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Figure 1: Our proposed self-conditioned GAN model learns to perform clustering and image synthesis simultaneously. The model training
requires no manual annotation of object classes. Here, we visualize several discovered clusters for both Places365 (top) and ImageNet
(bottom). For each cluster, we show both real images and the generated samples conditioned on the cluster index.

Abstract

We introduce a simple but effective unsupervised method
for generating realistic and diverse images. We train a class-
conditional GAN model without using manually annotated
class labels. Instead, our model is conditional on labels
automatically derived from clustering in the discriminator’s
feature space. Our clustering step automatically discov-
ers diverse modes, and explicitly requires the generator to
cover them. Experiments on standard mode collapse bench-
marks show that our method outperforms several competing
methods when addressing mode collapse. Our method also
performs well on large-scale datasets such as ImageNet and
Places365, improving both image diversity and standard
quality metrics, compared to previous methods.

1. Introduction

Despite the remarkable progress of Generative Adversar-
ial Networks (GANs) [15, 6, 24], there remains a signifi-
cant gap regarding the quality and diversity between class-
conditional GANs trained on labeled data, and unconditional
GANs trained without any labels in a fully unsupervised set-
ting [37, 33]. This problem reflects the challenge of mode
collapse: the tendency for a generator to focus on a subset of
modes to the exclusion of other parts of the target distribu-
tion [14]. Both empirical and theoretical studies have shown
strong evidence that real data has a highly multi-modal dis-
tribution [40, 46]. Unconditional GANs trained on such data
distributions often completely miss important modes, e.g.,
not being able to generate one of ten digits for MNIST [44],
or omitting object classes such as people and cars within
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synthesized scenes [4]. Class-conditional GANs alleviate
this issue by enforcing labels that require the generator to
cover all semantic categories. However, in practice, it is
often expensive to obtain labels for large-scale datasets.

In this work, we present a simple but effective training
method, self-conditioned GANs, to address mode collapse.
We train a class-conditional GAN and automatically obtain
image classes by clustering in the discriminator’s feature
space. Our algorithm alternates between learning a fea-
ture representation for our clustering method and learning
a better generative model that covers all the clusters. Such
partitioning automatically discovers modes the generator is
currently missing, and explicitly requires the generator to
cover them. Figure 1 shows several discovered clusters and
corresponding generated images for each cluster.

Empirical experiments demonstrate that this approach
successfully recovers modes on standard mode collapse
benchmarks (mixtures of Gaussians, stacked MNIST,
CIFAR-10). More importantly, our approach scales well
to large-scale image generation, achieving better Fréchet
Inception Distance [? ], Fréchet Segmentation Distance [4],
and Inception Score [44] for both ImageNet and Places365,
compared to previous unsupervised methods.

Our code and models are available on our website.

2. Related Work
Generative Adversarial Networks (GANs). Since the in-
troduction of GANs [15], many variants have been pro-
posed [37, 10, 42, 44, 1, 34, 16, 35], improving both the
training stability and image quality. Due to its rapid advance,
GANs have been used in a wide range of computer vision
and graphics applications [47, 22, 48, 54, 20, 19]. GANs
excel at synthesizing photorealistic images for a specific
class of images such as faces and cars [23, 24]. However, for
more complex datasets such as ImageNet, state-of-the-art
models are class-conditional GANs that require ground truth
image class labels during training [6]. To reduce the cost
of manual annotation, a recent work [33] presents a semi-
supervised method based on RotNet [13], a self-supervised
image rotation feature learning method. The model is trained
with labels provided on only a subset of images. On the con-
trary, our general-purpose method is not image-specific, and
fully unsupervised. Section 4.4 shows that our method out-
performs a RotNet-based baseline. A recent method [39]
proposes to obtain good clustering using GANs, while we
aim to achieve realistic and diverse generation.

Mode collapse. Although GANs are formulated as a min-
imax game in which each generator is evaluated against
a discriminator, during optimization, the generator faces a
slowly-changing discriminator that can guide generation to
collapse to the point that maximizes the discriminator [36].
Mode collapse does occur in practice, and it is one of the

fundamental challenges for GANs training [14, 44, 25].
Several solutions to mode collapse have been proposed,

including amending the adversarial loss to look ahead sev-
eral moves (e.g., Unrolled GAN [36]), jointly training an
encoder to recover latent distributions (e.g., VEEGAN [45]),
adding an auxiliary loss to prevent the catastrophic forget-
ting [8], packing the discriminator with sets of points instead
of singletons [44, 31] and training a mixture of generators
with an auxiliary diversity objective [18, 12]. Different from
the above work, our method partitions the real distribution
instead of the generated distribution, and devotes a class-
conditioned discriminator to each target partition.

Another related line of research trains class-conditional
GANs on unlabelled images by clustering on features ob-
tained via unsupervised feature learning methods [33, 43]
or pre-trained classifiers [43]. In contrast, our method di-
rectly clusters on discriminator features that inherently exist
in GANs, leading to a simpler method and achieving higher
quality generation in our experiments (Section 4.4). Mixture
Density GAN proposes to use log-likelihoods of a Gaussian
mixture distribution in discriminator feature space as the
GAN objective [11]. GAN-Tree uses clustering to split a
GAN into a tree hierarchy of GANs for better mode cov-
erage [29]. These methods, while also using clustering or
mixture models, are mostly orthogonal with our work. Fur-
thermore, the simplicity of our method allows it to be easily
combined with a variety of these techniques.

3. Method
One of the core problems in generating diverse outputs in

a high-dimensional space such as images is mode collapse:
the support of the generator’s output distribution can be
much smaller than the support of the real data distribution.
One way mode collapse has been empirically lessened is by
use of a class-conditional GAN, which explicitly penalizes
the generator for not having support on each class.

We propose to exploit this class-conditional architecture,
but instead of assuming access to true class labels, we will
synthesize labels in an unsupervised way. On a high level,
our method dynamically partitions the real data space into
different clusters, which are used to train a class-conditional
GAN. Because generation conditioned on a cluster index
is optimized with respect to the corresponding conditioned
discriminator, and each discriminator is responsible for a dif-
ferent subset of the real distribution, our method encourages
the generator output distribution to cover all partitions of the
real data distribution.

