ANALYSIS AND CONTROL OF LINEAR
PERIODICALLY TIME VARYING SYSTEMS

by
NORMAN M. WERELEY

Master of Science in Aeronautics and Astronautics
Massachusetts Instiiute of Technology (1987)

Bachelor of Mechanical Engineering (Honors)
McGill University (1982)

SUBMITTED TO THE
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1991

Copyright © Massachusetts Institute of Technology, 1990. All Rights Reserved.

Signature of Author ___

Department of Aeronautics and Astronauti¢s
November 30, 1990

Ceriified by
Steven R. Hall
Assistant Professor, Department of Aeronautics and Astronautics
Thesis Supervisor

Certified by
Norman D. Ham
Professor, Departmient of Aeronautics and Astronautics

Certified by
Andreas H. von Flotow
Associate Professor, Department of Aeronautics and Astronautics
Certified by ] o
Wallace E. VanderVelde
Prpfgssor, Pcpémpent of Aeronautics and Astronautics

Accepted by

4 . Professor Harold Y. Wachman

Department Graduate Commiitee
MASSACHUSE TS 13 STITUTE ’
OF TECHN: 4 0GY

FEB 19 19
ARCHIVES BRrARIES



[Page Left Blank]



ANALYSIS AND CONTROL OF LINEAR
PERIODICALLY TIME VARYING SYSTEMS

by
NORMAN MARK WERELEY

Submitted to the Department of Aeronautics and Astronautics
on November 30, 1990, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in the
Field of Estimation and Control

Abstract

The analysis of linear periodically time varying systems has classically been of interest.
However, an analysis and control theory for linear time periodic (LTP) systems has not
been developed in an operator theoretic context that is comparable to the theory for linear
time invariant (LTI) systems. .

The operator theoretic framework developed in this thesis takes advantage of the signal
spaces identified in the classical works of Floquet and Hill of geometrically periodic (GP)
and (complez) ezponentially modulated periodic (EMP) signals. The linear operator that
maps GP input signals to GP output signals is a Fredholm integral operator. Within this
integral operator framework, poles, transmission zeroes, principal gains (singular values),
and their associated directional properties can be rigorously defined. However, the integral
operator approach does not lead to computational methods. The linear operator that
maps EMP input signals to EMP output signals is called the harmonic transfer function,
which can be viewed as an infinite dimensional harmonic balance that maps the Fourier
coefficients of the EMP input signals to the Fourier coefficients of the EMP output signals.
The harmonic balance approach is most useful in developing computational methods for
poles, transmission zeroes, principal gains, and their associated directional properties.

This operator theoretic framework also leads to a generalization of the Nyquist criterion
for multivariable LTI systems to LTP systems. An extensive tfeatment of open loop stability
of the Hill equation with sinusoidal parametric excitation (the Mathieu equation), and with
rectangular parametric excitation (the Meissner equation), is presented. The LTP Nyquist
test is compared to the classical Floquet theory, as well as numerous sufficient conditions
presented in the literature, for the Mathieu and Meissner equations.

Generalization of the Nyquist criterion leads to the extension of the Small Gain Theorem,
and other stability robustness notions, to LTP systems. Stability robustness properties of
the steady state linear quadratic regulator for LTP systems are determined using these
tools. In addition, a compensation methodology is developed for weakly periodic systems
that treats the periodic effects as a modeling error, and permits the application of LTI
synthesis tools to weakly periodic systems.

Thesis Committee: Professor Steven R. Hall, Chairman
Professor Norman D. Ham
Professor Wallace E. Vander Velde
Professor Andreas H. von Flotow
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Chapter 1

Introduction

In this thesis, plants that are modeled by linear differential equations with periodically
time varying parameters are examined. The canonical form of the Hill equation, which is
the most pervasive periodic differential equation used in modeling physical processes, is a

second order oscillator of the form

£(t) + [a — 2q9(t)]=(t) = 0 (1.1)

in which ¥(t) = ¥(t + T') and T is the fundamental period. The time periodic parameter,
¥(t), is often referred to as the parametric ezcitation. The primary motivation for studying
such equations is due to the fact that they model important physical processes, such as the
flapping of the helicopter rotor blade in forward flight.

The primary thrust of this thesis is to develop analysis tools for linear time periodic
(LTP) systems, such as the one above, that rely on an operator representation of the periodic
differential equation. Once the appropriate operator has been identified, its properties will
be discussed and quantified. The feedback control of the LTP system can then be developed
in this context.

1.1 Linear Time Periodic Systems

One class of linear time periodic systems is called a parametrically excited system, due to
one or several parameters of the problem varying with time. Parametrically excited systems
are widespread, aad very often this parametric excitation takes the form of a periodically

time varying coefficient.
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Many physical systems can be modeled as a Hill equation having a sinusoidal parametric
excitation, that is, ¥(t) = cosw,t, which results in the canonical form of the Mathieu
equation

Z(t) 4+ (a — 2gcoswpt)z(t) = C (1.2)

where classically the pumping frequency, w, = 2, implying a pumping period of T = w. Here,
a represents the constant portion of the time periodic coefficient of z(¢), and ¢ represents
the amplitude of the time periodic variation. Clearly, the Mathieu equation reduces to a
simple harmonic oscillator for ¢ = 0. The parameter g is often referred to as the pumping
amplitude or the amplitude of parametric ezcitation. Dissipation is added to the Mathieu

equation in the usual way, resulting in the canonical form of the lossy Mathieu equation
§(t) + 2¢y(t) + (@ — 2q coswyt)y(t) = 0 (1.3)

where ( is the damping ratio. The Mathieu equation can be obtained from the lossy Mathieu

equation using the transformation [67,72,83]

z(t) = e“*y(t) (1.4)

such that @ = @ — (2. In much of the literature, the Mathieu equation is studied in lieu of
the lossy Mathieu equation due to this transformation. Both the damped and undamped
forms of the Mathieu equation are frequently encountered in the literature. The Mathieu
equation was originally discovered in the study of the vibrations of stretched eijticaJ
membranes [68], and subsequently in the study of elliptical waveguides [72], gravitationally
stabilized earth pointing satellites [51,89], quadrupole mass spectrometry [20], the rolling
motion of ships [1], the dynamics of a micromechanical tuning fork gyroscope [57], and in
other applications too numerous to mention here. A comprehensive historical review and
discussion of experimental results associated with the Mathieu equation has been provided
by McLachlan [72], with an updated treatment by Richards [83). It is certainly curious that
in spite of the simple form of the parametric excitation in the Mathieu equation, a closed
form solution has eluded the best efforts of a considerable number of researchers. Most have
relied on approximate analyses such as those outlined by Richards [83].

Hill [46,47) encountered a similar form of equation,

£(t) + p(t)z(2) = 0 (1.5)

18



in his study of the motion of lunar perigee, where p(t) = p(t+ 7), and developed an infinite
determinant methodology for determining the stability of this equation. Hill's work was
of profound importance and provides a fundamental building block in the analysis of LTP
systems as presented in this thesis. Also, the above equation is of the same form as (1.1),
from which the Hill equation derives its name. Linear time periodic systems have continued
to be of interest in the study of spacecraft and orbital dynamics, and is well documented
by Hughes [51], and Szebehely [98].

In his study of the motion of the side rods of locomotives, Meissner [74] encountered a
Hill equation of the form (1.1) where ¥(t) is a unit rectangular wave. The dissipative, or
lossy, Meissner equation can also be transformed to a Hill equation via a transformation
similar to that in (1.4). The lossy Meissner equation is useful because it can be viewed as
a pair of constant coefficient second order oscillators with known analytical solutions, each
applicable in alternating time intervals. Approximate numerical techniques for the stability
analysis of Hill equations have been developed using the lossy Meissner equation [80], which
Richards [85] later refined.

An important class of LTP systems are those modeling rotating machinery, especially
rotors. The rigid out-of-plane flapping of a helicopter blade can be modeled as a second
order oscillator with time periodic stiffness and damping terms in forward flight, as shown
in a textbook by Johnson [52, page 602], and in work at MIT by McKillip [70,71]. The
advance ratio, a parameter that is of fundamental importance to helicopter dynamics and
increases with the speed of forward flight, can be interpreted as the pumping amplitude.
The control of helicopter vibrations was the original motivation for the work in this thesis
[41,42,43). A second type of rotating machine that is described by a time periodic model is
the wind turbine [27,94).

All of the linear time periodic systems described above have time periodic parametric
excitation due to the underlying physics of the problem. However, a second class of linear
time pefiodic systems arises when the requirements of a control system introduce time
periodic effects.

A multirate system is a continuous time linear time invariant system model to which a
base sampling interval, T', applies. The sampling intervals of the multirate system’s control
and output signals are assumed to be integer multiples of the base sampling interval. If we

follow the lead of Araki and Yamamoto [2], and define the model rate sampling interval,
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To, as the sampling period to which all of the sampling devices are synchronized, then a
periodically time varying discrete time equivalent of the linear time invariant system model
results. Some of the analysis results that have been developed for this type of system model
resemble those developed in this thesis for linear (continuous) time periodic systems.

In some cases, the actuation requirements induce periodically time varying terms on
the system model. For example, if a helicopter pilot sits in a nonrotating reference frame
with respect to inertial space, then the control of blade pitch of a rotating helicopter blade
takes place in a rotating reference frame. In order for the pilot to introduce a change in
longitudinal and lateral cyclic blade pitch from the nonrotating to the rotating reference
frames, a device called a swashplate is used; a detailed discussion is presented by Johnson
[52]. Essentially, the swashplate introduces control distribution terms that are proportional
to sinusoids, so that the pilot’s constant lateral and longitudinal cyclic pitch commands are
wobbled (or modulated by sine and cosine) by the swashplate in order to induce the required
cyclic pitch variations. '

In some cases, the swashplate can actually improve the bandwidth characteristics of the
actuator. In a study by Ham, Wereley and von Ellenreider [42,43] of a three bladed tilt rotor
application, it was determined that the third in—plane cyclic bending mode had a natural
frequency in close proximity to the 4/rev frequency. It was shown that the disturbance
spectrum was essentially harmonic due to interference effects as the rotor blade passed the
wing, and these interference effects contributed to a significant 4/rev harmonic airload.
" This situation can cause undesirable vibrations to occur, so that active vibration control
was proposed, using the individual-blade-control methodology. At the time of the study,
the highest bandwidth actuator that was suitable for this application had a bandwidth of
only 3/rev. However, by wobbling 3/rev cyclic pitch control signals using the swashplate,
it may be possible to inject sufficient control energy at the 4/rev frequency to significantly
reduce these vibration levels. Thus, the periodic effects of the swashplate must be included
in the system model in order to achieve the desired performance. This particular study was
a primary motivation for the work in this thesis.

