
1

Time-to-Contact Control for Safety and Reliability
of Self-driving Cars
Liang Wanga and Berthold K.P. Hornb∗

Abstract—For safety and reliability of self-driving cars, their
control system must use the relative velocity of vehicles. The
relative velocity can be estimated by differentiating the measured
distance between cars with respect to time. However, inevitable
measurement noise in the distance measurements will be ampli-
fied by the derivative operation. In this paper, we provide, as
an alternative, a time-to-contact based approach to estimating
the relative velocity, which can also be fused with measurements
from other sensors, if desired. The system is implemented on
Android smart phones running in real-time.

Index Terms—Self-driving cars, car-following control, time to
contact, machine vision, android smartphones.

I. INTRODUCTION

W ITH the rapid development of sensors and wireless
communications, driver assistance systems and self-

driving cars come closer and closer to reality. Such systems
can take into account more information about the environment
of the car than a human driver can, and thus show promise
of yielding attractive improvements relative to todays’ traffic
situation [1], [2], [3]. One problem that remains of interest
is how to control a car based on the information from the
sensors. Another interesting question is how much self-driving
cars can improve the traffic situation, e.g. reduce the number of
collisions, stabilize the traffic flow, and increase the throughput
of a highway. In order to control a car automatically, the
distance between the controlled car and the leading car needs
to be available to the control system. However, this information
is not enough to drive a car safely and stably. Human drivers
also use information about the relative velocity of the leading
car with respect to their car. We have shown that the relative-
velocity based control term is important for stability [1],
[3]. Thus, how to obtain stable and reliable measurements of
relative velocity is an important issue for self-driving cars.

Relative velocity can be easily estimated by taking the
time derivative of the measured distance to the leading car.
However, any small noise in the distance measurement will be
amplified by taking the time derivative. Thus, some other, more
reliable, approach to measuring relative velocity is needed.
Then, if multiple sources of information are available, their
outputs can be fused using e.g. a Kalman filter, in order to
obtain an even more accurate and reliable estimate.

In this paper, we provide a machine vision based approach
to estimating the relative velocity. As is well known, at least

a Computer Science and Artificial Intelligence Laboratory, MIT, Cam-
bridge, MA 02139, USA, e-mail: wangliang@csail.mit.edu

b Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA 02139, USA, e-mail: bkph@csail.mit.edu

∗ The corresponding author is Berthold K.P. Horn. This work is sponsored
by Toyota Motor Corporation under grant LP-C000765-SR.

two calibrated cameras are needed to obtain both depth and
motion information about objects in the scene (using binocular
stereo [4]). Finding distance and velocity monocularly is
difficult. However, the ratio of distance to velocity — which
is known as the time to contact (TTC) [5] — can be
obtained relatively simply monocularly. The relative speed of
the vehicles can then be calculated directly by multiplication
of the distance measurement with the inverse of the TTC (Note
that the natural output of the TTC algorithm below is the
inverse of the TTC). If desired, the output of this new method
for estimating the relative velocity can then be fused with
the estimate obtained by taking the derivative of the distance.
We implement the TTC algorithm (running in real time) on
Android smartphones. The whole system has been tested on
several smart phones (e.g. Samsung Note 3, LG Nexus 4,
Motorola Nexus 6 and Huawei Nexus 6P).

II. STABILITY CONDITION OF CAR-FOLLOWING CONTROL

In this section, we show why relative velocity information
is important for controlling self-driving cars. Suppose a line
of cars run on a road (See Fig. 1). The acceleration command
an of car n is based only on its local measurements, i.e.

an = kd(xn−1 − xn − l − vnT) + kv(vn−1 − vn) (1)

where xn and vn denote the position and speed of car n,
l denotes the car length, T is known as the reaction time,
kd ≥ 0 and kv ≥ 0 are known as the proportional gain and
derivative gain, respectively [1].