Specifically, to train a GAN to imitate a target distribution
preal, we partition the data set into k clusters {π1, . . . , πk}
that are determined during training. No ground-truth la-
bels are used; training samples are initially clustered in the
randomly initialized discriminator feature space, and the
clusters are updated periodically. A class-conditional GAN

https://github.com/stevliu/self-conditioned-gan
http://selfcondgan.csail.mit.edu/
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Figure 2: We learn a discriminator D and a generator G that are
both conditioned on the automatically discovered cluster c. (a)
For a specific c, the discriminator D must learn to recognize real
images sampled from the cluster πc of the dataset, and distinguish
them from (b) fake images synthesized by the class-conditional
generator G. (b) The class-conditional generator G synthesizes
images from z. By learning to fool D when also conditioned on
c, the generator learns to mimic the images in πc. Our method
differs from a conventional conditional GAN as we do not use
ground-truth labels to determine the partition {πc}kc=1. Instead, our
method begins with clustering random discriminator features and
periodically reclusters the dataset based on discriminator features.

structure is used to split the discriminator and the generator.
Next, we describe two core components of our algorithm:

• Conditional GAN training with respect to cluster labels
given by the current partitioning.

• Updating the partition according to the current discrim-
inator features of real data periodically.

Conditional GAN training. The GAN consists of a
class-conditional generator G(z, c) associated with a class-
conditional discriminator D(x, c). We denote the internal
discriminator feature layers as Df and its last layer as Dh so
D = Dh ◦Df . The generator and discriminator are trained
to optimize the following adversarial objective:

LGAN(D,G) = E
c∼Pπ

[
E

x∼πc
[log(D(x, c)]

+ E
z∼N (0,I)

[log(1−D(G(z, c), c))]

]
,

where the cluster index c is sampled from the categorical
distribution Pπ that weights each cluster proportional to its
true size in the training set. Here G aims to generate images
G(z, c) that look similar to the real images of cluster c for
z ∼ N (0, I), while D(·, c) tries to distinguish between such

Algorithm 1 Self-Conditioned GAN Training

Initialize generator G and discriminator D
Partition dataset into k sets {π1, ..., πk} using Df outputs
for number of training epochs do

// Conditional GAN training based on current partition
for number of training iterations for an epoch do

for j in {1, ...,m} do
Sample cluster c(j) ∼ Pπ , where c is chosen

with probability proportional to |πc|.
Sample image x(j) ∼ πc(j) from cluster c(j).
Sample latent z(j) ∼ N (0, I).

end for
Update G and D according to minGmaxD LGAN

on minibatch {(c(j), x(j), z(j))}j . . Eqn. (3)
end for
// Clustering to obtain new partitions
Cluster on Df outputs of a subset of training set to

identify a new partition {πnew
c } into k sets, using

previous centroids as initialization. . Eqn. (2)
Find the matching ρ(·) between {πnew

c }c and {πc}c
that minimizes Lmatch. . Eqn. (3)

Update all πc ← πnew
ρ(c).

end for

generated images and real images of cluster c. They are
jointly optimized in the following minimax fashion:

min
G

max
D
LGAN(D,G).

When under the condition c, the discriminator is encouraged
to give low score for any sample that is not from cluster c
because preal(x | c) = 0 for all x /∈ πc. So the corresponding
conditioned generator is penalized for generating points that
are not from cluster c, which ultimately prevents the genera-
tor from getting stuck on other clusters. The optimization is
shown in Figure 2.

Computing new partition by clustering. As the training
progresses, the shared discriminator layers Df learn better
representations of the data, so we periodically update π by
re-partitioning the target dataset over a metric induced by
the current discriminator features. We use k-means cluster-
ing [32] to obtain a new partition into k clusters {πc}kc=1

according to the Df output space, approximately optimizing

Lcluster({πc}kc=1) = E
c∼Pπ

[
E

x∼πc

[
‖Df (x)− µc‖22

]]
, (1)

where µc , 1
|πc|

∑
x∈πc Df (x) is the mean of each cluster

in Df feature space.

Clustering initialization. For the first clustering, we use
the k-means++ initialization [2]. For subsequent reclus-
tering, we initialize with the means induced by the previ-
ous clustering. That is, if {πold

c }kc=1 denotes the old cluster



means and {µinit
c }kc=1 denotes the k-means initialization to

compute the new clustering, we take

µinit
c =

1

|πold
c |

∑
x∈πold

c

Dnew
f (x), ∀c, (2)

where Dnew
f denotes the current discriminator feature space.

Matching with old clusters. After repartitioning, to avoid
retraining the conditional generator and discriminator from
scratch, we match the new clusters {πnew

c }kc=1 to the old
clusters {πold

c }kc=1 so that the target distribution for each
generator does not change drastically. We formulate the task
as a min-cost matching problem, where the cost of matching
a πnew

c to a πold
c′ is taken as |πold

c′ \ πnew
c |, the number of

samples missing in the new partition. Therefore, we aim to
find a permutation ρ : [k]→ [k] that minimizes the objective:

Lmatch(ρ) =
∑
c

|πold
c \ πnew

ρ(c)|. (3)

For a given new partitioning from k-means, we solve this
matching using the classic Hungarian min-cost matching
algorithm [28], and obtain the new clusters to be used for
GAN training in future epochs. Algorithm 1 summarizes the
entire training method.

Online clustering variant. We have also experimented
with online k-means based on gradient descent [5], where
we updated the cluster centers and membership using Equa-
tion (1) in each iteration. Our online variant achieves com-
parable results on mode collapse benchmarks (Section 4.2),
but performs worse for real image datasets (Section 4.3),
potentially due to the training instability caused by frequent
clustering updates. Additionally, in Section 4, we perform
an ablation studies regarding clustering initialization, online
vs. batch clustering, and the clustering matching method.

4. Experiments
4.1. Experiment Details

Network architecture. To condition the generator, we
learn a unit norm embedding vector for each class, which is
fed with the latent input into the first layer of the generator.
To condition the discriminator, we let the discriminator out-
put a k-dimensional vector where k is the number of clusters,
and mask the output according to the input image’s class
label. Across all experiments, we use this method to add
conditioning to unconditional backbone networks.

For experiments on synthetic data, our unconditional gen-
erator and discriminator adopt the structure proposed in Pac-
GAN [31]. We use a 32-dimensional embedding.

