
ARES: Adaptive, Reconfigurable, Erasure Coded, Atomic Storage

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Nicolaou, Nicolas, Cadambe, Viveck, Prakash, N, Konwar, Kishori,
Medard, Muriel et al. 2019. "ARES: Adaptive, Reconfigurable,
Erasure Coded, Atomic Storage." Proceedings - International
Conference on Distributed Computing Systems, 2019-July.

As Published 10.1109/ICDCS.2019.00216

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/137575

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137575
http://creativecommons.org/licenses/by-nc-sa/4.0/

ARES: Adaptive, Reconfigurable, Erasure coded,
atomic Storage

Nicolas Nicolaou1, Viveck Cadambe2, N. Prakash3, Kishori M. Konwar3, Muriel Medard3 and Nancy Lynch3
1Algolysis Ltd. & KIOS Research and Innovation Center of Excellence, Univ. of Cyprus, Nicosia, Cyprus

2EE Department Penn. State University University Park, PA, US
3Department of EECS, Massachusetts Institute of Technology, Cambridge MA, USA

nicolasn@cs.ucy.ac.cy, vxc12@engr.psu.edu, prakashn@mit.edu, kishori@csail.mit.edu, medard@mit.edu, lynch@csail.mit.edu

Abstract—Emulating a shared atomic, read/write storage sys-
tem is a fundamental problem in distributed computing. Repli-
cating atomic objects among a set of data hosts was the norm
for traditional implementations (e.g., [6]) in order to guarantee
the availability and accessibility of the data despite host failures.
As replication is highly storage demanding, recent approaches
suggested the use of erasure-codes to offer the same fault-
tolerance while optimizing storage usage at the hosts. Initial
works focused on a fix set of data hosts. To guarantee longevity
and scalability, a storage service should be able to dynamically
mask hosts failures by allowing new hosts to join, and failed
host to be removed without service interruptions. This work
presents the first erasure-code based atomic algorithm, called
ARES, which allows the set of hosts to be modified in the course
of an execution. ARES is composed of three main components:
(i) a reconfiguration protocol, (ii) a read/write protocol, and (iii)
a set of data access primitives. The design of ARES is modular
and is such to accommodate the usage of various erasure-code
parameters on a per-configuration basis. We provide bounds on
the latency of read/write operations, and analyze the storage and
communication costs of the ARES algorithm.

Index Terms—atomic storage; erasure codes; fault tolerance;

I. INTRODUCTION

Distributed Storage Systems (DSS) store large amounts of
data in an affordable manner. Cloud vendors deploy hundreds
to thousands of commodity machines, networked together
to act as a single giant storage system. Component failures
of commodity devices, and network delays are the norm,
therefore, ensuring consistent data-access and availability at
the same time is challenging. Vendors often solve availability
by replicating data across multiple servers. These services
use carefully constructed algorithms that ensure that these
copies are consistent, especially when they can be accessed
concurrently by different operations. The problem of keeping
copies consistent becomes even more challenging when failed
servers need to be replaced or new servers are added, without
interrupting the service. Any type of service interruption in a
heavily used DSS usually translates to immense revenue loss.

The goal of this work is to provide an algorithm for
implementing strongly consistent (i.e., atomic/linearizable),
fault-tolerant distributed read/write storage, with low storage
and communication footprint, and the ability to reconfigure
the set of data hosts without service interruptions.

This work was partially funded by the Center for Science of Information
NSF Award CCF-0939370, NSF Award CCF-1461559, AFOSR Contract Num-
ber: FA9550-14-1-0403, NSF CCF-1553248 and RPF/POST-DOC/0916/0090.

Replication-based Atomic Storage. A long stream of work
used replication of data across multiple servers to implement
atomic (linearizable) read/write objects in message-passing,
asynchronous environments where servers (data hosts) may
crash fail [5], [6], [15], [16], [17], [19], [20], [32]. A notable
replication-based algorithm appears in the work by Attiya,
Bar-Noy and Dolev [6] (we refer to as the ABD algorithm)
which implemented non-blocking atomic read/write data storage
via logical timestamps paired with values to order read/write
operations. Replication based strategies, however, incur high
storage and communication costs; for example, to store
1,000,000 objects each of size 1MB (a total size of 1TB)
across a 3 server system, the ABD algorithm replicates the
objects in all the 3 servers, which blows up the worst-case
storage cost to 3TB. Additionally, every write or read operation
may need to transmit up to 3MB of data (while retrieving an
object value of size 1MB), incurring high communication cost.

Erasure Code-based Atomic Storage. Erasure Coded-based
DSS are extremely beneficial to save storage and communi-
cation costs while maintaining similar fault-tolerance levels
as in replication based DSS [11]. Mechanisms using an [n, k]
erasure code splits a value v of size, say 1 unit, into k elements,
each of size 1

k units, creates n coded elements of the same
size, and stores one coded element per server, for a total
storage cost of n

k units. So the [n = 3, k = 2] code in the
previous example will reduce the storage cost to 1.5TB and
the communication cost to 1.5MB (improving also operation
latency). Maximum Distance Separable (MDS) codes have the
property that value v can be reconstructed from any k out of
these n coded elements; note that replication is a special case
of MDS codes with k = 1. In addition to the potential cost-
savings, the suitability of erasure-codes for DSS is amplified
with the emergence of highly optimized erasure coding libraries,
that reduce encoding/decoding overheads [7], [1], [36]. In fact,
an exciting recent body of systems and optimization works
[44], [2], [36], [39], [41], [26], [40], [42] have demonstrated
that for several data stores, the use of erasure coding results
in lower latencies than replication based approaches. This is
achieved by allowing the system to carefully tune erasure
coding parameters, data placement strategies, and other system
parameters that improve workload characteristics – such as load
and spatial distribution. A complementary body of work has
proposed novel non-blocking algorithms that use erasure coding
to provide an atomic storage over asynchronous message

passing models [8], [10], [14], [27], [28], [11], [43]. Since
erasure code-based algorithms, unlike their replication-based
counter parts, incur the additional burden of synchronizing the
access of multiple pieces of coded-elements from the same
version of the data object, these algorithms are quite complex.
Reconfigurable Atomic Storage. Configuration refers to the
set of storage servers that are collectively used to host the
data and implement the DSS. Reconfiguration is the process
of adding or removing servers in a DSS. In practice, reconfig-
urations are often desirable by system administrators [4], for a
wide range of purposes, especially during system maintenance.
As the set of storage servers becomes older and unreliable
they are replaced with new ones to ensure data-durability.
Furthermore, to scale the storage service to increased or
decreased load, larger (or smaller) configurations may be
needed to be deployed. Therefore, in order to carry out
such reconfiguration steps, in addition to the usual read and
write operations, an operation called reconfig is invoked by
reconfiguration clients. Performing reconfiguration of a system,
without service interruption, is a very challenging task and
an active area of research. RAMBO [31] and DynaStore [3]
are two of the handful of algorithms [12], [18], [21], [25],
[37], [38] that allows reconfiguration on live systems; all these
algorithms are replication-based.

Despite the attractive prospects of creating strongly con-
sistent DSS with low storage and communication costs, so
far, no algorithmic framework for reconfigurable atomic DSS
employed erasure coding for fault-tolerance, or provided any
analysis of bandwidth and storage costs. Our paper fills this
vital gap in algorithms literature, through the development
of novel reconfigurable approach for atomic storage that use
erasure codes for fault-tolerance. From a practical viewpoint,
our work may be interpreted as a bridge between the systems
optimization works [44], [2], [36], [39], [41], [26], [40], [42]
and non-blocking erasure coded based consistent storage [8],
[10], [14], [27], [28], [11], [43]. Specifically, the use of our
reconfigurable algorithms would potentially enable a data
storage service to dynamically shift between different erasure
coding based parameters and placement strategies, as the
demand characteristics (such as load and spatial distribution)
change, without service interruption.
Our Contributions. We develop a reconfigurable, erasure-
coded, atomic or strongly consistent [23], [30] read/write
storage algorithm, called ARES. Motivated by many practical
systems, ARES assumes clients and servers are separate pro-
cesses ∗ that communicate via logical point-to-point channels.

