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Balancing Actuation and Computing Energy in Motion Planning

Soumya Sudhakar, Sertac Karaman, Vivienne Sze

Abstract— We study a novel class of motion planning prob-
lems, inspired by emerging low-energy robotic vehicles, such
as insect-size flyers, chip-size satellites, and high-endurance au-
tonomous blimps, for which the energy consumed by computing
hardware during planning a path can be as large as the energy
consumed by actuation hardware during the execution of the
same path. We propose a new algorithm, called Compute Energy
Included Motion Planning (CEIMP). CEIMP operates similarly
to any other anytime planning algorithm, except it stops when
it estimates further computing will require more computing
energy than potential savings in actuation energy. We show that
CEIMP has the same asymptotic computational complexity as
existing sampling-based motion planning algorithms, such as
PRM*. We also show that CEIMP outperforms the average
baseline of using maximum computing resources in realistic
computational experiments involving 10 floor plans from MIT
buildings. In one representative experiment, CEIMP outper-
forms the average baseline 90.6% of the time when energy to
compute one more second is equal to the energy to move one
more meter, and 99.7% of the time when energy to compute
one more second is equal to or greater than the energy to move
3 more meters.

I. INTRODUCTION
There has been an increasing interest in low-power robotic

platforms. These platforms are power constrained usually due
to a small form factor, e.g., Robobee [1], [2], RoboFly [3],
Viper Dash [4] or a long deployment duration (e.g., Slocum
Glider [5]). While these attributes constrain the power of
the robot, they open up the possibility for a wide range of
applications such as energy-efficient persistent environmental
monitoring [6], distributed networks of spacecraft for space
exploration [7], and non-invasive medicine delivery [8].

While there exists an active research field into developing
low-powered actuated and controlled robotic platforms [1],
[2], [3], [9], [10], a similar degree of attention has not been
paid to algorithms specifically developed for deployment on
low-power platforms. In this paper, we study a class of prob-
lems where the energy a robot spends for actuation during
its motion is comparable to the energy spent computing
the path. Table I shows the analogies between these two
tasks. For the motion execution task, a robot must move
along a path with length la at a speed va while drawing
motor power Pa and expending actuation energy Ea; for the
motion-plan computation task, its computer must compute n
number of nodes requiring lc operations at a processing speed
of vc while drawing computing power Pc and expending
computing energy Ec. We can think of lc as length of the
computation which is analogous to length of the path la.
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TABLE I

Actuation Computing
Path length [m], la(n) Num. of operations [ops], lc(n)

Vehicle velocity [m/s], va Processing speed [ops/s], vc
Actuation power [W], Pa(va) Computing power [W], Pc(vc)

Actuation time[s], ta(la(n), va) Computing time[s], tc(lc(n), vc)

Fig. 1: Average total energy (computing + actuation) vs.
nodes in PRM* tested on MIT Building 31 floor plan. The
figure is compiled by averaging 500 trials.

In a conventional setting where Ec � Ea, only the first
energy term for actuation energy in Eq. (1) is used to evaluate
a motion planning algorithm since it dominates the total
energy. Clearly, the path length la(n) is decreasing with
increasing nodes n computed. However, when the energy
required for computing is not negligible compared to the
energy required for actuation, we must consider the total
energy of executing and computing a candidate solution:

Et = Ea + Ec

= Pa(va)ta(la(n), va) + Pc(vc)tc(lc(n), vc)

=
Pa(va)

va
la(n) +

Pc(vc)

vc
lc(n).

(1)

Eq. (1) can be considered as the “cost-to-move” and the
“cost-to-compute”, making up the total energy Et when
considering actuation and computing energy. This trade-off
is depicted in Fig. 1, assuming a Pc = 7.5W, and a robot
platform that can go≈ 0.9 m/s per 1 W spent. If we only look
to minimize actuation energy, we end at the purple marker
on the total energy curve, far from the minimum of the total
energy. Minimizing actuation and computing energy involves
stopping computation earlier at the red marker and accepting
a larger “cost-to-move” for a lower “cost-to-compute”.