For experiments on Stacked-MNIST, we use the DCGAN
architecture [42], following prior work [31]. For experiments

on CIFAR-10 [27], we use the DCGAN architecture, follow-
ing SN-GANs [38]. For experiments on Places365 [51] and
ImageNet [9], we adopt the conditional architecture pro-
posed by Mescheder et al. [35], and our unconditional GAN
baseline removes all conditioning on the input label. For
these four datasets, we use a 256-dimensional embedding.

Clustering details. By default, we use k = 100 clusters.
We recluster every 10,000 iterations for experiments on syn-
thetic data, every 25,000 iterations for Stacked-MNIST and
CIFAR-10 experiments, and every 75,000 iterations for Ima-
geNet and Places365 experiments. The details of the online
clustering variant are described in Appendix A.

Training details. For experiments on synthetic datasets,
CIFAR-10, and Stacked-MNIST, we train on the standard
GAN loss proposed by Goodfellow et al. [15]. For experi-
ments on Places365 and ImageNet, our loss function is the
vanilla loss function proposed by Goodfellow et al. [15] with
the R1 regularization as proposed by Mescheder et al. [35].
We find that our method works better with a small regular-
ization weight γ = 0.1 instead of the default γ = 10. We
explore this choice of hyperparameter in Appendix C.5.

4.2. Synthetic Data Experiments

The 2D-ring dataset is a mixture of 8 2D-Gaussians,
with means (cos 2πi

8 , sin 2πi
8 ) and variance 10−4, for i ∈

{0, . . . , 7}. The 2D-grid dataset is a mixture of 25 2D-
Gaussians, each with means (2i − 4, 2j − 4) and variance
0.0025, for i, j ∈ {0, . . . , 4}.

We follow the metrics used in prior work [45, 31]. A
generated point is deemed high-quality if it is within three
standard deviations from some mean [45]. The number
of modes covered by a generator is the number of means
that have at least one corresponding high-quality point. To
compare the reverse KL divergence between the generated
distribution and the real distribution, we assign each point
to its closest mean in Euclidean distance, and compare the
empirical distributions [31].

Our results are displayed in Table 1. We observe that
our method generates both higher quality and more diverse
samples than competing unsupervised methods. We also
see that the success of our method is not solely due to the
addition of class conditioning, as the conditional architecture
with random labels still fails to capture diversity and quality.
Our online clustering variant, where we update the cluster
means and memberships in an online fashion, is also able to
perform well, achieving almost perfect performance.

4.3. Stacked-MNIST and CIFAR-10 Experiments

The Stacked-MNIST dataset [30, 45, 31] is produced by
stacking three randomly sampled MNIST digits into an RGB
image, one per channel, generating 103 modes with high



Table 1: Number of modes recovered, percent high quality samples, and reverse KL divergence metrics for 2D-Ring and 2D-Grid experiments.
Results are averaged over ten trials, with standard error reported.

2D-Ring 2D-Grid

Modes
(Max 8) ↑ % ↑ Reverse KL ↓ Modes

(Max 25) ↑ % ↑ Reverse KL ↓

GAN [15] 6.3± 0.5 98.2± 0.2 0.45± 0.09 17.3± 0.8 94.8± 0.7 0.70± 0.07
PacGAN2 [31] 7.9± 0.1 95.6± 2.0 0.07± 0.03 23.8± 0.7 91.3± 0.8 0.13± 0.04
PacGAN3 [31] 7.8± 0.1 97.7± 0.3 0.10± 0.02 24.6± 0.4 94.2± 0.4 0.06± 0.02
PacGAN4 [31] 7.8± 0.1 95.9± 1.4 0.07± 0.02 24.8± 0.2 93.6± 0.6 0.04± 0.01
Random Labels (k = 50) 7.9± 0.1 96.3± 1.1 0.07± 0.02 16.0± 1.0 90.6± 1.6 0.57± 0.07
MGAN (k = 50) [18] 8.0± 0.0 71.7± 1.3 0.0073± 0.0014 25.0± 0.0 40.7± 1.2 0.0473± 0.0047
Ours + Online Clustering (k = 50) 8.0± 0.0 99.7± 0.1 0.0014± 0.0001 25.0± 0.0 99.7± 0.1 0.0057± 0.0004
Ours (k = 50) 8.0± 0.0 99.5± 0.3 0.0014± 0.0002 25.0± 0.0 99.5± 0.1 0.0063± 0.0007

Table 2: Number of modes recovered, reverse KL divergence, and Inception Score (IS) metrics for Stacked MNIST and CIFAR-10
experiments. Results are averaged over five trials, with standard error reported. Results of PacGAN on Stacked MNIST are taken from [31].
For CIFAR-10, all methods recover all 10 modes.

Stacked MNIST CIFAR-10

Modes
(Max 1000) ↑ Reverse KL ↓ FID ↓ IS ↑ Reverse KL ↓

GAN [15] 133.4± 17.70 2.97± 0.216 28.08± 0.47 6.98± 0.062 0.0150± 0.0026
PacGAN2 [31] 1000.0± 0.00 0.06± 0.003 27.97± 0.63 7.12± 0.062 0.0126± 0.0012
PacGAN3 [31] 1000.0± 0.00 0.06± 0.003 32.55± 0.92 6.77± 0.064 0.0109± 0.0011
PacGAN4 [31] 1000.0± 0.00 0.07± 0.005 34.16± 0.94 6.77± 0.079 0.0150± 0.0005
Logo-GAN-AE [43] 1000.0± 0.00 0.09± 0.005 32.49± 1.37 7.05± 0.073 0.0106± 0.0005
Random Labels 240.0± 12.02 2.90± 0.192 29.04± 0.76 6.97± 0.062 0.0100± 0.0010
Ours + Online Clustering 995.8± 0.86 0.17± 0.027 31.56± 0.48 6.82± 0.112 0.0178± 0.0029
Ours 1000.0± 0.00 0.08± 0.009 18.03± 0.55 7.72± 0.034 0.0015± 0.0004

Logo-GAN-RC [43] 1000.0± 0.00 0.08± 0.006 28.83± 0.43 7.12± 0.047 0.0091± 0.0001
Class-conditional GAN [37] 1000.0± 0.00 0.08± 0.003 23.56± 2.24 7.44± 0.080 0.0019± 0.0001

Table 3: Fréchet Inception Distance (FID) and Inception Score (IS)
metrics for varying k on CIFAR-10. Our method performs well for
a wide range of k, but does worse for very small k or very large k.
Results are averaged over five trials, with standard error reported.

