

16The use of checkpoints is introduced to capture the views of players and the adversary at intermediate points in
protocol execution.

17Run-time is, naturally, measured in “CPU time” (i.e. the number of instructions executed in the underlying
computational model) as opposed to real-world “clock time”.
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Definition 4.1 (Security). A multi-party protocol F (with parameters κ, n, f, p,G) is said to securely
realize FTimed-Delay-MPC, if the following conditions hold.

1. The protocol description specifies n check-points C1, . . . , Cn corresponding to events during the
execution of the protocol.

2. There exists a “clock function” g such that between any two consecutive checkpoints Ci, Ci+1

during an execution of F , any one of the parties (in the real world) must be able to locally run
Ω(G) sequential evaluations of g on random inputs. g may also be a protocol (involving n′ ≤ n
parties) rather than a function, in which case we instead require that any subset consisting of
n′ parties must be able to run Ω(G) sequential executions of g (on random inputs) over the
communication network being used for the main multi-party protocol F . Then, we say that F
is “clocked by g”.

3. Take any ppt adversary A attacking the protocol F by corrupting a subset of players S ⊂ [n],
which outputs an arbitrary function VA,j of the information that it has learned in the protocol
execution after each check-point Cj. Let

V real
A = ((VA,1, V1,1, . . . , Vn,1), . . . , (VA,n, V1,n, . . . , Vn,n))

be the tuple consisting of the adversary A’s outputted views along with the views of the real-
world parties as specified in the ideal functionality description. Then there is a ppt ideal
adversary S which, attacking FTimed-Delay-MPC by corrupting the same subset S of players, can
output views VS,1, . . . ,VS,n (at check-points C1, . . . , Cn respectively) such that for each j ∈ [n],
it holds that

|Pr [D(VS,j ,V1,j , . . . ,Vn,j) = 1]− Pr [D(VA,j , V1,j , . . . , Vn,j) = 1]| ≤ negl(κ),

for any distinguisher D such that

Pr
~v←V

[timeD(~v) ≤ j · timeG()] = 1/poly(κ),

when V is the distribution of views outputted by A or S (that is, for V ∈ {(VS,j ,V1,j , . . . ,Vn,j),
(VA,j , V1,j , . . . , Vn,j)}), and G is the algorithm that computes the function g sequentially on G
random inputs.

4.2 Realizing timed-delay MPC with dummy rounds

A simple protocol for securely realizing timed-delay MPC is to implement delays by running G
“dummy rounds” of communication in between issuing outputs to different players.

Protocol 2. Timed-delay MPC with dummy rounds

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1})∗ → ([n]→ [n]), the ordering function; and G = poly(κ),
the number of time-steps between the issuance of one party’s output and the next.

1. Computing shares of (π,y): Using any general secure MPC protocol (such as [GMW87]), jointly
compute an k-out-of-n secret-sharing18of (π,y) where y = (y1, . . . , yn) = f(x1, . . . , xn) and permuta-
tion π = p(x1, . . . , xn) on the players’ inputs. At the end of this step, each player possesses a share of
the outputs y = (y1, . . . , yn) and of the permutation π.
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2. Outputting y1, . . . , yn in n phases: The outputs will occur in n phases: in the ith phase, player
π−1(i) will learn his output. In each phase, the players first run G “dummy rounds” of communication.
A dummy round is a “mini-protocol” defined as follows (let this mini-protocol be denoted by gdum):

• each player initially sends the message challenge to every other player;

• each player responds to each challenge he receives with a message response.

In each phase, after the dummy rounds have been completed, the parties will run a new instance of a
general secure MPC protocol. In phase i:

• Player j’s inputs to the protocol are: the shares of y and π that he got in step 1, and a fresh
random string ri,j.

• The functionality computed in each phase i ∈ [n] is:

for j from 1 to n: if π(j) = i then zi,j := yj ⊕ ri,j else zi,j = ⊥⊕ ri,j.
output zi = (zi,1, . . . , zi,n).

where ⊥ is a special string that lies outside the output domain.

• To recover his output, each player j computes y′i,j = zi,j ⊕ ri,j for all i. By construction, there
is exactly one i ∈ [n] for which y′i,j 6= ⊥, and that is equal to the output value yj for player j.

