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Ares: Adaptive, Reconfigurable, Erasure coded, Atomic Storage∗
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KISHORI M. KONWAR, MURIEL MEDARD, and NANCY LYNCH, Massachusetts Institute of Tech-

nology, USA,

Emulating a shared atomic, read/write storage system is a fundamental problem in distributed computing. Replicating atomic

objects among a set of data hosts was the norm for traditional implementations (e.g., [11]) in order to guarantee the availability

and accessibility of the data despite host failures. As replication is highly storage demanding, recent approaches suggested

the use of erasure-codes to ofer the same fault-tolerance while optimizing storage usage at the hosts. Initial works focused

on a ix set of data hosts. To guarantee longevity and scalability, a storage service should be able to dynamically mask hosts

failures by allowing new hosts to join, and failed host to be removed without service interruptions. This work presents the

irst erasure-code based atomic algorithm, called Ares, which allows the set of hosts to be modiied in the course of an

execution. Ares is composed of three main components: (i) a reconiguration protocol, (ii) a read/write protocol, and (iii) a

set of data access primitives. The design of Ares is modular and is such to accommodate the usage of various erasure-code

parameters on a per-coniguration basis. We provide bounds on the latency of read/write operations, and analyze the storage

and communication costs of the Ares algorithm.

1 INTRODUCTION

Distributed Storage Systems (DSSes) store large amounts of data in an afordable manner. Cloud vendors deploy
hundreds to thousands of commodity machines, networked together to act as a single giant storage system.
Component failures of commodity devices, and network delays are the norm, therefore, ensuring consistent
data-access and availability at the same time is challenging. Vendors often solve availability by replicating data
across multiple servers. These services use carefully constructed algorithms that ensure that these copies are
consistent, especially when they can be accessed concurrently by diferent operations. The problem of keeping
copies consistent becomes even more challenging when failed servers need to be replaced or new servers are
added, without interrupting the service. Any type of service interruption in a heavily used DSS usually translates
to immense revenue loss.
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The goal of this work is to provide an algorithm for implementing strongly consistent (i.e., atomic/linearizable),
fault-tolerant distributed read/write storage, with low storage and communication footprint, and the ability to
reconigure the set of data hosts without service interruptions.

Replication-based Atomic Storage. A long stream of work used replication of data across multiple servers to
implement atomic (linearizable) read/write objects in message-passing, asynchronous environments where servers
(data hosts) may crash fail [10, 11, 21ś23, 25, 26, 40]. A notable replication-based algorithm appears in the work
by Attiya, Bar-Noy and Dolev [11] (we refer to as the ABD algorithm) which implemented non-blocking atomic
read/write data storage via logical timestamps paired with values to order read/write operations. Replication
based strategies, however, incur high storage and communication costs; for example, to store 1,000,000 objects
each of size 1MB (a total size of 1TB) across a 3 server system, the ABD algorithm replicates the objects in all the 3
servers, which blows up the worst-case storage cost to 3TB. Additionally, every write or read operation may need
to transmit up to 3MB of data (while retrieving an object value of size 1MB), incurring high communication cost.

Erasure Code-based Atomic Storage. Erasure Coded-based DSSes are extremely beneicial to save storage
and communication costs while maintaining similar fault-tolerance levels as in replication based DSSes [16].
Mechanisms using an [n,k] erasure code splits a value v of size, say 1 unit, into k elements, each of size 1

k
units,

createsn coded elements of the same size, and stores one coded element per server, for a total storage cost of n
k
units.

So the [n = 3,k = 2] code in the previous example will reduce the storage cost to 1.5TB and the communication
cost to 1.5MB (improving also operation latency). Maximum Distance Separable (MDS) codes have the property
that value v can be reconstructed from any k out of these n coded elements; note that replication is a special case
of MDS codes with k = 1. In addition to the potential cost-savings, the suitability of erasure-codes for DSSes
is ampliied with the emergence of highly optimized erasure coding libraries, that reduce encoding/decoding
overheads [3, 12, 46]. In fact, an exciting recent body of systems and optimization works [7, 33, 46, 49, 52ś54, 58]
have demonstrated that for several data stores, the use of erasure coding results in lower latencies than replication
based approaches. This is achieved by allowing the system to carefully tune erasure coding parameters, data
placement strategies, and other system parameters that improve workload characteristics ś such as load and
spatial distribution. A complementary body of work has proposed novel non-blocking algorithms that use erasure
coding to provide an atomic storage over asynchronous message passing models [13, 15, 16, 20, 34, 35, 56].
Since erasure code-based algorithms, unlike their replication-based counter parts, incur the additional burden of
synchronizing the access of multiple pieces of coded-elements from the same version of the data object, these
algorithms are quite complex.

Reconigurable Atomic Storage. Coniguration refers to the set of storage servers that are collectively used to
host the data and implement the DSS. Reconiguration is the process of adding or removing servers in a DSS. In
practice, reconigurations are often desirable by system administrators [9], for a wide range of purposes, especially
during system maintenance. As the set of storage servers becomes older and unreliable they are replaced with new
ones to ensure data-durability. Furthermore, to scale the storage service to increased or decreased load, larger (or
smaller) conigurations may be needed to be deployed. Therefore, in order to carry out such reconiguration steps,
in addition to the usual read and write operations, an operation called reconfig is invoked by reconiguration
clients. Performing reconiguration of a system, without service interruption, is a very challenging task and an
active area of research. RAMBO [39] and DynaStore [8] are two of the handful of algorithms [17, 24, 27, 32, 47, 48]
that allows reconiguration on live systems; all these algorithms are replication-based.
A related body of work appeared for erasure coded scaling, although there exists important diferences that

distinguish the two problems. In particular works like [30, 50, 51, 55, 57] consider RAID-based systems with
synchronous network communication and local computation. Synchrony allows processes to make assumptions
on the time of message delivery, and in turn help them to infer whether a communicating party has failed or
not. On an asynchronous system, similar to the one we consider in this work, messages may be delivered with
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arbitrary delays. Therefore, it is impossible to distinguish whether a message from a source is in transit or the
source has crashed before sending a message. This uncertainty makes it impossible to detect failed from operating
nodes, and thus challenging to design algorithms to guarantee atomicity (strong consistency) and completion of
reads and writes.
Despite the attractive prospects of creating strongly consistent DSSes with low storage and communication

costs, so far, no algorithmic framework for reconigurable atomic DSS employed erasure coding for fault-tolerance,
or provided any analysis of bandwidth and storage costs. Our paper ills this vital gap in algorithms literature,
through the development of novel reconigurable approach for atomic storage that use erasure codes for fault-
tolerance. From a practical viewpoint, our work may be interpreted as a bridge between the systems optimization
works [7, 33, 46, 49, 52ś54, 58] and non-blocking erasure coded based consistent storage [13, 15, 16, 20, 34, 35, 56].
Speciically, the uses of our reconigurable algorithmwould potentially enable a data storage service to dynamically
shift between diferent erasure coding based parameters and placement strategies, as the demand characteristics
(such as load and spatial distribution) change, without service interruption.

Our Contributions. We develop a reconigurable, erasure-coded, atomic or strongly consistent [29, 38] read/write
storage algorithm, called Ares. Motivated by many practical systems, Ares assumes clients and servers are
separate processes ∗ that communicate via logical point-to-point channels.

In contrast to the replication-based reconigurable algorithms [8, 17, 24, 27, 32, 39, 47, 48], where a coniguration
essentially corresponds to the set of servers that stores the data, the same concept for erasure coding need to
be much more involved. In particular, in erasure coding, even if the same set of n servers are used, a change
in the value of k deines a new coniguration. Furthermore, several erasure coding based algorithms [15, 20]
have additional parameters that tune how many older versions each server store, which in turn inluences the
concurrency level allowed. Tuning of such parameters can also fall under the purview of reconiguration.
To accommodate these various reconiguration requirements, Ares takes a modular approach. In particular,

Ares uses a set of primitives, called data-access primitives (DAPs). A diferent implementation of the DAP
primitives may be speciied in each coniguration. Ares uses DAPs as a łblack boxž to: (i) transfer the object state
from one coniguration to the next during reconfig operations, and (ii) invoke read/write operations on a single
coniguration. Given the DAP implementation for each coniguration we show that Ares correctly implements a
reconigurable, atomic read/write storage.

Algorithm #rounds
/write

#rounds
/read

Reconig. Repl. or
EC

Storage cost read bandwidth write bandwidth

CASGC [14] 3 2 No EC (δ + 1) n
k

n
k

n
k

SODA [34] 2 2 No EC n
k

(δ + 1) n
k

n2

k
ORCAS-A [20] 3 ≥ 2 No EC n n n
ORCAS-B [20] 3 3 No EC ∞ ∞ ∞
ABD [11] 2 2 No Repl. n 2n n
RAMBO [39] 2 2 Yes Repl. ≥ n ≥ n ≥ n
Dynastore [8] ≥ 4 ≥ 4 Yes Repl. ≥ n ≥ n ≥ n
SmartMerge [32] 2 2 Yes Repl. ≥ n ≥ n ≥ n

Ares (this paper) 2 2 Yes EC (δ + 1) n
k

(δ + 1) n
k

n
k

Table 1. Comparison of Ares with previous algorithms emulating atomic Read/Write Memory for replication (Repl.) and

erasure-code based (EC) algorithms. δ is the maximum number of concurrent writes with any read during the course of an

execution of the algorithm. In practice, δ < 4 [16].
The DAP primitives provide Ares a much broader view of the notion of a coniguration as compared to

replication-based algorithms. Speciically, the DAP primitives may be parameterized, following the parameters
of protocols used for their implementation (e.g., erasure coding parameters, set of servers, quorum design,
concurrency level, etc.). While transitioning from one coniguration to another, our modular construction allows

∗In practice, these processes can be on the same node or diferent nodes.
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Ares to reconigure between diferent sets of servers, quorum conigurations, and erasure coding parameters.
In principle, Ares even allows to reconigure between completely diferent protocols as long as they can be
interpreted/expressed in terms of the primitives; though in this paper, we only present one implementation of the
DAP primitives to keep the scope of the paper reasonable. From a technical point of view, our modular structure
makes the atomicity proof of a complex algorithm (like Ares) easier.
An important consideration in the design choice of Ares is to ensure that we gain/retain the advantages

that come with erasure codes ś cost of data storage and communication is low ś while having the lexibility to
reconigure the system. Towards this end, we present an erasure-coded implementation of DAPs which satisfy
the necessary properties, and are used by Ares to yield the irst reconigurable, erasure-coded, read/write atomic
storage implementation, where read and write operations complete in two-rounds. We provide the atomicity
property and latency analysis for any operation in Ares, along with the storage and communication costs
resulting from the erasure-coded DAP implementation. In particular, we specify lower and upper bounds on the
communication latency between the service participants, and we provide the necessary conditions to guarantee
the termination of each read/write operation while concurrent with reconfig operations.

Table 1 compares Ares with a few well-known erasure-coded and replication-based (static and reconigurable)
atomic memory algorithms. From the table we observe that Ares is the only algorithm to combine a dynamic
behavior with the use of erasure codes, while reducing the storage and communication costs associated with the
read or write operations. Moreover, in Ares the number of rounds per write and read is at least as good as in any
of the remaining algorithms.
We developed a proof-of-concept (PoC) implementation of Ares, and deployed it over a set of distributed

devices in the experimental testbed Emulab [2]. The most important take home message from our experimental
results is to show that it is possible to implement our algorithm according to the speciications and produces a
correct execution and remains available during reconiguration. Although, the correctness of the algorithm is
shown analytically, the experimental validation corroborates the correctness. For this purpose, we have chosen
simple parametarization (e.g., uniform selection of read/write invocation intervals), and picked ABD [11] as a
benchmark algorithm which, despite being proposed more than 25 years ago, is the fundamental algorithm for
emulating replicated quorum-based atomic shared memory. For instance, it is adopted in commercial/open-source
implementations like Cassandra [36]2, and is being used as a standard benchmark algorithm (as can be seen in
other recent works [19]). However, to demonstrate a real-world application we would need to compare with
more algoritrhms and utilize a wide range of read/write distributions, and this is planned as a separate work.

Document Structure. Section 2 presents the model assumptions and Section 3, the DAP primitives. In Section 4,
we present the implementation of the reconiguration and read/write protocols in Ares using the DAPs. In
Section 5, we present an erasure-coded implementation of a set of DAPs, which can be used in every coniguration
of the Ares algorithm. Section 7 provides operation latency and cost analysis, and Section 8 the DAP lexibility.
Section 9 presents an experimental evaluation of the proposed algorithms. We conclude our work in Section 10.
Due to lack of space omitted proofs can be found in [43].

2 MODEL AND DEFINITIONS

A shared atomic storage, consisting of any number of individual objects, can be emulated by composing individual
atomic memory objects. Therefore, herein we aim in implementing a single atomic read/write memory object. A
read/write object takes a value from a setV . We assume a system consisting of four distinct sets of processes: a
setW of writers, a set R of readers, a set G of reconiguration clients, and a set S of servers. Let I =W∪R∪G
be the set of clients. Servers host data elements (replicas or encoded data fragments). Each writer is allowed to

2Cassandra [36] ofers tuneable consistency, it uses protocol that is essentially ABD [11] for what they refer to as level 3 consistency (i.e.,

atomicity).
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modify the value of a shared object, and each reader is allowed to obtain the value of that object. Reconiguration
clients attempt to introduce new coniguration of servers to the system in order to mask transient errors and
to ensure the longevity of the service. Processes communicate via messages through asynchronous, and reliable

channels.

Conigurations. A coniguration, with a unique identiier from a set C, is a data type that describes the inite
set of servers that are used to implement the atomic storage service. In our setting, each coniguration is also
used to describe the way the servers are grouped into sets, called quorums, s.t. each pair of quorums intersect,
the consensus instance that is used as an external service to determine the next coniguration, and a set of data
access primitives that specify the interaction of the clients and servers in the coniguration (see Section 3).

More formally, a coniguration, c ∈ C, consists of: (i) c .Servers ⊆ S: a set of server identiiers; (ii) c .Quorums :
the set of quorums on c .Servers , s.t. ∀Q1,Q2 ∈ c .Quorums,Q1,Q2 ⊆ c .Servers and Q1 ∩ Q2 , ∅; (iii) DAP(c):
the set of primitives (operations at level lower than reads or writes) that clients in I may invoke on c .Servers;
and (iv) c .Con: a consensus instance with the values from C, implemented and running on top of the servers in
c .Servers . We refer to a server s ∈ c .Servers as a member of coniguration c . The consensus instance c .Con in
each coniguration c is used as a service that returns the identiier of the coniguration that follows c .

Executions. An algorithm A is a collection of processes, where process Ap is assigned to process p ∈ I ∪S. The
state, of a process Ap is determined over a set of state variables, and the state σ of A is a vector that contains
the state of each process. Each process Ap implements a set of actions. When an action α occurs it causes the
state of Ap to change, say from some state σp to some diferent state σ ′p . We call the triple ⟨σp ,α ,σ

′
p⟩ a step of Ap .

Algorithm A performs a step, when some process Ap performs a step. An action α is enabled in a state σ if ∃ a
step ⟨σ ,α ,σ ′⟩ to some state σ ′. An execution is an alternating sequence of states and actions of A starting with
the initial state and ending in a state. An execution ξ is fair if enabled actions perform a step ininitely often. In
the rest of the paper we consider executions that are fair and well-formed. A process p crashes in an execution if
it stops taking steps; otherwise p is correct or non-faulty. We assume a function c .F to describe the failure model
of a coniguration c .