CIFAR-10

FID ↓ IS ↑
GAN [15] 28.08± 0.47 6.98± 0.062
k = 10 32.55± 2.58 7.03± 0.158
k = 25 19.21± 0.73 7.79± 0.040
k = 100 (default) 18.03± 0.55 7.72± 0.034
k = 250 18.49± 0.53 7.74± 0.053
k = 1000 20.76± 0.26 7.48± 0.028

Class Conditional GAN [37] 23.56± 2.24 7.44± 0.080

probability. To calculate our reverse KL metric, we use
pre-trained MNIST and CIFAR-10 classifiers to classify and
count the occurrences of each mode. For these experiments,
we use k = 100. We also compare our method with our
online clustering variant.

Our results are shown in Table 2. On both datasets,
we achieve large gains in diversity, significantly improv-
ing Fréchet Inception Distance (FID) and Inception Score
(IS) over even supervised class-conditional GANs.

We also conduct experiments to test how sensitive our

method is to the choice of the number of clusters k. The
results with varying k values are shown in Table 3. We
observe that our method is robust to the choice of k, as long
as it is not too low or too high. Choosing a k too low reduces
to unconditional GAN behavior, while choosing a k too high
potentially makes clustering unstable, hence hurting GAN
training.

4.4. Large-Scale Image Datasets Experiments

Lastly, we measure the quality and diversity of images for
GANs trained on large-scale datasets such as ImageNet and
Places365. We train using all 1.2 million ImageNet challenge
images across all 1000 classes and all 1.8 million Places365
images across 365 classes. No class labels were revealed to
the model. For both datasets, we choose k = 100.

In following sections, we present detailed analyses com-
paring our method with various baselines on realism, diver-
sity, and mode dropping.

4.4.1 Generation Realism and Diversity

Realism metrics. Across datasets, our method improves
the quality of generated images in terms of standard quality
metrics such as FID and IS. We also evaluate the generated
samples with the Fréchet Segmentation Distance (FSD) [4],



Table 4: Fréchet Inception Distance (FID), Fréchet Segmentation Distance (FSD), and Inception Score (IS) metrics for Places365 and
ImageNet experiments. Our method improves in both quality and diversity over previous methods but still fails to reach the quality of
fully-supervised class conditional ones.

Places365 ImageNet

FID ↓ FSD ↑ IS ↑ FID ↓ FSD ↑ IS ↑
GAN [15] 14.21 125.4 8.71 54.17 129.7 14.01
PacGAN2 [31] 18.02 161.1 8.58 57.51 171.9 13.50
PacGAN3 [31] 22.00 221.7 8.56 66.97 190.5 12.34
MGAN [18] 15.78 156.2 8.41 58.88 156.6 13.22
RotNet Feature Clustering 14.88 131.4 8.54 53.75 126.8 13.76
Logo-GAN-AE [43] 14.51 140.2 8.19 50.90 119.7 14.44
Random Labels 14.20 112.4 8.82 56.03 146.3 14.17
Ours 9.56 87.67 8.94 40.30 82.46 15.82

Logo-GAN-RC [43] 8.66 75.51 10.55 38.41 90.03 18.86
Class Conditional GAN [37] 8.12 58.17 10.97 35.14 115.1 24.04

which measures discrepancies between the segmentation
statistics of the generated samples and real samples. As
shown in Table 4, our method outperforms all the unsuper-
vised baselines tested against on these metrics. Although
Logo-GAN-RC outperforms our method, it is based on a
supervised pre-trained ImageNet classifier.

Diversity visualizations. Figure 4 shows samples of the
generated output, comparing our model to a vanilla GAN
and a PacGAN model and a sample of training images. To
highlight differences in diversity between the different GAN
outputs, for each compared method, we assign 50,000 un-
conditionally generated images with labels given by stan-
dard ResNet50 [17] classifiers trained on respective datasets
[51, 41], and visualize images with highest classifier score
for certain classes in Figure 4a. We observe that across
classes, vanilla GAN and PacGAN tend to synthesize less
diverse samples, repeating many similar images. On the
other hand, our method improves diversity significantly and
produces images with varying color, lighting conditions, and
backgrounds.

4.4.2 Quantifying Mode Dropping with Image Recon-
struction

While random samples reveal the capacity of the generator,
reconstructions of training set images [53, 7] can be used to
visualize the omissions (dropped modes) of the generator [4].

Previous GAN inversion methods do not account for
class conditioning, despite recent efforts by concurrent
work [21]. Here we extend the encoder + optimization hy-
brid method [53, 4]. We first train an encoder backbone
F : x → r jointly with a classifier Fc : r → c and a recon-
struction network Fz : r→ z to recover both the class c and
the original z of a generated image. We then optimize z to
match the pixels of the query image x as well as encoder

Reconstruction LPIPS

F
re

q
u

e
n

c
y

Figure 3: We calculate the reconstruction LPIPS error for 50,000
randomly sampled training images. Overall, our method is able to
achieve better reconstruction than a vanilla GAN.

features extracted by F :

Lrec(z, c) = ‖G(z, c)− x‖1 + λf‖F (G(z, c))− F (x)‖22.
(4)

We set λf = 5 × 10−4. When initialized using Fz and Fc,
this optimization faithfully reconstructs images generated by
G, and reconstruction errors of real images reveal cases that
G omits. More details regarding image reconstruction can
be found in Appendix C.3.

To evaluate how well our model can reconstruct the data
distribution, we compute the average LPIPS perceptual sim-
ilarity score [49] between 50,000 ground truth images and
their reconstructions. Between two images, a low LPIPS
score suggests the reconstructed images are similar to target
real images. We find that on Places365, our model is able
to better reconstruct the real images, with an average LPIPS
score of 0.433, as compared to the baseline score of 0.528.
A distribution of the LPIPS reconstruction losses across the
50,000 images can be visualized in Figure 3.

Figure 5 visually shows how reconstruction quality
evolves as we perform reclustering and training. Visualiza-



PacGAN2 Ours Real	ImagesGAN

(a) Places365 samples with high classifier scores on the “embassy” category.
PacGAN2 Ours Real	ImagesGAN

(b) ImageNet samples with high classifier scores on the “pot pie” category.