Check-points. There are n check-points. For i ∈ [n], the check-point Ci is at the end of the ith output
phase, when zi is learned by all players.

In case of abort. When running the protocol for the honest majority setting, the honest players continue
until the end of the protocol regardless of other players’ behavior. When running the protocol for dishonest
majority, if any party aborts in an output phase19, then the honest players do not continue to the next phase.

Theorem 4.2. In the presence of honest majority, Protocol 2 securely realizes FTimed-Delay-MPC

clocked by gdum.

Proof. Let A be any ppt adversary attacking Protocol 2 by corrupting a subset of players S ⊂ [n],
and let

V real
A = ((VA,1, V1,1, . . . , Vn,1), . . . , (VA,n, V1,n, . . . , Vn,n))

be the tuple consisting of the adversary A’s outputted views along with the views of the real-world
parties (as specified in the description of FTimed-Delay-MPC). In order to show that condition 3 of
the security definition (Definition 4.1) holds, we need to show that there is a ppt ideal adversary
S which, given access to FTimed-Delay-MPC and corrupting the same subset S of players, can output
views VS,j such that V real

A
c
≈ V ideal

Timed-Delay-MPC.
Recall that the adversary’s view can be any function of the inputs of the corrupt parties and the

messages that the corrupt parties see during the protocol execution. In particular, it is sufficient to
show that there is an ideal adversary S which can output views VS,j which are indistinguishable from
the transcript of all the messages that the corrupt parties see during the real protocol execution.

18For the honest majority setting, we set k = dn/2e. For the dishonest majority setting, k = n.
19Each output phase consists of an execution of the underlying general MPC protocol preceded by G dummy

rounds. If a party aborts before the completion of the G dummy rounds, this fact will be detected by all parties in
the dummy round in which the abort happens, because every party is supposed to communicate with every other
party in each dummy round. If a party aborts at any time during (and before the end of) the execution of the
underlying general MPC protocol, this fact will be detected by all honest parties by the end of the phase.
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Protocol 2 consists of sequential executions of the underlying general MPC protocol and the
mini-protocol gdum. When the mini-protocol executions are removed from Protocol 2, the resulting
protocol is identical to Protocol 1. Hence, by Theorem 3.4, there is an ideal adversary S ′ which,
given access to FTimed-Delay-MPC and corrupting the same subset S of players, can output views VS′,j
such that which are indistinguishable from the transcript of all the messages that the corrupt parties
see during the n+ 1 executions of the underlying general MPC protocol within Protocol 2. The only
other messages that are sent in Protocol 2 are the “dummy” messages challenge and response, which
are fixed messages that do not depend on the players’ inputs. In fact, the transcript of an execution
of gdum is a deterministic sequence of challenge and response. It follows that there exists an ideal
adversary S which, by calling S ′ and adding the deterministic transcript corresponding to each
execution of gdum, can output views VS,j which are indistinguishable from the transcript of all the
messages that the corrupt parties see during the real execution of Protocol 2.

Finally, it remains to show that condition 2 of the security definition (Definition 4.1) is satisfied.
The players are literally running g over the MPC network G times in between issuing outputs, so
it is clear that condition 2 holds.

One downside of the simple solution above is that it requires all (honest) parties to be online and
communicating until the last player receives his output. To address this, in Section 4.3 we propose
an alternative solution based on timed-release cryptography, at the cost of an additional assumption
that all players have comparable computing speed (within a logarithmic factor).

4.3 Realizing timed-delay MPC with time-lock puzzles

Informally, a time-lock puzzle is a primitive which allows “locking” of data, such that it will be
released after a pre-specified time delay, and no earlier. Our next protocol, instead of issuing
outputs to players in the clear, gives to each party his output locked into a time-lock puzzle; and
in order to enforce the desired ordering, the delays required to unlock the puzzles are set to be an
increasing sequence. We first give the definition of time-lock puzzles (in Section 4.3.1) then describe
and prove security of our time-lock-based protocol (in Section 4.3.2).