There are several ways to have a dial to reduce Ec
including stopping sampling at a certain number of nodes
(decreases lc(n), tc(lc(n), vc)) and switching to a simpler



Fig. 2: Actuation platforms and computing platforms on
same scale of actuation power per m/s and computing power

algorithm (decreases lc(n), tc(lc(n), vc)); if we allow Pc(vc)
to increase, other options include increasing the clock fre-
quency (decreases tc(lc(n), vc), increases vc, Pc(vc)) and
parallelizing computation (decreases tc(lc(n), vc), lc(n) per
core, increases vc, Pc(vc)) though the increase in Pc(vc) may
negate the savings in tc(lc(n), vc) depending on the hardware
architecture implementation. In this paper, we consider the
first option, where, in order to balance Ea + Ec, we allow
an algorithm to stop sampling at n ≤ nmax nodes instead of
n = nmax.

The energy per meter is given by Pa(va)/va and is a
measure of the motor efficiency. The energy per operation
is given by Pc(vc)/vc and is a measure of the computing
efficiency. For a fixed computer with a fixed clock frequency,
we can look at computing power Pc and computing time
tc(lc(n), vc) directly instead of computing efficiency
Pc(vc)/vc and number of operations lc(n). While lc(n) is
simply a function of the algorithm complexity, computing
efficiency is non-trivial to calculate since it is based on the
hardware architecture design and the workload being run.
Motor efficiency is analogous to computing efficiency, and
is dependent on the dynamics and mass of the vehicle. For
a fixed vehicle, we can assume a constant motor efficiency
Pa(va)/va. Holding Pa, va, Pc, and vc constant due to the
fixed computer and fixed vehicle assumptions, we arrive at
Eq. (2), where we have direct control over variable n and
indirect control over la(n), i.e.,

Et =
Pa
va
la(n) + Pctc(lc(n)). (2)

Thus, we can choose to compute a larger n (higher
tc(lc(n)) to reduce la(n), hence lower “cost-to-move” at the
expense of a higher “cost-to-compute”. Alternatively, we can
choose to compute a smaller n (lower tc(lc(n)) to reduce
“cost-to-compute” at the expense of a higher la(n), hence
higher “cost-to-move”.

The terms Pctc(lc(n)) and (Pa/va)la(n) indicate how to
compare time spent computing and the distance to move. The
computing power Pc is the constant that multiplies tc(lc(n)),
and the motor efficiency Pa/va is the constant that multiplies
la(n). Thus, Ec � Ea when Pc � Pa/va. When Pc is on

a similar scale to Pa/va as in the case of low-power robotic
platforms, it is important to consider Ec to minimize total
energy. [11]

Fig. 2 illustrates many examples of the Pa/va for robots
and Pc for computers. Consider, for example, the Cheerwing
mini RC car; with an actuation power of ≈ 4.9 W at ≈ 5.4
m/s [12], the car has a Pa/va = 0.91 W/(m/s). With an
embedded CPU consuming on average 1 W, computing an-
other 1 second is as expensive as moving another 1.1 meters.
With an embedded GPU Nvidia Jetson TX2 consuming on
average 7.5 W, computing another 1 second is as expensive as
moving another 8.25 meters. In the 3D case, the Viper Dash
can go at speeds up to ≈ 11.2 m/s at ≈ 5.5 W [4], making
its Pa/va = 0.49 W/(m/s). With a computer averaging 1.0
W of power consumption, computing another 1 second is
as expensive as moving 2.05 meters. When the Viper is
equipped with a computer that consumes 7.5 W, computing
for 1 second is as expensive as moving another 15.3 meters!

The main contribution of this paper is a framework to
balance both energy spent on actuation and energy spent on
computing in motion planning. Specifically, we introduce
the Compute Energy Included Motion Planning (CEIMP)
algorithm, which reasons about how long to compute to
reduce total energy. CEIMP uses a Bayes estimator on the
edges of a PRM* graph to predict which path in a different
homotopic class may open up in the next batch of nodes and
computes the expected path length la(n) after an additional n
nodes. CEIMP compares the expected savings in path length
and the expected tc(lc(n)) after the next batch of nodes, and
greedily decides to stop when “cost-to-compute” is greater
than “cost-to-move”. We implement and evaluate CEIMP on
real 2D environments using floor plans of MIT buildings to
show that CEIMP outperforms the baseline of minimizing
actuation energy only.