Linear time periodic dynamics are often imposed by the design of a sensor. In a thesis by
King [57], a micromechanical tuning fork gyroscope was designed for which the gyroscopic
response to an input rate about the longitudinal axis between the tines of the tuning fork

is described by a second order linear time periodic system model. King showed that the
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linear time periodic effects are substantial for high frequency operating points of the tuning
fork gyroscope, mainly by comparing the responses of the LTP simulation to a simulation
where the underlying lynamics were time invariant. Thus, in order to exploit some of the
beneficial effects that might be realized by operating the gyroscope in the high frequency
range, these periodic effects must be included in the sensor model.

Without a doubt, LTP systems have a vast number of applications in the engineering
sciences, especially in the aerospace sciences. Thus, in this thesis, the analysis and control of
linear periodically time varying systems will be studied. Although several analysis methods
and control strategies have been developed in the past, none of these methodologies have

been developed in an operator theoretic context, which will be a central theme of this thesis.

1.2 Linear Operators for LTP Systems

The term operator is usually reserved in this thesis to denote the map from an input signal
space to an output signal space. The notion of the operator is of fundamental impor-
tance in control theory. Properties of linear systems such as stability, controllability, and
observability, can be viewed as properties of the operator.
The analysis of linear time periodic (LTP) systems has long suffered from the lack of
a clearly defined linear operator that relates signals of fundamental importance to LTP
systems. For linear time invariant (LTI) systems, the signal of fundamental importance is
the complez ezponential signal
u(t) = uge’“ (1.6)

which is often referred to as a sinusoidal signal. When a complex exponential input signal is
injected into an LTI system, the total output response is the superposition of two responses.
The first is due to the excitation of the system internal modes, so that this transient output
response occurs at the system eigenfrequencies. The transient output response can be
eliminated from the total system response if the initial condition of the states is specified
in a certain way that will be described in the sequel. The second response is the steady
state output response or complez exponential response which leads to the concept of the
frequency response. The frequency response concept can be stated quite suécinctly: when
a complez ezponential input signal of a given frequency is injected into an LTI system. the

steady state output response is a complez ezponential signal of the same frequency, but with
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possibly different amplitude and phase.

The Bode gain and phase diagrams are plots, versus frequency, of the change between
the input and output signals’ amplitude and phase. The linear operator of interest is then
the transfer function, and relates complex exponential input signals to complex exponential
output signals; that is, the input and output signal spaces are equal. The notion of frequency
response can easily be extended to multi-input multi-output LTI systems with a few caveats
related to directional properties of the transfer function matriz. The concepts of stability,
controllability, observability, poles, transmission zeroes, principal gains (singular values),
and their associated directional properties, can be described in terms of the transfer function
matrix.

Richards [83] attempts to develop an operator based analysis theory for LTP systems
by examining the response of an LTP system to a complex exponential input. Many au-
thors including McLachlan [72], and D’Angelo [18], have discussed a similar analysis. This
approach, although seemingly the obvious extension of the LTI theory, does not lead to a
linear operator that maps complex exponential input signals to complex exponential output
signals. Instead, this approach leads to a map from a complex exponential input signals
to complex exponential output signals modulated by a periodic signal that may contain an
infinite number of harmonics of the pumping frequency. By approximating the response of
an LTP system by a linear operator that maps complex exponential input signals to com-
plex exponential output signals, the describing function [61] or the harmonic balance [26]
approaches were developed. Leonhard showed that attempting to enforce the LTI behavior
on an LTP system can lead to grossly inaccurate results. By increasing the number of har-
monics that are included in the periodic portion of the output signal, more accurate results
can be obtained. The usual procedure is to include only two or three prevalent harmonics.

However, classical treatments of linear time periodic systems have several clues which
can lead us to the fundamental input signal space of interest.

In 1883, Floquet [29], in his celebrated theorem on linear time periodic systems, stated
that searching for signals that increase geometrically frém a given time, to a time a full
period away, determines stability of an LTP system. This leads to the notion of a signal

that changes geometrically over one period,

z(t+ T) = zz2(t) z eC : (1.7)

22



where T is the fundamental period of the signal z(t). Floquet then demonstrates that a
necessary and sufficient condition for stability can be stated in terms of this type of signal.
The Floquet results are stated in more modern terminology in Chapter 2. Floquet theory
has been the cornerstone of a multitude of papers and textbooks analyzing linear time
periodic systems including extensively cited monographs and a textbook by Magnus and
Winkler [67,66], McLachlan [72], and textbooks by Richards [83], and D’Angelo [18].
Probably the most significant of the early papers on systems with periodically time
varying parameters is the work of Hill [46], which developed an alternative stability theory
to that of Floquet. Hill developed an infinite determinant representation of a linear time
periodic system based on the notion that periodic solutions of (1.1) could be determired by

assuming a solution of the form

z(t) = E Tpelrtilwtnwp)lt (1.8)

n=-0o
where w, is the fundamental period of the parametric excitation. Here, z(t) is represented
by a complex Fourier series that is modulated by a complex exponential. The determinants
involved here are called Hill determinants and have been the object of intense scrutiny in
the literature [30,72,83).

The Floquet theory and the Hill determinant theory will be reviewed in detail in Chapter
2. Both of these analysis methodologies are cornerstones in the theory to be developed in
this thesis. Moreover, the signals of fundamental interest were apparently discovered over
one hundred years ago by Floquet and Hill: geometrically periodic signals (1.7), and complex
ezponentially modulated periodic signals (1.8), respectively. However, to the knowledge of
the author, no operator theoretic framework, comparable to that of the linear time invariant
transfer function, has been developed for linear time periodic systems using these types of
signals.

Thus, a primary objective of this thesis is to develop an operator theoretic framework

in which to build an analysis and control theory for linear time periodic systems.

1.3 Control of LTP Systems

Few methodologies have been suggested for dealing with the feedback control of LTP sys-

tems. The time periodic coefficients in an LTP system render classical frequency domain
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a.;;proaches based on the Bode frequency response unusable. However, several approaches
have been developed using the calculus of variations and parameter optimization procedures.

During the past decade, methodologies have been suggested for actively suppressing
helicopter rotor vibrations due to the time periodic aerodynamic effects of the main rotor.
Since these vibrations occur at frequencies that are integer multiples of the rotor frequency,
these methods are known collectively as Higher Harmonic Control (HHC).

The basic notion behind higher harmonic control is to control rotor blades at harmonics
of the rotor frequency such that unsteady airloads are ca.ﬁceled. If the swashplate is used,
as is usually the case, the swashplate must be controlled at the N/rev frequency. One
of the earliest HHC algorithms was suggested by McHugh and Shaw [69] and Shaw and
Albion [92]. It is assumed that the control response matrix, T, is known. This matrix
relates the sine and cosine components of the N/rev swashplate inputs to the sine and
cosine components of the N /rev response of the helicopter. At each step of the algorithm),
a harmonic analysis of the measured quantity (either mast forces or accelerations at some
fuselage location) is performed. The result is the quadrature components of the force (or
acceleration) at the N /rev frequency. The vector of N /rev components is then multiplied
by a decoupling matrix, which is the inverse of the control response matrix, to produce the
change in commanded N /rev swashplate motion. Under the assumption that the response of
the helicopter to N /rev inputs is essentially quasi-steady, this algorithm should eliminate
N /rev vibrations in one step (that is, this method should produce deadbeat control). It
has been shown [41] that the structure of the HHC compensator is essentially a high gain
narrow band filter, that is, a high-@ filter, centered at the N /rev frequency, which is the
classical compensator that would be implemented if the plant were linear time invariant.
This type of compensator produces a notch in the closed loop Bode gain diagram that rejects
harmonic inputs at the N/rev frequency. In addition, the HHC compensator was shown
to have excellent stability robustness properties. However, further perfofmance gains in
HHC cannot be obtained until the quasi-steady assumption is relaxed so that time periodic
dynamics can be introduced into the design plant model.

Many methodologies are available that can take into account linear time periodic dy-
namics. Several pole placement methodologies have been developed that incorporate the
Floquet theory. In addition, methodologies based on calculus of variations and parameter

optimization approaches have been developed. However, none of these methods directly
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address stability robustness issues, nor do they address specific frequency domain design
criteria.

Several methodologies have been developed for pole placement in linear time periodic
systems [56,106,108,109]. Webb, Calico, and Wiesel [106] and others [108,109] developed
a methodology to shift the characteristic exponents (that is, the exponential part of the
plant pole). Two modes are taken at a time, and constant feedback gains are chosen to
improve stability characteristics, that is, to move the characteristic exponents to a more
desirable location in the s-plane. Kern [56] takes a slightly different approach to achieve
essentially the same goal. First a desired stability characteristic is selected by specifying
the exponential rate matrix in the Floquet solution. Then, time periodic feedback gains
are computed by applying the Floquet result that a linear time periodic system with time
periodic dynamics can be transformed to a similar linear time periodic system with time
invariant dynamics. The method requires the identification of this time periodic similarity
transformation. Several sufficient conditions are stated for the existence of these time
periodic feedback gains.

