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Abstract

We introduce a method for registration of brain images acquired in clinical settings. The algorithm 

relies on three-dimensional patches in a discrete registration framework to estimate 

correspondences. Clinical images present significant challenges for computational analysis. Fast 

acquisition often results in images with sparse slices, severe artifacts, and variable fields of view. 

Yet, large clinical datasets hold a wealth of clinically relevant information. Despite significant 

progress in image registration, most algorithms make strong assumptions about the continuity of 

image data, failing when presented with clinical images that violate these assumptions. In this 

paper, we demonstrate a non-rigid registration method for aligning such images. The method 

explicitly models the sparsely available image information to achieve robust registration. We 

demonstrate the algorithm on clinical images of stroke patients. The proposed method outperforms 

state of the art registration algorithms and avoids catastrophic failures often caused by these 

images. We provide a freely available open source implementation of the algorithm.

1 Introduction

We propose a robust non-linear registration method for images with sparse slice acquisition. 

Medical image registration is a fundamental step in population studies and atlas-based 

analyses, and has been a topic of active research for many years. Most registration 

algorithms require research quality images with sufficiently high resolution. Unfortunately 

in many clinical settings the acquired images have extremely sparse slices. The proposed 

method enables explicit modeling of spatially sparse images and facilitates analyses in a 

large class of image data. Such analyses are currently unavailable to clinical research due to 

challenges in alignment.

Throughout this paper we use the motivating example of a clinical imaging study of stroke 

patients where thousands of brain MR scans are acquired within 48 h of stroke onset. The in-

plane resolution in these images is 0.85 mm, while the slice spacing is 5–7 mm, as illustrated 

in Fig. 1. The study aims to quantify the white matter disease burden and to analyze 

population trends, necessitating non-linear registration to a common coordinate frame, and 

segmentation of healthy tissue and pathology near the ventricles [13]. Analyses of such 

images are hindered by the wide slice spacing, presenting significant challenges for basic 
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tasks such as registration, skull stripping, and bias correction. In this work, we focus on 

registration.

Non-linear registration methods developed for high resolution images often make continuity 

and smoothness assumptions [7] that are violated by clinically acquired images, as 

illustrated in Fig. 1. Specifically, most algorithms operate on image gradients. However, in 

volumes with wide slice spacing, the volume is no longer smooth, and the anatomical 

structure may change dramatically between subsequent slices. While for some images the 

registration may be adequate, in many cases it fails catastrophically. Some methods attempt 

to directly address this problem by designing processing pipelines and tuning respective 

parameters specific to a particular dataset [14]. Instead, we explicitly account for the sparse 

nature of the slices and avoid anatomical continuity assumptions.

Feature-based methods [8,11,15] present an alternative approach to voxel-wise registration 

algorithms by extracting sparse features or region summaries and using these features to 

guide the registration. Point set representations [3] use a representative selection of voxels to 

direct the registration. Unfortunately, the spatial sparseness of clinical images makes it 

difficult to extract meaningful and consistent features or point sets.

Our algorithm builds on discrete registration methods [5,6] that have been demonstrated 

recently as an alternative to gradient-based methods. The discrete registration approach 

models voxels of a moving image as nodes of a discrete Markov Random Field (MRF). Each 

node can move to a pre-specified number of voxels in each direction. Node potentials 

capture the agreement of intensities between the voxel in the moving image and the target 

voxel in the fixed image. Neighbouring voxels are encouraged to move together through 

pairwise potentials. The optimal registration is obtained via minimizing the energy of the 

MRF [5,6,12]. Since the same optimization can be used for a wide variety of potentials, the 

framework provides significant flexibility in adapting these terms to specific tasks. Discrete 

registration algorithms typically achieve similar results to state of the art gradient-based 

methods for research quality high resolution scans, and offer an alternative framework when 

image gradients cannot be computed reliably.

To address the challenges of clinical data, we design a general and robust patch-based 

discrete registration algorithm that captures the sparse structure characteristic of our 

problem. While most methods use single voxels to asses data similarity, we design an 

appropriate 3D patch-based similarity function surrounding each voxel. We demonstrate our 

approach on real clinical data from a study of stroke.