4.3.1 Time-lock puzzles

The delayed release of data in MPC protocols can be closely linked to the problem of “timed-
release crypto” in general, which was introduced by [May93] and constructed first by [RSW96]
with their proposal of time-lock puzzles. We assume time-lock puzzles with a particular structure
(that is present in all known implementations): namely, the passage of “time” will be measured
by sequential evaluations of a function (TimeStep). Unlocking a t-step time-lock puzzle can be
considered analogous to following a chain of t pointers, at the end of which there is a special value
xt (e.g. a decryption key) that allows retrieval of the locked data.

x x1 x2 . . . xt

locked data

x1 = f(x) x2 = f(x1) x3 = f(x2) xn = f(xn−1)

unlock

Definition 4.3 (Time-lock puzzle scheme). A time-lock puzzle scheme is a tuple of ppt algorithms
T = (Lock,TimeStep,Unlock) as follows:
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• Lock(1κ, d, t) takes parameters κ ∈ N the security parameter, d ∈ {0, 1}` the data to be locked,
and t ∈ N the number of steps needed to unlock the puzzle, and outputs a time-lock puzzle
P = (x, t, b, a) ∈ {0, 1}n × N× {0, 1}n′′ × {0, 1}n′ where `, n, n′, n′′ = poly(κ).

• TimeStep(1κ, x′, a′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information a′, and outputs a bit-string x′′ ∈ {0, 1}n.

• Unlock(1κ, x′, b′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n, and
auxiliary information b′ ∈ {0, 1}n′ , and outputs some data d′ ∈ {0, 1}`.

To unclutter notation, we will sometimes omit the initial security parameter of these functions
(writing e.g. simply Lock(d, t)). We now define some auxiliary functions. For a time-lock puzzle
scheme T = (Lock,TimeStep,Unlock) and i ∈ N, let IterateTimeStepTi denote the following function:

IterateTimeStepT (i, x, a) = TimeStep(TimeStep(. . . (TimeStep(x, a), a) . . . ), a)︸ ︷︷ ︸
i

.

Define CompleteUnlockT to be the following function:

CompleteUnlockT ((x, t, b, a)) = Unlock(IterateTimeStepT (t, x, a), b),

that is, the function that should be used to unlock a time-lock puzzle outputted by Lock.
The following definitions formalize correctness and security for time-lock puzzle schemes.

Definition 4.4 (Correctness). A time-lock puzzle scheme T = (Lock,TimeStep,Unlock) is correct
if the following holds (where κ is the security parameter):

Pr
(x,t,b,a)←Lock(d,t)

[
CompleteUnlockT ((x, t, b, a)) 6= d

]
≤ negl(κ).

Definition 4.5 (Security). Let T = (Lock,TimeStep,Unlock) be a time-lock puzzle scheme. T is
secure if it holds that: for all d, d′ ∈ {0, 1}`, t = poly(κ), if there exists an adversary A that solves
the time-lock puzzle Lock(d, t), that is,

Pr
P←Lock(d,t)

[A(P ) = d] = ε for some non-negligible ε,

then for each j ∈ [t], there exists an adversary Aj such that

Pr
P ′←Lock(d′,j)

[
Aj(P ′) = d′

]
≥ 1− negl(κ), and

Pr
P←Lock(d,t),
P ′←Lock(d′,j)

[
timeA(P ) ≥ (t/j) · timeAj (P

′) | A(P ) = d
]
≥ 1− negl(κ).

4.3.2 Protocol based on time-lock puzzles

Because of the use of time-lock puzzles by different parties in the protocol that follows, we require
an additional assumption that all players have comparable computing power (within a logarithmic
factor).
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Relative-Delay Assumption. The difference in speed of performing computations between any
two parties i, j ∈ [n] is at most a factor of B = O(log(κ)).

Protocol 3. Timed-delay MPC with time-lock puzzles

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1})∗ → ([n] → [n]), the ordering function; B = O(log(κ)),
the maximum factor of difference between any two parties’ computing power; G = poly(κ), the number of
time-steps between the issuance of one party’s output and the next; and T = {Lock,TimeStep,Unlock} a
time-lock puzzle scheme.

Inputs. Each party i has input xi.