Reconigurable Atomic Read/Write Objects. A reconigurable atomic object supports three operations:
read(), write(v) and reconfig(c). A read() operation returns the value of the atomic object, write(v) attempts to
modify the value of the object to v ∈ V , and the reconfig(c) that attempts to install a new coniguration c ∈ C.
We assume well-formed executions where each client may invoke one operation (read(), write(v) or reconfig(c))
at a time.
An implementation of a read/write or a reconfig operation contains an invocation action (such as a call to a

procedure) and a response action (such as a return from the procedure). An operation π is complete in an execution,
if it contains both the invocation and the matching response actions for π ; otherwise π is incomplete. We say
that an operation π precedes an operation π ′ in an execution ξ , denoted by π → π ′, if the response step of π
appears before the invocation step of π ′ in ξ . Two operations are concurrent if neither precedes the other. An
implementation A of a read/write object satisies the atomicity (linearizability [29]) property if the following
holds [38]. Let the set Π contain all complete read/write operations in any well-formed execution of A. Then
there exists an irrelexive partial ordering ≺ satisfying the following:

A1. For any operations π1 and π2 in Π, if π1 → π2, then it cannot be the case that π2 ≺ π1.
A2. If π ∈ Π is a write operation and π ′ ∈ Π is any read/write operation, then either π ≺ π ′ or π ′ ≺ π .
A3. The value returned by a read operation is the value written by the last preceding write operation according

to ≺ (or the initial value if there is no such write).

Storage and Communication Costs. We are interested in the complexity of each read and write operation.
The complexity of each operation π invoked by a process p, is measured with respect to three metrics, during

ACM Trans. Storage
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the interval between the invocation and the response of π : (i) number of communication round, accounting the
number of messages exchanged during π , (ii) storage eiciency (storage cost), accounting the maximum storage
requirements for any single object at the servers during π , and (iii) message bit complexity (communication cost)
which measures the size of the messages used during π .

We deine the total storage cost as the size of the data stored across all servers, at any point during the execution
of the algorithm. The communication cost associated with a read or write operation is the size of the total data
that gets transmitted in the messages sent as part of the operation. We assume that metadata, such as version
number, process ID, etc. used by various operations is of negligible size, and is hence ignored in the calculation
of storage and communication cost. Further, we normalize both costs with respect to the size of the value v; in
other words, we compute the costs under the assumption that v has size 1 unit.

Erasure Codes. We use an [n,k] linear MDS code [31] over a inite ield Fq to encode and store the value v
among the n servers. An [n,k] MDS code has the property that any k out of the n coded elements can be used to
recover (decode) the value v . For encoding, v is divided into k elements v1,v2, . . .vk with each element having
size 1

k
(assuming size of v is 1). The encoder takes the k elements as input and produces n coded elements

e1, e2, . . . , en as output, i.e., [e1, . . . , en] = Φ([v1, . . . ,vk ]), where Φ denotes the encoder. For ease of notation, we
simply write Φ(v) to mean [e1, . . . , en]. The vector [e1, . . . , en] is referred to as the codeword corresponding to
the value v . Each coded element ci also has size 1

k
. In our scheme we store one coded element per server. We use

Φi to denote the projection of Φ on to the ith output component, i.e., ei = Φi (v). Without loss of generality, we
associate the coded element ei with server i , 1 ≤ i ≤ n.

Tags. We use logical tags to order operations. A tag τ is deined as a pair (z,w), where z ∈ N and w ∈ W, an
ID of a writer. Let T be the set of all tags. Notice that tags could be deined in any totally ordered domain and
given that this domain is countably ininite, then there can be a direct mapping to the domain we assume. For
any τ1,τ2 ∈ T we deine τ2 > τ1 if (i) τ2.z > τ1.z or (ii) τ2.z = τ1.z and τ2.w > τ1.w .

For ease of reference, Table 2 presents the key notation used in this paper. Notice that some of the symbols shown
are deined and used in following sections.

3 DATA ACCESS PRIMITIVES

In this section we introduce a set of primitives, we refer to as data access primitives (DAP), which are invoked by
the clients during read/write/reconfig operations and are deined for any coniguration c in Ares. The DAPs
allow us: (i) to describe Ares in a modular manner, and (ii) a cleaner reasoning about the correctness of Ares.
We deine three data access primitives for each c ∈ C: (i) c .put-data(⟨τ,v⟩), via which a client can ingest the

tag value pair ⟨τ,v⟩ in to the coniguration c ; (ii) c .get-data(), used to retrieve the most up to date tag and vlaue
pair stored in the coniguration c; and (iii) c .get-tag(), used to retrieve the most up to date tag for an object
stored in a coniguration c . More formally, assuming a tag τ from a set of totally ordered tags T , a value v from a
domainV , and a coniguration c from a set of identiiers C, the three primitives are deined as follows:

Definition 1 (Data Access Primitives). Given a coniguration identiier c ∈ C, any non-faulty client process p

may invoke the following data access primitives during an execution ξ , where c is added to specify the coniguration

speciic implementation of the primitives:

D1: c .get-tag() that returns a tag τ ∈ T ;

D2: c .get-data() that returns a tag-value pair (τ,v) ∈ T ×V ,

D3: c .put-data(⟨τ,v⟩) which accepts the tag-value pair (τ,v) ∈ T ×V as argument.

In order for the DAPs to be useful in designing the Ares algorithm we further require the following consistency
properties. As we see later in Section 6, the safety property of Ares holds, given that these properties hold for
the DAPs in each coniguration.

ACM Trans. Storage
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S the set of server identiiers

I the set of client identiiers

R the set of reader identiiers in I

W the set of writer identiiers in I

G the set of reconigurer identiiers in I

V the set of values allowed to be written on the shared object

v a value inV

T the set of pairs in N ×W

τ a pair (z,w) ∈ T

C the set of coniguration identiiers

c a coniguration with identiier in C

c .Servers the set of servers s.t. c .Servers ⊆ S in coniguration c

c .Quorums the set of subsets of servers s.t. ∀Q ∈ c .Quorums , Q ⊆ c .Servers and

∀Q1,Q2 ∈ c .Quorums,Q1 ∩Q2 , ∅

σ the state of an algorithm A

σp the state of process p ∈ I ∪ S in state σ determined over a set of state

variables

p.var |σ the value of the state variable var at process p in state σ

ξ an execution of algorithm A which is a inite or ininite sequence of

alternative states and actions beginning with the initial state of A

Φ([v1, . . . ,vk ]) or Φ([v]) the [n,k] encoder function given k fragments of value v , [v1, . . . ,vk ]

ei the ith encoded word, for 1 ≤ i ≤ n, produced by Φ([v])

GL coniguration sequence composed of pairs in {C∪ {⊥}}× {F , P}, where

F inalized and P pending, and initially contains ⟨c0, F ⟩

Table 2. List of Symbols used to describe our model of computation.

Property 1 (DAP Consistency Properties). In an execution ξ we say that a DAP operation in an execution ξ is

complete if both the invocation and the matching response step appear in ξ . If Π is the set of complete DAP operations

in execution ξ then for any ϕ,π ∈ Π:

C1 If ϕ is c .put-data(⟨τϕ ,vϕ ⟩), for c ∈ C, ⟨τϕ ,vϕ ⟩ ∈ T × V , and π is c .get-tag() (or c .get-data()) that returns

τπ ∈ T (or ⟨τπ ,vπ ⟩ ∈ T ×V) and ϕ completes before π is invoked in ξ , then τπ ≥ τϕ .

C2 If ϕ is a c .get-data() that returns ⟨τπ ,vπ ⟩ ∈ T ×V , then there exists π such that π is a c .put-data(⟨τπ ,vπ ⟩)

and ϕ did not complete before the invocation of π . If no such π exists in ξ , then (τπ ,vπ ) is equal to (t0,v0).

In Section 5 we show how to implement a set of DAPs, where erasure-codes are used to reduce storage and
communication costs. Our DAP implementation satisies Property 1.

ACM Trans. Storage
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As noted earlier, expressing Ares in terms of the DAPs allows one to achieve a modular design. Modularity
enables the usage of diferent DAP implementation per coniguration, during any execution of Ares, as long as
the DAPs implemented in each coniguration satisfy Property 1. For example, the DAPs in a coniguration c may
be implemented using replication, while the DAPs in the next coniguration say c ′, may be implemented using
erasure-codes. Thus, a system may use a scheme that ofers higher fault tolerance (e.g. replication) when storage
is not an issue, while switching to a more storage eicient (less fault-tolerant) scheme when storage gets limited.

In Section 8, we show that the presented DAPs are not only suitable for algorithm Ares, but can also be used to
implement a large family of atomic read/write storage implementations. By describing an algorithm A according
to a simple algorithmic template (see Algorithm 7), we show that A preserves safety (atomicity) if the used DAPs
satisfy Property 1, and A preserves liveness (termination), if every invocation of the used DAPs terminates, under
the failure model assumed.

4 THE ARES PROTOCOL

In this section, we describe Ares. In the presentation of Ares algorithm we decouple the reconiguration service
from the shared memory emulation, by utilizing the DAPs presented in Section 3. This allows Ares, to handle both
the reorganization of the servers that host the data, as well as utilize a diferent atomic memory implementation
per coniguration. It is also important to note that Ares adopts a client-server architecture and separates the
reader, writer and reconiguration processes from the server processes that host the object data. More precisely,
Ares algorithm comprises of three major components: (i) The reconiguration protocol which consists of invoking,
and subsequently installing new coniguration via the reconfig operation by recon clients. (ii) The read/write
protocol for executing the read and write operations invoked by readers and writers. (iii) The implementation of
the DAPs for each installed coniguration that respect Property 1 and which are used by the reconfig, read and
write operations.

4.1 Implementation of the Reconfiguration Service.

In this section, we describe the reconiguration service in Ares. The service relies on an underlying sequence of
conigurations (already proposed or installed by reconfig operations), in the form of a łdistributed listž, which
we refer to as the global coniguration sequence (or list) GL . Conceptually, GL represents an ordered list of pairs
⟨c f д, status⟩, where c f д is a coniguration identiier (c f д ∈ C), and a binary state variable status ∈ {F , P} that
denotes whether c is inalized (F ) or is still pending (P ). Initially, GL contains a single element, say ⟨c0, F ⟩, which
is known to every participant in the service.

To facilitate the creation of GL , each server in c .Servers maintains a local variable nextC ∈ {C ∪ {⊥}} × {P , F },
which is used to point to the coniguration that follows c in GL . Initially, at any server nextC = ⟨⊥, F ⟩. Once
nextC is set to a value it is never altered. As we show below, at any point in the execution of Ares and
in any coniguration c , the nextC variables of the non-faulty servers in c that are not equal to ⊥ agree, i.e.,
{s .nextC : s ∈ c .Servers ∧ s .nextC , ⊥} is either empty of has only one element.
Clients discover the coniguration that follows a ⟨c, ∗⟩ in the sequence by contacting a subset of servers in

c .Servers and collecting their nextC variables. Every client in I maintains a local variable cseq that is expected
to be some subsequence of GL . Initially, at every client the value of cseq is ⟨c0, F ⟩.
Reconiguration clients may introduce new conigurations, each associated with a unique coniguration

identiier from C. Multiple clients may concurrently attempt to introduce diferent conigurations for same next
link in GL . Ares uses consensus to resolve such conlicts: a subset of servers in c .Servers , in each coniguration c ,
implements a distributed consensus service (such as Paxos [37], RAFT [45]) , denoted by c .Con.

The reconiguration service consists of two major components: (i) sequence traversal, responsible of discovering
a recent coniguration in GL , and (ii) reconiguration operation that installs new conigurations in GL .
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Algorithm 1 Sequence traversal at each process p ∈ I of algorithm Ares.

procedure read-config(seq)

2: µ = max({j : seq[j].status = F })

cs ← seq[µ]

4: while cs , ⊥ do

cs ←get-next-config(cs .c f д)

6: if cs , ⊥ then

µ ← µ + 1

8: seq[µ] ← cs

put-config(seq[µ − 1].c f д, seq[µ])

10: end while

return seq

12: end procedure

procedure get-next-config(c)

14: send (read-config) to each s ∈ c .Servers

until ∃Q ,Q ∈ c .Quorums s.t. reci receives nextCs from

∀s ∈ Q

16: if ∃s ∈ Q s.t. nextCs .status = F then

return nextCs
18: else if ∃s ∈ Q s.t. nextCs .status = P then

return nextCs
20: else

return ⊥

22: end procedure

procedure put-config(c,nextC)

24: send (write-config,nextC) to each s ∈ c .Servers

until ∃Q ,Q ∈ c .Quorums s.t. reci receives ack from

∀s ∈ Q

26: end procedure

Sequence Traversal.Any read/write/reconfig operation π utilizes the sequence traversal mechanism to discover
the latest state of the global coniguration sequence, as well as to ensure that such a state is discoverable by
any subsequent operation π ′. See Fig. 1 for an example execution in the case of a reconig operation. In a high
level, a client starts by collecting the nextC variables from a quorum of servers in a coniguration c , such that
⟨c, F ⟩ is the last inalized coniguration in that client’s local cseq variable (or c0 if no other inalized coniguration
exists). If any server s returns a nextC variable such that nextC .c f д , ⊥, then the client (i) adds nextC in its local
cseq, (ii) propagates nextC in a quorum of servers in c .Servers , and (iii) repeats this process in the coniguration
nextC .c f д. The client terminates when all servers reply with nextC .c f д = ⊥. More precisely, the sequence
parsing consists of three actions (see Alg. 1):

get-next-config(c): The action get-next-config returns the coniguration that follows c inGL . During get-next-config(c),
a client sends read-config messages to all the servers in c .Servers , and waits for replies containing nextC from
a quorum in c .Quorums . If there exists a reply with nextC .c f д , ⊥ the action returns nextC ; otherwise it returns
⊥.

put-config(c, c ′): The put-config(c, c ′) action propagates c ′ to a quorum of servers in c .Servers . During the
action, the client sends (write-config, c ′) messages, to the servers in c .Servers and waits for each server s in
some quorum Q ∈ c .Quorums to respond.

read-config(seq): A read-config(seq) sequentially traverses the installed conigurations in order to discover
the latest state of the sequence GL . At invocation, the client starts with the last inalized coniguration ⟨c, F ⟩ in
the given seq (Line A1:2), and enters a loop to traverse GL by invoking get-next-config(), which returns the next
coniguration, assigned to ĉ . While ĉ , ⊥, then: (a) ĉ is appended at the end of the sequence seq; (b) a put-config
action is invoked to inform a quorum of servers in c .Servers to update the value of their nextC variable to ĉ . If
ĉ = ⊥ the loop terminates and the action read-config returns seq.