While a large number of software packages is available for continuous registration, very few 

tools have been developed for discrete registration, and are generally task-specific or 

proprietary [5,6]. To motivate and facilitate further research, we provide a flexible, fast, and 

open-source implementation of discrete deformable registration, and provide several voxel-

based and patch-based data similarity functions at http://github.com/adalca/

patchRegistration.
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2 Methods

We let Ω be the set of all spatial locations, and aim to non-rigidly register a moving image M 
= {Mx}x∊Ω to a fixed image F = {Fx}x∊Ω. For simplicity we assume both images have been 

interpolated to isotropic resolution and are of the same size. In our experiments we use 

affine registration with linear interpolation to align images into a common space as a pre-

processing step. Although the method we develop below applies to the registration of data 

with any spatially missing data, in this paper we focus on registering a moving image with 

sparse slice acquisition to a high resolution atlas. In this section, we first review discrete 

deformable registration, then describe our treatment of sparse data within this framework, 

and finally discuss important implementation details.

2.1 Discrete Deformable Registration

Discrete registration is often modeled as a labeling problem using a Markov Random Field 

(MRF) [5,6]. Control points x ∊ Ω of the moving image M are viewed as nodes arranged on 

a grid. For each node x, a finite set of states x = {dx} represent discrete displacements dx ∊ 
ℤ3 that node x can take. For example, a node could be allowed to move at most one voxel in 

each direction, resulting in 27 possible states.

The node potential Φx(dx) measures the quality of each displacement dx, most often in terms 

of similarity of image intensities M(x) and F(x + dx). The pairwise potential Ψx,x′(dx, dx′) 

encourages similar displacements for neighbouring nodes x and x′. Registration aims to find 

the optimal displacement field by minimizing the MRF energy function

(1)

where λ is a parameter that trades off between the data and smoothness terms, and (x) is 

the set of neighbors of node x. While efficient MRF optimization methods have been a topic 

of active research [4,5,9], we find that using Loopy Belief Propagation [12] is sufficiently 

fast and accurate for our application.

2.2 Patch Based Discrete Registration

The node potential is most often based on a difference between image intensities M(x) and 

F(x + dx):

(2)

In clinical datasets, where known voxels are sparse, we instead use patches to aggregate 

information from available voxels.
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We introduce masks WM = {WMx ∊ [0, 1]}x∊Ω and WF = {WFx ∊ [0, 1]}x∊Ω that define the 

confidence in image intensities for each voxel. For example, in our clinical dataset, the 

moving weight mask describes the original locations of the original high-resolution slices in 

the interpolated clinical image (Fig. 2). Mask values vary between 0 and 1 due to 

interpolation effects of the affine transformations of the moving image M and the fixed 

image F.

All patches in our method share the same shape and size. We let {I(x + z)}z∊Ωx define a 

patch of image I centered at voxel x with patch footprint Ωx. We define the unary potential 

as the weighted patch distance

(3)

where

(4)

The classical node potential (2) uses a single pair of potentially interpolated intensities at 

M(x) and F(x + dx), forcing implementations to either limit control points to only available 

high-resolution planes, or use interpolated intensities to drive the registration, resulting in 

sub-optimal alignment. Instead, our patch-based potential (3) relies more heavily on voxels 

whose intensity was observed directly and downweights the interpolated values (Fig. 2). 

This approach provides a robust measure of the quality of displacement dx for voxel x, 

capturing context for voxel x using known data.

We do not explicitly model slice thickness [10], as in many clinical datasets the slice 

thickness is unknown or varies by site, scanner or acquisition. Instead, we simply treat the 

original data as thin high resolution planes. When known, slice thickness can be easily 

modeled by modifying the sampling mask W.

We use the ℓ2 distance as the pairwise potential:

(5)

Once Φ(dx) and  are defined and the parameter λ is set, we seek the optimal MRF 

labeling to obtain the desired displacement of each image voxel.

2.3 Implementation

We implemented a multi-resolution variant of the discrete registration algorithm described 

above. We prepare the moving clinical images at different scales by first down-sampling the 
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original acquired slices for each scale, and then interpolating the data between slices. This 

approach maximizes the use of voxels with known intensity values.

To improve runtime, we implement several approximations. Specifically, we limit the 

number of states for each node to the top few states based on unary potentials, and remove 

nodes from the MRF based on the variance among their state potentials. Both pruning steps 

are controlled by model parameters. At the end of the registration step at each scale, the 

displacement field is linearly interpolated between nodes. We optimize parameter settings on 

a held-out subset of images described below. In this experiment, we varied the parameter λ 
to trade off the importance of the data and smoothness terms, as well as the spacing of the 

control points.

We use Loopy Belief Propagation to minimize energy function (1). When run on a single 

quad-code 2.7 GHz, 32 Gb of RAM registering two images takes approximately 120 min. 