In contrast to the, replication-based reconfigurable algorithms
[31], [3], [12], [18], [21], [25], [37], [38], where a configuration
essentially corresponds to the set of servers that stores the data,
the same concept for erasure coding need to be much more
involved. In particular, in erasure coding, even if the same set
of n servers are used, a change in the value of k defines a
new configuration. Furthermore, several erasure coding based
algorithms [10], [14] have additional parameters that tune how
many older versions each server store, which in turn influences
the concurrency level allowed. Tuning of such parameters can
also fall under the purview of reconfiguration.

∗In practice, these processes can be on the same node or different nodes.

To accommodate these various reconfiguration requirements,
ARES takes a modular approach. In particular, ARES uses a set
of primitives, called data-access primitives (DAPs). A different
implementation of the DAP primitives may be specified in each
configuration. ARES uses DAPs as a “black box” to: (i) transfer
the object state from one configuration to the next during
reconfig operations, and (ii) invoke read/write operations on
a single configuration. Given the DAP implementation for
each configuration we show that ARES correctly implements a
reconfigurable, atomic read/write storage.

The DAP primitives provide ARES a much broader view
of the notion of a configuration as compared to replication-
based algorithms. Specifically, the DAP primitives may be
parameterized, following the parameters of protocols used
for their implementation (e.g., erasure coding parameters, set
of servers, quorum design, concurrency level, etc.). While
transitioning from one configuration to another, our modular
construction, allows ARES to reconfigure between different
sets of servers, quorum configurations, and erasure coding
parameters. In principle, ARES even allows to reconfigure
between completely different protocols as long as they can
be interpreted/expressed in terms of the primitives; though in
this paper, we only present one implementation of the DAP
primitives to keep the scope of the paper reasonable. From
a technical point of view, our modular structure makes the
atomicity proof of a complex algorithm (like ARES) easier.

An important consideration in the design choice of ARES,
is to ensure that we gain/retain the advantages that come with
erasure codes – cost of data storage and communication is
low – while having the flexibility to reconfigure the system.
Towards this end, we present an erasure-coded implementation
of DAPs which satisfy the necessary properties, and are used
by ARES to yield the first reconfigurable, erasure-coded,
read/write atomic storage implementation, where read and write
operations complete in two-rounds. We provide the atomicity
property and latency analysis for any operation in ARES,
along with the storage and communication costs resulting
from the erasure-coded DAP implementation. In particular, we
specify lower and upper bounds on the communication latency
between the service participants, and we provide the necessary
conditions to guarantee the termination of each read/write
operation while concurrent with reconfig operations.

Table I compares ARES with a few well-known erasure-
coded and replication-based (static and reconfigurable) atomic
memory algorithms. From the table we observe that ARES is
the only algorithm to combine a dynamic behavior with the use
of erasure codes, while reducing the storage and communcation
costs associated with the read or write operations. Moreover,
in ARES the number of rounds per write and read is at least
as good as in any of the remaining algorithms.

Document Structure. Section II, presents the model assump-
tions and Section III, the DAP primitives. In Section IV, we
present the implementation of the reconfiguration and read/write
protocols in ARES using the DAPs. In Section V, we present an
erasure-coded implementation of a set of DAPs, which can be
used in every configuration of the ARES algorithm. Section VI
provides operation latency and cost analysis, and Section VII
the DAP flexibility. We conclude our work in Section VIII.

Algorithm #rounds
/write

#rounds
/read

Reconfig. Repl.
or EC

Storage cost read bandwidth write bandwidth

CASGC [9] 3 2 No EC (δ + 1)nk
n
k

n
k

SODA [27] 2 2 No EC n
k (δ + 1)nk

n2

k
ORCAS-A [14] 3 ≥ 2 No EC n n n
ORCAS-B [14] 3 3 No EC ∞ ∞ ∞
ABD [6] 2 2 No Repl. n 2n n
RAMBO [31] 2 2 Yes Repl. ≥ n ≥ n ≥ n
DYNASTORE [3] ≥ 4 ≥ 4 Yes Repl. ≥ n ≥ n ≥ n
SMARTMERGE [25] 2 2 Yes Repl. ≥ n ≥ n ≥ n
ARES (this paper) 2 2 Yes EC (δ + 1)nk (δ + 1)nk

n
k

TABLE I: Comparison of ARES with previous algorithms emulating atomic Read/Write Memory for replication (Repl.) and
erasure-code based (EC) algorithms. δ is the maximum number of concurrent writes with any read during the course of an
execution of the algorithm. In practice, δ < 4 [11].

Due to lack of space omitted proofs can be found in [34].

II. MODEL AND DEFINITIONS

A shared atomic storage, consisting of any number of individ-
ual objects, can be emulated by composing individual atomic
memory objects. Therefore, herein we aim in implementing a
single atomic read/write memory object. A read/write object
takes a value from a set V . We assume a system consisting of
four distinct sets of processes: a set W of writers, a set R of
readers, a set G of reconfiguration clients, and a set S of servers.
Let I = W ∪R ∪ G be the set of clients. Servers host data
elements (replicas or encoded data fragments). Each writer is
allowed to modify the value of a shared object, and each reader
is allowed to obtain the value of that object. Reconfiguration
clients attempt to introduce new configuration of servers to
the system in order to mask transient errors and to ensure the
longevity of the service. Processes communicate via messages
through asynchronous, and reliable channels.

Configurations. A configuration, with a unique identifier from
a set C, is a data type that describes the finite set of servers
that are used to implement the atomic storage service. In
our setting, each configuration is also used to describe the
way the servers are grouped into intersecting sets, called
quorums, the consensus instance that is used as an external
service to determine the next configuration, and a set of data
access primitives that specify the interaction of the clients and
servers in the configuration (see Section III). More formally,
a configuration, c ∈ C, consists of: (i) c.Servers ⊆ S: a set
of server identifiers; (ii) c.Quorums: the set of quorums on
c.Servers, s.t. ∀Q1, Q2 ∈ c.Quorums,Q1, Q2 ⊆ c.Servers
and Q1 ∩ Q2 6= ∅; (iii) DAP (c): the set of primitives
(operations at level lower than reads or writes) that clients
in I may invoke on c.Servers; and (iv) c.Con: a consensus
instance with the values from C, implemented and running
on top of the servers in c.Servers. We refer to a server
s ∈ c.Servers as a member of configuration c. The consensus
instance c.Con in each configuration c is used as a service
that returns the identifier of the configuration that follows c.

Executions. An algorithm A is a collection of processes, where
process Ap is assigned to process p ∈ I ∪ S. The state, of

a process Ap is determined over a set of state variables, and
the state σ of A is a vector that contains the state of each
process. Each process Ap implements a set of actions. When
an action α occurs it causes the state of Ap to change, say from
some state σp to some different state σ′p. We call the triple
〈σp, α, σ′p〉 a step of Ap. Algorithm A performs a step, when
some process Ap performs a step. An action α is enabled in
a state σ if ∃ a step 〈σ, α, σ′〉 to some state σ′. An execution
is an alternating sequence of states and actions of A starting
with the initial state and ending in a state. An execution ξ fair
if enabled actions perform a step infinitely often. In the rest of
the paper we consider executions that are fair and well-formed.
A process p crashes in an execution if it stops taking steps;
otherwise p is correct or non-faulty. We assume a function
c.F to describe the failure model of a configuration c.

Reconfigurable Atomic Read/Write Objects. A reconfig-
urable atomic object supports three operations: read(), write(v)
and reconfig(c). A read() operation returns the value of the
atomic object, write(v) attempts to modify the value of the
object to v ∈ V , and the reconfig(c) that attempts to install a
new configuration c ∈ C. We assume well-formed executions
where each client may invoke one operation (read(), write(v)
or reconfig(c)) at a time.