Protocol steps. Let (y1, . . . , yn) = f(x1, . . . , xn) and π = p(x1, . . . , xn). Define t1 = 1 and ti+1 =
(B ·G + 1) · ti for i ∈ [n − 1]. Compute (P1, . . . , Pn), where each Pi = (xi, tπ(i), ai, bi) is a time-lock puzzle
computed as

Pi = Lock(yi ⊕ ri, tπ(i)),

where each ri is a random string provided as input randomness by party i.

Outputs. For each i ∈ [n], the puzzle Pi is outputted to party i. The players all receive their respective
outputs at the same time, then recovers his output yi by solving his time-lock puzzle, and finally “unmasking”
the result by XORing with his random input ri.

Check-points. There are n check-points. For i ∈ [n], the check-point Ci is the event of party π(i) learning
his eventual output yπ(i) (i.e. when he finishes solving his time-lock puzzle).

For the following theorem, we assume that each player i uses the optimal algorithm to solve his
puzzle Pi that outputs the correct answer. Without this assumption, any further protocol analysis
would not make sense: there can always be a “lazy” player who willfully uses a very slow algorithm
to solve his puzzle, who will as a result learn his eventual output much later in the order than he
could otherwise have done. The property that we aim to achieve is that every player could learn
his output at his assigned position in the ordering π, with appropriate delays before and after he
learns his output.

Theorem 4.6. Suppose that the Relative-Delay Assumption holds, and each player i uses the optimal
algorithm to solve his puzzle Pi that outputs (with overwhelming probability) the correct answer.
Then, Protocol 3 securely realizes FTimed-Delay-MPC when there is an honest majority.

Proof. First, we prove that condition 2 of the security definition (Definition 4.1) is satisfied. Let Ai
denote the algorithm that party i uses to solve his time-lock puzzle, and let the time at which party
i learns his answer yi be denoted by τi = timeAi(Pi). By the security of the time-lock puzzles, there
exists an algorithm A′i that player i could use to solve the puzzle Lock(0`, 1) in time τi/ti. Moreover,
by the Relative-Delay Assumption, it holds that no player can solve the puzzle Lock(0`, 1) more
than B times faster than another player: that is, maxi(τi/ti) ≤ B ·mini(τi/ti). It follows that even
the slowest player (call him i∗) would be able to run ti/B executions of A′i∗ within time τi, for any
i.

Without loss of generality, assume that the ordering function p is the identity function. Consider
any consecutive pair of checkpoints Ci, Ci+1. These checkpoints occur at times τi and τi+1, by
definition. We have established that in time τi, player i∗ can run ti/B executions of A′i∗ , and in
time τi+1, he can run ti+1/B executions of A′i∗ . It follows that in between the two checkpoints
(i.e. in time τi+1 − τi), he can run (ti+1 − ti)/B executions of A′i∗ . Substituting in the equation
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ti+1 = (B ·G+ 1) · ti from the protocol definition, we get that player i∗ can run G · ti executions of
A′i∗ between checkpoints Ci and Ci+1. Since ti ≥ 1 for all i, this means that i∗ can run at least G
executions of A′i∗ between any consecutive pair of checkpoints. Hence, condition 2 holds.

We now prove condition 3. Let G be the algorithm that evaluates A′i∗ sequentially G times
on random inputs. It is sufficient to show that for any adversary A attacking the protocol by
corrupting a subset S ⊂ [n] of players, which outputs a view VA,j at each checkpoint j which is
the transcript of all messages that it has seen so far, there is an ideal adversary S which outputs
views VS,1, . . . ,VS,n such that for any j ∈ [n], for any distinguisher D whose run-time satisfies the
conditions in Definition 4.1, item 3,

|Pr [D(VS,j ,V1,j , . . . ,Vn,j) = 1]− Pr [D(VA,j , V1,j , . . . , Vn,j) = 1]| ≤ negl(κ).

Recall that there are n sequential output stages in the ideal functionality FTimed-Delay-MPC.
Consider an ideal adversary S attacking FTimed-Delay-MPC by corrupt a set of parties S ⊂ [n]. Let
~inp denote the vector of inputs and input randomness of the corrupt parties (note that these are
known to S). Take any i ∈ [n]. In the ideal protocol execution, S learns the following in the π(i)th

output stage:

• nothing, if i /∈ S; or

• the input value xi, the input randomness ri, and the eventual output yi if i ∈ S.