However, these methods have the same drawbacks as their counterparts for LTI sys-
tems. Pole placement does not directly design for usual closed loop specifications such as
bandwidth, stability robustness (as manifested by gain and phase margin), and other perfor-
mance specifications in the frequency domain, nor does it directly account for performance
specifications in the time domain such as rise time, peak overshoot, etc.

Alternatively, methodologies based on the state space model and the calculus of vari-
ations have been applied to linear time periodic systems. The most well known.of these
is the linear quadratic regulator (LQR) [59], which has been used quite extensively in the
control of linear time periodic systems such as in the control of helicopter vibrations {70,71].
The LQR theory formulates the control problem as the constrained optimization of a scalar
cost function, which is a quadratic function of the dynamic states and cohtrol variables.
The optimization is constrained by the dynamic equations of motion which incorporate the
effets of the control variables, and the time periodic coefficients, on the plant under consid-
eration. In principle, the LQR methodology can account for the multi-input multi-output
~ nature of the some LTP systems.

The solution of the LQR problem requires the solution of the control matrix Riccati dif-

ferential equation (CMRDE). The geometric theory of the CMRDE equation was originally
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developed by Rodriguez-Canabal [86,87]. A complete theory on the Floquet representation
was concurrently developed by Bucy [11], with a lengthy treatise by Bekir and Bucy [4]
that includes a FORTRAN computer listing for a general Hamiltonian system. The pro-
cedure is relatively straightforward. First the transition matrix of the Hamiltonian system
is computed over a complete period of the LTP system. The steady state solution of an
equivalent discrete time control Riccati equation is then computed, and is used as the initial
condition for the time periodic control matrix Riccati ODE. Thus, the steady state solution
of the equivalent discrete time control Riccati equation serves as a periodic generator [87]
for the time periodic solution of the CMRDE. The time periodic solution is the steady state
solution in this case, and provides a state feedback implemertation.

Several authors including Kano and Nishimura [54,55), Bittanti et al [8], and Hernandez
and Jodar [45], subsequently developed similar procedures and were apparently unaware
of the pioneering work of the mid-1970’s. Much of the work cited in these papers revolves
around detectability (observability) and stabilizability (controllability) conditions for exis-
tence of periodic solutions.

However, the LQR methodology does not account for the relative importance of different
frequency ranges in closed loop performance. It may be desirable to have high gain over only
a small range of frequency, and then accept low gain everywhere else. However, the LQR
methodology essentially weights all frequencies equally in the cost function. For example,
the helicopter vibration is due predominantly to harmonic disturbances at integer multiples
of the rotor frequency, Q. Therefore, a possible approach nﬁght be to weight control lightly,
that is, cheap control, at these frequencies, and/or to weight the states heavily at these
harmonics of the rotor frequency. Several methods for achj;aving this have been suggested
for the LTT case of the LQR methodology including frequency shaped cost functiorals
developed by Gupta [40]. The basic approach in [40] to achieve the desired frequency
dependent control and state weighting is to augment the plant with second order oscillators
that resonate at the appropriate harmonics. This procedure was applied to an LTI model
that approximately describes the time periodic dynamics associated with the helicopter
vibration problem (24,25]. Interestingly, the structure of the compensator suggested in [24]
is essentially the same as that suggested by Shaw [93], as shown in [41].

A second disadvantage of the LQR methodology is that the frequency response of the

LTP system is not shaped directly, as is the case for classical Bode compensation of an LTI
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plant.

The linear quadratic estimator (LQE, or Kalman filter) is the dual problem to the
LQR problem, and has essentially the same characteristics as the LQR problem. The LQR
and LQE solutions, both at steady state, together with the separation principle, form the
basis of the linear quadratic gaussian (LQG) design methodology for time periodic systems.
However, the frequency domain properties of the LQG have not been examined, so that
there is no systematic approach for incorporating stability robustness ideas into the LQG
procedure.

A third basic approach to the control of linear time periodic systems is that of parameter
optimization. For example, in a recent article by Calise et al [12], static output feedback
(that is, feedback using constant gain on the output signals) was used to reduce vibrations
due to a periodically time varying helicopter rotor. The basic approach was to optimize a
quadratic cost function similar to that of the LQR cost, except the controlled variables are
the states associated with the linear time invariant representation of the state dynamics,
obtained using the Floquet theory. A numerical method is then developed to optimize the
choice of feedback gains, with the constraint that the feedback gains must be constants.
However, this article does not address the possibility that a set of time periodic gains might
reduce the cost even further, and possibly improve stability robustness properties. Again,
the method does not address the importance of designing a feedback control system so that
specific stability robustness properties (such as gain and phase margin) result in the closed

loop system.

1.4 Scope of Current Research

In this thesis, a frequency domain representation of the LTP system model is developed and
its properties derived. Control synthesis techniques can then be developed in the context
of this new frequency domain operator in the hope of developing improved insight into the
implications of feedback control for LTP systems. In order to characterize open loop be-
havior, clear notions of poles and transmission zeroes, as well as their associated directional
interpretations, must be stated. A clear notion of open loop gain must be introduced, and
phase quantified. Notions of stability robustness such as phase and gain margin, especially

as reflected by a Nyquist-like criterion would be desirable. Finally, feedback control systems

27



can be designed, in the context of these operators, so that stability robustness and other
performance issues can be dealt with directly and explicitly.

First some comments on the structure of the document. Definitions, theorems, corol-
laries, and lemmas are numbered using the same counter, with the chapter number as a
prefix. For example, Definition 2.1 might be followed by Theorem 2.2, etc. Equations and
examples are numbered consecutively, and separately, within a chapter with the chapter
number as a prefix.

In Chapter 2, a summary of the elements of linear system theory applicable to peri-
odically time varying systems is presented. In addition, a review of the classical analysis
techniques of Floquet and Hill are discussed in the context of modern linear system theory.
The first point of view {o be taken in determining an operator for LTP systems is an ex-
tension of the Floquet theory, and requires a review of applicable integral operator theory.
The second methodology that will be used to develop an operator for LTP systems is a
generalization of the harmonic balance methodology. Since the complex Fourier series and
Toeplitz forms will play a central role in the application of harmonic balance presented in
this thesis, relevant areas will be reviewed in detail.

In Chapter 3, a frequency domain representation of the LTP system model is proposed
and several of its properties are derived in the context of linear system theory. The fun-
damental signal of interest is a geometrically periodic or ezponentially modulated periodic
signal, and forms the basis for the theoretical development of the chapter. Two approaches
developed for describing the frequency response are presented. The first relies on the in-
tegral operator theory and is used primarily for analytical work. The second approach
is a generalization of the harmonic balance approach and is useful mainly for numerical
work. Basic notions such as the transient state response, steady state rcsponse, transient
output response, and steady state output response are stated in both contexts. Definitions
of LTP poles and zeroes and methods for their computation are presented. Finally, meth-
ods for plotting the gain of the frequency response are presented using the singular value
decomposition of the steady state output response.

In Chapter 4, a2 Nyquist criterion for LTP systems is presented. The Nyquist criterion
is developed using the eigenloci of the LTP frequency response obtained from the integral
operator approach. " 2 Nyquist criterion is an essential building block in the LTP control

theory since it provides a systematic methodology for stability analysis in the frequency do-
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main. The Nyquist criterion also provides the motivation for extending stability robustness
ideas to LTP systems.

In Chapter 5, stability rebustness notions based en the small gain theorem are restated
in terms of the LTP frequency response. The LQR methodology is re—examined for LTP
systems in order to determine its stability margirs, and its dval problem (the Kalman filter
or LQE) is also examined. An LTI compensation methodology is suggested for weakly
periodic systems using the LTI model embedded in the LTP state space model (that is, the
average state space model), where a sufficient condition is used to guarantee stability in the
presence of Jhe time periodic effects.

In Chapter 6, conclusions and recommendations for future research are presented.
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Chapter 2

Linear Time Periodic Systems

In this chapter, the mathematical background required for the study of linear time periodic
systems is introduced. First, time domain function spaces that will prove to be useful in
this research are introduced. In addition, complex Fourier series and their properties are
reviewed and the Toeplitz transiorm, which has some useful properties in this context, is
introduced. Basic notions of linear system theory are presented for the specific case of
linear time periodic (LTP) systems. No introduction to linear time periodic systems would
be complete without a presentation of the classical analysis techniques of Floquet and Hill,
and this chapter reviews these procedures with a somewhat more control theoretic flavor
than is available in the literature. However, the methodologies of Floquet and Hill will have

new and useful interpretations once the linear operator theoretic approaches are developed.

2.1 Mathematical Preliminaries

In this section, some of the basic mathematics that will be used in this thesis are briefly
reviewed. A knowledge of basic matrix algebra is presumed, such as the basic operations of
matrix algebra, spectral decomposition (eigenstructure), the singular value decomposition,
and basic matrix norms.

The set of integers will be denoted by Z. The field of complex numbers will be denoted
by C, @d the field of real numbers by R. The complex conjugate of (-) will be denoted by
(-)~. A complex (real) matrix of dimension n x m will be denoted by C™*™ (R"*™). The
transpose of a matrix, (), will be denoted by (-)T, and the complex conjugate transpose or

Hermitian by (-)*.
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2.1.1 The Fourier series
First, define a time domain function space that will be of central importance in this thesis.

Definition 2.1 Consider a matriz function, A(t), defined on the interval t € {a,b), that

takes values in C™*™. If A(t) has the property that L,[0,T] norm given by the integral

b b
f |AQ)? dt = / A(t)A(t)dt (2.1)
ezists, then A(t) € Ly"™[a,b]. a

The above definition can be specialized to vector and scalar functions. The following
discussion of orthogonal systems closely follows that of Churchill [16].