An implementation of a read/write or a reconfig operation
contains an invocation action (such as a call to a procedure)
and a response action (such as a return from the procedure).
An operation π is complete in an execution, if it contains
both the invocation and the matching response actions for π;
otherwise π is incomplete. We say that an operation π precedes
an operation π′ in an execution ξ, denoted by π → π′, if the
response step of π appears before the invocation step of π′ in ξ.
Two operations are concurrent if neither precedes the other. An
implementation A of a read/write object satisfies the atomicity
(linearizability [23]) property if the following holds [30]. Let
the set Π contain all complete read/write operations in any
well-formed execution of A. Then there exists an irreflexive
partial ordering ≺ satisfying the following:

A1. For any operations π1 and π2 in Π, if π1 → π2, then it
cannot be the case that π2 ≺ π1.

A2. If π ∈ Π is a write operation and π′ ∈ Π is any read/write

operation, then either π ≺ π′ or π′ ≺ π.
A3. The value returned by a read operation is the value written

by the last preceding write operation according to ≺ (or
the initial value if there is no such write).

Storage and Communication Costs. We are interested in the
complexity of each read and write operation. The complexity
of each operation π invoked by a process p, is measured
with respect to three metrics, during the interval between the
invocation and the response of π: (i) number of communication
round, accounting the number of messages exchanged during π,
(ii) storage efficiency (storage cost), accounting the maximum
storage requirements for any single object at the servers during
π, and (iii) message bit complexity (communication cost)
which measures the size of the messages used during π.

We define the total storage cost as the size of the data stored
across all servers, at any point during the execution of the
algorithm. The communication cost associated with a read or
write operation is the size of the total data that gets transmitted
in the messages sent as part of the operation. We assume that
metadata, such as version number, process ID, etc. used by
various operations is of negligible size, and is hence ignored
in the calculation of storage and communication cost. Further,
we normalize both costs with respect to the size of the value
v; in other words, we compute the costs under the assumption
that v has size 1 unit.
Erasure Codes. We use an [n, k] linear MDS code [24] over
a finite field Fq to encode and store the value v among the n
servers. An [n, k] MDS code has the property that any k out
of the n coded elements can be used to recover (decode) the
value v. For encoding, v is divided into k elements v1, v2, . . . vk
with each element having size 1

k (assuming size of v is 1).
The encoder takes the k elements as input and produces n
coded elements e1, e2, . . . , en as output, i.e., [e1, . . . , en] =
Φ([v1, . . . , vk]), where Φ denotes the encoder. For ease of
notation, we simply write Φ(v) to mean [e1, . . . , en]. The vector
[e1, . . . , en] is referred to as the codeword corresponding to
the value v. Each coded element ci also has size 1

k . In our
scheme we store one coded element per server. We use Φi to
denote the projection of Φ on to the ith output component, i.e.,
ei = Φi(v). Without loss of generality, we associate the coded
element ei with server i, 1 ≤ i ≤ n.
Tags. We use logical tags to order operations. A tag τ is defined
as a pair (z, w), where z ∈ N and w ∈ W , an ID of a writer.
Let T be the set of all tags. Notice that tags could be defined
in any totally ordered domain and given that this domain is
countably infinite, then there can be a direct mapping to the
domain we assume. For any τ1, τ2 ∈ T we define τ2 > τ1 if
(i) τ2.z > τ1.z or (ii) τ2.z = τ1.z and τ2.w > τ1.w.

III. DATA ACCESS PRIMITIVES

In this section we introduce a set of primitives, we refer to as
data access primitives (DAP), which are invoked by the clients
during read/write/reconfig operations and are defined for any
configuration c in ARES. The DAPs allow us: (i) to describe
ARES in a modular manner, and (ii) a cleaner reasoning about
the correctness of ARES.

We define three data access primitives for each c ∈ C:
c.put-data(〈τ, v〉), via which a client can ingest the tag value

pair 〈τ, v〉 in to the configuration c; (ii) c.get-data(), used to
retrieve the most up to date tag and vlaue pair stored in the
configuration c; and (iii) c.get-tag(), used to retrieve the most
up to date tag for an object stored in a configuration c. More
formally, assuming a tag τ from a set of totally ordered tags
T , a value v from a domain V , and a configuration c from a
set of identifiers C, the three primitives are defined as follows:

Definition 1 (Data Access Primitives). Given a configuration
identifier c ∈ C, any non-faulty client process p may invoke the
following data access primitives during an execution ξ, where
c is added to specify the configuration specific implementation
of the primitives:
D1: c.get-tag() that returns a tag τ ∈ T ;
D2: c.get-data() that returns a tag-value pair (τ, v) ∈ T ×V ,
D3: c.put-data(〈τ, v〉) which accepts the tag-value pair

(τ, v) ∈ T × V as argument.

In order for the DAPs to be useful in designing the
ARES algorithm we further require the following consistency
properties. As we see later in Section VI-B, the safety property
of ARES holds, given that these properties hold for the DAPs
in each configuration.

Property 1 (DAP Consistency Properties). In an execution ξ
we say that a DAP operation in an execution ξ is complete if
both the invocation and the matching response step appear in
ξ. If Π is the set of complete DAP operations in execution ξ
then for any φ, π ∈ Π:
C1 If φ is c.put-data(〈τφ, vφ〉), for c ∈ C, 〈τφ, vφ〉 ∈ T × V ,

and π is c.get-tag() (or c.get-data()) that returns τπ ∈ T
(or 〈τπ, vπ〉 ∈ T ×V) and φ completes before π is invoked
in ξ, then τπ ≥ τφ.

C2 If φ is a c.get-data() that returns 〈τπ, vπ〉 ∈ T ×V , then
there exists π such that π is c.put-data(〈τπ, vπ〉) and φ
did not complete before the invocation of π. If no such π
exists in ξ, then (τπ, vπ) is equal to (t0, v0).

In Section V we show how to implement a set of DAPs,
where erasure-codes are used to reduce storage and communi-
cation costs. Our DAP implementation satisfies Property 1.

As noted earlier, expressing ARES in terms of the DAPs
allows one to achieve a modular design. Modularity enables
the usage of different DAP implementation per configuration,
during any execution of ARES, as long as the DAPs imple-
mented in each configuration satisfy Property 1. For example,
the DAPs in a configuration c may be implemented using
replication, while the DAPs in the next configuration say c′,
may be implemented using erasure-codes. Thus, a system may
use a scheme that offers higher fault tolerance (e.g. replication)
when storage is not an issue, while switching to a more storage
efficient (less fault-tolerant) scheme when storage gets limited.

In Section VII, we show that the presented DAPs are
not only suitable for algorithm ARES, but can also be used
to implement a large family of atomic read/write storage
implementations. By describing an algorithm A according to
a simple algorithmic template (see Alg. 7), we show that A
preserves safety (atomicity) if the used DAPs satisfy Property
1, and A preserves liveness (termination), if every invocation
of the used DAPs terminate, under the failure model assumed.

IV. ARES PROTOCOL

In this section, we describe ARES. In the presentation
of ARES algorithm we decouple the reconfiguration service
from the shared memory emulation, by utilizing the DAPs
presented in Section III. This allows ARES, to handle both the
reorganization of the servers that host the data, as well as utilize
a different atomic memory implementation per configuration.
It is also important to note that ARES adopts a client-server
architecture and separates the reader, writer and reconfiguration
processes from the server processes that host the object data.
More precisely, ARES algorithm comprises of three major
components: (i) The reconfiguration protocol which consists
of invoking, and subsequently installing new configuration via
the reconfig operation by recon clients. (ii) The read/write
protocol for executing the read and write operations invoked
by readers and writers. (iii) The implementation of the DAPs
for each installed configuration that respect Property 1 and
which are used by the reconfig, read and write operations.