Reconiguration operation. A reconiguration operation reconfig(c), c ∈ C, invoked by any reconiguration
client reci , attempts to append c to GL . The set of server processes in c are not a part of any other coniguration
diferent from c . In a high level, reci irst executes a sequence traversal to discover the latest state of GL . Then it
attempts to add the new coniguration c , at the end of the discovered sequence by proposing c in the consensus
instance of the last coniguration in the sequence. The client accepts and appends the decision of the consensus
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Algorithm 2 Reconiguration protocol of algorithm Ares.

at each reconigurer reci
2: State Variables:

cseq[]s .t .cseq[j] ∈ C × {F , P}

4: Initialization:

cseq[0] = ⟨c0, F ⟩

6: operation reconfig(c)

if c , ⊥ then

8: cseq ←read-config(cseq)

cseq ← add-config(cseq, c)

10: update-config(cseq)

cseq ← finalize-config(cseq)

12: end operation

procedure add-config(seq, c)

14: ν ← |seq |

c ′ ← seq[ν ].c f д

16: d ← c ′.Con.propose(c)

seq[ν + 1] ← ⟨d, P⟩

18: put-config(c ′, ⟨d, P⟩)

return seq

20: end procedure

procedure update-config(seq)

22: µ ← max({j : seq[j].status = F })

ν ← |seq |

24: M ← ∅

for i = µ : ν do

26: ⟨t ,v⟩ ← seq[i].c f д.get-data()

M ← M ∪ {⟨τ,v⟩}

28: ⟨τ,v⟩ ← maxt {⟨t ,v⟩ : ⟨t ,v⟩ ∈ M}

seq[ν ].c f д.put-data(⟨τ,v⟩)

30: end procedure

procedure finalize-config(seq)

32: ν = |seq |

seq[ν ].status ← F

34: put-config(seq[ν − 1].c f д, seq[ν ])

return seq

36: end procedure

Algorithm 3 Server protocol of algorithm Ares.

at each server si in coniguration ck
2: State Variables:

τ ∈ N ×W, initially, ⟨0,⊥⟩

4: v ∈ V , initially, ⊥

nextC ∈ C × {P , F }, initially ⟨⊥, P⟩

6: Upon receive (read-config) si , ck from q

send nextC to q

8: end receive

Upon receive (write-config, c f дTin ) si , ck from q

10: if nextC .c f д = ⊥ ∨ nextC .status = P then

nextC ← c f дTin

12: send ack to q

end receive

instance (that might be diferent than c). Then it attempts to transfer the latest value of the read/write object to
the latest installed coniguration. Once the information is transferred, reci inalizes the last coniguration in its
local sequence and propagates the inalized tuple to a quorum of servers in that coniguration. The operation
consists of four phases, executed consecutively by reci (see Alg. 2):

read-config(seq): The phase read-config(seq) at reci , reads the recent global coniguration sequence as described
in the sequence traversal.

add-config(seq, c): The add-config(seq, c) attempts to append a new coniguration c to the end of seq (client’s
view of GL). Suppose the last coniguration in seq is c ′ (with status either F or P ), then in order to decide the
most recent coniguration, reci invokes c

′
.Con.propose(c), on the consensus object associated with coniguration

c ′. Let d ∈ C be the coniguration identiier decided by the consensus service. If d , c , this implies that another
(possibly concurrent) reconiguration operation, invoked by a reconigurer rec j , reci , proposed and succeeded
d as the coniguration to follow c ′. In this case, reci adopts d as it own propose coniguration, by adding ⟨d, P⟩ to

ACM Trans. Storage



Ares: Adaptive, Reconfigurable, Erasure coded, Atomic Storage • 11

Fig. 1. Illustration of an execution of the reconfiguration steps.
the end of its local cseq (entirely ignoring c), using the operation put-config(c ′, ⟨d, P⟩), and returns the extended
coniguration seq.

update-config(seq): Let us denote by µ the index of the last coniguration in the local sequence cseq, at reci ,
such that its corresponding status is F ; and ν denote the last index of cseq. Next reci invokes update-config(cseq),
which gathers the tag-value pair corresponding to the maximum tag in each of the conigurations in cseq[i] for
µ ≤ i ≤ ν , and transfers that pair to the coniguration that was added by the add-config action. The get-data and
put-data DAPs are used to transfer the value of the object to the new coniguration, and they are implemented
with respect to the coniguration that is accessed. Suppose ⟨tmax ,vmax ⟩ is the tag value pair corresponding to
the highest tag among the responses from all the ν − µ + 1 conigurations. Then, ⟨tmax ,vmax ⟩ is written to the
coniguration d via the invocation of cseq[ν ].c f д.put-data(⟨τmax ,vmax ⟩).

finalize-config(cseq): Once the tag-value pair is transferred, in the last phase of the reconiguration operation,
reci executes finalize-config(cseq), to update the status of the last coniguration in cseq, say d = cseq[ν ].c f д, to
F . The reconigurer reci informs a quorum of servers in the previous coniguration c = cseq[ν − 1].c f д, i.e. in
some Q ∈ c .Quorums , about the change of status, by executing the put-config(c, ⟨d, F ⟩) action.

Server Protocol. Each server responds to requests from clients (Alg. 3). A server waits for two types of messages:
read-config and write-config. When a read-config message is received for a particular coniguration ck ,
then the server returns nextC variables of the servers in ck .Servers . Awrite-configmessage attempts to update
the nextC variable of the server with a particular tuple c f дTin . A server changes the value of its local nextC .c f д
in two cases: (i) nextC .c f д = ⊥, or (ii) nextC .status = P .

Fig. 1 illustrates an example execution of a reconiguration operation recon(c5). In this example, the reconigurer
reci goes through a number of coniguration queries (get-next-config) before it reaches coniguration c4 in
which a quorum of servers replies with nextC .c f д = ⊥. There it proposes c5 to the consensus object of c4
(c4.Con.propose(c5) on arrow 10), and once c5 is decided, recon(c5) completes after executing finalize-config(c5).

4.2 Implementation of Read and Write operations.

The read and write operations in Ares are expressed in terms of the DAP primitives (see Section 3). This provides
the lexibility to Ares to use diferent implementation of DAP primitives in diferent conigurations, without
changing the basic structure of Ares. At a high-level, a write (or read) operation is executed where the client:
(i) obtains the latest coniguration sequence by using the read-config action of the reconiguration service, (ii)
queries the conigurations, in cseq, starting from the last inalized coniguration to the end of the discovered
coniguration sequence, for the latest ⟨taд,value⟩ pair with a help of get-tag (or get-data) operation as speciied
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Algorithm 4 Write and Read protocols at the clients for Ares.

Write Operation:

2: at each writerwi

State Variables:

4: cseq[]s .t .cseq[j] ∈ C × {F , P}

Initialization:

6: cseq[0] = ⟨c0, F ⟩

operation write(val ), val ∈ V

8: cseq ←read-config(cseq)

µ ← max({i : cseq[i].status = F })

10: ν ← |cseq |

for i = µ : ν do

12: τmax ← max(cseq[i].c f д.get-tag(),τmax )

⟨τ,v⟩ ← ⟨⟨τmax .ts + 1,ωi ⟩,val⟩

14: done ← f alse

while not done do

16: cseq[ν ].c f д.put-data(⟨τ,v⟩)

cseq ←read-config(cseq)

18: if |cseq | = ν then

done ← true

20: else

ν ← |cseq |

22: end while

end operation

24: Read Operation:

at each reader ri
26: State Variables:

cseq[]s .t .cseq[j] ∈ C × {F , P}

28: Initialization:

cseq[0] = ⟨c0, F ⟩

30: operation read( )

cseq ←read-config(cseq)

32: µ ← max({j : cseq[j].status = F })

ν ← |cseq |

34: for i = µ : ν do

⟨τ,v⟩ ← max(cseq[i].c f д.get-data(), ⟨τ,v⟩)

36: done ← false

while not done do

38: cseq[ν ].c f д.put-data(⟨τ,v⟩)

cseq ←read-config(cseq)

40: if |cseq | = ν then

done ← true

42: else

ν ← |cseq |

44: end while

return v

46: end operation

for each coniguration, and (iii) repeatedly propagates a new ⟨taд′,value ′⟩ pair (the largest ⟨taд,value⟩ pair)
with put-data in the last coniguration of its local sequence, until no additional coniguration is observed. In
more detail, the algorithm of a read or write operation π is as follows (see Alg. 4):

A write (or read) operation is invoked at a client p when line Alg. 4:8 (resp. line Alg. 4:31) is executed. At irst,
p issues a read-config action to obtain the latest introduced coniguration in GL , in both operations.

If π is a write p detects the last inalized entry in cseq, say µ, and performs a cseq[j].conf .get-tag() action,
for µ ≤ j ≤ |cseq | (line Alg. 4:9). Then p discovers the maximum tag among all the returned tags (τmax ), and it
increments the maximum tag discovered (by incrementing the integer part of τmax ), generating a new tag, say
τnew . It assigns ⟨τ,v⟩ to ⟨τnew ,val⟩, where val is the value he wants to write (Line Alg. 4:13).

if π is a read, p detects the last inalized entry in cseq, say µ, and performs a cseq[j].conf .get-data() action, for
µ ≤ j ≤ |cseq | (line Alg. 4:32). Then p discovers the maximum tag-value pair (⟨τmax ,vmax ⟩) among the replies,
and assigns ⟨τ,v⟩ to ⟨τmax ,vmax ⟩.
Once specifying the ⟨τ,v⟩ to be propagated, both reads and writes execute the cseq[ν ].c f д.put-data(⟨τ,v⟩)

action, where ν = |cseq |, followed by executing read-config action, to examine whether new conigurations were
introduced in GL . This is an essential step that ensures that any new value of the object is propagated in any
recently introduced coniguration. Omission to do so may lead an operation that reads from a newly established
coniguration to obtain an outdated value for the shared object, violating this way atomic consistency. Each
operation repeats these steps until no new coniguration is discovered (lines Alg. 4:15ś21, or lines Alg. 4:37ś43).
Let cseq′ be the sequence returned by the read-config action. If |cseq′ | = |cseq | then no new coniguration is
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introduced, and the read/write operation terminates; otherwise, p sets cseq to cseq′ and repeats the two actions.
Note, in an execution of Ares, two consecutive read-config operations that return cseq′ and cseq′′ respectively
must hold that cseq′ is a preix of cseq′′, and hence |cseq′ | = |cseq′′ | only if cseq′ = cseq′′. Finally, if π is a read
operation the value with the highest tag discovered is returned to the client.

Discussion Ares shares similarities with previous algorithms like RAMBO [28] and the framework in [48]. The
reconiguration technique used in Ares ensures the preix property on the coniguration sequence (resembling a
blockchain data structure [42]) while the array structure in RAMBO allowed nodes to maintain an incomplete
reconiguration history. On the other hand, the DAP usage, exploits a diferent viewpoint compared to [48],
allowing implementations of atomic read/write registers without relying on strong objects, like ranked registers
[18]. Note that Ares is designed to capture a wide class of algorithms with diferent redundancy strategies. So
while not directly implementing an EC-based atomic memory, it provides the łvehiclež without which dynamic
EC-based implementations would not have been possible. Lastly, even though Ares is designed to support crash
failures, as noted by [41], reconiguration is more general and allows an algorithm to handle benign recoveries.
That is, a recovered node that loses its state can be introduced as a new member of a new coniguration. Stateful
recoveries on the other hand are indistinguishable from long delays, thus can be handled efectively by an
algorithm designed for the asynchronous model like Ares.

5 IMPLEMENTATION OF THE DAPS

In this section, we present an implementation of the DAPs, that satisies the properties in Property 1, for a
coniguration c , with n servers using a [n,k]MDS coding scheme for storage. Notice that the total number of
servers in the system can be larger than n, however we can pick a subset of n servers to use for this particular
key and instance of the algorithm. We store each coded element ci , corresponding to an object at server si , where
i = 1, · · · ,n. The implementations of DAP primitives used in Ares are shown in Alg. 5, and the servers’ responses
in Alg. 6.

Algorithm 5 DAP implementation for Ares.

at each process pi ∈ I

2: procedure c.get-tag()

send (qery-tag) to each s ∈ c .Servers

4: until pi receives ⟨ts ⟩ from
⌈
n+k
2

⌉
servers in c .Servers

tmax ← max({ts : received ts from s})

6: return tmax

end procedure

8: procedure c.get-data()

send (qery-list) to each s ∈ c .Servers

10: until pi receives Lists from each server s ∈ Sд s.t.

|Sд | =
⌈
n+k
2

⌉
and Sд ⊂ c .Servers

Taдs≥k∗ = set of tags that appears in k lists

12: Taдs≥k
dec
= set of tags that appears in k lists with values

t∗max ← maxTaдs≥k∗
14: tdecmax ← maxTaдs≥k

dec

if tdecmax = t
∗
max then

16: v ← decode value for tdecmax

return ⟨tdecmax ,v⟩

18: end procedure

procedure c.put-data(⟨τ,v⟩))

20: code-elems = [(τ, e1), . . . , (τ, en )], ei = Φi (v)

send (PUT-DATA, ⟨τ, ei ⟩) to each si ∈ c .Servers

22: until pi receives ack from
⌈
n+k
2

⌉
servers in c .Servers

end procedure

Each server si stores one state variable, List , which is a set of up to (δ + 1) (tag, coded-element) pairs. Initially
the set at si contains a single element, List = {(t0,Φi (v0)}. Below we describe the implementation of the DAPs.
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Algorithm 6 The response protocols at any server si ∈ S in Ares for client requests.

at each server si ∈ S in coniguration ck

2: State Variables:

List ⊆ T × Cs , initially {(t0,Φi (v0))}

Upon receive (qery-tag) si , ck from q

4: τmax = max(t,c)∈List t

Send τmax to q

6: end receive

Upon receive (qery-list) si , ck from q

8: Send List to q

end receive

10:

Upon receive (put-data, ⟨τ, ei ⟩) si , ck from q

12: List ← List ∪ {⟨τ, ei ⟩}

if |List | > δ + 1 then

14: τmin ← min{t : ⟨t , ∗⟩ ∈ List}

/* remove the coded value and retain the tag */

List ← List\ {⟨τ, e⟩ : τ = τmin ∧ ⟨τ, e⟩ ∈ List}

16: List ← List ∪ {(τmin ,⊥)}

Send ack to q

18: end receive

c .get-tag(): A client, during the execution of a c .get-tag() primitive, queries all the servers in c .Servers for the

highest tags in their Lists , and awaits responses from
⌈
n+k
2

⌉
servers. A server upon receiving the get-tag request,

responds to the client with the highest tag, as τmax ≡ max(t,c)∈List t . Once the client receives the tags from
⌈
n+k
2

⌉

servers, it selects the highest tag t and returns it .
c .put-data(⟨tw ,v⟩): During the execution of the primitive c .put-data(⟨tw ,v⟩), a client sends the pair (tw ,Φi (v))

to each server si ∈ c .Servers . When a server si receives a message (put-data, tw , ci ) , it adds the pair in its
local List , trims the pairs with the smallest tags exceeding the length (δ + 1) of the List , and replies with an
ack to the client. In particular, si replaces the coded-elements of the older tags with ⊥, and maintains only the
coded-elements associated with the (δ + 1) highest tags in the List (see Line Alg. 6:16). The client completes the

primitive operation after getting acks from
⌈
n+k
2

⌉
servers.

c .get-data(): A client, during the execution of a c .get-data() primitive, queries all the servers in c .Servers for

their local variable List , and awaits responses from
⌈
n+k
2

⌉
servers. Once the client receives Lists from

⌈
n+k
2

⌉

servers, it selects the highest tag t , such that: (i) its corresponding valuev is decodable from the coded elements in
the lists; and (ii) t is the highest tag seen from the responses of at least k Lists (see lines Alg. 5:11-14) and returns
the pair (t ,v). Note that in the case where anyone of the above conditions is not satisied the corresponding read
operation does not complete.

5.1 Correctness of the DAPs

To proof the correctness of the proposed DAPs, we need to show that they are both safe, i.e. ensure the necessary
Property 1, and live, i.e. they allow each operation to terminate. We irst proceed to prove that for any given
execution ξ containing operations of the proposed implementation, then examining any pair of operations in ξ
satisfy the DAP consistency properties (i.e. Property 1). That is, the tag returned by a get-tag() operation is larger
than the value written by any preceding put-data() operation, and the value returned by a get-data() operation
is either written by a put-data() operation or is the initial value of the object. Next, assuming that there cannot
be more that δ put-data() operations concurrent with a single get-data() operation, we show that each operation
in our implementation terminates. Otherwise a get-data() operation is at risk of not being able to discover a
decodable value and thus fail to terminate and return a value.

Safety (Property 1). In this section we are concerned with only one coniguration c , consisting of a set of servers

c .Servers . We assume that at most f ≤ n−k
2 servers from c .Servers may crash. Lemma 2 states that the DAP

ACM Trans. Storage



Ares: Adaptive, Reconfigurable, Erasure coded, Atomic Storage • 15

implementation satisies the consistency properties Property 1 which will be used to imply the atomicity of the
Ares algorithm.

Theorem 2 (Safety). Let Π a set of complete DAP operations of Algorithm 5 in a coniguration c ∈ C, c.get-tag,

c.get-data and c.put-data, of an execution ξ . Then, every pair of operations ϕ,π ∈ Π satisfy Property 1.