Here, the inner product of two scalar functions, ¢,(t) and ¢n,(t), is denoted by <
®m,Pn >, and is defined to be

< bn(t)bn(8) >= [ om(ie3(0) (2.2)

The two functions, ¢n(t) and @m(t), are defined to be orthogonal in the interval ¢ € (a,b]

when the inner product

< Pm,n >=10 (2.3)

A system of functions, {#n(t)|n € Z}, where ¢n(t) € Lo[a,b), is orthonormal in t € [a,b] if
b
< by >= / Sm(8)B2(8)dt = b VA, m € Z (2.4)

and dp,n, is the Kronecker delta function. In this thesis, it is generally more convenient to
let the indices n and m to run over all integers from —oo to oo, that is, the set of all integers
Z.

Let A(t) be a matrix function such that A(t) € L3*™[a,b]. The Fourier coefficients of
A(t), with respect to the orthonormal system {@,(t)} are defined as

b
A, = / AQBL(t)dt Ve Z (2.5)

The resulting set of Fourier coeflicients, { A,|n € Z} constitute the coefficients of the gen-

eralized Fourier series of A(t),

A= S Aubalt) 2

n=-—0o
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The system of functions, {¢n(t)|n € Z}, is said to be complete if no other function exists
that is orthogonal to all of the functions in the system. If such an orthogonal function exists,
then the system is said to be incomplete. If the orthonormal system is complete, then the
system forms an orthonormal basis in L3[a, b).

In this thesis, the functions in L,[0,T] are of primary interest. It is a well known

fact [16, page 77| that the system of functions, {Vlfe-""“”" n e Z}, where w, = 27/T,

form an orthonormal basis in L,[0,T]). We refer to wy, as the pumping frequency. The
interval t € [0,T'] will be referred to as the fundamental interval. The complex exponential
associated with the nth basis function, e/"“r!, is referred to as the nth harmonic or the
n/rev harmonic. The index n is referred to as the harmonic number. Consider a matrix

function, A(t) € L3*™[0,T]. The complex Fourier series is given by

o0
A(t)= ) Apemrt (2.7)
where
1 [T ;
.&:T/AmﬁwtheZ (2.8)
0

Each A, can be expressed as the sum of a real and imaginary number,
Anc+jAn, n>0
A= Ao n=20 (2'9)
Apc—jAn, n<0
The constant term in the complex Fourier series occurs for n = 0,
1 /T d
o=z /0 A(t)dt (2.10)
and represents the mean or average value of A(t). For n € Z but n # 0,
2 (T
A,. = T.[) A(?) cos nwptdt
2 /T .
A, = 5,—/0 A(t) sin nwptdt (2.11)
Thus,
A, =AY, (2.12)
Consider a matrix function, A(t), defined for all time, ¢ € (—00,00), that takes values
in C"*™_If A(t) has the property that
A(t+T)= A(t) Vte (—o0,00) (2.13)
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then A(t) is periodic with period T, or T -periodic. If we consider only that portion of the
matrix function defined over the fundamental interval, then we refer to A(t) as bounded if
A(t) € L3*™[0,T).

When the complex Fourier series of A(2) € L2[0,T] converges to A(t) on the fundamental
interval, it converges to a matrix function of period T that coincides with A(t) on the
fundamental interval. This implies that the complex Fourier series represents the periodic
extension [16] of A(t) for all ¢ € (—00,00). In the rase where A(t) is T-periodic, and the
complex Fourier series is convergent for ¢ in the fundamental interval, then the complex
Fourier series represents A(t) for all values of ¢t. We will denote the periodic extension of
A(t) € L}Y*™[0,T), or a T-periodic matrix function A(t) for which the function defined over
the fundamental interval is an L3*™[0,T'] function, as A(t) € P"*™[T).

The convergence properties of the complex Fourier series form a large body of research,

so that only a brief review of convergence properties is presented below.

Theorem 2.2 Consider the orthonormal basis in L2[0,T) formed from the compler ezxpo-
nentials, 7‘;9"“’?‘. If A(t) € L3*™[0,T), then the Fourier series of A(t) converges to A(t)

in the L3(0,T) norm sense.

Proof: See Theorem 2.3.11 in Rees et al [82, page 99). O
Essentially, the above theorem implies that if A(t) € L3*™[0,T] then the Fourier series
is absolutely convergent. However, a much stronger statement of convergence can be made,

if the behavior of A(t) is restricted.

Theorem 2.3 Let A(t) € L3*™[0,T] be piecewise smooth, that is, A(t) is continuous and
its first derivative is piecewise continuous. Also, assume that A(0) = A(T). Then the
convergence of the complez Fourier series
oo
A(t)= ) Apeimert (2.14)
n=-00

to A(t) on the fundamental interval is absolute and uniform with respect to t on the funda-

mental interval.

Proof: See Churchill [16, page 104].
In practice, the above theorem is not very restrictive since the periodically time varying
parameters in most engineering systems can be described by a sum of sinusoids of relatively
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lov;' harmonic number, that is, a truncated Fourier series. However, in the case where A(t)
is not continuous, uniform convergence cannot be guaranteed on an interval where A(t) is
discontinuous. This lack of uniform convergence for piecewise continuous A(t) is known as
Gibbs phenomenon.

Many of the convergence properties of the complex Fourier series have been extended
to L,[0,T] (absolutely integrable) functions of bounded variation. The L,[0,T] functions
are a more general class of functions that contains L;[0,T] functions. For a review of these
results, see Chapter 3 in [82]. |

Here, a very brief review of the Fourier theory has been presented. However, a vast
amount of research has been done in this area and the reader is referred to Rees, Shah, and

Stanojevic [82] or Churchill [16] for a complete treatment.

2.1.2 The Toeplitz transform

In many instances the manipulation of complex Fourier series is inconvenient, so that an
alternative representation of the complex Fourier series would be useful. Thus, the Toeplitz

transform is introduced below.

Definition 2.4 (The Toeplitz transform and Toeplitz forms) Consider the T -periodic
matriz function, A(t) € L3*™[0,T)], with associated fundamental period, T, and fundamen-
tal frequency, w,. A(t) can be ezpanded in an absolutely convergent complez Fourier series
O .
At)= ) Ape™rt (2.15)
n=-0o

The Toeplitz transform of A(t), denoted by T{A(t)}, maps the set of compler Fourier
coefficients, {Aq|n € Z}, into a doubly infinite block Toeplitz matriz, A, of the form

Ag A, A, A3 A,
A Ay A, A_, A_;
T{AW)}=A=| ... Ay A Ay A_; A_, .- (2.16)
A3 Ay, A Ay A,
Ay A3 A, A A
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The Hermitian form, A, is called the Toeplitz form associated with the matriz function,

A(t). : a

An interesting feature of the Toeplitz form of A(t) is that the element in the nth block
row and the mth block column depends only on the difference between the two indices, and
will thus be denoted by A, _,,.

The Toeplitz transform is introduced so that algebraic manipulations associated with
sums and products of complex Fourier series of matrix functions can be simplified. It is also
useful in transforming time periodic ordinary differential or algebraic equations into time
invariant infinite dimensional algebraic equations. The Toeplitz transform has some useful

properties in this regard.

Theorem 2.5 (Properties of the Toeplitz transform) The Toeplitz transform ezhibits

the following properties:

1. Consider the two conformable time periodic matriz functions, A(t) and B(t), with
corresponding absolutely convergent complez Fourier series on the fundamental inter-

val. The Toeplitz transform of the product is the product of its transforms,

T{A()B(1)}

T{A(t)}T{B(t)}
- AB (2.17)

2. Consider the two T-periodic matrices of the same dimension, C(t) and D(t). The

Toeplitz transform of the sum of these two matrices is the sum of its transforms

T{C()+ D()} = T{C()}+ T{D(t)}

= C+D (2.18)

3. Consider the T-periodic square matriz function, P(t) € L}*"[0,T). Suppose that
P(t) € LY*™[0,T). The Toeplitz transform of P(t), is given by

T{P()} = NP~-PN
= NP+ PN* (2.19)
where
N = blkdiag{jnw,I} (2.20)
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Proof: The proof of (1) is an application of Cauchy’s Rule [58, page 122]. Since the complex
Fourier series associated with the matrix functions are absolutely convergent, their product
is also absolutely convergent. Since the series are absolutely convergent, then Cauchy’s Rule

implies that

(=] o0 [=.*] oo
Y Av Y Bn= ) ( ) An_mBm) (2.21)
n=-—0o m=-—o00 Nn=-—00 m=-—00
It is also a well known fact {58, page 122] that the sum of two absolutely corvergent series
is absolutely convergent, so that (2) follows directly.
The proof of (3) may not seem straightforward, and is presented below. The time

periodic square matrix, P(t), can be expanded in the complex Fourier series,

> <]
P(t)= ) Pe™t (2.22)
n==-0o
so that its derivative is given by
0 w .
P(t)= Y jnw,Ppei™rt (2.23)
n,=-00

The above series is absclutely convergent since it was assumed that P(t) € L3*"[0,T]. The

element of T{P(t)} in the nth row block and mi. column block, is given by
[P(t)]ﬂ—m =j(n - m)"’an—m (2.24)

Now, N is a block diagonal matrix. The nth block row of A, when multiplied into the mth
block column of P, picks off the block element P,_,,. Similarly, multiplying the nth block
row of P into the mth block column of A picks off the block element P,,_,,, so that

[NP - PM’I,"’I = jMpIPn—m - Pn—ij'WPI
= j(n-mWwpPn-m (2.25)

as required. o

2.1.3 Eigenvalues and eigenvectors

The basic results of spectral theory for matrices are presented below in order to establish

terminology.

Theorem 2.6 (Similarity transformation) A matriz A € R"*" can be reduced to a di-
agonal matriz A by the similarity transformation A = W AV if and only if A has a lirearly



independent set of n right eigenvectors. These right eigenvectors are the columns of V', with
corresponding left eigenvectors that are the rows of W = V-1, and corresponding eigen-
values that are the diagonal entries of A. Also, the original matriz A can be reconstructed

from its eigenvalues and eigenvectors using the formula, A=V AW .