A. Implementation of the Reconfiguration Service.
In this section, we describe the reconfiguration service

in ARES. The service relies on an underlying sequence of
configurations (already proposed or installed by reconfig
operations), in the from of a “distributed list”, which we refer to
as the global configuration sequence (or list) GL. Conceptually,
GL represents an ordered list of pairs 〈c, status〉, where c is
a configuration identifier (c ∈ C), and a binary state variable
status ∈ {F, P} that denotes whether c is finalized (F) or is
still pending (P). Initially, GL contains a single element, say
〈c0, F 〉, which is known to every participant in the service.

To facilitate the creation of GL, each server in c.Servers
maintains a local variable nextC ∈ {C ∪ {⊥}} × {P, F},
which is used to point to the configuration that follows c in GL.
Initially, at any server nextC = 〈⊥, F 〉. Once nextC it is set
to a value it is never altered. As we show below, at any point in
the execution of ARES and in any configuration c, the nextC
variables of the non-faulty servers in c that are not equal to
⊥ agree, i.e., {s.nextC : s ∈ c.Servers ∧ s.nextC 6= ⊥} is
either empty of has only one element.

Clients discover the configuration that follows a 〈c, ∗〉 in the
sequence by contacting a subset of servers in c.Servers and
collecting their nextC variables. Every client in I maintains a
local variable cseq that is expected to be some subsequence of
GL. Initially, at every client the value of cseq is 〈c0, F 〉. We use
the notation x̂ (a caret over some name) to denote state variables
that assumes values from the domain {C ∪ {⊥}} × {P, F}.

Reconfiguration clients may introduce new configurations,
each associated with a unique configuration identifier from C.
Multiple clients may concurrently attempt to introduce different
configurations for same next link in GL. ARES uses consensus
to resolve such conflicts: a subset of servers in c.Servers,
in each configuration c, implements a distributed consensus
service (such as Paxos [29], RAFT [35]) , denoted by c.Con.

The reconfiguration service consists of two major compo-
nents: (i) sequence traversal, responsible of discovering a
recent configuration in GL, and (ii) reconfiguration operation
that installs new configurations in GL.
Sequence Traversal. Any read/write/reconfig operation π
utilizes the sequence traversal mechanism to discover the

latest state of the global configuration sequence, as well as
to ensure that such a state is discoverable by any subsequent
operation π′. See Fig. 1 for an example execution in the case
of a reconfig operation. In a high level, a client starts by
collecting the nextC variables from a quorum of servers
in a configuration c, such that 〈c, F 〉 is the last finalized
configuration in that client’s local cseq variable (or c0 if no
other finalized configuration exists). If any server s returns
a nextC variable such that nextC.cfg 6= ⊥, then the client
(i) adds nextC in its local cseq, (ii) propagates nextC in a
quorum of servers in c.Servers, and (iii) repeats this process
in the configuration nextC.cfg. The client terminates when
all servers reply with nextC.cfg = ⊥. More precisely, the
sequence parsing consists of three actions (see Alg. 1):

get-next-config(c): The action get-next-config returns the
configuration that follows c in GL. During get-next-config(c),
a client sends READ-CONFIG messages to all the servers in
c.Servers, and waits for replies containing nextC from a quo-
rum in c.Quorums. If there exists a reply with nextC.cfg 6=
⊥ the action returns nextC; otherwise it returns ⊥.

put-config(c, c′): The put-config(c, c′) action propagates c′
to a quorum of servers in c.Servers. During the action, the
client sends (WRITE-CONFIG, c′) messages, to the servers in
c.Servers and waits for each server s in some quorum Q ∈
c.Quorums to respond.

read-config(seq): A read-config(seq) sequentially traverses
the installed configurations in order to discover the latest state
of the sequence GL. At invocation, the client starts with the last
finalized configuration 〈c, F 〉 in the given seq (Line A1:2), and
enters a loop to traverse GL by invoking get-next-config(c),
which returns the next configuration, say ĉ′. While ĉ′ 6= ⊥,
then: (a) ĉ′ is appended at the end of the sequence seq; (b) a
put-config(c, ĉ′) is invoked to inform a quorum of servers in
c.Servers to update the value of their nextC variable to ĉ′;
and (c) variable c is set to ĉ′.cfg. If ĉ′ = ⊥ the loop terminates
and the action read-config returns seq.

Reconfiguration operation. A reconfiguration operation
reconfig(c), c ∈ C, invoked by any reconfiguration client reci,
attempts to append c to GL. The set of server processes in c are
not a part of any other configuration different from c. In a high-
level, reci first executes a sequence traversal to discover the
latest state of GL. Then it attempts to add the new configuration
c, at the end of the discovered sequence by proposing c in the
consensus instance of the last configuration in the sequence.
The client accepts and appends the decision of the consensus
instance (that might be different than c). Then it attempts to
transfer the latest value of the read/write object to the latest
installed configuration. Once the information is transferred,
reci finalizes the last configuration in its local sequence and
propagates the finalized tuple to a quorum of servers in that
configuration. The operation consists of four phases, executed
consecutively by reci (see Alg. 2):

read-config(seq): The phase read-config(seq) at reci, reads
the recent global configuration sequence as described in the
sequence traversal.

add-config(seq, c): The add-config(seq, c) attempts to ap-
pend a new configuration c to the end of seq (client’s
view of GL). Suppose the last configuration in seq is c′

Algorithm 1 Sequence traversal at each process p ∈ I of algorithm ARES.

procedure read-config(seq)
2: µ = max({j : seq[j].status = F})

ĉ← seq[µ]
4: while ĉ 6= ⊥ do

ĉ′ ←get-next-config(ĉ.cfg)
6: if ĉ′ 6= ⊥ then

µ← µ+ 1
8: seq[µ]← ĉ′

put-config(seq[µ− 1].cfg, seq[µ])
10: ĉ← seq[µ]

end while
12: return seq

end procedure

14: procedure get-next-config(c)

send (READ-CONFIG) to each s ∈ c.Servers
16: until ∃Q,Q ∈ c.Quorums s.t. reci receives nextCs from
∀s ∈ Q

if ∃s ∈ Q s.t. nextCs.status = F then
18: return nextCs

else if ∃s ∈ Q s.t. nextCs.status = P then
20: return nextCs

else
22: return ⊥

end procedure

24: procedure put-config(c, nextC)
send (WRITE-CONFIG, nextC) to each s ∈ c.Servers

26: until ∃Q,Q ∈ c.Quorums s.t. reci receives ACK from ∀s ∈ Q
end procedure

Algorithm 2 Reconfiguration protocol of algorithm ARES.

at each reconfigurer reci
2: State Variables:
cseq[]s.t.cseq[j] ∈ C × {F, P} with members:

4: Initialization:
cseq[0] = 〈c0, F 〉

6: operation reconfig(c)
if c 6= ⊥ then

8: cseq ←read-config(cseq)
cseq ← add-config(cseq, c)

10: update-config(cseq)
cseq ← finalize-config(cseq)

12: end operation

procedure add-config(seq, c)
14: ν ← |seq|

c′ ← seq[ν].cfg
16: d← c′.Con.propose(c)

seq[ν + 1]← 〈d, P 〉
18: put-config(c′, 〈d, P 〉)

return seq
20: end procedure

procedure update-config(seq)
22: µ← max({j : seq[j].status = F})

ν ← |seq|
24: M ← ∅

for i = µ : ν do
26: 〈t, v〉 ← seq[i].cfg.get-data()

M ←M ∪ {〈τ, v〉}
28: 〈τ, v〉 ← maxt{〈t, v〉 : 〈t, v〉 ∈M}

seq[ν].put-data(〈τ, v〉)
30: end procedure

procedure finalize-config(seq)
32: ν = |seq|

seq[ν].status← F
34: put-config(seq[ν − 1].cfg, seq[ν])

return seq
36: end procedure

Algorithm 3 Server protocol of algorithm ARES.

at each server si in configuration ck
2: State Variables:
τ ∈ N×W , initially, 〈0,⊥〉