Proof. As mentioned above we are concerned with only coniguration c , and therefore, in our proofs it suices
to examine only one coniguration. Let ξ be some execution of Ares, then we consider two cases for π for proving
property C1: π is a get-tag, or π is a get-data primitive.
Case (a): ϕ is c .put-data(⟨τϕ ,vϕ ⟩) and π is a c .get-tag() returns τπ ∈ T . Let cϕ and cπ denote the clients that

invokes ϕ and π in ξ . Let Sϕ ⊂ S denote the set of
⌈
n+k
2

⌉
servers that responds to cϕ , during ϕ. Denote by Sπ the

set of
⌈
n+k
2

⌉
servers that responds to cπ , during π . Let T1 be a point in execution ξ after the completion of ϕ and

before the invocation of π . Because π is invoked after T1, therefore, at T1 each of the servers in Sϕ contains tϕ in
its List variable. Note that, once a tag is added to List , it is never removed. Therefore, during π , any server in

Sϕ ∩ Sπ responds with List containing tϕ to cπ . Note that since |Sϕ | = |Sπ | =
⌈
n+k
2

⌉
implies |Sϕ ∩ Sπ | ≥ k , and

hence tdecmax at cπ , during π is at least as large as tϕ , i.e., tπ ≥ tϕ . Therefore, it suices to prove our claim with
respect to the tags and the decodability of its corresponding value.

Case (b): ϕ is c .put-data(⟨τϕ ,vϕ ⟩) and π is a c .get-data() returns ⟨τπ ,vπ ⟩ ∈ T ×V . As above, let cϕ and cπ be
the clients that invokesϕ and π . Let Sϕ and Sπ be the set of servers that responds to cϕ and cπ , respectively. Arguing
as above, |Sϕ ∩ Sπ | ≥ k and every server in Sϕ ∩ Sπ sends tϕ in response to cϕ , during π , in their List ’s and hence

tϕ ∈ Taдs
≥k
∗ . Now, because π completes in ξ , hence we have t∗max = t

dec
max . Note that maxTaдs≥k∗ ≥ maxTaдs≥k

dec

so tπ ≥ maxTaдs≥k
dec
= maxTaдs≥k∗ ≥ tϕ . Note that each tag is always associated with its corresponding value

vπ , or the corresponding coded elements Φs (vπ ) for s ∈ S.
Next, we prove the C2 property of DAP for the Ares algorithm. Note that the initial values of the List variable

in each servers s in S is {(t0,Φs (vπ ))}. Moreover, from an inspection of the steps of the algorithm, new tags in
the List variable of any servers of any servers is introduced via put-data operation. Since tπ is returned by a
get-tag or get-data operation then it must be that either tπ = t0 or tπ > t0. In the case where tπ = t0 then we
have nothing to prove. If tπ > t0 then there must be a put-data(tπ ,vπ ) operation ϕ. To show that for every π it
cannot be that ϕ completes before π , we adopt by a contradiction. Suppose for every π , ϕ completes before π
begins, then clearly tπ cannot be returned ϕ, a contradiction. □

Liveness. To reason about the liveness of the proposed DAPs, we deine a concurrency parameter δ which
captures all the put-data operations that overlap with the get-data, until the time the client has all data needed to
attempt decoding a value. However, we ignore those put-data operations that might have started in the past, and
never completed yet, if their tags are less than that of any put-data that completed before the get-data started.
This allows us to ignore put-data operations due to failed clients, while counting concurrency, as long as the
failed put-data operations are followed by a successful put-data that completed before the get-data started. In
order to deine the amount of concurrency in our speciic implementation of the DAPs presented in this section
the following deinition captures the put-data operations that overlap with the get-data, until the client has all
data required to decode the value.

Definition 3 (Valid get-data operations). A get-data operation π from a process p is valid if p does not crash

until the reception of
⌈
n+k
2

⌉
responses during the get-data phase.

Definition 4 (put-data concurrent with a valid get-data). Consider a valid get-data operation π from a

process p. Let T1 denote the point of initiation of π . For π , let T2 denote the earliest point of time during the execution

when p receives all the
⌈
n+k
2

⌉
responses. Consider the set Σ = {ϕ : ϕ is any put-data operation that completes before
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π is initiated}, and let ϕ∗ = argmaxϕ ∈Σ taд(ϕ). Next, consider the set Λ = {λ : λ is any put-data operation that

starts before T2 such that taд(λ) > taд(ϕ∗)}. We deine the number of put-data concurrent with the valid get-data

π to be the cardinality of the set Λ.

Termination (and hence liveness) of the DAPs is guaranteed in an execution ξ , provided that a process no
more than f servers in c .Servers crash, and no more that δ put-data may be concurrent at any point in ξ . If the
failure model is satisied, then any operation invoked by a non-faulty client will collect the necessary replies
independently of the progress of any other client process in the system. Preserving δ on the other hand, ensures
that any operation will be able to decode a written value. These are captured in the following theorem:

Theorem 5 (Liveness). Let ξ be well-formed and fair execution of DAPs, with an [n,k] MDS code, where n is the

number of servers out of which no more than n−k
2 may crash, and δ be the maximum number of put-data operations

concurrent with any valid get-data operation. Then any get-data and put-data operation π invoked by a process p

terminates in ξ if p does not crash between the invocation and response steps of π .

Proof. Note that in the read and write operation the get-tag and put-data operations initiated by any non-
faulty client always complete. Therefore, the liveness property with respect to any write operation is clear because
it uses only get-tag and put-data operations of the DAP. So, we focus on proving the liveness property of any
read operation π , speciically, the get-data operation completes. Let ξ be and execution of Ares and let cω and
cπ be the clients that invokes the write operation ω and read operation π , respectively.

Let Sω be the set of
⌈
n+k
2

⌉
servers that responds to cω , in the put-data operations, in ω. Let Sπ be the set of⌈

n+k
2

⌉
servers that responds to cπ during the get-data step of π . Note that in ξ at the point execution T1, just

before the execution of π , none of the write operations in Λ is complete. Observe that, by algorithm design, the
coded-elements corresponding to tω are garbage-collected from the List variable of a server only if more than δ
higher tags are introduced by subsequent writes into the server. Since the number of concurrent writes |Λ|, s.t.
δ > |Λ| the corresponding value of tag tω is not garbage collected in ξ , at least until execution point T2 in any of
the servers in Sω .
Therefore, during the execution fragment between the execution points T1 and T2 of the execution ξ , the

tag and coded-element pair is present in the List variable of every in Sω that is active. As a result, the tag and
coded-element pairs, (tω ,Φs (vω )) exists in the List received from any s ∈ Sω ∩ Sπ during operation π . Note

that since |Sω | = |Sπ | =
⌈
n+k
2

⌉
hence |Sω ∩ Sπ | ≥ k and hence tω ∈ Taдs

≥k
dec

, the set of decode-able tag, i.e.,

the value vω can be decoded by cπ in π , which demonstrates that Taдs≥k
dec
, ∅. Next we want to argue that

t∗max = t
dec
max via a contradiction: we assume maxTaдs≥k∗ > maxTaдs≥k

dec
. Now, consider any tag t , which exists

due to our assumption, such that, t ∈ Taдs≥k∗ , t < Taдs≥k
dec

and t > tdecmax . Let S
k
π ⊂ S be any subset of k servers

that responds with t∗max in their List variables to cπ . Note that since k > n/3 hence |Sω ∩S
k
π | ≥

⌈
n+k
2

⌉
+

⌈
n+1
3

⌉
≥ 1,

i.e., Sω ∩ S
k
π , ∅. Then t must be in some servers in Sω at T2 and since t > tdecmax ≥ tω . Now since |Λ| < δ hence

(t ,⊥) cannot be in any server atT2 because there are not enough concurrent write operations (i.e., writes in Λ) to
garbage-collect the coded-elements corresponding to tag t , which also holds for tag t∗max . In that case, t must be

in Taд≥k
dec

, a contradiction. □

6 CORRECTNESS OF ARES

In this section, we prove that Ares correctly implements an atomic, read/write, shared storage service. The
correctness of Ares highly depends on the way the coniguration sequence is constructed at each client process.
Also, atomicity is ensured if the DAP implementation in each coniguration ci satisies Property 1.

As a roadmap, we begin by showing that some critical properties are preserved by the reconiguration service
proposed in subsection 6.1. In particular, we show that the coniguration sequence maintained in two processes
is either the same or one is the preix of the other. This in turn helps us to proof the correctness of Ares in
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subsection 6.2 by showing that all the properties of atomicity (see Section 2) are satisied, given the properties on
the coniguration sequence hold, and that the DAPs used in each coniguration satisfy Property 1.

We proceed by irst introducing some deinitions and notation, that we use in the proofs that follow.

Notations and deinitions. For a server s , we use the notation s .var |σ to refer to the value of the state variable
var , in s , at a state σ of an execution ξ . If server s crashes at a state σf in an execution ξ then s .var |σ ≜ s .var |σf
for any state variable var and for any state σ that appears after σf in ξ (i.e. the value of the variable remains
unchanged).

We deine as the tag of a coniguration c the smallest tag among the maximum tags found in each quorum of c .
This is essentially the smallest tag that an operation may witness when receiving replies from a single quorum in
c . More formally:

Definition 6 (Tag of a configuration). Let c ∈ C be a coniguration, σ be a state in some execution ξ then

we deine the tag of c at state σ as taд(c)|σ ≜ minQ ∈c .Quorums maxs ∈Q (s .taд |σ ).We drop the suix |σ , and simply

denote as taд(c), when the state is clear from the context.

Next we provide the notation to express the coniguration sequence witnessed by a process p in a state σ (as

p.cseq |σ ), the last inalized coniguration in that sequence (as µ(c
p
σ )), and the length of that sequence (as ν (c

p
σ )).

More formally:

Definition 7. Let σ be any point in an execution of Ares and suppose we use the notation c
p
σ for p.cseq |σ , i.e.,

the cseq variable at process p at the state σ . Then we deine as µ(c
p
σ ) ≜ max{i : c

p
σ [i].status = F } and ν (c

p
σ ) ≜ |c

p
σ |,

where |c
p
σ | is the length of the coniguration vector c

p
σ .

Last, we deine the preix operation on two coniguration sequences.

Definition 8 (Prefix order). Let x and y be any two coniguration sequences. We say that x is a preix of y,

denoted by x ⪯p y, if x[j].c f д = y[j].c f д, for all j such that x[j] , ⊥.

Table 3 summarizes the new notation for ease of reference.

c
p
σ the value of the coniguration sequence variable cseq at process p in

state σ , i.e. a shorthand of p.cseq |σ

c
p
σ [i] the ith element in the coniguration sequence c

p
σ

µ(c
p
σ ) last inalized coniguration in c

p
σ

ν (c
p
σ ) the length of c

p
σ , i.e. |c

p
σ |

Table 3. Additional notation used in this section.

6.1 Reconfiguration Protocol Properties

In this section we analyze the properties that we can achieve through our reconiguration algorithm. In high-level,
we do show that the following properties are preserved:

i coniguration uniqueness: the coniguration sequences in any two processes have identical coniguration
at any place i ,

ii sequence preix: the coniguration sequence witnessed by an operation is a preix of the sequence
witnessed by any succeeding operation, and
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iii sequence progress: if the coniguration with index i is inalized during an operation, then a coniguration
j, for j ≥ i , will be inalized for a succeeding operation.

The irst lemma shows that any two coniguration sequences have the same coniguration identiiers in the
same indexes.

Lemma 9. For any reconigurer r that invokes an reconfig(c) action in an execution ξ of the algorithm, If r chooses

to install c in index k of its local r .cseq vector, then r invokes the Cons[k − 1].propose(c) instance over coniguration

r .cseq[k − 1].c f д.

Proof. It follows directly from the algorithm. □

Lemma 10. If a server s sets s .nextC to ⟨c, F ⟩ at some state σ in an execution ξ of the algorithm, then s .nextC =

⟨c, F ⟩ for any state σ ′ that appears after σ in ξ .

Proof. Notice that a server s updates its s .nextC variable for some speciic coniguration ck in a state σ only
when it receives a write-conf message. This is either the irst write-conf message received at s for ck (and
thus nextC = ⊥), or s .nextC = ⟨∗, P⟩ and the message received contains a tuple ⟨c, F ⟩. Once the tuple becomes
equal to ⟨c, F ⟩ then s does not satisfy the update condition for ck , and hence in any state σ ′ after σ it does not
change ⟨c, F ⟩. □

Lemma 11 (Configuration Uniqeness). For any processes p,q ∈ I and any states σ1,σ2 in an execution ξ , it

must hold that c
p
σ1 [i].c f д = c

q
σ2 [i].c f д, ∀i s.t. c

p
σ1 [i].c f д, c

q
σ2 [i].c f д , ⊥.

Proof. The lemma holds trivially for c
p
σ1 [0].c f д = c

q
σ2 [0].c f д = c0. So in the rest of the proof we focus in the

case where i > 0. Let us assume w.l.o.g. that σ1 appears before σ2 in ξ .
According to our algorithm a process p sets p.cseq[i].c f д to a coniguration identiier c in two cases: (i)

either it received c as the result of the consensus instance in coniguration p.cseq[i − 1].c f д, or (ii) p receives
s .nextC .c f д = c from a server s ∈ p.cseq[i − 1].c f д.Servers . Note here that (i) is possible only when p is a
reconigurer and attempts to install a new coniguration. On the other hand (ii) may be executed by any process
in any operation that invokes the read-config action. We are going to proof this lemma by induction on the
coniguration index.
Base case: The base case of the lemma is when i = 1. Let us irst assume that p and q receive cp and cq , as

the result of the consensus instance at p.cseq[0].c f д and q.cseq[0].c f д respectively. By Lemma 9, since both
processes want to install a coniguration in i = 1, then they have to run Cons[0] instance over the coniguration
stored in their local cseq[0].c f д variable. Since p.cseq[0].c f д = q.cseq[0].c f д = c0 then both Cons[0] instances
run over the same coniguration c0 and thus by the agreement property the have to decide the same value, say c1.
Hence cp = cq = c1 and p.cseq[1].c f д = q.cseq[1].c f д = c1.

Let us examine the case nowwherep orq assign a coniguration c they received from some server s ∈ c0.Servers .
According to the algorithm only the coniguration that has been decided by the consensus instance on c0 is
propagated to the servers in c0.Servers . If c1 is the decided coniguration, then ∀s ∈ c0.Servers such that
s .nextC(c0) , ⊥, it holds that s .nextC(C0) = ⟨c1, ∗⟩. So if p or q set p.cseq[1].c f д or q.cseq[1].c f д to some
received coniguration, then p.cseq[1].c f д = q.cseq[1].c f д = c1 in this case as well.

Hypothesis: We assume that c
p
σ1 [k] = c

q
σ2 [k] for some k , k ≥ 1.

Induction Step: We need to show that the lemma holds for i = k + 1. If both processes retrieve p.cseq[k + 1].c f д
and q.cseq[k + 1].c f д through consensus, then both p and q run consensus over the previous coniguration. Since

according to our hypothesis c
p
σ1 [k] = c

q
σ2 [k] then both process will receive the same decided value, say ck+1, and

hence p.cseq[k + 1].c f д = q.cseq[k + 1].c f д = ck+1. Similar to the base case, a server in ck .Servers only receives
the coniguration ck+1 decided by the consensus instance run over ck . So processes p and q can only receive ck+1
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from some server in ck .Servers so they can only assign p.cseq[k + 1].c f д = q.cseq[k + 1].c f д = ck+1 at Line A2:8.
That completes the proof. □

Lemma 11 showed that any two operations store the same coniguration in any cell k of their cseq variable. It is
not known however if the two processes discover the same number of coniguration ids. In the following lemmas
we will show that if a process learns about a coniguration in a cell k then it also learns about all coniguration
ids for every index i , such that 0 ≤ i ≤ k − 1.