Note that as a result, S learns π(i) at output stage π(i), for each i ∈ S. The delay values t1, . . . , tn
are a fixed sequence of values independent of the parties’ inputs, so they are known to S. Thus, at
each check-point j ∈ [n], the ideal adversary S can compute n time-lock puzzles

P̂j,i =

{
Lock(yi ⊕ ri, tπ(i)) if 1 ≤ i ≤ j
Lock(ri, tπ(i)) if j < i ≤ n

.

Let the ideal adversary S output the following view at each check-point j:

VS,j = Sj( ~inp, (P̂j,1, . . . , P̂j,n)),

where Sj is the ideal adversary (for the underlying general MPC protocol) that simulates the
adversary’s jth view VA,j .

We now analyze the distribution of the puzzles P̂j,i. For the range 1 ≤ i ≤ j, the puzzle P̂j,i is
by definition identically distributed to the puzzle that is outputted to player i in the real execution
of Protocol 3. Now take any j ∈ [n], and let D be any distinguisher whose run-time satisfies the
conditions in Definition 4.1, item 3. Recall that the players are assumed to solve the time-lock
puzzles using the optimal algorithm. Hence, it follows from the security of the underlying time-lock
puzzle scheme that for any i in the range j < i ≤ n,∣∣∣Pr

[
D(Pj,i) = 1

]
− Pr

[
D(P̂j,i) = 1

]∣∣∣ ≤ negl(κ).

Since we defined the outputs of S to be VS,j = Sj( ~inp, (P̂j,1, . . . , P̂j,n)) for j ∈ [n], it follows that

|Pr [D(VS,j ,V1,j , . . . ,Vn,j) = 1]− Pr [D(VA,j , V1,j , . . . , Vn,j) = 1]| ≤ negl(κ)

as required. We conclude that Protocol 3 securely realizes FTimed-Delay-MPC clocked by A′i∗ .
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A few remarks are in order. In Protocol 3, all the parties can stop interacting as soon as all
the puzzles are outputted. When the locking algorithm Lock(d, t) has run-time that is independent
of the delay t, the run-time of Protocol 3 is also independent of the delay parameters. (This is
achievable using the [RSW96] time-lock construction, for example.) Alternatively, using a single
time-line puzzle in place of the time-lock puzzles in Protocol 3 can improve efficiency, since the time
required to generate a time-line puzzle is dependent only on the longest delay tn, whereas the time
required to generate n separate time-lock puzzles depends on the sum of all the delays, t1 + · · ·+ tn.

4.4 Time-line puzzles

We now introduce the more general, novel definition of time-line puzzles, which can be useful for
locking together many data items with different delays for a single recipient, or for locking data
for a group of people. In the latter case, it becomes a concern that computation speed will vary
between parties: indeed, the scheme will be unworkable if some parties have orders of magnitude
more computing power than others, so some assumption is required on the similarity of computing
power among parties, such as the Relative-Delay Assumption of Section 4.3.2. When a time-line
puzzle is given to a single recipient, then no additional assumptions are required.

We remark that time-line puzzles could be used (instead of a set of time-lock puzzles) to realize
Protocol 3. More generally, we present this new notion because we believe that time-line puzzles
may be of independent interest as a timed-release primitive.

In some ways, a time-line puzzle can be thought of as a primitive that packages a sequence
of time-lock puzzles together into a unified system about which we can reason and give security
guarantees. However, time-line puzzles can also provide concrete advantages over a collection of
time-lock puzzles. For example, when issuing many time-lock puzzles to one recipient, the recipient
has to run the computation for all of the puzzles in parallel: that is, he does O(m · t) computation
where m is the number of data items and t is the time-delay. If instead he gets a time-line puzzle,
he only has to run one puzzle’s worth of computation in order to unlock all the data items: that is,
he does only O(t) computation, just like for a single time-lock puzzle.