4: v ∈ V , intially, ⊥
nextC ∈ C × {P, F}, initially 〈⊥, P 〉

6: Upon receive (READ-CONFIG) si, ck from q
send nextC to q

8: end receive

Upon receive (WRITE-CONFIG, cfgTin) si, ck from q
10: if nextC.cfg = ⊥ ∨ nextC.status = P then

nextC ← cfgTin

12: send ACK to q
end receive

(with status either F or P), then in order to decide the
most recent configuration, reci invokes c′.Con.propose(c),
on the consensus object associated with configuration c′.
Let d ∈ C be the configuration identifier decided by the
consensus service. If d 6= c, this implies that another (possibly
concurrent) reconfiguration operation, invoked by a reconfigurer
recj 6= reci, proposed and succeeded d as the configuration
to follow c′. In this case, reci adopts d as it own propose
configuration, by adding 〈d, P 〉 to the end of its local cseq
(entirely ignoring c), using the operation put-config(c′, 〈d, P 〉),
and returns the extended configuration seq.

update-config(seq): Let us denote by µ the index of the last
configuration in the local sequence cseq, at reci, such that its
corresponding status is F ; and ν denote the last index of cseq.
Next reci invokes update-config(cseq), which gathers the tag-
value pair corresponding to the maximum tag in each of the
configurations in ĉseq[i] for µ ≤ i ≤ ν, and transfers that pair
to the configuration that was added by the add-config action.
The get-data and put-data DAPs are used to transfer the value
of the object to the new configuration, and they are implemented
with respect to the configuration that is accessed. Suppose
〈tmax, vmax〉 is the tag value pair corresponding to the highest

Fig. 1: Illustration of an execution of the reconfiguration steps.

tag among the responses from all the ν − µ+ 1 configurations.
Then, 〈tmax, vmax〉 is written to the configuration d via the
invocation of ĉseq[ν].cfg.put-data(〈τmax, vmax〉).

finalize-config(cseq): Once the tag-value pair is transferred,
in the last phase of the reconfiguration operation, reci executes
finalize-config(cseq), to update the status of the last configu-
ration in cseq, say d = ĉseq[ν].cfg, to F . The reconfigurer
reci informs a quorum of servers in the previous configuration
c = ̂cseq[ν − 1].cfg, i.e. in some Q ∈ c.Quorums, about the
change of status, by executing the put-config(c, 〈d, F 〉) action.
Server Protocol. Each server responds to requests from
clients (Alg. 3). A server waits for two types of messages:
READ-CONFIG and WRITE-CONFIG. When a READ-CONFIG
message is received for a particular configuration ck, then the
server returns nextC variables of the servers in ck.Servers.
A WRITE-CONFIG message attempts to update the nextC
variable of the server with a particular tuple cfgTin. A server
changes the value of its local nextC.cfg in two cases: (i)
nextC.cfg = ⊥, or (ii) nextC.status = P .

Fig. 1 illustrates an example execution of a reconfiguration
operation recon(c5). In this example, the reconfigurer reci goes
through a number of configuration queries (read-next-config)
before it reaches configuration c4 in which a quorum of servers
replies with nextC.cfg = ⊥. There it proposes c5 to the
consensus object of c4 (c4.Con.propose(c5) on arrow 10),
and once c5 is decided, recon(c5) completes after executing
finalize-config(c5).

B. Implementation of Read and Write operations.
The read and write operations in ARES are expressed in

terms of the DAP primitives (see Section III). This provides
the flexibility to ARES to use different implementation of DAP
primitives in different configurations, without changing the
basic structure of ARES. At a high-level, a write (or read)
operation is executed where the client: (i) obtains the latest
configuration sequence by using the read-config action of the
reconfiguration service, (ii) queries the configurations, in cseq,
starting from the last finalized configuration to the end of the
discovered configuration sequence, for the latest 〈tag, value〉
pair with a help of get-tag (or get-data) operation as specified
for each configuration, and (iii) repeatedly propagates a new
〈tag′, value′〉 pair (the largest 〈tag, value〉 pair) with put-data

in the last configuration of its local sequence, until no additional
configuration is observed. In more detail, the algorithm of a
read or write operation π is as follows (see Alg. 4):

A write (or read) operation is invoked at a client p when
line Alg. 4:8 (resp. line Alg. 4:31) is executed. At first, p issues
a read-config action to obtain the latest introduced configuration
in GL, in both operations.

If π is a write p detects the last finalized entry in cseq,
say µ, and performs a cseq[j].conf.get-tag() action, for µ ≤
j ≤ |cseq| (line Alg. 4:9). Then p discovers the maximum
tag among all the returned tags (τmax), and it increments the
maximum tag discovered (by incrementing the integer part
of τmax), generating a new tag, say τnew. It assigns 〈τ, v〉 to
〈τnew, val〉, where val is the value he wants to write (Line
Alg. 4:13).

if π is a read, p detects the last finalized entry in cseq,
say µ, and performs a cseq[j].conf.get-data() action, for µ ≤
j ≤ |cseq| (line Alg. 4:32). Then p discovers the maximum
tag-value pair (〈τmax, vmax〉) among the replies, and assigns
〈τ, v〉 to 〈τmax, vmax〉.

Once specifying the 〈τ, v〉 to be propagated, both reads
and writes execute the cseq[ν].cfg.put-data(〈τ, v〉) action,
where ν = |cseq|, followed by executing read-config action,
to examine whether new configurations were introduced in
GL. The repeat these steps until no new configuration is
discovered (lines Alg. 4:15–21, or lines Alg. 4:37–43). Let
cseq′ be the sequence returned by the read-config action. If
|cseq′| = |cseq| then no new configuration is introduced, and
the read/write operation terminates; otherwise, p sets cseq to
cseq′ and repeats the two actions. Note, in an execution of
ARES, two consecutive read-config operations that return cseq′
and cseq′′ respectively must hold that cseq′ is a prefix of cseq′′,
and hence |cseq′| = |cseq′′| only if cseq′ = cseq′′. Finally, if
π is a read operation the value with the highest tag discovered
is returned to the client.
Discussion ARES shares similarities with previous algorithms
like RAMBO [22] and the framework in [38]. The reconfigura-
tion technique used in ARES ensures the prefix property on the
configuration sequence (resembling a blockchain data structure
[33]) while the array structure in RAMBO allowed nodes to
maintain an incomplete reconfiguration history. On the other
hand, the DAP usage, exploits a different viewpoint compared
to [38], allowing implementations of atomic read/write registers
without relying on strong objects, like ranked registers [13].

V. IMPLEMENTATION OF THE DAPS

In this section, we present an implementation of the DAPs,
that satisfies the properties in Property 1, for a configuration
c, with n servers using a [n, k] MDS coding scheme for
storage. We implement an instance of the algorithm in a
configuration of n server processes. We store each coded
element ci, corresponding to an object at server si, where
i = 1, · · · , n. The implementations of DAP primitives used
in ARES are shown in Alg. 5, and the servers’ responses in
Alg. 6.

Each server si stores one state variable, List, which is a set
of up to (δ + 1) (tag, coded-element) pairs. Initially the set at
si contains a single element, List = {(t0,Φi(v0)}. Below we
describe the implementation of the DAPs.

Algorithm 4 Write and Read protocols at the clients for ARES.