Lemma 12. In any execution ξ of the algorithm , If for any process p ∈ I, c
p
σ [i] , ⊥ in some state σ in ξ , then

c
p

σ ′[i] , ⊥ in any state σ ′ that appears after σ in ξ .

Proof. A value is assigned to c
p
∗ [i] either after the invocation of a consensus instance, or while executing the

read-config action. Since any coniguration proposed for installation cannot be ⊥ (A2:7), and since there is at
least one coniguration proposed in the consensus instance (the one from p), then by the validity of the consensus

service the decision will be a coniguration c , ⊥. Thus, in this case c
p
∗ [i] cannot be ⊥. Also in the read-config

procedure, c
p
∗ [i] is assigned to a value diferent than ⊥ according to Line A2:8. Hence, if c

p
σ [i] , ⊥ at state σ then

it cannot become ⊥ in any state σ ′ after σ in execution ξ . □

Lemma 13. Let σ1 be some state in an execution ξ of the algorithm. Then for any process p, if k =max{i : c
p
σ1 [i] ,

⊥}, then c
p
σ1 [j] , ⊥, for 0 ≤ j < k .

Proof. Let us assume to derive contradiction that there exists j < k such that c
p
σ1 [j] = ⊥ and c

p
σ1 [j + 1] , ⊥.

Consider irst that j = k − 1 and that σ1 is the state immediately after the assignment of a value to c
p
σ1 [k], say ck .

Since c
p
σ1 [k] , ⊥, then p assigned ck to c

p
σ1 [k] in one of the following cases: (i) ck was the result of the consensus

instance, or (ii) p received ck from a server during a read-config action. The irst case is trivially impossible as

according to Lemma 9 p decides for k when it runs consensus over coniguration c
p
σ1 [k − 1].c f д. Since this is

equal to ⊥, then we cannot run consensus over a non-existent set of processes. In the second case, p assigns

c
p
σ1 [k] = ck in Line A1:8. The value ck was however obtained when p invoked get-next-config on coniguration

c
p
σ1 [k − 1].c f д. In that action, p sends read-config messages to the servers in c

p
σ1 [k − 1].c f д.Servers and waits

until a quorum of servers replies. Since we assigned c
p
σ1 [k] = ck it means that get-next-config terminated at some

state σ ′ before σ1 in ξ , and thus: (a) a quorum of servers in c
p

σ ′[k − 1].c f д.Servers replied, and (b) there exists a

server s among those that replied with ck . According to our assumption however, c
p
σ1 [k − 1] = ⊥ at σ1. So if state

σ ′ is before σ1 in ξ , then by Lemma 12, it follows that c
p

σ ′[k − 1] = ⊥. This however implies that p communicated
with an empty coniguration, and thus no server replied to p. This however contradicts the assumption that a
server replied with ck to p.

Since any process traverses the coniguration sequence starting from the initial coniguration c0, then with a

simple induction and similar reasoning we can show that c
p
σ1 [j] , ⊥, for 0 ≤ j ≤ k − 1. □

We can now move to an important lemma that shows that any read-config action returns an extension of
the coniguration sequence returned by any previous read-config action. First, we show that the last inalized
coniguration observed by any read-config action is at least as recent as the inalized coniguration observed by
any subsequent read-config action.

Lemma 14. If at a state σ of an execution ξ of the algorithm µ(c
p
σ ) = k for some process p, then for any element

0 ≤ j < k , ∃Q ∈ c
p
σ [j].c f д.Quorums such that ∀s ∈ Q, s .nextC(c

p
σ [j].c f д) = c

p
σ [j + 1].

Proof. This lemma follows directly from the algorithm. Notice that whenever a process assigns a value to
an element of its local coniguration (Lines A1:8 and A2:17), it then propagates this value to a quorum of the

previous coniguration (Lines A1:9 and A2:18). So if a process p assigned c j to an element c
p

σ ′[j] in some state σ ′
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in ξ , then p may assign a value to the j + 1 element of c
p

σ ′′[j + 1] only after put-config(c
p

σ ′[j − 1].c f д, c
p

σ ′[j]) occurs.

During put-config action, p propagates c
p

σ ′[j] in a quorumQ ∈ c
p

σ ′[j − 1].c f д.Quorums . Hence, if c
p
σ [k] , ⊥, then

p propagated each c
p

σ ′[j], for 0 < j ≤ k to a quorum of servers Q ∈ c
p

σ ′[j − 1].c f д.Quorums . And this completes
the proof. □

Lemma 15 (Seqence Prefix). Let π1 and π2 two completed read-config actions invoked by processes p1,p2 ∈ I

respectively, such that π1 → π2 in an execution ξ . Let σ1 be the state after the response step of π1 and σ2 the state

after the response step of π2. Then c
p1
σ1 ⪯p c

p2
σ2 .

Proof. Let ν1 = ν (c
p1
σ1 ) and ν2 = ν (c

p2
σ2 ). By Lemma 11 for any i such that c

p1
σ1 [i] , ⊥ and c

p2
σ2 [i] , ⊥, then

c
p1
σ1 [i].c f д = c

p2
σ2 [i].c f д. Also from Lemma 13 we know that for 0 ≤ j ≤ ν1, c

p1
σ1 [j] , ⊥, and 0 ≤ j ≤ ν2, c

p2
σ2 [j] , ⊥.

So if we can show that ν1 ≤ ν2 then the lemma follows.
Let µ = µ(c

p2
σ ′) be the last inalized element which p2 established in the beginning of the read-config action

π2 (Line A2:2) at some state σ ′ before σ2. It is easy to see that µ ≤ ν2. If ν1 ≤ µ then ν1 ≤ ν2 and the lemma
follows. Thus, it remains to examine the case where µ < ν1. Notice that since π1 → π2 then σ1 appears before

σ ′ in execution ξ . By Lemma 14, we know that by σ1, ∃Q ∈ c
p1
σ1 [j].c f д.Quorums , for 0 ≤ j < ν1, such that

∀s ∈ Q, s .nextC = c
p1
σ1 [j + 1]. Since µ < ν1, then it must be the case that ∃Q ∈ c

p1
σ1 [µ].c f д.Quorums such that

∀s ∈ Q, s .nextC = c
p1
σ1 [µ + 1]. But by Lemma 11, we know that c

p1
σ1 [µ].c f д = c

p2
σ ′[µ].c f д. Let Q

′ be the quorum

that replies to the read-next-config occurred in p2, on coniguration c
p2
σ ′[µ].c f д. By deinition Q ∩Q ′ , ∅, thus

there is a server s ∈ Q ∩Q ′ that sends s .nextC = c
p1
σ1 [µ + 1] to p2 during π2. Since c

p1
σ1 [µ + 1] , ⊥ then p2 assigns

c
p2
∗ [µ + 1] = c

p1
σ1 [µ + 1], and repeats the process in the coniguration c

p2
∗ [µ + 1].c f д. Since every coniguration

c
p1
σ1 [j].c f д, for µ ≤ j < ν1, has a quorum of servers with s .nextC , then by a simple induction it can be shown that

the process will be repeated for at least ν1 − µ iterations, and every coniguration c
p2
σ ′′[j] = c

p1
σ1 [j], at some state

σ ′′ before σ2. Thus, c
p2
σ2 [j] = c

p1
σ1 [j], for 0 ≤ j ≤ ν1. Hence ν1 ≤ ν2 and the lemma follows in this case as well. □

Thus far we focused on the coniguration member of each element in cseq. As operations do get in account
the status of a coniguration, i.e. P or F , in the next lemma we will examine the relationship of the last inalized
coniguration as detected by two operations. First we present a lemma that shows the monotonicity of the
inalized conigurations.

Lemma 16. Let σ and σ ′ two states in an execution ξ such that σ appears before σ ′ in ξ . Then for any process p

must hold that µ(c
p
σ ) ≤ µ(c

p

σ ′).

Proof. This lemma follows from the fact that if a coniguration k is such that c
p
σ [k].status = F at a state σ ,

then p will start any future read-config action from a coniguration c
p

σ ′[j].c f д such that j ≥ k . But c
p

σ ′[j].c f д is

the last inalized coniguration at σ ′ and hence µ(c
p

σ ′) ≥ µ(c
p
σ ). □

Lemma 17 (Seqence Progress). Let π1 and π2 two completed read-config actions invoked by processesp1,p2 ∈ I

respectively, such that π1 → π2 in an execution ξ . Let σ1 be the state after the response step of π1 and σ2 the state

after the response step of π2. Then µ(c
p1
σ1 ) ≤ µ(c

p2
σ2 ).

Proof. By Lemma 15 it follows that c
p1
σ1 is a preix of c

p2
σ2 . Thus, if ν1 = ν (c

p1
σ1 ) and ν2 = ν (c

p2
σ2 ), ν1 ≤ ν2. Let

µ1 = µ(c
p1
σ1 ), such that µ1 ≤ ν1, be the last element in c

p1
σ1 , where c

p1
σ1 [µ1].status = F . Let now µ2 = µ(c

p2
σ ′), be the

last element which p2 obtained in Line A1:2 during π2 such that c
p2
σ ′[µ2].status = F in some state σ ′ before σ2. If

µ2 ≥ µ1, and since σ2 is after σ
′, then by Lemma 16 µ2 ≤ µ(c

p2
σ2 ) and hence µ1 ≤ µ(c

p2
σ2 ) as well.

It remains to examine the case where µ2 < µ1. Process p1 sets the status of c
p1
σ1 [µ1] to F in two cases: (i) either

when inalizing a reconiguration, or (ii) when receiving an s .nextC = ⟨c
p1
σ1 [µ1].c f д, F ⟩ from some server s during
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a read-config action. In both cases p1 propagates the ⟨c
p1
σ1 [µ1].c f д, F ⟩ to a quorum of servers in c

p1
σ1 [µ1 − 1].c f д

before completing. We know by Lemma 15 that since π1 → π2 then c
p1
σ1 is a preix in terms of conigurations

of the c
p2
σ2 . So it must be the case that µ2 < µ1 ≤ ν (c

p2
σ2 ). Thus, during π2, p2 starts from the coniguration at

index µ2 and in some iteration performs get-next-config in coniguration c
p2
σ2 [µ1 − 1]. According to Lemma 11,

c
p1
σ1 [µ1 − 1].c f д = c

p2
σ2 [µ1 − 1].c f д. Since π1 completed before π2, then it must be the case that σ1 appears before

σ ′ in ξ . However, p2 invokes the get-next-config operation in a state σ ′′ which is either equal to σ ′ or appears
after σ ′ in ξ . Thus, σ ′′ must appear after σ1 in ξ . From that it follows that when the get-next-config is executed

by p2 there is already a quorum of servers in c
p2
σ2 [µ1 − 1].c f д, say Q1, that received ⟨c

p1
σ1 [µ1].c f д, F ⟩from p1.

Since, p2 waits from replies from a quorum of servers from the same coniguration, say Q2, and since the nextC
variable at each server is monotonic (Lemma 10), then there is a server s ∈ Q1 ∩ Q2, such that s replies to p2
with s .nextC = ⟨c

p1
σ1 [µ1].c f д, F ⟩. So, c

p2
σ2 [µ1] gets ⟨c

p1
σ1 [µ1].c f д, F ⟩, and hence µ(c

p2
σ2 ) ≥ µ1 in this case as well. This

completes our proof. □

Using the previous Lemmas we can conclude to the main result of this section.

Theorem 18. Let π1 and π2 two completed read-config actions invoked by processes p1,p2 ∈ I respectively, such

that π1 → π2 in an execution ξ . Let σ1 be the state after the response step of π1 and σ2 the state after the response

step of π2. Then the following properties hold:

(a) Coniguration Consistency: c
p2
σ2 [i].c f д = c

p1
σ1 [i].c f д, for 1 ≤ i ≤ ν (c

p1
σ1 ),

(b) Sequence Preix: c
p1
σ1 ⪯p c

p2
σ2 , and

(c) Sequence Progress: µ(c
p1
σ1 ) ≤ µ(c

p2
σ2 )

Proof. Statements (a), (b) and (c) follow from Lemmas 11, 15, and 16. □

6.2 Atomicity Property of Ares

Given the properties satisied by the reconiguration algorithm of Ares in any execution, we can now proceed to
examine whether our algorithm satisies the safety (atomicity) conditions. The propagation of the information
of the distributed object is achieved using the get-tag, get-data, and put-data actions. We assume that the DAP
used satisfy Property 1 as presented in Section 3, and we will show that, given such assumption, Ares satisies
atomicity.

We begin with a lemma stating that if a reconiguration operation retrieves a coniguration sequence of length k
during its read-config action, then it installs/inalizes the k + 1 coniguration in the global coniguration sequence.

Lemma 19. Let π be a complete reconiguration operation by a reconigurer rc in an execution ξ of Ares. if σ1 is

the state in ξ following the termination of the read-config action during π , then π invokes a finalize-config(crcσ2 ) at

a state σ2 in ξ , with ν (c
rc
σ2
) = ν (crcσ1 ) + 1.

Proof. This lemma follows directly from the implementation of the reconfig operation. Let π be a reconigu-
ration operation reconfig(c). At irst, π invokes a read-config to retrieve a latest value of the global coniguration
sequence, crcσ1 , in the state σ1 in ξ . During the add-config action, π proposes the addition of c , and appends at
the end of crcσ1 the decision d of the consensus protocol. Therefore, if crcσ1 is extended by ⟨d, P⟩ (Line A 2:17), and
hence the add-config action returns a coniguration sequence crc

σ ′1
with length ν (crc

σ ′1
) = ν (crcσ1 ) + 1. As ν (c

rc
σ ′1

does

not change during the update-config action, then crc
σ ′1

is passed to the finalize-config action at state σ2, and hence

crcσ2 = crc
σ ′1
. Thus, ν (crcσ2 ) = ν (c

rc
σ ′1
) = ν (crcσ1 ) + 1 and the lemma follows. □

The next lemma states that only some reconiguration operation π may inalize a coniguration c at index
j in a coniguration sequence p.cseq at any process p. To inalize c , the lemma shows that π must witness a
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coniguration sequence such that its last inalized coniguration appears at an index i < j in the coniguration
sequence p.cseq. In other words, reconigurations always inalize conigurations that are ahead from their latest
observed inal coniguration, and it seems like łjumpingž from one inal coniguration to the next.

Lemma 20. Suppose ξ is an execution of Ares. For any state σ in ξ , if c
p
σ [j].status = F for some process p ∈ I,

then there exists a reconfig operation π by a reconigurer rc ∈ G, such that (i) rc invokes finalize-config(crcσ ′) during

π at some state σ ′ in ξ , (ii) ν (crcσ ′) = j, and (iii) µ(c
rc
σ ′) < j.

Proof. A process sets the status of a coniguration c to F in two cases: (i) either during a finalize-config(seq)
action such that ν (seq) = ⟨c, P⟩ (Line A2:33), or (ii) when it receives ⟨c, F ⟩ from a server s during a read-next-config
action. Server s sets the status of a coniguration c to F only if it receives a message that contains ⟨c, F ⟩ (Line
A3:10). So, (ii) is possible only if c is inalized during a reconfig operation.

Let, w.l.o.g., π be the irst reconiguration operation that inalizes c
p
σ [j].c f д. To do so, process rc invokes

finalize-config(crc
σ ′1
) during π , at some state σ ′ that appears before σ in ξ . By Lemma 11, c

p
σ [j].c f д = crcσ ′[j].c f д.