II. RELATED WORK

Several works have looked at including contributions to
total energy other than just path length such as wind, terrain,
and communication costs [13], [14], [15], [16]. While this
body of work adds the effect of different variables to total
energy, it does not affect the “cost-to-compute” term of the
planning computation task itself.

There has been a large body of work looking at reducing
the “cost-to-compute” term towards efficient motion plan-
ning. In particular, variants of RRT* and PRM* [17] were
proposed towards reducing tc(lc(n)), including the BIT* [18]
and the FMT* [19]. Yet, to the best of our knowledge, this
paper is the first work to examine the trade-off between
Ea and Ec to reduce total energy for the motion planning
problem.

The work presented in this paper is also related to
exploring the obstacle space in motion planning. In this
regard, Hauser [20] proposed a greedy algorithm to solve the
minimum constraint removal problem and find the minimum
obstacles to remove to find a feasible path. Hsu et al. [21]
looked at dilating free space to find paths through narrow
passageways to later repair. Bohlin et al. [22] proposed Lazy



PRM which searches for paths before doing collision checks
to minimize computing on collision checks. These methods
allow edges in a graph to be in obstacle space to improve
performance in la(n) [20], [21] or tc(lc(n)) [22], similar to
the graph construction of CEIMP proposed here.

III. PROBLEM DEFINITION

Let X and Xobs denote the configuration space and the
obstacle space. Let Xfree = X \ Xobs. Given a start
configuration xs ∈ Xfree and a goal configuration xg ∈
Xfree, we aim to find a path σ : [0, 1]→ Xfree, starting in
xs, reaching xg , avoiding Xobs, while minimizing energy:

minimize
σ

Ea + Ec

subject to σ(0) = xs, σ(1) = xg, σ ∈ Xfree.
(3)

Note, the path σ is a function of n and the length of path
σ is given by la(n). This problem is challenging to solve to
optimality. In particular, the “computational complexity” of
the algorithm, e.g., the number of operations executed to find
a solution, is indeed embedded in its “performance metric,”
i.e., the total energy function. In order to alleviate some of
this complexity, we study a special case, in which an anytime
planning algorithm is chosen, and the problem is to find the
time to stop the algorithm towards minimizing total energy.
Hence, the problem is to calculate n to solve the following:

minimize
n

Pa
va
la(n) + Pctc(lc(n))

subject to n ≤ nmax, σ(0) = xs, σ(1) = xg, σ ∈ Xfree.
(4)

This optimization problem can be applied to various grid-
based or sample-based anytime motion planners. In this pa-
per, we consider an anytime version of the PRM* as the un-
derlying algorithm. A graph is defined as G = (V,E), where
V is a set of vertices and E is a set of edges. The PRM*
is a sampling-based algorithm that finds asymptotically-
optimal paths by sampling randomly in Xfree, constructing
a graph G = (V,E) by connecting neighbor nodes in a ball
whose radius decreases with increasing number of nodes, and
running a search on those nodes to find the best path [17].
PRM* maintains a decreasing path length with respect to the
number of nodes in the graph.

We define n∗ as the number of nodes that satisfies the
minimization in Eq. (4) and is the optimal number of nodes
to compute before stopping. Our task is to estimate n∗. It is
important to note that for a number of nodes n, the exact re-
lationship between la(n) and n is uncertain at any number of
nodes less than n, such that the path length in n nodes before
computing n nodes is uncertain. In other words, the actuation
energy is uncertain until we spend the computing energy to
compute it. Moreover, the relationship between la(n) and n
is difficult to model. Hence, spending computing resources
to decide whether to devote more computing resources to
planning adds a number of operations as overhead that do not
contribute to lowering la(n), which complicates the problem
even further. Thus, with any algorithm estimating the optimal
n∗, the total number of operations is equal to, lc(n) =

Algorithm 1: CEIMP
1 do
2 for j = 1, 2, ..., b do
3 x← SampleFree; Goccl ← AddToGraph(x);

4 la(n)← SearchShortestPath(Goccl);
5 while la(n)→∞
6 continue← true;
7 while (continue) do
8 for j = 1, 2, ..., b do
9 x←SampleFree; Goccl ←AddToGraph(x);

10 Goccl ← UpdateProb; Ec ← ComputeModel
11 Et ← SearchShortestPath(Goccl);
12 Ẽa ← E-AStar(Goccl); Ea ← Smoothing;
13 if (Ẽa + Ec) > Et ∧ (Ea + Ec) > Et then
14 continue← false;

l̃c(n) + lc(n), where l̃c(n) is the number of operations used
in the anytime motion planner to decrease la(n) and lc(n) is
the number of operations used in CEIMP to estimate when
to stop computing. To gain savings, it is necessary to predict
n∗ without introducing so much overhead as to negate any
energy savings. In the next section, we discuss our proposed
algorithm that greedily estimates n∗ for a PRM*.