Write Operation:
2: at each writer wi

State Variables:
4: cseq[]s.t.cseq[j] ∈ C × {F, P} with members:

Initialization:
6: cseq[0] = 〈c0, F 〉

operation write(val), val ∈ V
8: cseq ←read-config(cseq)

µ← max({i : cseq[i].status = F})
10: ν ← |cseq|

for i = µ : ν do
12: τmax ← max(cseq[i].cfg.get-tag(), τmax)

〈τ, v〉 ← 〈〈τmax.ts+ 1, ωi〉, val〉
14: done← false

while not done do
16: cseq[ν].cfg.put-data(〈τ, v〉)

cseq ←read-config(cseq)
18: if |cseq| = ν then

done← true
20: else

ν ← |cseq|
22: end while

end operation

24: Read Operation:
at each reader ri

26: State Variables:
cseq[]s.t.cseq[j] ∈ C × {F, P} with members:

28: Initialization:
cseq[0] = 〈c0, F 〉

30: operation read()
cseq ←read-config(cseq)

32: µ← max({j : cseq[j].status = F})
ν ← |cseq|

34: for i = µ : ν do
〈τ, v〉 ← max(cseq[i].cfg.get-data(), 〈τ, v〉)

36: done← false
while not done do

38: cseq[ν].cfg.put-data(〈τ, v〉)
cseq ←read-config(cseq)

40: if |cseq| = ν then
done← true

42: else
ν ← |cseq|

44: end while
return v

46: end operation

Algorithm 5 DAP implementation for ARES.

at each process pi ∈ I

2: procedure c.get-tag()
send (QUERY-TAG) to each s ∈ c.Servers

4: until pi receives 〈ts, es〉 from
⌈
n+k
2

⌉
servers in c.Servers

tmax ← max({ts : received 〈ts, vs〉 from s})
6: return tmax

end procedure

8: procedure c.get-data()
send (QUERY-LIST) to each s ∈ c.Servers

10: until pi receives Lists from each server s ∈ Sg s.t. |Sg| =⌈
n+k
2

⌉
and Sg ⊂ c.Servers

Tags≥k
∗ = set of tags that appears in k lists

12: Tags≥k
dec = set of tags that appears in k lists with values

t∗max ← maxTags≥k
∗

14: tdecmax ← maxTags≥k
dec

if tdecmax = t∗max then
16: v ← decode value for tdecmax

return 〈tdecmax, v〉
18: end procedure

procedure c.put-data(〈τ, v〉))
20: code-elems = [(τ, e1), . . . , (τ, en)], ei = Φi(v)

send (WRITE, 〈τ, ei〉) to each si ∈ c.Servers
22: until pi receives ACK from

⌈
n+k
2

⌉
servers in c.Servers

end procedure

Algorithm 6 The response protocols at any server si ∈ S in ARES for client requests.

at each server si ∈ S in configuration ck

2: State Variables:
List ⊆ T × Cs, initially {(t0,Φi(v0))}

Upon receive (QUERY-TAG) si, ck from q
4: τmax = max(t,c)∈List t

Send τmax to q
6: end receive

Upon receive (QUERY-LIST) si, ck from q
8: Send List to q

end receive
10:

Upon receive (PUT-DATA, 〈τ, ei〉) si, ck from q
12: List← List ∪ {〈τ, ei〉}

if |List| > δ + 1 then
14: τmin ← min{t : 〈t, ∗〉 ∈ List}

/* remove the coded value and retain the tag */
List← List\ {〈τ, e〉 : τ = τmin ∧ 〈τ, e〉 ∈ List}

16: List← List ∪ {(τmin,⊥)}
Send ACK to q

18: end receive

c.get-tag(): A client, during the execution of a c.get-tag()
primitive, queries all the servers in c.Servers for the highest
tags in their Lists, and awaits responses from

⌈
n+k

2

⌉
servers.

A server upon receiving the GET-TAG request, responds to the

client with the highest tag, as τmax ≡ max(t,c)∈List t. Once
the client receives the tags from

⌈
n+k

2

⌉
servers, it selects the

highest tag t and returns it .

c.put-data(〈tw, v〉): During the execution of the primitive

c.put-data(〈tw, v〉), a client sends the pair (tw,Φi(v)) to each
server si ∈ c.Servers. When a server si receives a message
(PUT-DATA, tw, ci) , it adds the pair in its local List, trims the
pairs with the smallest tags exceeding the length (δ + 1) of
the List , and replies with an ack to the client. In particular,
si replaces the coded-elements of the older tags with ⊥, and
maintains only the coded-elements associated with the (δ +
1) highest tags in the List (see Line Alg. 6:16). The client
completes the primitive operation after getting acks from

⌈
n+k

2

⌉
servers.
c.get-data(): A client, during the execution of a c.get-data()

primitive, queries all the servers in c.Servers for their local
variable List, and awaits responses from

⌈
n+k

2

⌉
servers. Once

the client receives Lists from
⌈
n+k

2

⌉
servers, it selects the

highest tag t, such that: (i) its corresponding value v is
decodable from the coded elements in the lists; and (ii) t
is the highest tag seen from the responses of at least k Lists
(see lines Alg. 5:11-14) and returns the pair (t, v). Note that in
the case where anyone of the above conditions is not satisfied
the corresponding read operation does not complete.

VI. CORRECTNESS, PERFORMANCE AND LATENCY OF ARES

In this section, we prove the atomicity property of ARES.
We also provide an analysis of its storage and communication
costs, and the latency of read and write operations. The
atomicity property of ARES hinges on the Property 1 of the
DAP implementation in each individual configuration used
in ARES. Therefore, we start by proving, in subsection VI-A,
that Property 1 holds for the DAP implementation in Section V.
Based on this, in subsection VI-B, we prove the atomicty of
ARES. Next, in sub-section VI-C, we derive the storage and
communication costs of read and write operations, and in sub-
section VI-D, we derive the latency of reads and writes in
terms of the minimum and maximum delays of any point-to-
point messages of the underlying network. Due to lack of space
proofs are omitted and can be found in the extended version
of the paper [34].

A. Safety (Property 1) proof of the DAPs

Correctness. In this section we are concerned with only one
configuration c, consisting of a set of servers c.Servers. We
assume that at most f ≤ n−k

2 servers from c.Servers may
crash. Lemma 2 states that the DAP implementation satisfies
the consistency properties Property 1 which will be used to
imply the atomicity of the ARES algorithm.

Theorem 2 (Safety). Let Π a set of complete DAP operations of
Algorithm 5 in a configuration c ∈ C, c.get-tag, c.get-data and
c.put-data, of an execution ξ. Then, every pair of operations
φ, π ∈ Π satisfy Property 1.

Liveness. To reason about the liveness of the proposed DAPs,
we define a concurrency parameter δ which captures all the
put-data operations that overlap with the get-data, until the
time the client has all data needed to attempt decoding a value.
However, we ignore those put-data operations that might have
started in the past, and never completed yet, if their tags are less
than that of any put-data that completed before the get-data
started. This allows us to ignore put-data operations due to

failed clients, while counting concurrency, as long as the failed
put-data operations are followed by a successful put-data that
completed before the get-data started. In order to define the
amount of concurrency in our specific implementation of the
DAPs presented in this section the following definition captures
the put-data operations that overlap with the get-data, until
the client has all data required to decode the value.

Definition 3 (Valid get-data operations). A get-data operation
π from a process p is valid if p does not crash until the reception
of
⌈
n+k

2

⌉
responses during the get-data phase.

Definition 4 (put-data concurrent with a valid get-data).
Consider a valid get-data operation π from a process p. Let
T1 denote the point of initiation of π. For π, let T2 denote
the earliest point of time during the execution when p receives
all the

⌈
n+k

2

⌉
responses. Consider the set Σ = {φ : φ is

any put-data operation that completes before π is initiated},
and let φ∗ = arg maxφ∈Σ tag(φ). Next, consider the set
Λ = {λ : λ is any put-data operation that starts before
T2 such that tag(λ) > tag(φ∗)}. We define the number of
put-data concurrent with the valid get-data π to be the
cardinality of the set Λ.