Since, rc inalizes crcσ ′[j], then this is the last entry of crcσ ′ and hence ν (crcσ ′) = j. Also, by Lemma 20 it follows that
the read-config action of π returned a coniguration crcσ ′′ in some state σ ′′ that appeared before σ ′ in ξ , such that
ν (crcσ ′′) < ν (c

rc
σ ′). Since by deinition, µ(crcσ ′′) ≤ ν (c

rc
σ ′′), then µ(c

rc
σ ′′) < j. However, since only ⟨c, P⟩ is added to crcσ ′′

to result in crcσ ′ , then µ(c
rc
σ ′′) = µ(c

rc
σ ′). Therefore, µ(c

rc
σ ′) < j as well and the lemma follows. □

We now reach an important lemma of this section. By Ares, before a read/write/reconig operation completes
it propagates the maximum tag it discovered by executing the put-data action in the last coniguration of its local
coniguration sequence (Lines A2:18, A4:16, A4:38). When a subsequent operation is invoked, it reads the latest
coniguration sequence by beginning from the last inalized coniguration in its local sequence and invoking
read-data to all the conigurations until the end of that sequence. The lemma shows that the latter operation will
retrieve a tag which is higher than the tag used in the put-data action of any preceding operation.

Lemma 21. Let π1 and π2 be two completed read/write/reconig operations invoked by processes p1 and p2 in I, in

an execution ξ of Ares, such that, π1 → π2. If c1.put-data(⟨τπ1 ,vπ1⟩) is the last put-data action of π1 and σ2 is the

state in ξ after the completion of the irst read-config action of π2, then there exists a c2.put-data(⟨τ,v⟩) action in

some coniguration c2 = c
p2
σ2 [k].c f д, for µ(c

p2
σ2 ) ≤ k ≤ ν (c

p2
σ2 ), such that (i) it completes in a state σ ′ before σ2 in ξ ,

and (ii) τ ≥ τπ1 .

Proof. Note that from the deinitions of ν (·) and µ(·), we have µ(c
p2
σ2 ) ≤ ν (c

p2
σ2 ). Let σ1 be the state in ξ after

the completion of c1.put-data(⟨τπ1 ,vπ1⟩) and σ
′
1 be the state in ξ following the response step of π1. Since any

operation executes put-data on the last discovered coniguration then c1 is the last coniguration found in c
p1
σ1 ,

and hence c1 = c
p1
σ1 [ν (c

p1
σ1 )].c f д. By Lemma 16 we have µ(c

p1
σ1 ) ≤ µ(c

p1
σ ′1
) and by Lemma 17 we have µ(c

p1
σ ′1
) ≤ µ(c

p2
σ2 ),

since π2 (and thus its irst read-config action) is invoked after σ
′
1 (and thus after the last read-config action during

π1). Hence, combining the two implies that µ(c
p1
σ1 ) ≤ µ(c

p2
σ2 ). Now from the last implication and the irst statement

we have µ(c
p1
σ1 ) ≤ ν (c

p2
σ2 ). Therefore, it remains to examine whether the last inalized coniguration witnessed by

p2 appears before or after c1, i.e.: (a) µ(c
p2
σ2 ) ≤ ν (c

p1
σ1 ) and (b) µ(c

p2
σ2 ) > ν (c

p1
σ1 ).

Case (a): Since π1 → π2 then, by Theorem 18, c
p2
σ2 value returned by read-config at p2 during the execution of π2

satisies c
p1
σ1 ⪯p c

p2
σ2 . Therefore, ν (c

p1
σ1 ) ≤ ν (c

p2
σ2 ), and hence in this case µ(c

p2
σ2 ) ≤ ν (c

p1
σ1 ) ≤ ν (c

p2
σ2 ). Since c1 is the last

coniguration in c
p1
σ1 , then it has index ν (c

p1
σ1 ). So if we take c2 = c1 then the c1.put-data(⟨τπ1 ,vπ1⟩) action trivially

satisies both conditions of the lemma as: (i) it completes in state σ1 which appears before σ2, and (ii) it puts a
pair ⟨τ,v⟩ such that τ = τπ1 .
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Case (b): This case is possible if there exists a reconiguration client rc that invokes reconfig operation ρ, during

which it executes the finalize-config(crc∗ ) that inalized coniguration with index ν (crc∗ ) = µ(c
p2
σ2 ). Let σ be the

state immediately after the read-config of ρ. Now, we consider two sub-cases: (i) σ appears before σ1 in ξ , or (ii)
σ appears after σ1 in ξ .

Subcase (b)(i): Since read-config at σ completes before the invocation of last read-config of operation π1 then,

either crcσ ≺p c
p1
σ1 , or c

rc
σ = c

p1
σ1 due to Lemma 15. Suppose crcσ ≺p c

p1
σ1 , then according to Lemma 19 rc executes

finalize-config on coniguration sequence crc∗ with ν (crc∗ ) = ν (crcσ ) + 1. Since ν (crc∗ ) = µ(c
p2
σ2 ), then µ(c

p2
σ2 ) =

ν (crcσ )+1. If however, c
rc
σ ≺p c

p1
σ1 , then ν (c

rc
σ ) < ν (c

p1
σ1 ) and thus ν (c

rc
σ )+1 ≤ ν (c

p1
σ1 ). This implies that µ(c

p2
σ2 ) ≤ ν (c

p1
σ1 )

which contradicts our initial assumption for this case that µ(c
p2
σ2 ) > ν (c

p1
σ1 ). So this sub-case is impossible.

Now suppose, that crcσ = c
p1
σ1 . Then it follows that ν (crcσ ) = ν (c

p1
σ1 ), and that µ(c

p2
σ2 ) = ν (c

p1
σ1 )+ 1 in this case. Since

σ1 is the state after the last put-data during π1, then if σ ′1 is the state after the completion of the last read-config of

π1 (which follows the put-data), it must be the case that c
p1
σ1 = c

p1
σ ′1
. So, during its last read-config process p1 does

not read the coniguration indexed at ν (c
p1
σ1 ) + 1. This means that the put-config completes in ρ at state σρ after

σ ′1 and the update-config operation is invoked at state σ ′ρ after σρ with a coniguration sequence crc
σ ′ρ
. During the

update operation ρ invokes get-data operation in every coniguration crc
σ ′ρ
[i].c f д, for µ(crc

σ ′ρ
) ≤ i ≤ ν (crc

σ ′ρ
). Notice

that ν (crc
σ ′ρ
) = µ(c

p2
σ2 ) = ν (c

p1
σ1 ) + 1 and moreover the last coniguration of crc

σ ′ρ
was just added by ρ and it is not

inalized. From this it follows that µ(crc
σ ′ρ
) < ν (crc

σ ′ρ
), and hence µ(crc

σ ′ρ
) ≤ ν (c

p1
σ1 ). Therefore, ρ executes get-data in

coniguration crc
σ ′ρ
[j].c f д for j = ν (c

p1
σ1 ). Since p1 invoked put-data(⟨τπ1 ,vπ1⟩) at the same coniguration c1, and

completed in a state σ1 before σ
′
ρ , then by C1 of Property 1, it follows that the get-data action will return a tag

τ ≥ τπ1 . Therefore, the maximum tag that ρ discovers is τmax ≥ τ ≥ τπ1 . Before invoking the finalize-config

action, ρ invokes c1.put-data(⟨τmax ,vmax )⟩. Since ν (c
rc
σ ′ρ
) = µ(c

p2
σ2 ), and since by Lemma 11, then the action

put-data is invoked in a coniguration c2 = c
p2
σ2 [j].c f д such that j = µ(c

p2
σ2 ). Since the read-config action of π2

observed coniguration µ(c
p2
σ2 ), then it must be the case that σ2 appears after the state where the finalize-config

was invoked and therefore after the state of the completion of the put-data action during ρ. Thus, in this case
both properties are satisied and the lemma follows.

Subcase (b)(ii): Suppose in this case that σ occurs in ξ after σ1. In this case the last put-data in π1 completes
before the invocation of the read-config in ρ in execution ξ . Now we can argue recursively, ρ taking the place of

operation π2, that µ(c
rc
σ ) ≤ ν (c

rc
σ ) and therefore, we consider two cases: (a) µ(c

rc
σ ) ≤ ν (c

p1
σ1 ) and (b) µ(c

rc
σ ) > ν (c

p1
σ1 ).

Note that there are inite number of operations invoked in ξ before π2 is invoked, and hence the statement of the
lemma can be shown to hold by a sequence of inequalities. □

The following lemma shows the consistency of operations as long as the DAP used satisfy Property 1.

Lemma 22. Let π1 and π2 denote completed read/write operations in an execution ξ , from processes p1,p2 ∈ I

respectively, such that π1 → π2. If τπ1 and τπ2 are the local tags at p1 and p2 after the completion of π1 and π2
respectively, then τπ1 ≤ τπ2 ; if π1 is a write operation then τπ1 < τπ2 .

Proof. Let ⟨τπ1 ,vπ1⟩ be the pair passed to the last put-data action of π1. Also, let σ2 be the state in ξ that
follows the completion of the irst read-config action during π2. Notice that π2 executes a loop after the irst

read-config operation and performs c .get-data (if π2 is a read) or c .get-tag (if π2 is a write) from all c = c
p2
σ2 [i].c f д,

for µ(c
p2
σ2 ) ≤ i ≤ ν (c

p2
σ2 ). By Lemma 21, there exists a c ′.put-data(⟨τ,v⟩) action by some operation π ′ on some

coniguration c ′ = c
p2
σ2 [j].c f д, for µ(c

p2
σ2 ) ≤ j ≤ ν (c

p2
σ2 ), that completes in some state σ ′ that appears before σ2 in ξ .

Thus, the get-data or get-tag invoked by p2 on c
p2
σ2 [j].c f д, occurs after state σ2 and thus after σ ′. Since the DAP
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primitives used satisfy C1 and C2 of Property 1, then the get-tag action will return a tag τ ′π2 or a get-data action
will return a pair ⟨τ ′π2 ,v

′
π2
⟩, with τ ′π2 ≥ τ . As p2 gets the maximum of all the tags returned, then by the end of the

loop p2 will retrieve a tag τmax ≥ τ
′
π2
≥ τ ≥ τπ1 .

If now π2 is a read, it returns ⟨τmax ,vmax ⟩ after propagating that value to the last discovered coniguration.
Thus, τπ2 ≥ τπ1 . If however π2 is a write, then before propagating the new value the writer increments the
maximum timestamp discovered (Line A4:13) generating a tag τπ2 > τmax . Therefore the operation π2 propagates
a tag τπ2 > τπ1 in this case. □

And the main result of this section follows:

Theorem 23 (Atomicity). In any execution ξ ofAres, if in every coniguration c ∈ GL , c .get-data(), c .put-data(),

and c .get-tag() satisfy Property 1, then Ares satisfy atomicity.

As algorithm Ares handles each coniguration separately, then we can observe that the algorithm may utilize
a diferent mechanism for the put and get primitives in each coniguration. So the following remark:

Remark 24. Algorithm Ares satisies atomicity even when the implementaton of the DAPs in two diferent

conigurations c1 and c2 are not the same, given that the ci .get-tag, ci .get-data, and the ci .put-data primitives in

each ci satisfy Property 1.

7 PERFORMANCE ANALYSIS OF ARES

A major challenge in reconigurable atomic services is to examine the latency of terminating read and write
operations, especially when those are invoked concurrently with reconiguration operations. In this section we
provide an in depth analysis of the latency of operations in Ares. Additionally, a storage and communication
analysis is shown when Ares utilizes the erasure-coding algorithm presented in Section 5, in each coniguration.

7.1 Latency Analysis

The idea behind our latency analysis is quite straight forward: we construct the worst case execution that would
allow all concurrent reconigurations to add their proposed coniguration. This leads to the longest coniguration
sequence that a read/write operation needs to traverse before completing. Thus, given a bounded delay, we
compute the delay for each operation and we inally compute how long it is going to take for a read/write
operation to catch up in the worst case and complete.

Liveness (termination) properties cannot be speciied for Ares, without restricting asynchrony or the rate of
arrival of reconfig operations, or if the consensus protocol never terminates. Here, we provide some conditional
performance analysis of the operation, based on latency bounds on the message delivery. We assume that local
computations take negligible time and the latency of an operation is due to the delays in the messages exchanged
during the execution. We measure delays in time units of some global clock, which is visible only to an external
viewer. No process has access to the clock. Let d and D be the minimum and maximum durations taken by
messages, sent during an execution of Ares, to reach their destinations. Also, let T (π ) denote the duration of
an operation (or action) π . In the statements that follow, we consider any execution ξ of Ares, which contains
k reconfig operations. For any coniguration c in an execution of Ares, we assume that any c .Con.propose
operation, takes at least Tmin(CN ) time units.

Let us irst examine what is the action delays based on the boundaries we assume. It is easy to see that actions
put-config, get-next-config perform two message exchanges thus take time 2d ≤ T (ϕ) ≤ 2D. From this we can
derive the delay of a read-config action.

Lemma 25. Let ϕ be a read-config operation invoked by a non-faulty reconiguration client rc , with the input

argument and returned values of ϕ as crcσ and crcσ ′ respectively. Then the delay of ϕ is: 4d(ν (crcσ ′) − µ(c
rc
σ ) + 1) ≤

T (ϕ) ≤ 4D(ν (crcσ ′) − µ(c
rc
σ ) + 1).
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From Lemma 25 it is clear that the latency of a read-config action depends on the number of conigurations
installed since the last inalized coniguration known to the recon client.

Given the latency of a read-config, we can compute the minimum amount of time it takes for k conigurations
to be installed.

The following lemma shows the maximum latency of a read or a write operation, invoked by any non-faulty
client. From Ares algorithm, the latency of a read/write operation depends on the delays of the DAPs operations.
For our analysis we assume that all get-data, get-tag and put-data primitives use two phases of communication.
Each phase consists of a communication between the client and the servers.

Lemma 26. Suppose π , ϕ andψ are operations of the type put-data, get-tag and get-data, respectively, invoked

by some non-faulty reconiguration clients, then the latency of these operations are bounded as follows: (i) 2d ≤

T (π ) ≤ 2D; (ii) 2d ≤ T (ϕ) ≤ 2D; and (iii) 2d ≤ T (ψ ) ≤ 2D.

In the following lemma, we estimate the time taken for a read or a write operation to complete, when it
discovers k conigurations between its invocation and response steps.

Lemma 27. Consider any execution of Ares where at most k reconiguration operations are invoked. Let σs and σe
be the states before the invocation and after the completion step of a read/write operation π , in some fair execution ξ

of Ares. Then we have T (π ) ≤ 6D (k + 2) to complete.

Proof. Let σs and σe be the states before the invocation and after the completion step of a read/write operation
π by p respectively, in some execution ξ of Ares. By algorithm examination we can see that any read/write
operation performs the following actions in this order: (i) read-config, (ii) get-data (or get-tag), (iii) put-data,
and (iv) read-config. Let σ1 be the state when the irst read-config, denoted by read-config1, action terminates.
By Lemma 25 the action will take time:

T (read-config1) ≤ 4D(ν (c
p
σ1 ) − µ(c

p
σs ) + 1)

The get-data action that follows the read-config (Lines Alg. 4:34-35) also took at most (ν (c
p
σ1 ) − µ(c

p
σs ) + 1) time

units, given that no new inalized coniguration was discovered by the read-config action. Finally, the put-data

and the second read-config actions of π may be invoked at most (ν (c
p
σe ) − ν (c

p
σ1 ) + 1) times, given that the

read-config action discovers one new coniguration every time it runs. Merging all the outcomes, the total time
of π can be at most:

T (π ) ≤ 4D(ν (c
p
σ1 ) − µ(c

p
σs ) + 1) + 2D(ν (c

p
σ1 ) − µ(c

p
σs ) + 1) + (4D + 2D)(ν (c

p
σe ) − ν (c

p
σ1 ) + 1)

≤ 6D
[
ν (c

p
σe ) − µ(c

p
σs ) + 2

]
≤ 6D(k + 1)

where ν (c
p
σe ) − µ(c

p
σs ) ≤ k + 1 since there can be at most k new conigurations installed. and the result of the

lemma follows. □

It remains now to examine the conditions under which a read/write operation may łcatch upž with an ininite
number of reconiguration operations. For the sake of a worst case analysis we will assume that reconiguration
operations sufer the minimum delay d , whereas read and write operations sufer the maximum delay D in each
message exchange. We irst show how long it takes for k conigurations to be installed.