Figure 4: Comparing visual diversity between the samples from a vanilla unconditional GAN, PacGAN2, our method, and real images for
specific categories. Images are sorted in decreasing order by classifier confidence on the class from top left to bottom right. Our method
successfully increases sample diversity compared to vanilla GAN and PacGAN2. More visualizations are available in Appendix D.

Table 5: Normalized Mutual Information (NMI) and purity metrics
for the clusters obtained by our method on various datasets.

2D
Ring

2D
Grid

Stacked
MNIST CIFAR-10 Places365 ImageNet

NMI 1.0 0.9716 0.3018 0.3326 0.1744 0.1739
Purity 1.0 0.9921 0.1888 0.1173 0.1127 0.1293

tions show our model improves reconstruction during train-
ing, and recovers distinctive features, including improved
forms for cars, buildings, and indoor objects. On the other
hand, the vanilla GAN struggles to reconstruct most of the
real images throughout the training.

4.5. Clustering Metrics

We measure the quality of our clustering through Normal-
ized Mutual Information (NMI) and clustering purity across
all experiments in Table 5.

NMI is defined as NMI(X,Y ) = 2I(X;Y )
H(X)+H(Y ) , where I

is mutual information and H is entropy. NMI lies in [0, 1],
and higher NMI suggests higher quality of clustering. Purity

is defined as 1
N

∑
cmaxy |πc ∩ π∗y |, where {πc}kc=1 is the

partition of inferred clusters and {π∗y}ky=1 is the partition
given by the true classes. Higher purity suggests higher
clustering quality. Purity is close to 1 when each cluster has
a large majority of points from some true class set.

We observe that many of our clusters in large-scale
datasets do not correspond directly to true classes, but in-
stead corresponded to object classes. For example, we see
that many clusters corresponded to people and animals, none
of which are part of a true class, which is an explanation for
low clustering metric scores.

Though our clustering scores are low, they are signifi-
cantly better than a random clustering. Randomly clustering
ImageNet to 100 clusters gives an NMI of 0.0069 and a pu-
rity of 0.0176; randomly clustering Places to 100 clusters
gives an NMI of 0.0019 and a purity of 0.0137.

4.6. Ablation Studies on Cluster Initialization and
Matching

We perform ablation studies on the cluster initialization
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Figure 5: Improvements of GAN reconstructions during training. Each GAN-generated image shown has been optimized to reconstruct
a specific training set image from the Places365 dataset, at right. Reconstructions by generators from an early training iteration of each
model are compared with the final trained generators. Self-conditioning the model results in improved synthesis of clustered features such as
wheels, buildings, and indoor objects.

Table 6: Fréchet Inception Distance (FID) and Inception Score (IS)
metrics for CIFAR-10 ablations experiments. The full algorithm is
not necessary when using R1 regularization, but necessary without
regularization. Results are averaged over 5 trials, with standard
error reported.

Without R1 With R1

FID ↓ IS ↑ FID ↓ IS ↑
No Matching/Init 25.38± 1.41 7.29± 0.068 22.70± 0.48 7.38± 0.062
No Matching 18.91± 0.65 7.51± 0.073 23.26± 0.40 7.27± 0.029
No Initialization 19.85± 0.65 7.58± 0.046 22.02± 0.21 7.35± 0.024
Full Algorithm 18.03± 0.55 7.72± 0.034 22.80± 0.27 7.32± 0.031

and cluster matching used in our full algorithm on CIFAR-10.
The results are summarized in Table 6.

We find that these clustering tricks are required for sta-
ble clustering and ultimately for GAN quality. The less
stable the clustering is, the worse the GAN performs. To
quantify cluster stability, we measure the NMI between a
given clustering and its previous clustering. We observe that
without the two clustering tricks, the clustering is not stable,
achieving an NMI of 0.55 compared to the full algorithm’s
0.74.

In contrast, with R1 regularization [35], our method still
works well on CIFAR-10 without cluster initialization and
matching. We suspect that this is because the GAN regu-
larization loss stabilizes GAN training, preventing cluster
instability from hurting GAN training stability. However, our

results on CIFAR-10 worsen when adding R1 regularization.
We hypothesize that this is due to discriminator regulariza-
tion decreasing the quality of the discriminator’s features,
which ultimately leads to worse clusters. We investigate this
interaction further in Appendix C.5.

5. Conclusion
We have found that when a conditional GAN is trained

with clustering labels derived from discriminator features, it
is effective at reducing mode collapse, outperforming several
previous approaches. We observe that the method continues
to perform well when the number of synthesized labels ex-
ceeds the number of modes in the data. Furthermore, our
method scales well to large-scale datasets, improving various
standard measures on ImageNet and Places365 generation,
and generating images that are qualitatively more diverse
than many unconditional GAN methods.

Acknowledgments. We thank Phillip Isola, Bryan Russell,
Richard Zhang, and our anonymous reviewers for helpful
comments. Tongzhou Wang was supported by the MIT
EECS Merrill Lynch Graduate Fellowship. We are grateful
for the support from the DARPA XAI program FA8750-18-
C000, NSF 1524817, NSF BIGDATA 1447476, and a GPU
donation from NVIDIA.



References
[1] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasser-

stein generative adversarial networks. In ICML, 2017.
[2] David Arthur and Sergei Vassilvitskii. k-means++: The ad-

vantages of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics,
2007.

[3] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei,
Joshua B. Tenenbaum, William T. Freeman, and Antonio
Torralba. Gan dissection: Visualizing and understanding
generative adversarial networks. In ICLR, 2019.

[4] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hen-
drik Strobelt, Bolei Zhou, and Antonio Torralba. Seeing what
a gan cannot generate. In ICCV, 2019.

[5] Leon Bottou and Yoshua Bengio. Convergence properties of
the k-means algorithms. In NeurIPS, 1995.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis. In
ICLR, 2019.

[7] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Neural photo editing with introspective adversarial
networks. In ICLR, 2017.

[8] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and
Neil Houlsby. Self-supervised gans via auxiliary rotation loss.
In CVPR, 2019.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009.

[10] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep
generative image models using a laplacian pyramid of adver-
sarial networks. In NeurIPS, 2015.