Fig. 1. Illustration of the car-following control. The blocks with “L” and “C”
denote the leading car and current car. Only local measurements are used in
car-following control

Note that an = ẍn and vn = ẋn. Thus, eq. (1) leads to the
following ordinary differential equation (ODE)

ẍn + (kv + T)ẋn + kd(xn + l) = kvẋn−1 + kdxn−1 (2)

Taking Laplace transform of both sides in eq. (2), we find:

H(s) =
Xn

Xn−1
=

kvs+ kd
s2 + (kv + T)s+ kd

(3)

2

For stability, we must have |H(jω)| ≤ 1 for sinusoidal
excitation of any frequency ω (where s = jω). Note that

|H(jω)|2 =
k2d + k2vω

2

(kd − ω2)2 + (kv + T)2ω2
(4)

The stability condition |H(jω)| ≤ 1 corresponds then to k2d +
k2vω

2 ≤ (kd − ω2)2 + (kv + T)2ω2 for all ω2 < ∞. That is,

kdT
2 + 2kvT ≥ 2 (5)

For human drivers, the “reaction time” T is usually taken
to be about 1 second [1]. Without relative velocity control
(i.e. kv = 0), kd will be too large to implement (and would
lead to accelerations and decelerations quite unacceptable to
passengers). The only way of setting reasonable gains, i.e.
considerably less than one, is to use non-zero kv . Further, for
self-driving cars, T could be much smaller, e.g. 0.5 sec. In
that case, the coefficient for kv (i.e. 2T), is much larger than
the coefficient for kd (i.e. T 2), so that stable operation can
be achieved more esasily using a large gain on the relative
velocity term. In summary, the relative-velocity control term
is important for self-driving cars.

The distance dn = xn−1 − xn − l can be measured directly
using e.g Radar or Lidar. However, if the relative velocity
rn = vn−1 − vn is estimated by taking the derivative of
dn directly, i.e. rn = d/dt(dn), then the noise in dn will
be amplified. If, for example, we model small components
of perturbations in the measurements as waves of the form
ϵ sin(ωt), then the derivative will be corrupted by ωϵ cos(ωt),
and so higher frequency components of measurement noise
will be amplified a lot1. We conclude that it is non-trivial to
obtain a reliable measurement of relative velocity for use in
control of self-driving cars.

III. TIME TO CONTACT

As an object approaches you, its image on your retina will
expand; conversely, as it moves further away, the image will
become smaller and smaller. This observation gives us some
intuition into how one might estimate the motion of an object
from its time-varying image. As is well known, at least two
calibrated cameras are needed to obtain the depth of objects
in the scene. Thus, the absolute motion of the object, i.e.
the speed, can not be estimated using just a single camera.
However, the ratio of the object’s depth and its speed, which
is known as time to contact (TTC), can be estimated using a
single camera [5]. Note that the distance dn can be obtained
reliably using some other sensor like Radar or Lidar. Thus, rn
can be estimated well by dnC, where C is the 1/TTC.

A. Passive navigation

We chose to use the camera coordinate system shown in Fig.
2. The origin is at the pin-hole of the camera, and the Z axis is
along the optical axis of the camera. The X and Y directions
in 3-D are aligned with the x and y axes of the image sensor
[4]. Suppose there is a planar surface perpendicular to the

1We could attempt to limit this effect by approximate low pass filtering the
result, but that would introduce latency or time delays, which are, of course,
not good for stability of control systems.

Fig. 2. We use the camera coordinate system, in which the Z axis is along
the optical axis of the camera. A planner surface is perpendicular to the Z
axis, and moving at the speed (U,V,W). The TTC is Z/(-W).

Z axis, and moving at the speed (U, V,W). The position of
the image (x, y) of the point (X,Y, Z) is determined by the
perspective projection equation [4], i.e.

x = f
X

Z
and y = f

Y

Z
(6)

The motion (U, V,W) and the depth Z will generate move-
ments of the image pattern, which is called the optical flow
(u, v) [6]. The relationship between motion in the world and
motion of corresponding image points is given by [7]:

u =
Uf − xW

Z
and v =

V f − yW

Z
(7)

The problem of estimating motion (U, V,W) and depth
Z(x, y) from (u, v) is known as passive navigation in the
machine vision field [7], [8], [9]. Even for the very simple
case shown in Fig. 2, there is no unique solution [4], [7].

Note that the time to contact (TTC) is Z/(−W). Also, the
focus of expansion (FOE), denoted by (x0, y0) is [10]:

x0 = f
U

W
and y0 = f

V

W
(8)

Thus, eq. (7) can be written as:

u = (x− x0)C and v = (y − y0)C (9)

where C = 1/TTC. The three parameters (x0, y0) and C can
be estimated from the given optical flow (u, v).