IV. ALGORITHM

In this section, we propose Computing Energy Included
Motion Planning (CEIMP), a greedy algorithm that predicts
future computing cost and future actuation savings to esti-
mate n∗. CEIMP is composed of three main parts as follows:

1) A graph constructor that samples in Xfree. The con-
structor connects both feasible and infeasible edges
E ∈ Xfree ∪Xobs, and keeps track of feasible status.

2) A Bayesian filter-based estimator used to estimate
the likelihood infeasible edges will be repaired. The
results are used to search for the best expected path
σ ∈ Xfree∪Xobs that may be repaired with sampling.

3) A greedy decision-making rule that flags when to stop
computing.

Graph construction is run for B total batches each of size b
nodes, such that the i’th batch i involves adding b nodes to
the graph at a time before searching for the current shortest
path. Batch size b is a parameter that is chosen to balance
performance in predicting n∗ and overhead lc(n) introduced.
Estimation and decision making run in between batches of
graph construction, such that CEIMP decides whether or not
to continue computing after every batch. CEIMP is outlined
in Algorithm 1, and we discuss each component of the
algorithm next.

A. Graph Construction

CEIMP runs a modified PRM*, where infeasible edges are
allowed to be added to the graph and marked as infeasible.
Let an occluded graph Goccl = (V,E, pi(E)) be defined by
the set of all edges E, the set of all nodes V , and the set
pi(E) that maps the probability at batch i that each edge e ∈
E is feasible. For edge e ∈ E, if pi(e) = 1, e is feasible; if



pi(e) < 1, e is infeasible. For an infeasible edge, we initialize
pi(e) = 0.5 to reflect that while e is currently infeasible, it
may be repaired in the future. After each batch i, pi(e) is
updated for all infeasible edges, and only the most recent
pi(e) is stored. A valid solution path is found by conducting
a search only on feasible edges.

B. Estimation

The goal is to estimate the decrease in path length after
computing an additional batch of nodes. In order to relate
la(n) and n, CEIMP predicts which currently infeasible paths
are likely to open up with additional sampling. For each
infeasible edge in Goccl, CEIMP estimates its state as a real
edge or a phantom edge. We define a real edge as a currently
infeasible edge that can be repaired by future sampling. For
example, an infeasible edge that misses making a collision-
free connection across a narrow passageway can likely be
repaired with more samples. A phantom edge is a currently
infeasible edge that cannot be repaired. For example, an
infeasible edge that crosses a wall cannot be repaired with
any number of nodes. We define repairing an infeasible edge
e = (v1, v2) with source node v1 and destination node v2
as sampling in a ball centered on the midpoint of e with
diameter α||v1 − v2||2 and finding a path σ ∈ Xfree from
v1 to v2. We can set α as a parameter that relates how much
of an increase in path length we allow a repair to make.

We consider sampling around an edge as a measurement
that can return two readings: repaired or unrepaired. The
measurement model of the sampling is as follows. Let S(e)
be the state of the edge e that takes two values: real (s) or
phantom (s). Let Y (e) be the measurement of the edge’s
state that takes on two values: repaired (r) or unrepaired (r),
and let a be the probability of repairing an edge given that
it is a real edge. Then, the measurement model is given by,

P(Y (e) = r) =

{
a if S(e) = s

0 if S(e) = s
(5a)

P(Y (e) = r) =

{
(1− a) if S(e) = s

1 if S(e) = s.
(5b)

This measurement model describes the process of sampling
and repairing: if sampling finds a σ ∈ Xfree, there is
no uncertainty on whether that path exists. However, when
sampling is unable to find a path σ ∈ Xfree, there is
still a chance (1 − a) that with more sampling, a path
σ ∈ Xfree could be found. Measurement model probability
a is highly environment-dependent, and so when testing in
real environments, a can be set to a constant parameter that
can approximate the sampling process (e.g., a = 0.1).