Our implementation accepts for any patch definition and weight pattern and includes several 

built-in patch similarities. Developed to be highly modifiable and extensible, the code is 

freely available at http://github. com/adalca/patchRegistration.

3 Results

We demonstrate the performance of our algorithm on clinically acquired stroke images. The 

stroke study aims to quantify periventricular white matter disease burden, requiring 

particularly accurate registration around the ventricles.

Data and Processing

To evaluate the algorithm, we randomly selected 100 T2-FLAIR brain MR scans from the 

stroke patient cohort for evaluation. Our clinical scans are severely anisotropic (0.85 × 0.85 

mm in-plane, slice separation of 6mm, variable TR and TE). All subjects are linearly 

interpolated to isotropic resolution and intensity corrected by matching the intensity of the 

white matter across subjects. Finally, the subjects are affinely registered to a T2-FLAIR 

atlas. All subjects have manual delineation of the ventricles created for this evaluation.

Parameters

We choose patch registration parameters found to be optimal in a subset of 18 held-out 

scans, separate from those used in the experiments. We varied the parameter λ and the 

spacing of the control points. We set λ = 0.1 and an optimal grid spacing of 3 mm, but find 

little variation in the results when using wider spacing. At each scale, each node can only 

move up to two voxels in each dimension. We keep the top 50 states (out of 125 possible 

states) for each node, and keep the top 50 % of nodes. We use a patch size large enough to 

include at least two observed slices in every patch, which for our experiments is 9 mm in the 

highest resolution scale and 3 mm in the lowest.

Experiments

We register each scan in the evaluation set to the atlas. We evaluate registrations by 

propagating manual segmentations of the ventricles from the atlas to each subject through 
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resulting warps and measuring volume overlap via the Dice metric [2]. We use the state of 

the art ANTs registration algorithm [1] as the baseline method for evaluation. Throughout 

our work with the clinical study, we found ANTs to be the most consistent at tackling the 

sparse data among all existing algorithms. We run ANTs with the default parameters, as well 

as parameters we identified by optimizing ANTs for stroke clinical images.

Patch based registration outperforms substantially the baseline ANTs algorithms in most 

subjects. Since the Dice measure varies significantly among subjects due to variable 

ventricle shape and cerebral pathology, we also report statistics of patch based registration 

improvement over ANTs results (Fig. 3). Patch based registration yields an improved Dice 

score in 92 % of the subjects compared to optimized ANTs results, with a mean 

improvement of 4.1 dice points. It also yields significant improvement (more than 5 Dice 

points) in 31 % of the subjects where ANTs often resulted in serious registration errors (Fig. 

4). Overall, the presented algorithm shows consistent improvement across the dataset.

4 Conclusion

Clinical images present significant challenges for many computational analyses, yet hold the 

wealth of clinically relevant information. We combine three- dimensional patch information 

with the discrete registration framework to robustly drive registration of such images. The 

three-dimensional patches explicitly model the sparsely available image information to 

achieve robust registration. We demonstrate the algorithm on images with sparsely acquired 

slices in clinical scans of stroke patients. The proposed method outperforms the state of the 

art registration algorithms and avoids significant failures often observed in the alignment of 

these images. Our implementation is freely available and accepts images of varying 

resolution.
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Fig. 1. 
An example clinical T2-FLAIR MRI of a stroke patient in axial (left), sagittal (center) and 

coronal (right) views. The slice spacing is much larger than is usually encountered in 

research scans, making registration a challenging task.
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Fig. 2. 
Overview of the information captured by the unary potentials using 3D patches.
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Fig. 3. 
Results on the stroke clinical dataset. For each setting, the measurements are shown in gray. 

The red line and cross represent the median and mean value respectively, box edges show 

25th and 75th percentiles, and black whiskers show 10th and 90th percentiles. Left: 

Ventricle Dice measure for the ANTs algorithm with default and optimized parameters, and 

the patch based method. Right: Dice improvement achieved by patch based registration 

compared to ANTs, for both default and optimized parameters, respectively. Our method 

improves registration for all subjects when compared to default ANTs settings, and for 92 % 

of the subjects when compared to optimized ANTs settings. (Color figure online)
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Fig. 4. 
Examples of serious registration failures of the ANTs algorithm. For the first two subjects, 

that patch based registration recovers successful registrations. For the third subject, the patch 

based registration yields dramatic improvement, but several areas can still be improved. 

Aside from low resolution, the image exhibits significant pathology, imperfect skull 

stripping, and suboptimal affine registration, all common in stroke subjects.
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