Proof: See Noble and Daniel [78]. The above decomposition is often called the spectral
decomposition of a matrix. O

However, not all square matrices are diagonalizable as described above.

Definition 2.7 (Defective matrices) A matriz A € R**" that does not have a set of n

linearly independent eigenvectors is said to be defective.

This is not, in practice, a limitation since it is always possible to reduce a matrix to

Jordan canonical form [78).

2.2 Linear Time Periodic System Theory

In this thesis, the state space plays a fundamental role, so that some of the basic notions

are reviewed in this section.

Definition 2.8 (Linear time periodic state space model) The state space model
(SSM) of a linear time periodic system, S, can be represented by a linear ordinary differ-

ential equation called the state dynamic equation

z(t) = A(t)=(t) + B(t)u(t) (2.26)
and a measurement or output equation

y(1) = C(t)() + D(tyu(?) (2:27)

where the dynamic matrix, A(t) € P"*"[T], the control distribution matrix, B(t) €
P™*m (T, 'the measurement matrix, C(t) € P™*"*[T], and the feed forward matrix,
D(t) € P™*™[T], are all T-periodic. The state vector, (t) € R", the control vector,
u(t) € R™, and the output vector, y(t) € R?. The state space model, S, is square if

p = m. Here, the notation,

(2.28)

or S = [A(t),B(t),C(t),D(t)], is adopted to denote the LTP state space model. m]
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An LTP system, S, is strictly proper, if D(t) = 0 Vt. The period of the LTP state space
model, T, is called the pumping period or the fundamenta! period, and corresponds to a
pumping frequency or fundamental frequency, w,. It was assumed that A(t) is the periodic
extension of an L»[0,T] matrix function, and similarly for B(t), C(t), and D(t). However,
this assumption is somewhat restrictive, and was imposed so that each of these matrices
could be expanded in an absolutely convergent complex Fourier series.

Now, let us consider the solution of the homogeneous linear time periodic state dynamic

equation, for which the following result is presented in [10].

Theorem 2.9 (State transition matrix and the homogeneous response) Consider

the homogeneous state dynamic equation,
z(t) = A(t)=(t) (2.29)

If A(t) € P™*"[T), then (2.29) always has a solution, called the homogeneous responsé,
of the form,
zh(t) = D(t,t0)€, (2.30)

where §, = x(0). The state transition matriz, H(t,ty) is the solution of the matriz differ-

ential equation,
%ﬁ(t, to) = A()B(t,10);  B(toyt0) = I (2.31)

where I is the identity matriz. Since the dynamics matriz is T -periodic, the state transition

matriz is also T -periodic, that is,
S(t+T,7+T)=P(t,71) (2.32)

Proof: See Brockett [10, page 20).

Remark: The sequence of matrices, My, defined recursively by
My = 1
t
M, = I+ / A(r)My_, (r)dr (2.33)
to

is instrumental in the development of the transition matrix. In fact, the sequence of matri-
ces, M}, converges on the given interval, and has the transition matrix as its limit function.

This recursion is often expressed as the Peano-Baker series

B(t,t0) = I + /: " A(r)dm + /t " A(m) /t " A(ra)dradry + - (2.34)
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The fact that the state transition matrix is T—-periodic can be deduced from the series

solution

t+T t+T n
S(t+ T to+T)=1I+ j A(ry)dr, + / A(n) / A(ro)drdry + -+ (2.35)
to+T to+T to+T

Successive application of the change of variable, gy = 74 — T, and the fact that A(t+T) =
A(t), leads to the desired result. a
For an arbitrary lincar time periodic system, the state transition matrix, ®(t,tp), is
rarely obtained in analytical form, but is almost always obtained via a numerical integration
of the defining ordinary differential equation (2.31). Procedures for numerical integration
are discussed in [33,83].
The transition matrix posesses the following properties [59,110], which will prove to be

useful in the sequel.

Theorem 2.10 (Properties of the state transition matrix) The state transition

matriz of the linear state differential equation in (2.27), has the following properties:
1. B(t2,t,)B(t1,t0)=B(t2,t0)
2. &(t,to) is nonsingular Vt, g
3. &7'(t,7) = H(1,t) Vt, T
4 $87(to,t) = —AT(2)D7 (to,1)

where the superscript T denotes the transpose. o

The first three properties will be used extensively in subsequent analyses. The general
linear state differential equation has a forced response, as well as a homogeneous response,

and the total solution is provided by [59,110].

Theorem 2.11 (Total state response and the superposition integral) Consider

the linear time periodic state dynamic equation
®(t) = A(2)z(t) + B(t)u(t) (2.36)

Assume that A(t) € P™*"[T], B(t) € P**™[T), and u(t) is pieccwise continuous for
t € [to,t]. The solution of the state dynamic equation, is the sum of the homogeneons

response, ;(t), in (2.30) and the forced response, z¢(t), given by

z(t) = /, * &(¢, 7)B(r)u(r)dr (2.37)
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Thus, the total response, z(t), is given by the well known superposition integral,
t
2(t) = B(t, 10)Eo + / &(t.7)B(r)u(r)dr (2.38)
to
for all t.

Proof: This result can be easily verified by direct substitution into (2.27). |

2.3 The Floquet Theory

A classical result in the analysis of linear time periodic systems was developed by Floquet
[29] in 1883, and continues to be virtually one of only two analysis procedures presented
in most textbooks [9,18,72,83] concerned with linear time periodic systems. The Floquet
theorem has been utilized in many areas including the buckling of beams under periodic axial
forces {28], the stability analysis of helicopter rotor blade dynamics [44,95], and many others.
Many numerical procedures for the analysis of open loop stability have been developed that
are completely based on application of the Floquet theorem, such as in [33,36].

In the Floquet Theorem, the state transition matrix, #(t + T,t), plays a fundamentally

important role.

Definition 2.12 (Monodromy matrices) The state transition matriz given by #(t + T, 1),
where T is the pumping period of the LTP state space model, is called a monodromy ma-
trix at time t. The constant matriz, $(to + T',t0), is called the (fundamental) mon-

odromy matrix.

It is customary to assume that ¢g = 0, so that the monodromy matrix can be expressed
as $(T,0). This will be assumed throughout the remainder of this thesis. Thus, we proceed
to the main results of the Floquet theory as it is called here. However, these results are

generally attributed to Floquet, or Liapunov, or both.

Theorem 2.13 (Floquet) Consider the state space model of the linear time periodic
system in Definition 2.8. If the monodromy matriz, &(T,0), is nondefective, then the
following resulis hold:

1. State transition matrix. The stale transition matriz of (2.26) can always be ez-

pressed as
&(t,7) = P(t)eRt- p-1(1) (2.39)
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where P(t) is a nonsingular T-periodic matriz of dimension nxn, and Q is a constant,

possibly complez, matriz of dimension n X n.

2. Similarity transformation. The state transformation
z(t) = P(t)v(t) (2.40)

transforms x(t) into a set of periodically time varying system of coordinates, v(t),

such that the dynamics matriz in the new state space is linear time invariant, that is,

(t) = Qu(t)+ B(t)u(t)
y(t) = C(t)v(t) + D(t)u(t) (2.41)
where
Q = P(t){A@®)P@) - P(t)}
B(t) = P'(1)B(t)
Ci) = C@H)P(t) (2.42)

3. Stability. A necessary and sufficient condition for stability is that all eigenvalues of

the monodromy matrii lie on the open unit disk, that is,
A {®(T,0)} € D, (2.43)
where D, = {z| |2] < 1}.

Proof: (1) State transition matrix. From the defining ODE of the state transition

matrix,

(t+ T,0) = A(t + T)®(t + T,0) (2.44)
Since A(t + T)=A(t), it follows that
$(t +T,0) = A(t)8(t + T, 0) (2.45)

Clearly, #(t + T',0), also satisfies the defining ODE of the state transition matrix. From

the properties of the state transition matrix

&(t + T,0) &(t + T, T)$(T,0)
= &(t,0)8(T,0) (2.46)
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Since the monodromy matrix, #(T,0), is a real, constant, and non-singular matrix, it can

be expressed as the matrix exponential fuuction
&(T,0) = QT
Note, however, that @ might be complex. Thus, (2.46) can be expressed as
&(t + T,0) = B(t,0)eQT

Assume a solution of the form

&(1,0) = P(t)c?!

so that
P(t) = &(t,0)e~

(2.47)

(2.48)

(2.49)

(2.50)

Now, the inverse of the state transition matrix, #(t,0), always exists. The exponentijal term

is always positive and nonzero, so that its inverse always exists. Thus, the matrix P(t) is

nonsingular. Note that

P(t+T) = &(t+T,0) e Qu+D

= (8, O)eQTe'QTe'Q'

= &(t,0)e" Q!
Comparing (2.50) and (2.51) demcnstrates that
P(t+T)= P(t)
that is, P(t) is T-periodic. From the properties of the transition matrix

&(0,7) = $7'(r,0)

e~ Q7 P-1(r)

so that

$(t,7) = H(¢,0)8(0,7)
= P(t)e?e-Q p-1(7)
which completes the proof of the first result.
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(2) Similarity transformation. The similarity transformation utilized here is

so that
&(t) = Pt)(t) + P(t)v(t)
= A(t)z(t) + B(t)u(2)
Solving the above two equations for v(t) yields
o(t) = P (t) {A()P(t) - P(1)} v(t) + B(t)u(t)

From (2.39),
P(t) = $(t)e= Q!

so that

P(t) = &(t,0)eQ - &(t,00e-2Q
= &(t,0)e"Q - P(1)Q

Solving for Q in the above expression yields

Q = P () {AQ)P(t) - P(1)}

Thus, (2.56) can be simplified, which concludes the proof of the second result.