B. Optical flow

The problem of estimating (u, v) from the changes in
the image pattern — which is described by spatial variation
(Ex, Ey) and temporal variation Et of an image sequence
E(x, y, t) — is known as the optical flow problem [6]. Here,
we face a very special case in which (u, v) is determined
by only 3 parameters. Thus, it is more efficient to solve this
problem using the optical flow constraint directly, i.e.

uEx + vEy + Et = 0 (10)

Substituting (9), we find

ExA+ EyB +GC + Et = 0 (11)

3

where G = xEx + yEy , A = x0C and B = y0C. Note
that here Ex, Ey, Et and G are calculated from the image
sequence, while the parameters A, B, C are the unknowns to
be determined.

C. Least-square solution

We can solve for A, B and C in (11) by a least squares
method. That is, we minimize the following objective function

min
A,B,C

∫∫
(ExA+ EyB +GC + Et)

2
dx dy (12)

That coincides with solving a 3× 3 linear system [5]: a b c
b d e
c e g

 A
B
C

 = −

 p
q
r

 (13)

with a =
∫∫

E2
xdxdy, b =

∫∫
ExEydxdy, c =

∫∫
ExGdxdy,

d =
∫∫

E2
ydxdy, e =

∫∫
EyGdxdy, g =

∫∫
G2dxdy

p =
∫∫

ExEtdxdy, q =
∫∫

EyEtdxdy and r =
∫∫

GEtdxdy.
Note that only multiplication and accumulation operations
are involved in generating the nine quantities that appear
in eq. (13), and that we can solve for (A,B,C) analyt-
ically. Thus, not surprisingly, this least-square approach is
much faster than e.g. some method based on feature-detection
and matching. If desired, the FOE can be calculated using
(x0, y0) = (A/C,B/C). The time to contact is 1/C. However,
in our application, we use C directly. That is, the relative
velocity is rn = dnC. The remaining work is to implement
the algorithm outlined above.

IV. ANDROID-SYSTEM ORIENTED IMPLEMENTATION

We implement the TTC algorithm (in JAVA) on Android
smartphones. We describe the implementation in detail below.
Moreover, In order to stabilize the estimation of TTC and FOE,
a recursive filter is also used.

A. System specification

The Android TTC code contains three JAVA classes:
1) TTCCalculator: it extends the class “Activity”, and cal-

culate TTC using image frame data.
2) CameraPreview: it extends the class “SurfaceView”, and

displays the previewed image from the camera.
3) DrawOnTop: it extends the class “View”, and shows the

intermediate result for TTC calculation.
The sampling rate is set at 10 frame per second (fps). Thus
the time interval is ∆t = 0.1 sec. The resolution of the
image frame is set to 720 × 1080 pixels. The image frame
is downsampled by 4, i.e. to a 180× 270 matrix, as the input
data E. Fig. 3 shows some testing results running on Huawei
Nexus 6P. The first four subimages in the top-left corner of Fig.
3(a) are the downsampled E, Et, Ex, Ey , while the last two
show the pixels’ motion (in x and y direction, respectively)
due to the phone’s angular velocity — which is measured by
the phone’s gyroscope. The three “bars” in Fig. 3 show the
computed parameters A, B, C, which indicate the motion (of
the camera) in the X , Y and Z directions. Red means positive,
while green means negative.

(a) The third red “bar” indicates that the camera is approaching

(b) The third green “bar” indicates that the camera is leaving

Fig. 3. Some results on Nexus 6P. The top-left corner shows intermediate
computational results. The three “bars” indicates the motions.

B. Two-registers recursive filtering

Note that the speed of both the current car and the leading
car are continuous (velocity cannot change instantaneously;
in fact, it’s rate of change is limited by the maximum ac-
celerations and decelerations possible for the vehicle). Thus,
we expect the TTC (1/C) to also change smoothly. Due to
noise in the image measurements, the estimates of C may be
somewhat noisy also. In order to suppress noise we can use
an approximate low-pass filter, e.g. Ck = αCk+(1−α)Ck−1

(with 0 < α < 1), to smooth the TTC output. One more
register is needed to save the previous output Ck−1. The above
is a simple finite impulse response (FIR) smoothing filter. To
obtain better filtering we would have to remember additional
old values. A more efficient approach is to use:

Ck = αCk + (1− α)Ck−1 (14)

Only two registers are used. However, all previous outputs are
used recursively. That is, eq. (14) can be rewritten as:

Ck = (1− α)kC0 +
k−1∑
l=0

α(1− α)lCk−l (15)

This implements an infinite impulse response (IIR) smoothing
filter. Here, the weights decay exponentially with time. This
approach emphasizes new points over old ones, and does not
require keeping a complete history of old values.