Termination (and hence liveness) of the DAPs is guaranteed
in an execution ξ, provided that a process no more than f
servers in c.Servers crash, and no more that δ put-data may
be concurrent at any point in ξ. If the failure model is satisfied,
then any operation invoked by a non-faulty client will collect
the necessary replies independently of the progress of any other
client process in the system. Preserving δ on the other hand,
ensures that any operation will be able to decode a written
value. These are captured in the following theorem:

Theorem 5 (Liveness). Let ξ be well-formed and fair execution
of DAPs, with an [n, k] MDS code, where n is the number of
servers out of which no more than n−k

2 may crash, and δ be
the maximum number of put-data operations concurrent with
any valid get-data operation. Then any get-data and put-data
operation π invoked by a process p terminates in ξ if p does
not crash between the invocation and response steps of π.
B. Atomicity Property of ARES

ARES Correctness. The correctness of ARES highly depends
on the way the configuration sequence is constructed at each
client process. Let cpσ denote the configuration sequence cseq
at process p in a state σ and µ(cpσ) the index of the last
finalized configuration in cpσ. Then the following properties
are preserved by the reconfiguration service:

Theorem 6. Let π1 and π2 two completed read-config actions
invoked by processes p1, p2 ∈ I respectively, such that π1 →
π2 in an execution ξ. Let σ1 the state after the response step
of π1 and σ2 the state after the response step of π2. Then
the following properties hold: (a) Configuration Consistency:
cp2σ2

[i].cfg = cp1σ1
[i].cfg, for 1 ≤ i ≤ |cp1σ1

|, (b) Seq. Prefix:
cp1σ1
�p cp2σ2

, and (c) Seq. Progress: µ(cp1σ1
) ≤ µ(cp2σ2

)

Given the properties satisfied by the reconfiguration al-
gorithm of ARES and assuming that the DAP used satisfy
Property 1, as presented in Section III, then we have the
following result.

Theorem 7 (Atomicity). In any execution ξ of ARES, if in
every configuration c ∈ GL, c.get-data(), c.put-data(), and
c.get-tag() satisfy Property 1, then ARES satisfy atomicity.

Remark 8. Algorithm ARES satisfies atomicity even when the
implementaton of the DAPs in two different configurations c1
and c2 are not the same, given that the ci.get-tag, ci.get-data,
and the ci.put-data primitives in each ci satisfy Property 1.

C. Storage and Communication Costs for ARES.
We now briefly present the storage and communication

costs associated with the presented DAPs. Recall that by our
assumption, the storage cost counts the size (in bits) of the
coded elements stored in variable List at each server. We
ignore the storage cost due to meta-data. For communication
cost we measure the bits sent on the wire between the nodes.

Theorem 9. The ARES algorithm has: (i) storage cost (δ+1)nk ,
(ii) communication cost for each write at most to n

k , and (iii)
communication cost for each read at most (δ + 2)nk .

D. Latency Analysis for read and writes in ARES

Liveness properties cannot be specified for ARES, without
restricting asynchrony or the rate of arrival of reconfig oper-
ations, or if the consensus protocol never terminates. Here,
we provide some conditional performance analysis of the
operation, based on latency bounds on the message delivery.
We assume that local computations take negligible time and
the latency of an operation is due to the delays in the messages
exchanged during the execution. We measure delays in time
units of some global clock, which is visible only to an external
viewer. No process has access to the clock. Let d and D be
the minimum and maximum durations taken by messages, sent
during an execution of ARES, to reach their destinations. Also,
let T (π) denote the duration of an operation (or action) π. In the
statements that follow, we consider any execution ξ of ARES,
which contains k reconfig operations. For any configuration c
in an execution of ARES, we assume that any c.Con.propose
operation, takes at least Tmin(CN) time units.

The following lemma shows the maximum latency of a
read or a write operation, invoked by any non-faulty client.
From ARES algorithm, the latency of a read/write operation
depends on the delays of the DAPs operations. For our analysis
we assume that all get-data, get-tag and put-data primitives
use two phases of communication. Each phase consists of a
communication between the client and the servers.

Lemma 10. Suppose π, φ and ψ are operations of the type
put-data, get-tag and get-data, respectively, invoked by some
non-faulty reconfiguration clients, then the latency of these
operations are bounded as follows: (i) 2d ≤ T (π) ≤ 2D; (ii)
2d ≤ T (φ) ≤ 2D; and (iii) 2d ≤ T (ψ) ≤ 2D.

In the following lemma, we estimate the time taken for a
read or a write operation to complete, when it discovers k
configurations between its invocation and response steps.

Lemma 11. Consider any execution of ARES where at most
k reconfiguration operations are invoked. Let σs and σe be
the states before the invocation and after the completion step
of a read/write operation π, in some fair execution ξ of ARES.
Then we have T (π) ≤ 6D (k + 2) to complete.

It remains now to examine the conditions under which a
read/write operation may catch up with an infinite number
of reconfiguration operations. For the sake of a worst case
analysis we will assume that reconfiguration operations suffer
the minimum delay d, whereas read and write operations suffer
the maximum delay D in each message exchange. Also, we
assume that any consensus operation takes the least amount
of time to complete Tmin(CN). The following theorem is the
main result of this section, in which we define the relation
between Tmin(CN), d and D so to guarantee that any read
or write issued by a non-faulty client always terminates.

Theorem 12. Suppose Tmin(CN) ≥ 3(6D − d), then any
read or write operation π completes in any execution ξ of
ARES for any number of reconfiguration operations in ξ.

VII. FLEXIBILITY OF DAPS

In this section, we argue that various implementations of
DAPs can be used in ARES. In fact, via reconfig operations, one
can implement a highly adaptive atomic DSS: replication-based
can be transformed into erasure-code based DSS; increase or
decrease the number of storage servers; study the performance
of the DSS under various code parameters, etc. The insight to
implementing various DAPs comes from the observation that
the simple algorithmic template A (see Alg. 7) for reads and
writes protocol combined with any implementation of DAPs,
satisfying Property 1 gives rise to a MWMR atomic memory
service. Moreover, the read and writes operations terminate as
long as the implemented DAPs complete.

Algorithm 7 Template A for the client-side read/write steps.

operation read()
2: 〈t, v〉 ← c.get-data()

c.put-data(〈t, v〉)
4: return 〈t, v〉

end operation

6: operation write(v)
t← c.get-tag()

8: tw ← inc(t)
c.put-data(〈tw, v〉)

10: end operation

A read operation in A performs c.get-data() to retrieve a tag-
value pair, 〈τ, v〉 from a configuration c, and then it performs a
c.put-data(〈τ, v〉) to propagate that pair to the configuration c.
A write operation is similar to the read but before performing
the put-data action it generates a new tag which associates
with the value to be written. The following result shows that
A is atomic and live, if the DAPs satisfy Property 1 and live.

Theorem 13 (Atomicity of template A). Suppose the DAP
implementation satisfies the consistency properties C1 and C2
of Property 1 for a configuration c ∈ C. Then any execution ξ
of algorithm A in configuration c is atomic and live if each
DAP invocation terminates in ξ under the failure model c.F .

A number of known tag-based algorithms that implement
atomic read/write objects (e.g., ABD [6], FAST[15] – see [34]),
can be expressed in terms of DAP.

VIII. CONCLUSIONS

We presented an algorithmic framework suitable for re-
configurable, erasure code-based atomic memory service in
asynchronous, message-passing environments. Future work
will involve adding efficient repair and reconfiguration using
regenerating codes.

REFERENCES

[1] Intel storage acceleration library (open source version).
https://goo.gl/zkVl4N.

[2] ABEBE, M., DAUDJEE, K., GLASBERGEN, B., AND TIAN, Y. Ec-store:
Bridging the gap between storage and latency in distributed erasure coded
systems. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS) (July 2018), pp. 255–266.

[3] AGUILERA, M. K., KEIDAR, I., MALKHI, D., AND SHRAER, A.
Dynamic atomic storage without consensus. In Proceedings of the
28th ACM symposium on Principles of distributed computing (PODC
’09) (New York, NY, USA, 2009), ACM, pp. 17–25.

[4] AGUILERA, M. K., KEIDARY, I., MALKHI, D., MARTIN, J.-P., AND
SHRAERY, A. Reconfiguring replicated atomic storage: A tutorial.
Bulletin of the EATCS 102 (2010), 84–081.

[5] ANTA, A. F., NICOLAOU, N., AND POPA, A. Making “fast” atomic
operations computationally tractable. In International Conference on
Principles Of Distributed Systems (2015), OPODIS’15.

[6] ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.

[7] BURIHABWA, D., FELBER, P., MERCIER, H., AND SCHIAVONI, V. A
performance evaluation of erasure coding libraries for cloud-based data
stores. In Distributed Applications and Interoperable Systems (2016),
Springer, pp. 160–173.