[11] Hamid Eghbal-zadeh, Werner Zellinger, and Gerhard Widmer.
Mixture density generative adversarial networks. In CVPR,
2019.

[12] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri,
Philip HS Torr, and Puneet K Dokania. Multi-agent diverse
generative adversarial networks. In CVPR, 2018.

[13] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-
pervised representation learning by predicting image rotations.
In ICLR, 2018.

[14] Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014.

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In NeurIPS, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.

[18] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung.
Mgan: Training generative adversarial nets with multiple
generators. In ICLR, 2018.

[19] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
ICML, 2018.

[20] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. ECCV,
2018.

[21] Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris,
and Aaron Hertzmann. Transforming and projecting images
to class-conditional generative networks. arXiv preprint arXiv,
2020.

[22] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In CVPR, 2017.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018.

[24] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019.

[25] Mahyar Khayatkhoei, Maneesh K Singh, and Ahmed Elgam-
mal. Disconnected manifold learning for generative adversar-
ial networks. In NeurIPS, 2018.

[26] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

[27] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Citeseer,
2009.

[28] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[29] Jogendra Nath Kundu, Maharshi Gor, Dakshit Agrawal, and
R Venkatesh Babu. Gan-tree: An incrementally learned hier-
archical generative framework for multi-modal data distribu-
tions. In ICCV, 2019.

[30] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

[31] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh.
Pacgan: The power of two samples in generative adversarial
networks. In NeurIPS, 2018.

[32] Stuart Lloyd. Least squares quantization in pcm. IEEE
transactions on information theory, 28(2):129–137, 1982.

[33] Mario Lucic, Michael Tschannen, Marvin Ritter, Xiaohua
Zhai, Olivier Bachem, and Sylvain Gelly. High-fidelity image
generation with fewer labels. In ICML, 2019.

[34] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative
adversarial networks. In CVPR, 2017.

[35] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
ICML, 2018.

[36] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled Generative Adversarial Networks. In
ICLR, 2017.

[37] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[38] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In ICLR, 2018.

[39] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and
Sreeram Kannan. Clustergan: Latent space clustering in
generative adversarial networks. In AAAI, 2019.

[40] Hariharan Narayanan and Sanjoy Mitter. Sample complexity
of testing the manifold hypothesis. In NeurIPS, 2010.



[41] Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Pytorch torchvision models.
https://pytorch.org/docs/stable/torchvision/models.html,
2019. Accessed 2019-05-23.

[42] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional genera-
tive adversarial networks. In ICLR, 2016.

[43] Alexander Sage, Eirikur Agustsson, Radu Timofte, and Luc
Van Gool. Logo synthesis and manipulation with clustered
generative adversarial networks. In CVPR, 2018.

[44] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In NeurIPS, 2016.

[45] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U.
Gutmann, and Charles Sutton. Veegan: Reducing mode col-
lapse in gans using implicit variational learning. In NeurIPS,
2017.

[46] Joshua B Tenenbaum, Vin De Silva, and John C Langford.
A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, 2000.

[47] Xiaolong Wang and Abhinav Gupta. Generative image mod-
eling using style and structure adversarial networks. In ECCV,
2016.

[48] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017.

[49] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018.

[50] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. TPAMI, 2017.

[51] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NeurIPS, 2014.

[52] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In CVPR, 2017.

[53] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
Alexei A. Efros. Generative visual manipulation on the natu-
ral image manifold. In ECCV, 2016.

[54] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In ICCV, 2017.



Appendix A. Additional Experiment details
Compute resource details. For all experiments except
ImageNet [9] and Places365 [52] experiments, we used a
single Titan Xp GPU. For ImageNet and Places365 experi-
ments, we used four Titan Xp GPUs.

Classifier details. We use a classifier to compute the
reverse-KL metric for experiments on synthetic data,
Stacked-MNIST, and CIFAR. To classify points for 2D ex-
periments, we classify each point as the label of its nearest
mode. To classify samples for Stacked-MNIST experiments,
we use the pretrained MNIST classifier on each channel
of the generated image. This gives us 3 labels in 0, . . . , 9,
which is used to assign the image a label from 0, . . . , 999. To
classify samples for CIFAR-10, we a pretrained CIFAR-10
classifier. Both the MNIST and CIFAR-10 classifiers are
taken from a pretrained model repository.

We also use a classifier to visualize the diversity of
the trained models on ImageNet and Places. For Ima-
geNet, we use a pretrained ResNet-50 obtained through
the torchvision [41] package. For Places, we use a
pretrained ResNet-50 released by [50].

Clustering details. To compute cluster centers, for
Stacked-MNIST and CIFAR-10 experiments, we cluster a
random subset of 25,000 images from the training set, and
for ImageNet and Places365 experiments, we cluster a ran-
dom subset of 50,000 images from the training set. On
synthetic datasets, we cluster a random sample of 10,000
data points. While conducting k-means++, we cluster the
subset ten times and choose the clustering that obtains the
best performance on the clustering objective. We use the out-
puts of the last hidden layer of the discriminator as features
for clustering.

Realism metrics Details. All FIDs, FSDs, and Inception
Scores (IS) are reported using 50,000 samples from the fully
trained models, with the FID and FSD computed using the
training set. No truncation trick is used to sample from the
generator.

Reverse KL Details. In all reverse-KL numbers, we re-
port DKL(pfake || preal), and treat 0 log 0 = 0, where we
obtain the distributions for a set of samples by using the
empirical distribution of classifier predictions.

Online clustering details. As a hyperparameter study, we
implement an online variant of our algorithm, where we
update our clusters every training iteration. We train a model
with a fixed clustering for 25,000 iterations, then apply the
online k-means algorithm of [5] using the training mini-
batches as the k-means mini-batches. We found that while
the online variant was able to do well on easier datasets

such as 2D-grid and Stacked-MNIST, they did not achieve
convincing performance on real images.

Logo-GAN details. For Logo-GAN experiments, we in-
fer labels by clustering the outputs of the last layer of a
pretrained ResNet50 ImageNet classifier. We train another
model where labels are from clustering an autoencoder’s
latent space. The autoencoder architecture is identical to an
unconditional GAN architecture, except that the latent space
of the autoencoder is 512. The autoencoders were trained to
optimize a mean squared loss using Adam with a learning
rate of 10−4 with a batch size of 128, for 200,000 iterations.
For both these methods, we cluster a batch of 50,000 outputs
into k = 100 clusters using the k-means++ algorithm.