V. EXPERIMENTS

We use a controllable robot car to test the TTC algorithm.
Fig. 4 shows the experimental environment. The robot car is

4

Fig. 4. The experimental environment. A smart phone is mounted on a
controllable robot. The result on the screen is recorded on a laptop computer.

controlled to move at about 40 cm/sec. The screen of the smart
phone is recorded by Android Studio IDE. Fig. 5 shows some
experimental results. Fig. 5(a) is one frame from the video of
recorded results. Fig. 5(b) (2 sec. after Fig. 5(a)) is a frame
when the robot was approaching the boxes. The upright bar
on the right is colored red to indicate a dangerous condition
(small positive TTC). Fig. 5(c) (4 sec. after Fig. 5(b)) is a
frame when the robot was moving away from the boxes. The
downward bar on the right is colored green to indicate a safe
situation (negative TTC).

VI. CONCLUSION

For safety and reliability of self-driving cars, relative ve-
locity control is important. We could estimate the relative
velocity by differentiating the distance. However, any noise
in the distance measurement will be amplified by taking
time derivative. Thus, relative velocity estimates by other
approaches are need to generate more reliable and accurate
measurements. In this paper, we provide a machine vision
based approach to estimating the relative velocity. We first
estimate the time to contact (TTC), and then calculate the
relative velocity by multiplying the distance measurement by
the inverse of the TTC. The whole system is implemented to
run on Android smart phones in real time (See Fig. 4).

The TTC estimated from a time-varyiung image is not very
accurate unless considerable filtering is used [5]. However,
it provide valuable information to fuse with other relative
velocity measurements. Moreover, TTC provides an important
criterion for the safety of cars (and robots). If the TTC is
small and positive, then a potentially dangerous situation may
be developing and the system may need to enter an alarm state.

Vibration of the camera mounted in the car may cause the
images to be smeared, which will adversly affect the quality of
the estimated TTC. The gyroscope sensor in the smartphone
provide a measure of the camera’s rotational speed, which
can be used to compensate for the image motion in the TTC
calculation. This will be our future work.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of Toy-
ota Motor Corporation (under grant LP-C000765-SR). We also
thank Colin Bonatti, Byung Gu Cho, Daniel Lopez Martinez
and Janille Maragh for the Android system implementation.

(a) One frame in the recorded result

(b) The car is approaching the boxes

(c) The car is leaving the boxes

Fig. 5. The result on Nexus 6P. (a) is one “reference” frame. (b) is a frame
while approaching the boxes. (c) is another frame while away from the boxes.

REFERENCES

[1] B. K. P. Horn, “Suppressing traffic flow instabilities,” Intelligent Trans-
portation Systems-(ITSC), 2013 International IEEE Conference on.

[2] T. Baran and B. K. P. Horn, “A Robust Signal-Flow Architecture For
Cooperative Vehicle Density Control,” ICASSP (2013).

[3] L. Wang, B. K. P. Horn and G. Strang, “Eigenvalue and Eigenvector
Analysis of Stability for a Line of Traffic,” Studies in Applied Mathe-
matics, vol.138, January 2017.

[4] B. K. P. Horn, Robot Vision. MIT Press, Massachusetts, 1986.
[5] B. K. P. Horn, Y. Fang, and I. Masaki, “Time to contact relative to a

planar surface,” IEEE intelligent vehicles symposium. 2007.
[6] B. K.P. Horn and Brian G. Schunck, “Determining optical flow,” Artificial

intelligence 17.1-3 (1981): 185-203.
[7] A. R. Bruss and B. K. P. Horn, “Passive navigation,” Computer Vision,

Graphics, and Image Processing 21.1 (1983): 3-20.
[8] B. K. P. Horn, and E. J. Weldon, “Direct methods for recovering motion,”

International Journal of Computer Vision 2.1 (1988): 51-76.
[9] N. Shahriar and B. K. P. Horn, “Direct passive navigation.” IEEE Trans.

on Pattern Analysis and Machine Intelligence (1987): 168-176.
[10] I.S. McQuirk, B.K.P. Horn, H.S. Lee and J.L. Wyatt, “Estimating the

Focus of Expansion in Analog VLSI,” International Journal of Computer
Vision, 28.3, (1998): pp. 261-?77.

View publication statsView publication stats

https://www.researchgate.net/publication/321238273