(2.55)

(2.56)

(2.57)

(2.58)

(3) Stability. The monodromy matrix describes the state transition over one fuli period,

so that

z(kT) = &(kT,0)¢,

= oK(T,0),
From the monodromy matrix eigenvalue problem,
&(T,0) = VAW

Hence,

x(kT) = VA*WE,
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Tﬁe state vector, (kT'), will be asymptotically stable as & grows large, only if the eigen-
values of the monodromy matrix contained in A are on the open unit disk, \; € Dy Vi.
Conversely, if the eigenvalues of the monodromy matrix are all on the open unit disk, then
the state vector will be asymptotically stable as k£ — ~o.

Remark: An interesting observation can be made about LTP systems as a result of the

proof of the Floquet Theorem. Recall that
&(T,0) = QT (2.62)

Thus
Q= %log &(T,0) (2.63)

If $(T,0) has a negative real eigenvalue, say \;, then log \; is complex (with no complex
conjugate), so that @ is also complex. However, $(t,0) must be a real matrix. This implies
that P(t) must be complex such that the resulting product of P(t) and @ is real. (m

The above statement of the Floquet Theorem is somewhat more comprehensive than
that provided in the majority of textbooks dealing with LTP systems. However, all of the
above results are directly or indirectly derivative of Floquet’s original work. A slightly more
general Floquet Theorem can be stated if the more general case of a Jordan canonical form
is assumed for the monodromy matrix. However, this extension unnecessarily complicates
the algebra, and is omitted for brevity and clarity.

Given a state space representation of an LTP system, either open or closed loop, the
monodromy matrix $(T,0) can be determined by integrating its defining ordinary differ-
ential equation. However, this results in a yes or no answer to the question of stability.
Determination of the monodromy matrix is straightforward using a numerical integration
technique where the periodically time varying coefficients of A(t) are approximated using
either a staircase or trapezoidal waveform [80,83,84,85]. Alternative numerical procedures
have been developed by Friedmann et al [33). However, the Floquet theory‘only presents a.
methodology for the analysis of a closed loop system, and in particular, only provides the
z-plane locations of the eigenvalues of the monodromy matrix. Thus, Floquet theory can
only serve as an analysis tool, and not as a compensator synthesis tool.

Suppose that the initial condition, &,, of the LTP system is chosen such that it is a right

eigenvector, v, of the monodromy matrix, #(T,0). Then,

z(T) = &(T,0)¢,
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= z2£ (2.64)
Alternatively, if an arbitrary initial time with the same property is selected,
z(t+ T) = zx(t) (2.65)

then an interesting observation can be made. Floquet Theory can be viewed as the search
for signals, x(t), that increase geometrically from period to period. This observation will
form the basis for defining a class of input signals that have a geometrical variation from
period to period, so that a linear operator can be developed to describe the input-output
characteristics of LTP systems.

The Floquet theorem also permits us to dispense with the study of LTP systems with
periodically time varying dynamics in the open loop, and consider instead the completely
general case of a periodically time varying state space representation with a time invariant
dynamics matrix, Q. However, as soon as feedback is introduced, time periodic dynamics

must be reconsidered, as will be discussed in the sequel.

2.4 The Hill Theory and Harmonic Balance

A classical dynamic analysis method for systems with time periodic parameters is the
method of harmonic balance. This procedure was originally introduced in 1878 by Hill
[47,46] in his landmark paper on the infinite determinant approach for stability analysis of
LTP systems. Since that time, the harmonic balance approach has been extended to the
study of nonlinear systems, such as described by Nayfeh and Mook [77], and is an integral
part of the describing function methodology [35).

Harmonic balance refers to the series expansion of the periodic parts of the solution
to the dynamic equations using a trigonometric or complex Fourier series. The Fourier
series involves the expansion of the parametric excitation into a set of basis functions,
namely, sinusoids, that are orthorormal over the fundamental period using an £, norm.
The dynamic equations of motion are then expanded in terms of these Fourier series and
all terms are grouped by harmonic number. Since the sinusoids form an orthonormal basis
in the fundamental interval, the coefficients multiplying each basis function (sinusoid or
harmonic) must vanish for each and every harmonic number independently. This is often

referred to as either the principle of harmonic balance, or linear independence. In priaciple,
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a generalized Fourier series can be used; that is, a Fourier series for which an arbitrary set
of orthonormal functions is developed. In this thesis, however, only the orthonormal basis
formed from the complex exponentials will be considered.

The harmonic balance approach has been used in many forms. Nayfeh and Mook [77]
express the periodic portion of the state vector as a truncated trigonometric Fourier series

of the form

N
xz(t) = E Tn, cos (nwpt + nfo) (2.66)

n=0

Others, including Leonhard [61], and Dugundji [27], typically use a truncated trigonometric

Fourier series of the form

N
z(t) = Z {@nc cos nwpt + @p, sin nw,t} (2.67)

n=0
However, the above trigonometric forms of the Fourier series are inconvenient because they
lead to asymmetrical linear operators in the frequency domain, although the results obtaine&
using the trigonometric and complex forms of the Fourier series are exactly equivalent. This
will become clear in the next chapter. Meirovitch [73] utilizes the complex Fourier series
0o
z(t)= Y x,emrt (2.68)
n=-s0
Hill essentially used the same complex Fourier series modulated by the complex exponential
in order to make the connection with the assumed Floquet solution, so that
oo
z(t) =€ ) znelmrt (2.69)
n=—o0
In the above form of series expansion, the dependence of the assumed solution on the
complex exponential rates is explicit. In fact, this type of series expansion will lead to
linear operators in the frequency domain that have desirable symmetry properties.

Several authors call the method of harmonic balance the approach whereby only a sin-
gle harmonic is included in the series expansion [61,99,101]. Several authors permit many
harmonics to be included in the series expansion, and have called this the generalized har-
monic balance methodology [61,99,101]. However, Hill formulated his lunar perigee problem
including an infinite number of harmonics, and then truncated the resulting infinite deter-
minants to obtain approximate results. Thus, all harmonic balance methods are derivative
of Hill’s original approach, the only difference being that Hill included the complex expo-

nential portion of the Floquet solution explicitly, as opposed to the former harmonic balance
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methods, where the complex exponential portion of the Floquet solution remains implicit
in the state vector.

The only relatively recent work that utilized the complete Floquet solution is Schweizer
[90,91]. However, his use of the trigonometric Fourier series form of the Floquet solution
leads to an inconvenient form. Also, several of the results obtained were cumbersome in the
extreme, probably due to the fact that the geometric approaches currently commonplace in
the study of multivariable LTI systems, were not commonly available in the early 1960’s.

At this point, let us review the classical Hill determinant methodology. The connection
between Hill’s original work and the harmonic balance approaches will be discussed more
thoroughly in the context of the linear operators developed in the next chapter.

The classical development of the Hill determinant is straightforward and is outlined

below. Here, a second order Hill equation with no dissipative terms will be considered,
#(1) + [a — 2q9(1)](t) = 0 (2.70)
where () is T—pericdic, so that (t) can be expressed as a complex Fourier series,
w .
(t)= Y tnelmrt (2.71)
n=-—-00
where the 1, are the complex Fourier coefficients, and wy, is the pumping or fundamental

frequency. (By convention, T' = , so that w, = 2.) The Hill determinant analysis rests on

the assumed Floquet solution of the form

oo
z(t)=e* ) znelmrt (2.72)

n=-—0o

Substituting (2.71) and (2.72) into (2.70), we have

o0 o0 <]
0=e" 2 (8 + jnwp)?z,e?™pt 4 ¢ (a -2q Z ¢mej'"“’P‘) Z Tae™rt  (2.73)

n=-0o m=—-o0 n=-—00

Multiplying through by e~* and grouping terms yields

0 oo
0 = 3 [(s+5mwp)®+alzae™ 5 —29 3 uznelmalunt
n=-00 mn=-—oo
oo ' o '
= Z [(3 + j'wp)z + “}znejw"l -2q Z 'pmzn-me"w’t
n=-o0o0 m,n=-o00
[ ] %) )
= X {1(8 +jnwp)’ +alen —2¢ ) ¢mz.._...} etnert (2.74)
n=-00 m=—0oo
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Since the system of functions, {¢/™!|n € Z}, form a set of orthonormal basis functions
in L2[0.T], the principle of harmonic balance can be applied to obtain the infinite set of

simultaneous equations below:
o0
0=[(s+ jm..:l,,)2 + alz, — 2q Z YmTn-m, VneZ (2.75)
m=—-00
In order for the above system of equations to have a nontrivial solution, we require that the

determinant,

p-2 ki k2 ks ks
kox p1 ki k2 ks
$(s)=det | ... k_y koy po ki kg .- (2.76)

k_sa k_a k_z k_y po

be zero, where
pn = (s + jnwy)? + ko (2.77)

and
a—-2qy, n=0
k, = 7o (2.78)
-2qYn, Vn€Z,n#0 '
The above determinant, which does not converge, is usually presented in the literature as
a precursor to the Hill determinant, or a pre-Hill determinant [83]. Consider the following

result for the absolute convergence of infinite determinants.

Lemma 2.14 (Absolute convergence of infinite determinants) An infinite deter-

minant is absolutely convergent if

(a) the product of the elements on the main diagonal is absolutely convergent, and

(b) the sum of the non-diagonal elements is absolutely convergent.

Proof: See McLachlan [72] for an exposition of the Hill determinant. The above lemma is

proved in [107]. m]
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A simple way to satisfy the conditions in the above lemma is to divide every row n by

Pn, so that the Hill determinant defined by

1 * k2 ko kg
p=2 H-2 p=2 P2
kx| kL k2 ks
p—1 p-1  p-1 P
A(s)=det | ... k=2 ka1 1 & k (2.79)
P0 PO PO PO
ks k=2 k| kK
n A/ 1
ket ks k2 ko
2 P2 P2 P2

is absolutely convergent. The fact that the infinite determinant is absolutely convergent is
very useful from a numerical standpoint. However, by normalizing the pre-Hill determinant,
the structure inherent to the pre-Hill determinant is destroyed. This structure will be
examined in detail in the next chapter.

The Hill determinant is most commonly used to to develop stability diagrams that
describe stable regions in a parameter space associated with the system under consideration.