Definition 4.7 (Time-line puzzles). A time-line puzzle scheme is a family of ppt algorithms T =
{(Lockm,TimeStepm,Unlockm)}m∈N as follows:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes parameters κ ∈ N the security parameter, (d1, . . . , dm) ∈
({0, 1}`)m the data items to be locked, and (t1, . . . , tm) ∈ Nm the number of steps needed to
unlock each data item (respectively), and outputs a puzzle

P = (x, (t1, . . . , tm), (b1, . . . , bm), a) ∈ {0, 1}n × N× ({0, 1}n′′)m × {0, 1}n′

where n, n′, n′′ = poly(κ), and a can be thought of as auxiliary information.

• TimeStepm(1κ, x′, a′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information a′, and outputs a bit-string x′′ ∈ {0, 1}n.

• Unlockm(1κ, x′, b′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information b′ ∈ {0, 1}n′ , and outputs some data d′ ∈ {0, 1}`.

In terms of the “pointer chain” analogy above, solving a time-line puzzle may be thought of
as following a pointer chain where not one but many keys are placed along the chain, at different
locations t1, . . . , tm. Each key xti in the pointer chain depicted below enables the “unlocking” of the
locked data bi: for example, bi could be the encryption of the ith data item di under the key xti .
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x x1 . . . xt1−1 xt1 xt1+1 . . . xt2 . . . xtm−1 xtm

b1 b2 bm

unlock unlock unlock

Using similar notation to that defined for time-lock puzzles: for a time-line puzzle scheme T ,
let IterateTimeStepTm denote the following function:

IterateTimeStepTm(i, x, a) = TimeStepm(TimeStepm(. . . (TimeStepm(x, a), a) . . . ), a)︸ ︷︷ ︸
i

.

Define CompleteUnlockTm,i to be the following function:

CompleteUnlockTm,i((x, ti, bi, a)) = Unlockm(IterateTimeStepTm(ti, x, a), bi),

that is, the function that should be used to unlock the ith piece of data locked by a time-line puzzle
which was generated by Lockm. We now define correctness and security for time-line puzzle schemes.

Definition 4.8 (Correctness). A time-line puzzle scheme T is correct if for all m = poly(κ) and
for all i ∈ [m], it holds that

Pr
(x,~t,~b,a)←Lockm(~d,~t)

[
CompleteUnlockTi ((x, ti, bi, a)) 6= di

]
≤ negl(κ),

where κ is the security parameter, ~d = (d1, . . . , dm), and ~t = (t1, . . . , tm).

Security for time-line puzzles involves more stringent requirements than security for time-lock
puzzles. We define security in terms of two properties which must be satisfied: timing and hiding.
The timing property is very similar to the security requirement for time-lock puzzles, and gives a
guarantee about the relative amounts of time required to solve different time-lock puzzles. The
hiding property ensures (informally speaking) that the ability to unlock any given data item that is
locked in a time-line puzzle does not imply the ability to unlock any others. The security definition
(Definition 4.9, below) refers to the following security experiment.

The experiment HidingExpA,T (κ)

1. A outputs m = poly(κ) and data vectors ~d0, ~d1 ∈ ({0, 1}`)m and a time-delay vector ~t ∈ Nm.

2. The challenger samples (β1, . . . , βm) ← {0, 1}m, computes the time-line puzzle (x,~t,~b, a) =
Lockm(1κ, ((dβ1

)1, . . . , (dβm)m),~t), and sends (x, a) to A.

3. A sends a query i ∈ [m] to the challenger. The challenger responds by sending bi to A. This step
may be repeated up to m− 1 times. Let I denote the set of queries made by A.

4. A outputs i′ ∈ [m] and β′ ∈ {0, 1}.

5. The output of the experiment is 1 if i′ /∈ I and β′ = βi′ . Otherwise, the output is 0.

Definition 4.9 (Security). Let T = {(Lockm,TimeStepm,Unlockm)}m∈N be a time-line puzzle
scheme. T is secure if it satisfies the following two properties.
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• Timing: For all m = poly(κ) and ~d, ~d′ ∈ ({0, 1}`)m and ~t = (t1, . . . , tm), if there exists an
adversary A that solves any one of the puzzles defined by the time-line, that is,

Pr
P←Lockm(~d,~t)

[A(P ) = di] = ε for some non-negligible ε and some i ∈ [m],

then for all j ∈ [ti] and all ~t′ ∈ [tm]m, there exists an adversary A
j,~t′

such that

Pr
P ′←Lockm(~d′,~t′)

[A
j,~t′

(P ′) = dj ] ≥ 1− negl(κ), and

Pr
P←Lockm(~d,~t)

P ′←Lockm(~d′,~t′)

[timeA(P ) ≥ (t′j/ti) · timeA
j,~t′

(P ′) | A(Lockm(~d,~t)) = di] ≥ 1− negl(κ).