[8] CACHIN, C., AND TESSARO, S. Optimal resilience for erasure-coded
byzantine distributed storage. IEEE Computer Society, pp. 115–124.

[9] CADAMBE, V. R., LYNCH, N., MÉDARD, M., AND MUSIAL, P. A coded
shared atomic memory algorithm for message passing architectures.
In Network Computing and Applications (NCA), 2014 IEEE 13th
International Symposium on (Aug 2014), pp. 253–260.

[10] CADAMBE, V. R., LYNCH, N. A., MÉDARD, M., AND MUSIAL, P. M. A
coded shared atomic memory algorithm for message passing architectures.
Distributed Computing 30, 1 (2017), 49–73.

[11] CHEN, Y. L. C., MU, S., AND LI, J. Giza: Erasure coding objects
across global data centers. In Proceedings of the 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (2017), pp. 539–551.

[12] CHOCKLER, G., GILBERT, S., GRAMOLI, V., MUSIAL, P. M., AND
SHVARTSMAN, A. A. Reconfigurable distributed storage for dynamic
networks. Journal of Parallel and Distributed Computing 69, 1 (2009),
100–116.

[13] CHOCKLER, G., AND MALKHI, D. Active disk paxos with infinitely
many processes. Distributed Computing 18, 1 (2005), 73–84.

[14] DUTTA, P., GUERRAOUI, R., AND LEVY, R. R. Optimistic erasure-
coded distributed storage. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing (Berlin, Heidelberg,
2008), Springer-Verlag, pp. 182–196.

[15] DUTTA, P., GUERRAOUI, R., LEVY, R. R., AND CHAKRABORTY, A.
How fast can a distributed atomic read be? In Proceedings of the 23rd
ACM symposium on Principles of Distributed Computing (PODC) (2004),
pp. 236–245.

[16] FAN, R., AND LYNCH, N. Efficient replication of large data objects.
In Distributed algorithms (2003), F. E. Fich, Ed., vol. 2848 of Lecture
Notes in Computer Science, pp. 75–91.

[17] FERNÁNDEZ ANTA, A., HADJISTASI, T., AND NICOLAOU, N. Computa-
tionally light “multi-speed” atomic memory. In International Conference
on Principles Of Distributed Systems (2016), OPODIS’16.

[18] GAFNI, E., AND MALKHI, D. Elastic Configuration Maintenance via a
Parsimonious Speculating Snapshot Solution. In International Symposium
on Distributed Computing (2015), Springer, pp. 140–153.

[19] GEORGIOU, C., NICOLAOU, N. C., AND SHVARTSMAN, A. A. On the
robustness of (semi) fast quorum-based implementations of atomic shared
memory. In DISC ’08: Proceedings of the 22nd international symposium
on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag,
pp. 289–304.

[20] GEORGIOU, C., NICOLAOU, N. C., AND SHVARTSMAN, A. A. Fault-
tolerant semifast implementations of atomic read/write registers. Journal
of Parallel and Distributed Computing 69, 1 (2009), 62–79.

[21] GILBERT, S. RAMBO II: Rapidly reconfigurable atomic memory for
dynamic networks. Master’s thesis, MIT, August 2003.

[22] GILBERT, S., LYNCH, N., AND SHVARTSMAN, A. RAMBO II: Rapidly
reconfigurable atomic memory for dynamic networks. In Proceedings of
International Conference on Dependable Systems and Networks (DSN)
(2003), pp. 259–268.

[23] HERLIHY, M. P., AND WING, J. M. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems 12, 3 (1990), 463–492.

[24] HUFFMAN, W. C., AND PLESS, V. Fundamentals of error-correcting
codes. Cambridge university press, 2003.

[25] JEHL, L., VITENBERG, R., AND MELING, H. Smartmerge: A new
approach to reconfiguration for atomic storage. In International
Symposium on Distributed Computing (2015), Springer, pp. 154–169.

[26] JOSHI, G., SOLJANIN, E., AND WORNELL, G. Efficient redundancy
techniques for latency reduction in cloud systems. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems
(TOMPECS) 2, 2 (2017), 12.

[27] KONWAR, K. M., PRAKASH, N., KANTOR, E., LYNCH, N., MÉDARD,
M., AND SCHWARZMANN, A. A. Storage-optimized data-atomic
algorithms for handling erasures and errors in distributed storage
systems. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (May 2016), pp. 720–729.

[28] KONWAR, K. M., PRAKASH, N., LYNCH, N., AND MÉDARD, M.
Radon: Repairable atomic data object in networks. In The International
Conference on Distributed Systems (OPODIS) (2016).

[29] LAMPORT, L. The part-time parliament. ACM Transactions on Computer
Systems 16, 2 (1998), 133–169.

[30] LYNCH, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[31] LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable

atomic memory service for dynamic networks. In Proceedings of
16th International Symposium on Distributed Computing (DISC) (2002),
pp. 173–190.

[32] LYNCH, N. A., AND SHVARTSMAN, A. A. Robust emulation of
shared memory using dynamic quorum-acknowledged broadcasts. In
Proceedings of Symposium on Fault-Tolerant Computing (1997), pp. 272–
281.

[33] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.
[34] NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH,

N., AND MÉDARD, M. Ares: Adaptive, reconfigurable, erasure coded,
atomic storage. CoRR abs/1805.03727 (2018).

[35] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference (Berkeley, CA, USA, 2014),
USENIX ATC’14, USENIX Association, pp. 305–320.

[36] RASHMI, K., CHOWDHURY, M., KOSAIAN, J., STOICA, I., AND
RAMCHANDRAN, K. Ec-cache: Load-balanced, low-latency cluster
caching with online erasure coding. In OSDI (2016), pp. 401–417.

[37] SHRAER, A., MARTIN, J.-P., MALKHI, D., AND KEIDAR, I. Data-
centric reconfiguration with network-attached disks. In Proceedings of
the 4th Int’l Workshop on Large Scale Distributed Sys. and Middleware
(LADIS 10) (2010), p. 2226.

[38] SPIEGELMAN, A., KEIDAR, I., AND MALKHI, D. Dynamic Recon-
figuration: Abstraction and Optimal Asynchronous Solution. In 31st
International Symposium on Distributed Computing (DISC 2017) (2017),
vol. 91, pp. 40:1–40:15.

[39] WANG, S., HUANG, J., QIN, X., CAO, Q., AND XIE, C. Wps: A
workload-aware placement scheme for erasure-coded in-memory stores.
In Networking, Architecture, and Storage (NAS), 2017 International
Conference on (2017), IEEE, pp. 1–10.

[40] XIANG, Y., LAN, T., AGGARWAL, V., AND CHEN, Y.-F. R. Multi-tenant
latency optimization in erasure-coded storage with differentiated services.
In 2015 IEEE 35th International Conference on Distributed Computing
Systems (ICDCS) (2015), IEEE, pp. 790–791.

[41] XIANG, Y., LAN, T., AGGARWAL, V., CHEN, Y.-F. R., XIANG, Y.,
LAN, T., AGGARWAL, V., AND CHEN, Y.-F. R. Joint latency and
cost optimization for erasure-coded data center storage. IEEE/ACM
Transactions on Networking (TON) 24, 4 (2016), 2443–2457.

[42] YU, Y., HUANG, R., WANG, W., ZHANG, J., AND LETAIEF, K. B. Sp-
cache: load-balanced, redundancy-free cluster caching with selective
partition. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (2018),
IEEE Press, p. 1.

[43] ZHANG, H., DONG, M., AND CHEN, H. Efficient and available in-
memory kv-store with hybrid erasure coding and replication. In 14th
USENIX Conference on File and Storage Technologies (FAST 16) (Santa
Clara, CA, 2016), USENIX Association, pp. 167–180.

[44] ZHOU, P., HUANG, J., QIN, X., AND XIE, C. Pars: A popularity-
aware redundancy scheme for in-memory stores. IEEE Transactions on
Computers (2018), 1–1.