For example, the canonical form of the Mathieu equation,
#(t) + (a — 2g coswpt)z(t) = 0 (2.80)

has two parameters, a and ¢, for which stability boundaries are often sought. The stability
boundaries are plotted in the (a,g) plane. The resulting stability diagram for the Mathieu
equation (that is, with no damping) is called the Strutt diagram [72,83], and is shown in
Figure 2.1. |

2.5 Summary

In this chapter, the basic mathematical preliminaries for the study of LTP systems were
described. The complex Fourier series and a brief discussion of its convergence properties
was presented. The Toeplitz form and the Toeplitz transform was introduced. Application
of the sfa.te space to LTP systems was reviewed, and applicable results from the linear system
theory were presented. Finally, the classical theories of Floquet and Hill were reviewed.
The above preliminaries will serve as tke starting point for the developments in the next

chapter.
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Chapter 3

Frequency Response of LTP

Systems

It is interesting to note that neither a transfer function notion, nor a frequency response
notion, has ever been developed for linear time periodic systems that is completely analogous
to the LTI transfer function. The objective of this chapter is to develop a linear operator
or transfer function for LTP systems that is analogous to the LTI transfer function. The
transfer properties of the LTP system can be deduced in terms of the LTP transfer function.
Properties of LTP systems such as poles, transmission zeroes, principal gains, and their
associated directional properties, are then described in terms familiar to the multivariable

control theory.

3.1 Introduction

The dynamics of an LTI system can be described in the time domain by a nth order
matrix differential equation with constant coefficients called the LTI state space model. In
steady state, the response of a Lnear time invariant (LTI) system to a complex exponential
(sinusoidal) input signal of a given frequency, is a complex exponential output signal of the
same frequency, but with possibly different amplitude and phase. This leads to the notion
of the LTI frequency response and the LTI transfer function. The Laplace transform can be
applied to the LTI state space model with trivial initial conditions to obtain the LTI transfer
function. The Bode diagrams are then determined by computing the magnitude and phase

of the complex valued LTI transfer function over the frequency range of interest (with
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1 — 28 coswpt

u(t) y(t)

C.

Figure 3.1: Simple LTP system. A signal, u(t), passes through a time periodic gain, which is
an amplitude modulation by a periodic signal, 1 — 20 coswyt, to obtain the output, y(1).

some caveats concerning directional properties in the multivariable case). An important
characteristic of the LTI transfer function is that it is an operator for which the input and
the output signal spaces are equal, that is, the space of complex exponential signals. In the
sequel, these notions will be made more precise.

However, the complex exponential input signal does not lead to such a convenient fre-
quency response notion for LTP systems even in the simplest of cases. To illustrate this,
consider the simple LTP system represented by the amplitude modulation of a signal, as
shown in Figure 3.1. The frequency at which the amplitude modulation takes place is called
the pumping frequency, w,. For a complex exponential input signal, u(t) = e, the output

signal is the sum of three complex exponentials,
y(2) = e — Belo=iwp)t _ gelotiup)t (3.1)

Thus, when a complex exponential input is injected into an LTP system, several harmonics
of the pumping frequency may appear in the output signal, all modulated by the input
complex exponential. Thus, the input and output signal spaces are not equal. As a result,
the notion of a transfer function for LTP systems has been elusive.

It is well understood that the steady state response of an LTP system may contain
several harmonics of the pumping frequency, and was a motivation for the development of
the describing function (DF) [61] or equivalently, the harmonic balance technique [27, for
example] as applied to LTP systems. The fundamental assumption behind these approaches
is that the fundamental harmonic of an oscillation in a closed loop LTP system is not
influenced by higher harmonics. Essentially, the LTI frequency response notion is used to
approximate the LTP response, which can lead to grossly inaccurate results. Leonhard
suggested [61] that this problem can be mitigated by including as many harmonics as
influence the fundamental harmonic, but an infinite number of harmonics may influence

the fundamental. However, arguments analogous to high frequency roll-off in LTI systems
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can be used to limit the number of harmonics that must be included in the DF approaches.
Leonhard also presents examples suggesting that satisfactory results can be obtained by
including only two or three prevalent harmonics in some cases. Since the harmonic balance
method is essentially identical to the DF approach in this context, the same discussion
applies.

However, neither the DF, nor the harmonic balance approach, has led to a notion of
an operator for LTP systems comparable to the transfer function for LTI systems. As a
result, Schweizer [90,91}, proposed a frequency domain operator based on the trigonometric
Fourier series expansion of a single-input single-output LTP system. However, Schweizer’s
operator requires the computation of infinite continued fractions which would be impractical
and cumbersome for a multivariable system. As a result, this particular operator has not
received widespread acceptance in the study of LTP systems. In addition, many of the
results that are currently accepted practice in the analysis of the transfer function matrix
for multivariable LTI systems were not available to Schweizer.

Invariably in the fields of signal processing and control theory, time periodic signals are
expanded in complex Fourier series in order to understand their harmonic content. A similar
procedure is advocated here, so that the parametric excitation embedded in the description
of an LTP system can be examined systematically, and a corresponding transfer function
and frequency response clearly stated. Several useful analysis tools in the multivariable
control theory can then be extended to this LTP transfer function. Feedback compensation
techniques can then be developed in this context to improve open loop characteristics of
the LTP system.

The chapter is organized as follows. The response of an LTI system to a complex expo-
nential test signal is reviewed in order to establish terminology and to provide a basis for
comparison with the LTP system theory developed in the sequel. The response of an LTP
system to a complex exponential signal is also reviewed in detail in order to substantiate
the claim that the complex exponential test signal does not result in a complex exponen-
tial steady state response. This analysis leads to the identification of a fundamental signal
space for LTP systems. The LTP frequency response is derived utilizing integral operators,
and poles and transmission zeroes are defined in this context. However, the integral oper-
ator approach is not very convenient for numerical calculations. Hence, a generalization of

the harmonic balance approach is introduced in order to characterize the LTP frequency
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reéponse, and methods for calculating poles, zeroes, and their associated djrectional prop-
erties, are presented. The principal gains, associated directions, and the LTP principal gain
diagram are then introduced. The relationship of the generalized harmonic balance ap-
proach developed here to the traditional application of harmonic balance, such as described
by Dugundji [27], and its relationship to the classical Hill theory, is also discussed. The
chapter closes with some applications of the above techniques to some interesting linear

time periodic state space models.

3.2 LTI Frequency Response

In order to compare the LTI theory with the theory to be developed for LTP systems in the
sequel, a brief review of the LTI frequency response is provided to establish terminology.
The test signal of fundamental interest in the study of LTI systems is the compler

ezponential or the ezponentially modulated sinusoid,
u(t) = woe® seC, upe C™ (3.2)
It is desired to determine the response of the LTI state space model,

(1)

y(1)

Az(t) + Bu(t)

Cz(t) + Du(t) (3.3)

to this complex exponential. At the same time, associated transieat responses will also be
determined due to their importance in developing the notion of transmission zeroes.
Recall that the total state response, z(t), associated with (3.3) is given by the convolu-

tion form of the variation of constants formula,
t
2(t) = eAte, + / eAt=7) By(r)dr v (3.4)
()}

The first term is traditionally called the homogeneous state response, (), and the second
term the forced response, & (), or the particular solution. Now, let’s determine the response

of LTI system to the complex exponential in (3.2):
t
z(t) = eA‘EO + / eA(“’)Buoe"dr
b S
= eAtgy— AT - A) 1 Bug + (s — A)~' Buge
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Grbuping terms yields the total state response,
z(t) = e At [fo - (sI - A)‘lBuo] + (s — A)"'Buge® (3.5)

The total state response can be separated into the sum of the transient response, or that

portion of the total response corresponding to a relaxation of the system modes,
wer(2) = €A% [ — (s = A)"' Bug| (3.6)

and the steady state response, or compler exponential response, or that portion of the total

state response that does not correspond to a relaxation of the system modes,
x,5(t) = (sI — A)"1 Buge®* (3.7)
The tran: >nt output response is given by
Yo (1) = Ce! [ — (sT ~ 4)7 Buo| 39
and the steady state output response or the complez ezponential output response by
Yu(t) = [C(sT - A)B + D] uoe™ (3.9)
The LTI transfer function matriz is then given by the term in square brackets, or
G{s)=C(sI - A)"'B+ D (3.10)

In the above discussion, the steady state or complex exponential response was deter-
mined directly from the total response. However, the steady state response can be deter-
mined by taking a slightly different point of view, that is, to search for the initial condition,
&0, that produces no relaxation of the system modes such that the total response consists
of only the complex exponential response. Fortunately, by inspection of (3.6), this initial
condition is easily identified, ' |

& = (sI - A)"'Bu, (3.11)

so that the transient response vanishes. This choice of an initial condition can then be
substituted into the convolution integral to obtain the steady state output (or complex
exponential) response. |

The steady state output response in (3.9) leads to the usual LTI frequency response
concept, which is depicted in Figure 3.2. From the steady state response, we can deduce
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u(t) = uge’™! y(1) = G(jw)uge’!

Figure 3.2: LTI frequency response. In steady state, an LTI system maps a sinusoidal input
signal of frequency w, into a sinusoidal output signal of the same frequency, but with possibly
different amplitude and phase.

the frequency response: in steady state, an LTI system maps a sinusoidal input signal of
frequency w, into a sinusoidal output signal of the same frequency, but with possibly different
amplitude and phase. This statement is true for both SISO and multivariable systems. As a
practical matter, the steady state response is determined by evaluating the transfer function
matrix at the frequency of interest, w, to obtain the complex valued matrix, G( Jjw), which
is then multiplied by the complex valued input direction (vector), u,, to obtain the output
direction (vector), y¥,. Thus, the mathematical operations of interest are multiplications of
complex matrices.