• Hiding: For all ppt adversaries A, it holds that

Pr[HidingExpA,T (κ) = 1] ≤ 1/2 + negl(κ).

In Appendix C, we describe and prove the security of two constructions of time-line puzzle
schemes. One of these schemes is based on a concrete assumption (specifically, on the sequentiality
of modular exponentiation, like the time-lock puzzles of [RSW96]), whereas the other is based on
the existence of a “black-box” inherently-sequential hash function.
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A MPC security definition

Ideal functionality FMPC

In the ideal model, a trusted third party T is given the inputs, computes the function f on the inputs, and
outputs to each player i his output yi. In addition, we model an ideal process adversary S who attacks the
protocol by corrupting players in the ideal setting.

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; and f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed.

Private parameters. Each player i ∈ [n] holds a private input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T .

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn).

3. Output. For each i ∈ [n], T sends the output value yi to party i.

4. Output of views. After the protocol terminates, each party produces an output, as follows. Each
uncorrupted party i outputs yi if he has received his output, or ⊥ if not. Each corrupted party outputs
⊥. Additionally, the adversary S outputs an arbitrary function of the information that he has learned
during the execution of the ideal protocol.
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Let the output of party i be denoted by Vi, and let the view outputted by S be denoted by VS . Let V ideal
MPC

denote the collection of all the views:

V ideal
MPC = (VS ,V1, . . . ,Vn) .

Definition A.1 (Security). A multi-party protocol F is said to securely realize FMPC if for any
ppt adversary A attacking the protocol F by corrupting a subset of players S ⊂ [n], there is a ppt
ideal adversary S which, attacking FMPC by corrupting the same subset S of players, can output a
view VS such that

VA
c
≈ VS ,

where VA is the view outputted by the real-world adversary A (this may be an arbitrary function of
the information that A learned in the protocol execution).

B Secret-sharing schemes

We recall the standard definition of a secret-sharing scheme.

Definition B.1 (Secret sharing scheme [Sha79]). A k-out-of-N secret sharing scheme is a pair of
algorithms (Share,Reconstruct) as follows. Share takes as input a secret value s and outputs a set
of shares S = {s1, . . . , sN} such that the following two properties hold.

• Correctness: For any subset S′ ⊆ S of size |S′| ≥ k, it holds that Reconstruct(S′) = s, and

• Privacy: For any subset S′ ⊆ S of size |S′| < k, it holds that H(s) = H(s|S′), where H
denotes the binary entropy function.

Reconstruct takes as input a (sub)set S′ of shares and outputs:

Reconstruct(S′) =

{
⊥ if |S′| < k

s if ∃S s.t. S′ ⊆ S and Share(s) = S and |S′| ≥ k
.

C Constructions of time-line puzzles

C.1 Black-box construction from inherently-sequential hash functions

Definition C.1 (Inherently-sequential hash function). Let Hκ = {hs : {0, 1}κ → {0, 1}κ}k∈{0,1}n
for n = poly(κ) be a family of functions and suppose that evaluating hs(r) for r ← {0, 1}κ takes
time Ω(T ). Hκ is said to be inherently-sequential if evaluating hts(r) for s ← {0, 1}n, r ← {0, 1}κ
takes time Ω(t · T ), and the output of hts(r) is pseudorandom.

The time-line puzzle construction in this section relies on the following assumption about the
existence of inherently-sequential functions.

Assumption 1. There exists a family of functions

H̃κ = {h̃s : {0, 1}κ → {0, 1}κ}s∈{0,1}n

which is inherently-sequential (where n = poly(κ)).
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Definition C.2. BB-TimeLinePuzzle is a time-line puzzle defined as follows, where H̃κ is the
inherently-sequential hash function family from Assumption 1:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes input data (d1, . . . , dm) ∈ {0, 1}κ, samples random
values s← {0, 1}n, x← {0, 1}κ, and outputs the puzzle

P =
(
x, (t1, . . . , tm), s,

(
d1 ⊕ h̃t1s (x), . . . , dm ⊕ h̃tms (x)

))
.