1) Bayesian Filter Update: In order to use past
experience to estimate the state of an edge in Goccl,
CEIMP uses a Bayesian filter. When attempting to
repair an edge e succeeds, CEIMP updates pi(e) = 1
along with the length of the repaired path. When
attempting to repair an edge fails, CEIMP updates the
probability through the following filter update equation,
where pi(e) = P(S(e) = s|Y1:i(e) = {r, r, ..., r}), and

P(Y (e) = r|S(e) = s) = P(r|s). From our measurement
model, we know P(r|s) = (1− a) and substitute to find,

pi(e) =
P(r|s)pi−1(e)

P(r|s)pi−1(e) + P(r|s)(1− pi−1(e))

=
pi−1(e)− api−1(e)

1− api−1(e)
.

(6)

2) Expected-A*: Next, CEIMP runs a search to find the
path with the lowest expected value on the updated Gest. We
accomplish this through the implementation of Expected-A*.
Expected-A* runs similarly to A*, with a new f(σ) to order
paths in the priority queue to reflect the expected cost-to-
come and expected cost-to-go, i.e.,

f(σE) = P (σD) ||σD||2
+ [1− P (σD)]P (σE) (||σE ||2 + ||g − u||2)

+ [1− P (σD)][1− P (σE)]la(n),

(7)

where σD is the Euclidean distance path from start s to goal
g and σE is the sub-path from start s to node u we are
ordering in the queue. Note, la(n) remains the length of
the best feasible path. P (σ) is the joint probability that the
edges that make up the path σ are all real and we repair each
currently infeasible edge in the next batch of samples (each
edge’s state and each repair assumed independent) i.e.,

P (σ) =
∏

e∈σ,pi(e)<1

api(e). (8)

We show f(σ) is admissible in Section V.

C. Decision Making

After estimation, CEIMP decides between choosing to
stop computing or continue computing. To decide which
option to select, CEIMP greedily looks at the expected total
energy change of each option after the next batch of samples
and chooses the option that has a larger decrease in total
energy. The expected change in total energy is given by,

E(∆Et) =
Pa
va

(E(la(n+ b)− la(n))

+ Pc (E(tc(lc(n+ b)))− tc(lc(n))) ,
(9)

where E[la(n+ b)] is the expected value of the path length
after computing b more samples and E[tc(lc(n+ b))] is the
expected time to compute b more samples.

The total energy change of stopping computing is known
exactly: ∆Et = 0 J. We calculate the expected ∆Et of
continuing computing by using a computing energy model
and the estimation of path length savings if we compute
another batch of samples. The expected computing time
E[tc(lc(n + b))] is set to the time to compute the previous
batch tc(lc(n))−tc(lc(n−b)), capturing that computing gets
more expensive as more nodes are added to the graph.

CEIMP has two estimates of path length savings if we
compute another batch of samples. The path length can
decrease either due to finding a new path in a different
homotopic class or by smoothing the current best path.
Let E[∆Ẽt] be the expected change in total energy from a



homotopic class change and E[∆Et] be the expected change
in total energy from smoothing. To calculate E[∆Ẽt], CEIMP
uses the result of the best expected path from Expected-A*
to substitute for E(la(n+ b)) in Eq. 9. To calculate E[∆Et],
CEIMP uses a smoothing model k/n

1
d where d is the number

of dimensions of the environment and k is an environment
dependent constant. We can get an estimate of k using the
improvement in feasible path length between batches such
that, k =

√
n(la(n− b)− la(n))− 1/

√
n+ b. CEIMP then

substitutes E(la(n+ b)) = k/
√
n+ b to evaluate Eq. (9).

If both E[∆Ẽt] ≥ 0 J and E[∆Et] ≥ 0 J, CEIMP decides
to stop. Else, the expected total energy change of continuing
is lower than the total energy change of stopping (0 J), and
CEIMP will decide to continue. We can also run CEIMP with
a biasing parameter 0 < γ < 1. When CEIMP continues, γb
number of nodes in the batch are biased to sample around
either the best occluded path or the current best path based
on whether CEIMP predicted larger savings from exploring
a potential homotopic class change or from smoothing the
current best path. CEIMP decides to

Stop (E(∆Ẽt) ≥ 0) ∧ (E(∆Et) ≥ 0)

Explore (E(∆Ẽt) < 0) ∧ (E(∆Ẽt) ≤ E(∆Et))

Smooth (E(∆Et) < 0) ∧ (E(∆Et) < E(∆Ẽt)).