Lemma 28. Let σ be the last state of a fair execution of Ares, ξ . Then k conigurations can be installed to cσ , in

time T (k) ≥ 4d
∑k

i=1 i + k (Tmin(CN ) + 2d) time units.

Proof. In Ares a reconfig operation has four phases: (i) read-config(cseq), reads the latest coniguration
sequence, (ii) add-config(cseq, c), attempts to add the new coniguration at the end of the global sequence
GL , (iii) update-config(cseq), transfers the knowledge to the added coniguration, and (iv) finalize-config(cseq)
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Fig. 2. Successful reconfig operations.

inalizes the added coniguration. So, a new coniguration is appended to the end of the coniguration sequence
(and it becomes visible to any operation) during the add-config action. In turn, the add-config action, runs a
consensus algorithm to decide on the added coniguration and then invokes a put-config action to add the decided
coniguration. Any operation that is invoked after the put-config action observes the newly added coniguration.
Notice that when multiple reconigurations are invoked concurrently, then it might be the case that all

participate to the same consensus instance and the coniguration sequence is appended by a single coniguration.
The worst case scenario happens when all concurrent reconigurations manage to append the coniguration
sequence by their coniguration. In brief, this is possible when the read-config action of each reconfig operation
appears after the put-config action of another reconfig operation.
More formally we can build an execution where all reconfig operations append their coniguration in the

coniguration sequence. Consider the partial execution ξ that ends in a state σ . Suppose that every process

p ∈ I knows the same coniguration sequence, c
p
σ = cσ . Also let the last inalized operation in cσ be the last

coniguration of the sequence, e.g. µ(cσ ) = ν (cσ ). Notice that cσ can also be the initial coniguration sequence c
p
σ0 .

We extend ξ0 by a series of reconfig operations, such that each reconiguration rci is invoked by a reconigurer ri
and attempts to add a coniguration ci . Let rc1 be the irst reconiguration that performs the following actions
without being concurrent with any other reconfig operation:

• read-config starting from µ(cσ )

• add-config completing both the consensus proposing c1 and the put-config action writing the decided
coniguration

Since rc1 its not concurrent with any other reconfig operation, then is the only process to propose a coniguration
in µ(cσ ), and hence by the consensus algorithm properties, c1 is decided. Thus, cσ is appended by a tuple ⟨c1, P⟩.
Let now reconiguration rc2 be invoked immediately after the completion of the add-config action from rc1.

Since the local sequence at the beginning of rc2 is equal to cσ , then the read-config action of rc2 will also start
from µ(cσ ). Since, rc1 already propagated c1 to µ(cσ ) during is put-config action, then rc2 will discover c1 during
the irst iteration of its read-config action, and thus it will repeat the iteration on c1. Coniguration c1 is the last
in the sequence and thus the read-config action of rc2 will terminate after the second iteration. Following the
read-config action, rc2 attempts to add c2 in the sequence. Since rc1 is the only reconiguration that might be
concurrent with rc2, and since rc1 already completed consensus in µ(cσ ), then rc2 is the only operation to run
consensus in c1. Therefore, c2 is accepted and rc2 propagates c2 in c1 using a put-config action.
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So in general we let coniguration rci to be invoked after the completion of the add-config action from rci−1.
As a result, the read-config action of rci performs i iterations, and the coniguration ci is added immediately
after coniguration ci−1 in the sequence. Figure 2 illustrates our execution construction for the reconiguration
operations.

It is easy to notice that such execution results in the worst case latency for all the reconiguration operations
rc1, rc2, . . . , rci . As by Lemma 25 a read-config action takes at least 4d time to complete, then as also seen

in Figure 2, k reconigs may take time T (k) ≥
∑k

i=1 [4d ∗ i + (Tmin(CN ) + 2d)]. Therefore, it will take time

T (k) ≥ 4d
∑k

i=1 i + k (Tmin(CN ) + 2d) and the lemma follows. □

The following theorem is the main result of this section, in which we deine the relation between Tmin(CN ), d
and D so to guarantee that any read or write issued by a non-faulty client always terminates.

Theorem 29. SupposeTmin(CN ) ≥ 3(6D −d), then any read or write operation π completes in any execution ξ of

Ares for any number of reconiguration operations in ξ .

Proof. By Lemma 28, k conigurations may be installed in: T (k) ≥ 4d
∑k

i=1 i + k (Tmin(CN ) + 2d). Also

by Lemma 27, we know that operation π takes at most T (π ) ≤ 6D
(
ν (c

p
σe ) − µ(c

p
σs ) + 2

)
. Assuming that k =

ν (c
p
σe ) − µ(c

p
σs ), the total number of conigurations observed during π , then π may terminate before a k + 1

coniguration is added in the coniguration sequence if 6D(k + 2) ≤ 4d
∑k

i=1 i + k (Tmin(CN ) + 2d) then we have

d ≥ 3D
k
−

Tmin (CN )
2(k+2)

. And that completes the lemma. □

7.2 Storage and Communication Costs for Ares.

Storage and Communication costs for Ares highly depends on the DAP that we use in each coniguration. For
our analysis we assume that each coniguration utilizes the algorithms and the DAPs presented in Section 5.

Recall that by our assumption, the storage cost counts the size (in bits) of the coded elements stored in variable
List at each server. We ignore the storage cost due to meta-data. For communication cost we measure the bits
sent on the wire between the nodes.

Lemma 30. The worst-case total storage cost of Algorithm 5 is (δ + 1)n
k
.

Proof. Themaximum number of (tag, coded-element) pair in the List is δ+1, and the size of each coded element
is 1

k
while the tag variable is a metadata and therefore, not counted. So, the total storage cost is (δ + 1)n

k
. □

We next state the communication cost for the write and read operations in Aglorithm 5. Once again, note that
we ignore the communication cost arising from exchange of meta-data.

Lemma 31. The communication cost associated with a successful write operation in Algorithm 5 is at most n
k
.

Proof. During read operation, in the get-tag phase the servers respond with their highest tags variables,
which are metadata. However, in the put-data phase, the reader sends each server the coded elements of size 1

k
each, and hence the total cost of communication for this is n

k
. Therefore, we have the worst case communication

cost of a write operation is n
k
. □

Lemma 32. The communication cost associated with a successful read operation in Algorithm 5 is at most (δ + 2)n
k
.

Proof. During read operation, in the get-data phase the servers respond with their List variables and hence
each such list is of size at most (δ + 1) 1

k
, and then counting all such responses give us (δ + 1)n

k
. In the put-data

phase, the reader sends each server the coded elements of size 1
k
each, and hence the total cost of communication

for this is n
k
. Therefore, we have the worst case communication cost of a read operation is (δ + 2)n

k
. □
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From the above Lemmas we get.

Theorem 33. The Ares algorithm has: (i) storage cost (δ + 1)n
k
, (ii) communication cost for each write at most to

n
k
, and (iii) communication cost for each read at most (δ + 2)n

k
.

8 FLEXIBILITY OF DAPS

In this section, we argue that various implementations of DAPs can be used inAres. In fact, via reconfig operations,
one can implement a highly adaptive atomic DSS: replication-based can be transformed into erasure-code based
DSS; increase or decrease the number of storage servers; study the performance of the DSS under various
code parameters, etc. The insight to implementing various DAPs comes from the observation that the simple
algorithmic template A (see Alg. 7) for reads and writes protocol combined with any implementation of DAPs,
satisfying Property 1 gives rise to a MWMR atomic memory service. Moreover, the read and writes operations
terminate as long as the implemented DAPs complete.

Algorithm 7 Template A for the client-side read/write steps.

operation read()
2: ⟨t, v ⟩ ← c .get-data()

c .put-data(⟨t, v ⟩)
4: return ⟨t, v ⟩

end operation

6: operation write(v )
t ← c .get-tag()

8: tw ← inc(t )
c .put-data(⟨tw , v ⟩)

10: end operation

A read operation in A performs c .get-data() to retrieve a tag-value pair, ⟨τ,v⟩ from a coniguration c , and then
it performs a c .put-data(⟨τ,v⟩) to propagate that pair to the coniguration c . A write operation is similar to the
read but before performing the put-data action it generates a new tag which associates with the value to be
written. The following result shows that A is atomic and live, if the DAPs satisfy Property 1 and live.

Theorem 34 (Atomicity of template A). Suppose the DAP implementation satisies the consistency properties

C1 and C2 of Property 1 for a coniguration c ∈ C. Then any execution ξ of algorithm A in coniguration c is atomic

and live if each DAP invocation terminates in ξ under the failure model c .F .

Proof. We prove the atomicity by proving properties A1, A2 and A3 presented in Section 2 for any execution
of the algorithm.
Property A1: Consider two operations ϕ and π such that ϕ completes before π is invoked. We need to show

that it cannot be the case that π ≺ ϕ. We break our analysis into the following four cases:
Case (a): Both ϕ and π are writes. The c .put-data(∗) of ϕ completes before π is invoked. By property C1 the tag

τπ returned by the c .get-data() at π is at least as large as τϕ . Now, since τπ is incremented by the write operation
then π puts a tag τ ′π such that τϕ < τ

′
π and hence we cannot have π ≺ ϕ.

Case (b): ϕ is a write and π is a read. In execution ξ since c .put-data(⟨tϕ , ∗⟩) of ϕ completes before the
c .get-data() of π is invoked, by property C1 the tag τπ obtained from the above c .get-data() is at least as large as
τϕ . Now τϕ ≤ τπ implies that we cannot have π ≺ ϕ.

Case (c): ϕ is a read and π is a write. Let the id of the writer that invokes π we wπ . The c .put-data(⟨τϕ , ∗⟩)
call of ϕ completes before c .get-tag() of π is initiated. Therefore, by property C1 get-tag(c) returns τ such that,
τϕ ≤ τ . Since τπ is equal to inc(τ) by design of the algorithm, hence τπ > τϕ and we cannot have π ≺ ϕ.

Case (d): Both ϕ and π are reads. In execution ξ the c .put-data(⟨tϕ , ∗⟩) is executed as a part of ϕ and completes
before c .get-data() is called in π . By property C1 of the data-primitives, we have τϕ ≤ τπ and hence we cannot
have π ≺ ϕ.
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Property A2: Note that because the tag set T is well-ordered we can show that A2 holds by irst showing that
every write has a unique tag. This means that any two pair of writes can be ordered. Note that a read can be
ordered w.r.t. any write operation trivially if the respective tags are diferent, and by deinition, if the tags are
equal the write is ordered before the read.

Observe that two tags generated from diferent writers are necessarily distinct because of the id component of
the tag. Now if the operations, say ϕ and π are writes from the same writer then, by well-formedness property,
the second operation will witness a higher integer part in the tag by property C1, and since the c .get-tag() is
followed by c .put-data(∗). Hence π is ordered after ϕ.

Property A3: By C2 the c .get-data() may return a tag τ , only when there exists an operation π that invoked a
c .put-data(⟨τ, ∗⟩). Otherwise it returns the initial value. Since a write is the only operation to put a new tag τ in
the system then Property A3 follows from C2. □

8.1 Representing Known Algorithms in terms of data-access primitives

A number of known tag-based algorithms that implement atomic read/write objects (e.g., ABD [11], Fast[21] ),
can be expressed in terms of DAP. In this subsection we demonstrate how we can transform the very celebrated
ABD algorithm [11].

mwABD Algorithm. The multi-writer version of the ABD can be transformed to the generic algorithm Template
A. Algorithm 8 illustrates the three DAP for the ABD algorithm. The get-data primitive encapsulates the query
phase of mwABD, while the put-data primitive encapsulates the propagation phase of the algorithm.

Algorithm 8 Implementation of DAP for ABD at each process p using coniguration c

Data-Access Primitives at process p :
2: procedure c.put-data(⟨τ, v ⟩))

send (write, ⟨τ, v ⟩) to each s ∈ c .Servers
4: until ∃Q

,
Q∈c .Quorums s.t. p receives ack from ∀s ∈ Q

end procedure

6: procedure c.get-tag()
send (qery-tag) to each s ∈ c .Servers

8: until ∃Q, Q ∈ c .Quorums s.t.
p receives ⟨τs , vs ⟩ from ∀s ∈ Q

10: τmax ← max({τs : p received ⟨τs , vs ⟩ from s })

return τmax

12: end procedure

procedure c.get-data()
14: send (qery) to each s ∈ c .Servers

until ∃Q, Q ∈ c .Quorums s.t.
16: p receives ⟨τs , vs ⟩ from ∀s ∈ Q

τmax ← max({τs : ri received ⟨τs , vs ⟩ from s })
18: return { ⟨τs , vs ⟩ : τs = τmax ∧ p received ⟨τs , vs ⟩ from s }

end procedure

20:

Primitive Handlers at server si in coniguration c :
22: Upon receive (qery-tag) from q

send τ to q
24: end receive

Upon receive (qery) from q
26: send ⟨τ, v ⟩ to q

end receive

28: Upon receive (write, ⟨τin, vin ⟩) from q
if τin > τ then

30: ⟨τ, v ⟩ ← ⟨τin, vin ⟩

send ack to q
32: end receive

Let us now examine if the primitives satisfy properties C1 and C2 of Property 1. We begin with a lemma that
shows the monotonicity of the tags at each server.

Lemma 35. Let σ and σ ′ two states in an execution ξ such that σ appears before σ ′ in ξ . Then for any server s ∈ S

it must hold that s .taд |σ ≤ s .taд |σ ′ .
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Proof. According to the algorithm, a server s updates its local tag-value pairs when it receives a message with
a higher tag. So if s .taд |σ = τ then in a state σ ′ that appears after σ in ξ , s .taд |σ ′ ≥ τ . □

In the following two lemmas we show that property C1 is satisied, that is if a put-data action completes, then
any subsequent get-data and get-tag actions will discover a higher tag than the one propagated by that put-data
action.

Lemma 36. Let ϕ be a c .put-data(⟨τ ,v⟩) action invoked by p1 and γ be a c .get-tag() action invoked by p2 in a

coniguration c , such that ϕ → γ in an execution ξ of the algorithm. Then γ returns a tag τγ ≥ τ .

Proof. The lemma follows from the intersection property of quorums. In particular, during the
c .put-data(⟨τ ,v⟩) action, p1 sends the pair ⟨τ ,v⟩ to all the servers in c .Servers and waits until all the servers in a
quorum Qi ∈ c .Quorums reply. When those replies are received then the action completes.
During a c .get-data() action on the other hand, p2 sends query messages to all the servers in c .Servers and

waits until all servers in a quorum Q j ∈ c .Quorums (not necessarily diferent than Qi ) reply. By deinition
Qi ∩Q j , ∅, thus any server s ∈ Qi ∩Q j reply to both ϕ and γ actions. By Lemma 35 and since s received a tag
τ , then s replies to p2 with a tag τs ≥ τ . Since γ returns the maximum tag it discovers then τγ ≥ τs . Therefore
τγ ≥ τ and this completes the proof. □

With similar arguments and given that each value is associated with a unique tag then we can show the
following lemma.

Lemma 37. Let π be a c .put-data(⟨τ ,v⟩) action invoked by p1 and ϕ be a c .get-data() action invoked by p2 in a

coniguration c , such that π → ϕ in an execution ξ of the algorithm. Then ϕ returns a tag-value ⟨τϕ ,vϕ ⟩ such that

τϕ ≥ τ .

Finally we can now show that property C2 also holds.

Lemma 38. If ϕ is a c .get-data() that returns ⟨τπ ,vπ ⟩ ∈ T × V , then there exists π such that π is a

c .put-data(⟨τπ ,vπ ⟩) and ϕ ↛ π .