MGAN details. For MGAN experiments with synthetic
Gaussian data, we use β = 0.125, following the original
paper [18] on similar typed data.

Appendix B. Synthetic Data Experiments
B.1. Comparison with MGAN

Choice of k. We compare our method’s sensitivity regard-
ing the number of clusters k to existing clustering-based
mode collapse methods [18].

For k chosen to be larger than the ground truth number of
modes, we observe that our method levels off and generates
both diverse and high-quality samples. For k chosen to be
smaller than the ground truth number of modes, our results
worsen. Figure 6 plots the sensitivity of k on the 2D-grid
dataset, and the same trend holds for the 2D-ring dataset.
Therefore, we lean towards using a larger number of clusters
to ensure coverage of all modes.

MGAN [18] learns a mixture of k generators that can
be compared to our k-way conditional generator. In Fig-
ure 6, we see that MGAN performs worse as k increases. We
hypothesize that when k is large, multiple generators must
contribute to a single mode. Therefore, MGAN’s auxiliary
classification loss, which encourages each generator’s output
to be distinguishable, makes it harder for the generators to
cover a mode collaboratively. On the other hand, our method
scales well with k, because it dynamically updates cluster
weights, and does not explicitly require the conditioned gen-
erators to output distinct distributions.

We run both our method and MGAN with varying k
values on the 2D-grid dataset. The results summarized in
Figure 6 confirm our hypothesis that MGAN is sensitive to
the choice of k, while our method is more stable and scales
well with k.

Variance of data. We compare our method and MGAN
on the 2D-grid mixture of Gaussians on the sensitivity to the
variance of each Gaussian. In Figure 7, when given k = 30
to cover a mixture of 25 Gaussians, MGAN does well in the

https://github.com/aaron-xichen/pytorch-playground
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Figure 6: The dependence of our method and MGAN on the choice of number of clusters k for 2D-grid (mixture of 25 Gaussians) experiment.
MGAN is sensitive to the value k and performance degrades if k is too large. Our method is generally more stable and scales well with k.
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Figure 7: Visual comparison of generated samples on the 2D-grid dataset. Our method successfully covers all modes and generates high
quality samples for low variance Gaussians. For high variance Gaussians, PacGAN learns a uniform distribution, while our method generates
reasonably high quality samples. In these experiments, we used k = 30 for both our methods and MGAN.

large variance σ2 = 0.1 experiment, but misses a mode in
the small variance σ2 = 0.0025 one, as the generators have
difficulty working together on a single mode.

Appendix C. Large-Scale Image Datasets

C.1. Hyperparameter Details

For experiments on synthetic datasets, we use 2-
dimensional latents, and train for 400 epochs using
Adam [26] with a batch size 100 and learning rate 10−3.
The embedding layer used for conditioning the generator has
an output dimension of 32.

For CIFAR-10 and Stacked-MNIST experiments, we use
128 latent dimensions, and Adam with a batch size of 64
and a learning rate of 10−4 with β1 = 0.0, β2 = 0.99. We
train for 50 epochs on Stacked-MNIST and 400 epochs on
CIFAR-10. The generator embedding is 256-dimensional.

For Places365 and ImageNet experiments, we train our
networks from scratch using Adam with a batch size of 128,
learning rate of 10−4, β1 = 0.0, and β2 = 0.99 for 200,000
iterations. The generator embedding is 256-dimensional.

Table 7: Fréchet Inception Distance (FID), Fréchet Segmentation
Distance (FSD), and Inception Score (IS) metrics for GANs trained
on the combined datasets of Places365 and ImageNet. Our method
improves in both quality and diversity over both vanilla uncondi-
tional GANs and class-conditional ones.

Places365 + ImageNet

FID ↓ FSD ↓ IS ↑
GAN [15] 36.78 167.1 11.0384
Ours 20.88 68.55 12.0632

Class Conditional GAN [37] 22.05 92.43 14.7734

C.2. Combined ImageNet and Places365 Experi-
ments

We also test our method on the combined ImageNet and
Places365 datasets and compare the results to those attained
by an unconditional GAN and a class-conditional one. We
still use k = 100 for our method, but change the regulariza-
tion on the unconditional GAN to γ = 100 for convergence.
The results are summarized in Table 7. Surprisingly, our
method is able to outperform class-conditioned GANs in
terms of FID and FSD.



For these experiments, we construct the dataset by treat-
ing the classes of ImageNet and Places365 as separate. The
combined dataset has roughly 3 million images with 1365
total classes. It is important to note that the classes in this
dataset are heavily imbalanced, with the 365 classes from
Places365 each containing more images than the 1000 Im-
ageNet classes. Thus, to sample from the class-conditional
GAN, we do not sample labels from a uniform distribution,
but instead from the distribution of class labels appropriately
weighted towards the Places365 classes.

C.3. Reconstruction of Real Images

To train the encoder backbone for the self-conditioned
GAN, we follow an analogous procedure to the GAN-seeing
work [4], using a similar encoder architecture to GAN-
stability’s [35] ResNet2 discriminator architecture. We invert
the last seven layers separately in a layerwise fashion, then
use these layerwise encoders jointly as initialization for the
overall encoder.

Given a fake image x generated from latent z and class
c with G = Gf ◦ Gi where Gi : z, c → r, the encoder
E = Ef ◦Ei outputs a latent vector ẑ and a class embedding
êc, where Ei : x→ r and is optimized for the loss function

Lenc = ‖ẑ − z‖2 + ‖G(ẑ, c)− x‖2
+ ||Gi(z, c)− Ei(x)||2 + Lclassification(êc, c) (5)

This loss function is identical to the one used in the GAN-
seeing work, except with an additional classification loss and
an altered reconstruction loss in pixel space.

The classification loss, Lclassification(êc, c), arises from the
encoder additionally predicting the class embedding vector
of a generated image. To obtain logits from an embedding
prediction, we multiply it with the normalized true embed-
ding vectors of the generator. The classification loss is the
standard cross-entropy loss between these logits and the true
cluster index.