(10)

V. ANALYSIS

We discuss the correctness of Expected-A* search and
the computational complexity of CEIMP. We do not discuss
optimality. The interlinked nature of n and la(n) make it
challenging, and we omit a rigorous discussion on optimality.

A. Correctness of Expected-A*

We show that Expected-A* heuristic f(σ) is admissible
and underestimates the true expected cost of the path when
given a sub-path. We can rearrange terms in Eq. (7) to obtain,

f(σ) = c1 + c2la(n)− c2P(σE)[la(n)−||σE ||2−||g−u||2],
(11)

where c1, c2 are constants such that c1 = P(σD)||σD||2
and c2 = (1 − P(σD)). The first two terms of Eq. (11)
are constants. The expression c2P(σE) is monotonically
decreasing as nodes are added to the sub-path since P(σE) is
monotonically decreasing. The expression (la(n)−||σE ||2−
||g − u||2) is enforced to be positive by using branch-and-
bound in search (never add paths to queue where (||σE ||2 +
||g − u||2 ≥ la(n)) and is monotonically decreasing as
nodes are added to the sub-path since (||σE ||2 + ||g − u||2)
is monotonically increasing. Therefore, the entire RHS of
Eq. (11) is monotonically increasing as more nodes are
added to the path, showing that f(σ) is underestimating the
expected cost of the full path and is admissible.

B. Computational Complexity

The PRM* runs in O(n log n) time [17]. The Bayes filter
runs in O(|E|) time. Expected-A* is the same constant factor
complexity as A*, and is O(n log n). Checking if an edge
has been repaired involves running A* on the nodes inside

(a) 10 (b) 24-0 (c) 33 (d) 39 (e) W51

Fig. 3: Floor plans numbered by MIT campus building used
in experiments with path to find

(a) Energy curves vs. n

(b) Path returned by CEIMP

(c) Path returned by baseline

Fig. 4: Single trial on Building 13 floor plan on Cortex-A15

a ball sized by the edge and is O(nb log nb) where nb is
the number of nodes inside the ball. Overall computational
complexity of CEIMP is therefore O(n log n).

VI. IMPLEMENTATION

We use a floor plan dataset previously collected at
MIT [23] to test on ten floor plans of campus buildings, five
of which are shown in Fig. 3. There are additional rectangular
obstacles added to the floor plans to add clutter.

For experiments in Section VII testing CEIMP’s perfor-
mance, we test on the ARM Cortex-A7 and ARM Cortex-
A15 embedded CPUs with clock frequencies of 1.2-1.6
GHz and 1.0-2.5GHz respectively and measured average
power while running PRM* equal to 0.28 W and 2.33 W
respectively. To obtain the results presented in Fig. 7, we also
test on an Intel Xeon E5-2667 v4 with a clock frequency of
3.2GHz and which consumes up to 135W. To simulate the
results swept on a range of computer efficiencies to motor
efficiencies on one computer, we input to CEIMP a range of
computing powers Pc = 0.1 to Pc = 10.0 W.

VII. COMPUTATIONAL EXPERIMENTS

We evaluate the performance of CEIMP in this section.
For the results, we set Pa/va = 1W/(m/s). We run against
two baselines: running an anytime PRM* for 20,000 nodes
(baseline 1) and 15,000 nodes (baseline 2) and present both
results. Note, performance of CEIMP is expected to show
larger savings when the baseline is a larger number of nodes.

(a) Stopping near n∗ (b) Greedy failure

Fig. 5: Single trial on Building 31 floor plan on Cortex-A7



Fig. 6: Avg. energy over 1000 trials with Pa/v = 1 W/(m/s)
on Cortex-A7 (Pc = 0.28W) and Cortex-A15 (Pc = 2.33W)

Fig. 7: Total average energy vs. ratio of Pc to motor
efficiency with fixed vc with standard deviation

Choosing too small of a baseline can risk poor performance
in finding a feasible path in challenging environments. First,
we look at examples of paths returned by CEIMP and the
baselines in Figures 4 and 5 along with the total energy
curves run on the ARM Cortex-A15 processor; we set γ = 0
and enforce that CEIMP samples the same nodes in the same
order as the baseline to keep the actuation energy constant.