• TimeStepm(1κ, i, x′, a′) outputs h̃a′(x′).

• Unlockm(1κ, x′, b′) outputs x′ ⊕ b′.

It is clear that BB-TimeLinePuzzle satisfies correctness, so we proceed to prove security.

Theorem C.3. If Assumption 1 holds, then BB-TimeLinePuzzle is a secure time-line puzzle.

Proof. Given a time-line puzzle, in order to correctly output a piece of locked data di, the adversary
A must compute the associated mask h̃tis (x). This is because

• all components of the puzzle apart from the masked value di ⊕ h̃tis (x) are independent of the
locked data di, and

• the mask h̃tis (x) is pseudorandom (by Assumption 1), so the masked value di ⊕ h̃tis (x) is
indistinguishable from a truly random value without knowledge of the mask.

Moreover, by Assumption 1, since H̃κ is an inherently-sequential function family, it holds that there
is no (asympotically) more efficient way for a ppt adversary to compute h̃tis (x) than to sequentially
compute h̃s for ti iterations. It follows that BB-TimeLinePuzzle is a secure time-line puzzle.

C.2 Concrete construction based on modular exponentiation

In this subsection we present an alternative construction quite similar in structure to the above, but
based on a concrete hardness assumption. Note that the [RSW96] time-lock puzzle construction
was also based on this hardness assumption, and our time-line puzzle may be viewed as a natural
“extension” of their construction.

Assumption 2. Let RSAκ be the distribution generated as follows: sample two κ-bit primes p, q uni-
formly at random and output N = pq. The family of functions Hsquare = {hN : ZN → ZN}N←RSAκ,
where the index N is drawn from distribution RSA and hN (x) = x2 mod N , is inherently-sequential.

Definition C.4. Square-TimeLinePuzzle is a time-line puzzle defined as follows:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes input data (d1, . . . , dm) ∈ {0, 1}κ, samples random
κ-bit primes p, q, sets N = pq, and outputs the puzzle

P =
(
x, (t1, . . . , tm), N,

(
d1 ⊕ ht1N (x), . . . , dm ⊕ htmN (x)

))
.

• TimeStepm(1κ, i, x′, a′) outputs ha′(x′) = x′2 mod a′.

• Unlockm(1κ, x′, b′) outputs x′ ⊕ b′.

Again, it is clear that Square-TimeLinePuzzle satisfies correctness, so we proceed to prove security.
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Theorem C.5. If Assumption 2 holds, Square-TimeLinePuzzle is a secure time-line puzzle.

Proof. This follows from Assumption 2 in exactly the same way as Theorem C.3 follows from
Assumption 1, so we refer the reader to the proof of Theorem C.3.

An advantage of this construction over BB-TimeLinePuzzle is that the Lock algorithm can be
much more efficient. In the case of black-box inherently-sequential hash functions, we can only
assume that the values h̃ts(x) (which are XORed with the data values by the Lock algorithm) are
computed by sequentially evaluating h̃s for t iterations – that is, there is a linear dependence on
t. However, Lock can implemented much faster with the Square-TimeLinePuzzle construction, as
follows. Since p, q are generated by (and therefore, available to) the Lock algorithm, the Lock
algorithm can efficiently compute φ(N). Then, htN (x) can be computed very efficiently by first
computing e = 2t mod ϕ(N), then computing htN (x) = xe mod N . Exponentiation (say, by
squaring) has only a logarithmic dependence on the security parameter.

Finally, we note that although both of the time-line puzzle constructions presented here lock
κ bits of data per puzzle (for security parameter κ), this is not at all a necessary restriction.
Using encryption, it is straightforwardly possible to lock much larger amounts of data for any given
parameter sizes of the time-line puzzles presented here: for example, one can encrypt the data as
Enck(d) using a secure secret-key encryption scheme, then use the given time-line puzzle schemes to
lock the key k (which is much smaller than d) under which the data is encrypted. Such a scheme,
with the additional encryption step, would be much more suitable for realistic use.
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