To measure reconstruction loss in pixel space, we take the
ground truth embedding vector and predicted latent vector as
input to the generator, and measure the mean squared error
between the reconstructed image and the original image.
We found that using the ground truth embedding vector,
as opposed to the predicted embedding vector, improves
inversion quality.

To optimize the latent for a specific image, we follow
Equation 4, where the class is inferred by taking the index
of the largest logit in the model’s latent prediction. We use
the output of the seventh layer of the encoder as features for
the feature space loss.

C.4. Visualizing Generators with GAN Dissection

We study the number of interpretable units in each learned
generator. Previous work [3] has shown that a high number

Figure 8: GAN Dissection results. We measure the proportion of
interpretable units of generators trained on Places. We dissect the
early to mid layers of the generator and count the number of units
with IoU greater than 0.04.

of interpretable units is positively correlated with the per-
formance of GANs. Using the GAN Dissection method [3],
we analyze each generator and count the number of units in
each layer with IoU scores greater than 0.04. As shown in
Figure 8, our generator has more interpretable units, on par
with class-conditional models.

We also visualize the internal mechanism of a gen-
eral class-conditioned GAN. Using the GAN Dissection
method [3], we dissect our generator conditioned on a spe-
cific cluster. With this, we are able to visualize each unit’s
concept when conditioned on a specific cluster. By monitor-
ing the interpretable units, we can observe how the behavior
of each unit changes as we change the conditioned cluster.
We again deem a unit interpretable if it has an IoU score of
higher than 0.04.

We observe that surprisingly, some units in the genera-
tor are responsible for different concepts when conditioning
on different clusters. For example, the same units which
are responsible for drawing people in one cluster are also
responsible for drawing trees in a different cluster. There
is also a significant amount of parameter sharing: units are
reused to encode the same concept across different condi-
tions. For example, water units and sky units tend to be
reused across several conditions. The same phenomena
in supervised class-conditional GANs. However, across the
20 conditions tested, we find that the self-conditioned GAN
has a higher proportion of units whose concepts change
across conditions. For a layer consisting of 1024 units,
we found 663 self-conditioned GAN units change mean-
ing across conditions, compared to 562 units changing for a
class-conditioned GAN. We can visualize these phenomena
for both GANs on Places365 in Figure 9.

C.5. Interaction with discriminator regularization

We find that our method’s performance suffers if regu-
larization is too strong and that our method performs best



Figure 9: Some units of the self-conditioned GAN (top) and a class-conditioned GAN (bottom) trained on Places365 correspond to different
concepts when conditioned on different clusters (left), while other units correspond to the same concept across conditions (right).
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with weak regularization. To test this, we turn off the reg-
ularization in the experiments of Section 4.4 and train our
method, as well as unconditional and class-conditional base-
lines, using a smaller architecture (half number of layers
compared to the ResNet-based generator we adapt from
[35]). Our method is able to match the performance of su-
pervised models on ImageNet and Places365, achieving FID
22.68 on Places365 and FID 55.26 on ImageNet, compared
to the class-conditional scores of 29.33 on Places365 and
53.36 on ImageNet and the unconditional scores of 75.09 on
Places365 and 87.24 on ImageNet.

We hypothesize that this is due to discriminator regular-
ization leading to worse discriminator features to cluster
with. To measure this, we train a linear ImageNet classifier
over the last layer features of an R1-regularized ImageNet
discriminator and similarly so for an unregularized ImageNet
discriminator. Both discriminators in this case are fully class-
conditional, meaning that they have seen true class labels
throughout the training. We find that the classifier trained
on top of the R1-regularized discriminator features severely
underperforms the classifier trained on the unregularized
discriminator features, achieving 30.7% top-1 accuracy com-
pared to 59.8%. The features chosen were the penultimate
layer’s outputs, and the linear classifier was trained using a
standard cross-entropy loss with the Adam optimizer. We
use a learning rate 10−4 with a batch size of 128, β1 = 0.9,
and β2 = 0.99.

Appendix D. Additional Qualitative Results
We present more qualitative comparisons regarding the

sample diversity of our method compared to various base-
lines on Places365 and ImageNet. Figure 10 (Places365)
and Figure 11 (ImageNet) visualize the sample diversity of
various methods, all of which do not use labels.

We also present additional visual results on Places365
and ImageNet. In Figure 12a (Places365) and Figure 12b
(ImageNet), we show clusters inferred by our method and
corresponding generated samples. More examples can be
found on our website.

http://selfcondgan.csail.mit.edu/
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(a) Places365 samples with high classifier scores on the “general store outdoor” category.
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(b) Places365 samples with high classifier scores on the “inn outdoor” category.
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(c) Places365 samples with high classifier scores on the “river” category.

GAN PacGAN2 Logo-AE Ours Real Images

(d) Places365 samples with high classifier scores on the “mountain” category.

Figure 10: Places365 [52] samples from an unconditional GAN, PacGAN2 [31], Logo-GAN AE [43], our self-conditioned GAN, and real
images. We observe that competing methods exhibit severe mode collapse, frequently producing similar images with a few patterns, whereas
our method captures a wider range of diversity. Samples are all sorted in rank order of a classifier score for a single category. Please refer to
our website for additional examples.

http://selfcondgan.csail.mit.edu/
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(a) ImageNet samples with high classifier scores on the “library” category.

GAN PacGAN2 Logo-AE Ours Real Images

(b) ImageNet samples with high classifier scores on the “wallet” category.
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(c) ImageNet samples with high classifier scores on the “recreational vehicle” category.

GAN PacGAN2 Logo-AE Ours Real Images

(d) ImageNet samples with high classifier scores on the “alp” category.

Figure 11: ImageNet [9] samples from an unconditional GAN, PacGAN2 [31], Logo-GAN AE [43], our self-conditioned GAN, and real
images. We observe that competing methods exhibit severe mode collapse, frequently producing similar images with a few patterns, whereas
our method captures a wider range of diversity. Samples are all sorted in rank order of a classifier score for a single category. Please refer to
our website for additional examples.

http://selfcondgan.csail.mit.edu/
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(a) Inferred clusters and corresponding samples on the Places365 dataset.
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(b) Inferred clusters and corresponding samples on the ImageNet dataset.

Figure 12: Additional inferred clusters and generated samples for our method trained on ImageNet and Places365. Please refer to our
website for additional examples.

http://selfcondgan.csail.mit.edu/