Proof. This follows from the facts that (i) servers set their tag-value pair to a pair received by a put-data action,
and (ii) a get-data action returns a tag-value pair that it received from a server. So if a c .get-data() operation ϕ
returns a tag-value pair ⟨τπ ,vπ ⟩, there should be a server s that replied to that operation with ⟨τπ ,vπ ⟩, and s
received ⟨τπ ,vπ ⟩ from some c .put-data(⟨τπ ,vπ ⟩) action, π . Thus, π can proceed or be concurrent with ϕ, and
hence ϕ ̸→ π . □

9 EXPERIMENTAL EVALUATION

The theoretical indings suggest that Ares is an algorithm to provide robustness and lexibility on shared memory
implementations, without sacriicing strong consistency. In this section we present a proof-of-concept implementa-
tion of Ares and we run preliminary experiments to get better insight on the eiciency and adaptiveness of Ares.
In particular, our experiments measure the latency of each read, write, and reconfig operations, and examine
the persistence of consistency even when the service is reconigured between conigurations that add/remove
servers and utilize diferent shared memory algorithms.

9.1 Experimental Testbed

We ran experiments on two diferent setups: (i) simulated locally on a single machine, and (ii) on a LAN. Both
type of experiments run on Emulab [2], an emulated WAN environment testbed used for developing, debugging,
and evaluating the systems. We used nodes with two 2.4 GHz 64-bit 8-Core E5-2630 "Haswell" processors, 64GB
RAM, with 1GB and 10GB NICs. In both setups we used an external implementation of Raft[45] consensus
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algorithms, which was used for the service reconiguration (line 16 of Alg. 2) and was deployed on top of small
RPi devices. Small devices introduced further delays in the system, reducing the speed of reconigurations and
creating harsh conditions for longer periods in the service. The Python implementation of Raft used for consensus
is PySyncObj [5]. Some modiications were done to allow the execution of Raft in the Ares environment. We
built an HTTP API for the management of the Raft subsystem. A reconigurer can propose a coniguration at
a particular index in the coniguration sequence by sending a POST request to the url of each Raft node, and
receives a response from the RAFT on which coniguration is decided for that index.
Local Experimental Setup: The local setup was used to have access to a global synchronized clock (the clock
of the local machine) in order to examine whether our algorithm preserves global ordering and hence atomicity
even when using diferent algorithms between conigurations. Therefore, all the instances are hosted on the same
physical machine avoiding the skew between computer clocks in a distributed system. Furthermore, the use of
one clock guarantees that when an event occurs after another, it will assign a later time.
Distributed Experimental Setup: The distributed experiments in Emulab enabled the examination of the
performance of the algorithm in a close to real environment. For the deployment and remote execution of the
experimental tasks on the Emulab, we used Ansible Playbooks [1]. All physical nodes were placed on a single LAN
using a DropTail queue without delay or packet loss. Each physical machine runs one server or client process.
This guarantees a fair communication delay between a client and a server node.
Node Types: In all experiments, we use four distinct types of nodes, writers, readers , reconigurers and servers.
Their main role is listed below:

• writerw ∈W ⊆ C : a client that sends write requests to all servers and waits for a quorum of the servers
to reply
• reader r ∈ R ⊆ C: a client that sends read requests to servers and waits for a quorum of the servers to reply
• reconigurer д ∈ G ⊆ C: a client that sends reconiguration requests to servers and waits for a quorum of
the servers to reply
• server s ∈ S : a server listens for read and write requests, it updates its object replica according to the
atomic shared memory and replies to the process that originated the request.

Performance Metric: The metric for evaluating the algorithms is the operational latency. This includes both
communication and computational delays. The operation latency is computed as the average of all clients’ average
operation latencies. For better estimations, each experiment in every scenario was repeated 6 times. In the graphs,
we use error bars to illustrate the standard error of the mean (SEM) from the 6 repeated experiments.

9.2 Experimental Scenarios

In this section, we describe the scenarios we constructed and the settings for each of them. In our scenarios we
constructed the DAPs and used two diferent atomic storage algorithms in Ares: (i) the erasure coding based
algorithm presented in Section 5, and (ii) the ABD algorithm (see Section 8.1).
Implementation of DAPs : Clients initialize the appropriate coniguration objects to handle any request. Notice
that the client creates a coniguration object when it is the irst time that the client requests an operation or when
doing a reconiguration operation. Once the coniguration object is initialized, it is stored on the client cseq and
it is retrieved directly on any subsequent request from the client. Therefore, the DAPs procedures are called from
a coniguration object. The asynchronous communication between components is achieved by using DEALER
and ROUTER sockets, from the ZeroMQ Python library [6].
Erasure Coding: The type of erasure coding we use is (n,k)-Reed-Solomon code, which guarantees that any k of
n coded fragments is enough to reassemble the original object. The parameter k is the number of encoded data
fragments, n is the total number of servers andm is the number of parity fragments, i.e. n − k . A high number of
k and consequently a small number ofm means less redundancy with the system tolerating fewer failures. When
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k = 1 we essentially converge to replication. In practice, the get-data and put-data functions from algorithm
5 integrate the standard Reed-Solomon implementation provided by liberasurecode from the PyEClib Python
library [4].
Fixed Parameters: In all scenarios, the number of servers is ixed to 10. The number of writers and the value
of delta are set to 5; delta being the maximum number of concurrent put-data operations. The parity value of
the EC is set to 2 in order to minimize the redundancy, leading to 8 data servers and 2 parity servers. It is worth
mentioning that the quorum size of the EC algorithm is

⌈
10+8
2

⌉
= 9, while the quorum size of ABD algorihtm is⌊

10
2

⌋
+ 1 = 6. In relation to the EC algorithm, we can conclude that the parameter k is directly proportional to the

quorum size. But as the value of k and quorum size increase, the size of coded elements decreases.
Distributed Experiments: For the distributed experiments we use a stochastic invocation scheme in which
readers and writers pick a random time uniformly distributed (discrete) between intervals to invoke their next
operations. Respectively the intervals are [1...rInt] and [1..wInt], where rInt ,wInt = 2sec . In total, each writer
performs 60 writes and each reader 60 reads. The reconigurer invokes its next operation every 15sec and performs
a total of 6 reconigurations. The intervals are set within these values in order to generate a continuous low
of operations and stress the concurrency in the system. Note that these values are not based on any real world
scenario.

In particular, we present six types of scenarios:

• File Size Scalability (Emulab): The irst scenario is made to evaluate how the read and write latencies
are afected by the size of the shared object. There are two separated runs, one for each examined storage
algorithm. The ile size is doubled from 1MB to 128MB. The number of readers is ixed to 5, without any
reconigurers.
• Reader Scalability (Emulab): This scenario is constructed to compare the read and write latency of
the system with two diferent storage algorithms, while the readers increase. In particular, we execute
two separate runs, one for each storage algorithm. We use only one reconigurer which requests recon
operations that lead to the same shared memory emulation and server nodes. The size of the ile used is
4MB.
• Changing Reconigurations (Emulab): In this scenario, we evaluate how the read and write latencies
are afected when increasing the number of readers, while also changing the storage algorithm. We run
two diferent runs which difer in the way the reconigurer chooses the next storage algorithm: (i) the
reconigurer chooses randomly between the two storage algorithms, and (ii) the reconigurer switches
between the two storage algorithms. The size of the ile used, in both scenarios, is 4MB.
• k Scalability (Emulab, EC only): In this scenario, we examine the read and write latencies with diferent
numbers of k (a parameter of Reed-Solomon). We increase the k of the EC algorithm from 1 to 9. The
number of readers is ixed to 5, without any reconigurers. The size of the ile used is 4MB.
• Changing the number of Reads/Writes (Emulab): In these scenarios, we examine the read and write
latencies with diferent numbers of read and write operations respectively. We change the number of
reads/writes that each reader/writer performs, from 10 to 60, increasing by 10. We calculate all possible
pairs of writes and reads. The number of readers is ixed to 5. The reconigurer switches between the two
storage algorithms. The size of the ile used is 4MB

• Consistency Persistence (Local): In this scenario, we run multiple client operations in order to check if
the data is consistent across servers. The number of readers is set to 5. The readers and writers invoke their
next operations without any time delay, while the reconigurer waits 15sec for the next invocation. We run
two diferent scenarios which difer in the reconigurations. In both scenarios, the reconigurer switches
between the two storage algorithms. In the second scenario, the reconigurer changes concurrently the

ACM Trans. Storage



Ares: Adaptive, Reconfigurable, Erasure coded, Atomic Storage • 33

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Simulation results.

quorum of servers. In total, each writer performs 500 writes, each reader 500 reads and the reconigurer 50
reconigurations. The size of the ile used is 4MB.
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9.3 Experimental Results

In this section, we present and explain the evaluation results of each scenario. As a general observation, the
Ares algorithm with the EC storage provides data redundancy with a lower communicational and storage cost
compared to the ABD storage that uses a strict replication technique.
File Size Scalability Results: Fig. 3(a) shows the results of the ile size scalability experiments. The read and
write latencies of both storage algorithms remain in low levels until 16MB. In bigger sizes we observe the latancies
of all operations to grow signiicantly. It is worth noting that the fragmentation applied by the EC algorithm,
beneits its write operations which follow a slower increasing curve than the rest of the operations. From the rest
the reads seem to sufer the worst delay hit, as they are engaged in more communication phases. Nevertheless, the
larger messages sent by ABD result in slower read operations. We had noticed that EC has lower SEM values than
ABD, which indicates that the calculated mean latencies of EC align very closely throughout the experiments. As
EC breaks each ile into smaller fragments, in combination with the fact that the variation is smaller when using
smaller iles in ABD, may lead to the conclusion that the ile size has a signiicant impact on the error variation.
To this end it appears that larger ile sizes introduce higher variation on the delivery times of the ile and hence
higher statistical errors.
Reader Scalability Results: The results of reader scalability experiments can be found in Fig. 3(b). The read
and write latencies of both algorithms remain almost unchanged, while the number of readers increases. This
indicates that the system does not reach a state where it can not handle the concurrent read operations. Still,
the reduced message size of read and write operations in EC keep their latencies lower than the corresponding
latencies of ABD. On the other hand, the reconiguration latency in both algorithms witnesses wild luctuations
between about 1 sec and 4 sec. This is probably due to the unstable connection in the external service which
handles the reconigurations. Notice that the number of readers does not have a great impact on the results we
obtain in each experiment as the SEM error bars are small. The same goes for the next scenario where the number
of readers changes while switching algorithms between reconigurations.
Changing Reconigurations Results: Fig. 3(c) illustrates the results of experiments with the random storage
change. While, in Fig. 3(d), we can ind the results of the experiments when the reconigurer switches between
storage algorithms. During both experiments, there are cases where a single read/write operation may access
conigurations that implement both ABD and EC algorithms, when concurrent with a recon operation. Thus, the
latencies of such operations are accounted in both ABD and EC latencies. As we mentioned earlier, our choice of
k minimizes the coded fragment size but introduces bigger quorums and thus larger communication overhead.
As a result, in smaller ile sizes, Ares may not beneit from the coding, bringing the delays of the two algorithms
closer to each other. It is again obvious that the reconiguration delays are higher than the delays of all other
operations.
k Scalability Results: From Figs. 3(e) we can infer that when smaller k are used, the write and read latencies
reach their highest values. In both cases, small k results in the generation of smaller number of data fragments and
thus bigger sizes of the fragments and higher redundancy. For example we can see that for RS(10,8) and RS(10,7)
we have the same size of quorum, equal to 9, whereas the latter has more redundant information. As a result, with
a higher number ofm (i.e. smaller k) we achieve higher levels of fault-tolerance, but that it would waste storage
eiciency. The write latency seems to be less afected by the number of k since the encoding is considerably
faster as it requires less computation. In conclusion, there appears to be a trade-of between operation latency
and fault-tolerance in the system: the further increase of the k (and thus lower fault-tolerance) the smaller the
latency of read/write operations. This experiment proves that the object size plays a signiicant role on the error
variation. Notice that while k is small, and thus the object we send out is bigger, the error is higher. As k goes
bigger and the fragments get smaller the SEM minimizes. This is an indication that communication of larger data
over the wire may luctuate the delivery times (as also seen in the ile size scenario).

ACM Trans. Storage



Ares: Adaptive, Reconfigurable, Erasure coded, Atomic Storage • 35

Changing the number of Reads/Writes Results: Fig. 3(f) shows a subset of the results of the experiments
where the number of read operations changes and the number of write operations is ixed to 60. The experiments
show that the total read/write latency (both EC and ABD) has very similar values for all the combinations of
writes and reads, which indicates that the system performance is not afected by the number of reads and writes.
This is expected since the number of participants is the same in all cases and by well-formedness (i.e., each
participant invokes a single operation at a time) at most 10 operations will be concurrent in the execution at any
given state. Higher concurrency can be captured by the scalability scenario. Note again that the read latency is
higher than the write one, since the read operation actually transfers data twice: once to fetch the data from the
servers, and once during the propagation phase.
Consistency Persistence Results: Though Ares protocol is probably strongly consistent, it is important to
ensure that our implementation is correct. Validating strong consistency of an execution requires precise clock
synchronization across all processes, so that one can track operations with respect to a global time. This is
impossible to achieve in a distributed system where clock drift is inevitable. To circumvent this, we deploy all the
processes in a single beefy machine so that every process observes the same clock running in the same physical
machine.

Our checker gathers data regarding an execution, and this data includes start and end times of all the operations,
as well as other parameters like logical timestamps used by the protocol. The checker logic is based on the
conditions appearing in Lemma 13.16 [38], which provide a set of suicient conditions for guaranteeing strong
consistency. The checker validates strong consistency property for every atomic object individually for the
execution under consideration. Note that consistency holds despite the existence of concurrent read/write and
reconiguration operations that may add/remove servers and switch the storage algorithm in the system.

10 CONCLUSIONS

We presented an algorithmic framework suitable for reconigurable, erasure code-based atomic memory service
in asynchronous, message-passing environments. In particular, we provide a new modular framework, called
Ares, which abstracts the implementation of the underlying shared memory within a set of DAPs with speciic
correctness properties. Using these structures, Ares may implement a large class of atomic shared algorithms
(those that can be expressed using the proposed DAPs) allowing any such algorithm to work on a reconigurable
environment. A set of erasure-coded-based atomic memory algorithms are included in this class. To demonstrate
the use of our framework, we provided a new two-round erasure code-based algorithm that has near optimal
storage cost, implemented in terms of the proposed DAPs. Such implementation gave rise to the irst (to our
knowledge) reconigurable erasure-coded atomic shared memory object. We provided a proof-of-concept imple-
mentation of our framework and obtained initial experimental results proving the feasibility of the presented
approach, demonstrating its correctness and comparing its performance with traditional approaches.

Ares is designed to address the real-world problem of system migration from a replicated system to a system
that uses erasure codes and vice-versa. Ares can also enable replacing of failed nodes with new non-failed
nodes. It’s key diference with existing state of the art systems is that it can perform such reconigurations with
relatively minimal interruption of service unlike current implementations that would block ongoing operations
for reconiguration. We anticipate that Ares will be very useful for workloads that are prone to fast changes in
properties, and have stringent constraints on the latencies. For such workloads, Ares enables the system to adapt
itself to the changes in the workload in an agile manner - utilizing the full lexibility that EC brings to the system
- without causing latency constraint or consistency violations due to interruptions.

Our main goal was to establish that non-blocking reconiguration is feasible and compatible with EC based
atomic data storage.Our experimental study is designed as a proof-of-concept prototype to verify the correctness
properties we have developed, and show some beneits. It must be emphasized that a full-ledged system study of
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our algorithms - albeit an interesting area of future work that is motivated by our paper - is outside our current
scope. In particular, although our study provides some initial hints, we anticipate such a future study would
examine the following questions in more detail:

• Real-world applications that would indeed beneit from our design
• Workloads generated from these real-world applications to test our algorithms, and competing ones
• The synergies between our reconiguration algorithm and existing failure detection and recovery mecha-
nisms.
• Adding eicient repair and reconiguration using regenerating codes
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