Note, PRM* incurs a cost at the end for searching the
graph to find the best feasible path. Here, we run a search at
every location on the curve and add that computing energy
to the curve to show the total energy if computation was
stopped at that point on the curve. The green marker on the
CEIMP total energy curve is where CEIMP chooses to stop
computing. To see how close CEIMP performed to finding
the real n∗, we continue to sample randomly until maximum
nodes are reached to obtain the projected CEIMP total energy
if it had continued. The red marker in Fig. 4 and Fig. 5 shows
n∗ which is the optimal node to stop at given that CEIMP
introduces overhead lc(n); it is equal to the minimum of the
green curve, and we call this point the oracle-with-overhead.
n∗ is different from n∗, which is the minimum of the baseline
total energy curve; this theoretic limit would be minimum
total energy given that we introduce no overhead lc(n) to
know to stop at n∗; we call this point the oracle-without-
overhead.

We see in Fig. 4 an example of how CEIMP improves
total energy, by estimating n∗ closely and stopping before
computing energy begins to increase Et. As expected, in
exchange for a lower Ec, the path length CEIMP returns

is longer than the baseline, though overall Et is reduced.
CEIMP is a greedy algorithm, and thus is also prone to fail-
ure sometimes, as shown in Fig. 5b against baseline 2. The
greedy failure rate decreases with increasing Pc/(Pa/va).
For example, on average for the Building 31 floor plan with
a fixed vc given by the Intel Xeon E5-2667 v4, looking at
per-trial performance against the stricter baseline 2, CEIMP
outperforms the average baseline 74.0% of the time at
Pc/(Pa/va) = 0.1, 90.6% of the time at Pc/(Pa/va) = 1.0,
and 99.7% of the time when at Pc/(Pa/va) > 3.0, with
performance expected to be higher when vc is lower.

Next, we look at how CEIMP performs across 10 different
floor plans, averaged across 1000 trials for each environment
on the Cortex-A7 and Cortex-A15. Fig. 6 shows that on
average, CEIMP saves energy compared to baseline 1 on all
floor plans on both the ARM Cortex-A7 and ARM Cortex-
A15; this result also holds against baseline 2. On the ARM
Cortex-A15, CEIMP saves 2.1x the total energy on Building
3 and 8.9x the total energy on Building 13 compared to
baseline 1, translating to missions that can last 2.1x and
8.9x longer on the same battery. The variability in savings
in different environments is likely due to the structure of
the environment; if many homotopic classes exist, there is
more to gain from continuing to compute which may make
CEIMP’s energy savings more modest, and vice-versa.

We end by looking at how well CEIMP performs on a
range of different ratios of computing efficiency to motor
efficiency Pc

vc
/Pa

va
, which is comparing the energy needed to

compute one more operation and the energy to move one
meter for different computers and vehicle platforms. Fig. 7
shows the total energy of CEIMP and baseline 2, averaged
across 100 trials. In addition, we compute the average oracle-
with-overhead and oracle-without-overhead curves. We see
that CEIMP on average consistently has a lower Et than
the baseline, and the savings increase as Pc

vc
/Pa

va
increases.

Moreover, CEIMP behaves very similarly to the oracle-with-
overhead, showing that while greedy, it is able to estimate
n∗ well in practice. CEIMP is bounded below by the oracle-
with-overhead average as expected. Overall, these results
show CEIMP’s advantage in low-power motion planning.

VIII. CONCLUSION

In this paper, we identify a class of problems in mo-
tion planning where the cost-to-compute is comparable to
the cost-to-move. For this class of problems, we reframe
motion planning from minimizing only Ea to minimizing
both Ea + Ec. We solve the problem posed by proposing
the greedy algorithm CEIMP that predicts future actuation
savings and future computation spent to find those actuation
savings to decide if and when to stop computing. CEIMP
shows improved performance over the baseline and looks
to be promising solution to the low-power motion planning
problem. Future work involves testing CEIMP onboard low-
power actuated robotic platforms as well as identifying
theoretical bounds on performance. For more details on
experimental results, we recommend visiting the project
website (https://lean.mit.edu/projects/CEIMP).
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