The poles and transmission zeroes can be easily identified using this approach. The
poles of the LTI system are simply those locations in the complex s—plane for which the
transfer function (linear operator) is not analytic. Thus, the LTI poles are determined using
the eigenvalue problem,

[sT - Alv =0 (3.12)

where the mode shapes are the eigenvectors, v. The transmission zeroes are determined
by recognizing that the choice of initial condition in (3.11) results in the transient output

response vanishing for all time. Rearranging yields
(sI - A)§, - Bug =0 (3.13)
Then, substituting (3.11) into (3.9) yields
(C€y + Dug)e” =0 (3.14)
Since the complex exponential is never zero, the above equation can only be satisfied if

Cé& + Duo =0 (3.15)
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Table 3.1: Summary of LTI system responses. The LTi frequency response is deduced by inject-
ing a complex exponential test cignal into an LTI state space model, and using the convolution
integral to determine the system response.

Concept Symbol Formulation

Test signal u(t) uqe’l

Responses

Homogeneous zh(t) eA‘EO

Forced z (1) (e"'I - eA‘) (sI — A)"'Buy
Transient z,(t) At (&0 — (sI — A)"1 Buy]
Steady State x45(t)  (sI — A)"!Buge*

Transient Output v, (1) CeAt (&0 = (sI — A)~1 Buy]
Steady State Output y,,(t) [C(sI — A)~!B + D] upe®
Transfer function  G(s) C(sI- A 'B+D

Hence, (3.13) and (3.15) can be expressed as the LTI transmission zero generalized eigen-

value problem,
e I (3.16)
-C -D Ug
All of the properties derived above for an LTI system are based on the fundamental
input signal space consisting of complex exponential signals, and are summarized in Ta-
ble 3.1. The derivations of the various responses are straightforward and do not require
any specialized mathematics except the fundamental notions of the convolution integral
form of the variation of constants formula and the defining ODE of the state transition
matrix. Moreover, the complex exponential input signal produces a complex exponential
output signal via the steady state output response, and it is this steady state response that
is the transfer function of the LTI system. This linear map can be analyzed using linear
algebra involving norms, singular values and eigenvalues, and their associated directional
properties.
Finally, for LTI systems, the connection between the time domain and the frequency

domain is obtained via the Fourier transform. The complex exponential is a basis function

for the time domain function space of square integrable signals denoted by Ly(—00, 00) with
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the inner product

<zy>= /°° () y(t)dt (3.17)

The frequency domain is obtained by application of the Fourier transform to obtain the

frequency domain function space L,, with inner product

<z,y>= i/ z(jw)*y(jw)dt (3.18)
21 J—oo

The point here is that the Fourier transform is a Hilbert space isomorphism, that is, a
map that is continuous, preserves the L, norm, and has a continuous inverse. This is an

extremely useful property that is used frequently in the control theory.

3.3 LTP System Response to a Complex Exponential

Richards [83] and others have attempted to describe a map, similar to that of the LTI
transfer function, for LTP systems using the complex exponential signal. However, the
complex exponential test signal is inappropriate for LTP systems, so that the resulting map
cannot be analyzed via the algebra described above. In.this section, the response of the
LTP system to a complex exponential signal is examined in detail, in the hope of gaining
insight into the character of the test input signal for LTP systems that is analogous to the
complex exponential signal for LTI systems.

Here, we consider the response of the LTP state space model

&(t) = A(t)z(t) + B(t)u(t)
y(t) = C()=(t) + D(t)u(t) (3.19)
to a complex sinusoid of the form
u(t) = uge™ (3.20)

Similar analyses are presented by Richards [83, page 41) and D’Angelo [18, page 200],
although not in the same form as developed here.

The total response is given by the superposition integral,
t
2(t) = B(t,0)€, + / &(t, 7)B(r)u(r)dr (3.21)
0
The first part, as before, is called the homogeneous response,

zh(t) = $(t,0)&o (3.22)
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and the second part is called the forced response,

t
xy(t) = /(;45(t,'r)B('r)u(T)dT

t
= / B(t, 7)B(r)uoe’ dr
0

t

/ $(t,7)B(1)e* drug
o

From the properties of the state transition matrix,

&(t,7) = &(1,0)$(0,7)

B(t,0)87'(r,0)

we have

t
xy(t) = 45(t,0)'/0 &~1(7,0)B(1)e*"dr ug

Using the Floquet result from Theorem 2.13,

$(1,0) = P(t)e?

$1(r,0) = e R P1(r)
the forced response can be expressed as

zp(t) = ﬁ(t,O)./ote"Q’P'l(r)B(r)e"druo

&(t,0) /0 etel -@) p-1(7)B(r)dr uo

To simplify the algebra, let
B(t) = P7Y(r)B(7)

Now, B(r) is a T-periodic matrix, and can be expanded in a complex Fourier series,

-— 0 - N
B(r)= 3 Bnem™r

m=-—0oo
- Substituting,

[e o] t _
z4(t) = $(t,0) 3 A emI-QY B drug

m=--00

where

Sm = 8+ jmuwp
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Evaluating the integral,

t —
Bmuo
T=0

51,00 5 etnI-Qr(s 1 Q)

m=-—00

zy(t)

P(t)eQ" i [elemT=@) _ 1] (5] ~ Q)7 Bmuo (3.33)

m==-00

Finally, the forced response becomes
mf(t) = P(t) E (smI - Q)-IBmuoesmt - @(t,O) Z (smI - Q)_leuO (334)
m=—0o0 m=—oo
The total response is the sum of the homogeneous and forced responses,

m(t) = é(to){fo— f: (3mI_Q)_IBmu0}

m=-—00

+P(t) i (8mI — Q)" Bruge’™! (3.35)

m=—00
The transient response, which is that part of the total response corresponding to the relax-
ation of the system modes, is given by the first term in the total response,
m —
m=-—00
The transient response vanishes for ¢ — oo if the system is strictly stable. The steady state
forced response is then the second term in the total response, and is given by
w —
Tas(t) = P(t) Y (smI - Q)7 Bpuge’™* (3.37)
m=-—00

Although the test input signal considered here is a complex exponential, the steady state
forced response contains, in general, an infinite number of harmonics of the fundamental or
pumping frequency wp, all modulated by the complex exponential input signal. To complete

this discussion, the transient output response is given by

Y (t) = C(t)a’!r(t)

C(t)®(t,0) {60 - i (smI - Q)“IBmuo} (3.38)

m=-—00

and the steady state output response is given by

Y,,(t) = C()P(2) f: (smI — Q)1 B uge’ ! + i D,uge’? (3.39)

m=-—00 n=-oo
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Several important conclusions can be drawn from the above analysis of the response of
an LTP system to a complex exponential input. In the LTI case, the test input signal was
a complex exponential, as was steady state output response. This steady state response
provided the representation of the transfer function matrix. On the other hand, the steady
state response of an LTP system to a complex exponential test input signal can contain
many frequency components, including the input frequency, but excluding the pumping
frequency, except when w = 0 and when w is commensurate with w,. However, every
frequency component in the steady state response is the complex exponential modulation
of a harmonic of the pump frequency. In general, the steady state response of an LTP system
to a complex exponential test input where the complex exponent is on the imaginary axis,
8 = jw, is aperiodic

y(t+T) # y(t) (3.40)

unless the input frequency, w, and the pump frequency, w,, are commensurate or w = 0
For example, if w, = 2w, then the steady state response will be periodic with frequency w.
The reiative amplitudes of the various harmonic components can be easily deduced from
the steady state output response, although this is not done here explicitly.

In the remainder of this chapter, descriptions of an LTP system that are analogous
to the LTI frequency response will be developed using a different test input signal that is
of fundamental importance to LTP systems, namely, geometrically periodic or (complex)

ezponentially modulated periodic signals.

3.4 Fundamental Signal Spaces for LTP Systems

The objective of performing the analysis in the previous section was to develop insight into
what class of input signals might lead to a linear map for LTP systems. It was shown in the
previous section that the LTP system maps a complex exponential to a complex exponential
modulation of a possibly infinite number of harmonics of the pumping frequency, so that
it makes sense to include all harmonics of the pumping frequency in the test signal. It was
stated previously that both Floquet and Hill have provided clear insight into what these
signal spaces ought to be, and here the definitions of these signal spaces are formalized.
Recall from the Floquet theory that the homogeneous state response at time ¢, is related

to the state state response a full period away, by a complex scalar,
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z(t+T)=z2x(t); z€C (3.41)

At time t + NT, the state vector is related to the state vector at time ¢ in similar fashion
z(t+ NT) = zNa(t) (3.42)

Thus, in order to achieve the desired linear map, it is clear that a test input signal of the
same form as (3.42) must be selected. This leads to the concept of a geometrically periodic

signal.

Definition 3.1 (Geometrically periodic signals) A geometrically periodic (GP) sig-
nal, u(t), with fundamental frequency, w,, and corresponding fundamental period T, has
the property that

u(t+ NT) = 2Nu(2) (3.43)

where z € C. (m}

Note that this signal is fundamentally different from a periodic signal for which |z| =
1. The notion of the geometrically periodic (GP) test signal will be most useful in the
development of the LTP frequency response using an integral operator approach in the
next section. A geometrically periodic signal can be expressed as a complex exponential
modulation of a periodic signal. When the periodic portion of the GP signal is expressed as
a complex Fourier series, the GP signal is referred to as an ezponentially modulated perivdic

signal [83].

Definition 3.2 (Exponentially modulated periodic signais) A4 (complez) ezponen-
tially modulated periodic (EMP) signal can be ezpressed as the complex Fourier series of
a periodic signal of fundamental frequency, wp, modulated‘by a compler exponential (sinu-

soidal) signal,

u(t) = €% Z e_mwpl

n=—0o
= Z uqe’™t: >0 (3.44)
n=-—00 )
where
Sn =8+ jnuwp, ‘ (3.45)
andseC. =
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The exponentially modulated periodic test signal will be used in the sequel to develop

the LTP frequency response using a generalization of the harmonic balance methodology.

Lemma 3.3 An ezxponentially modulated periodic signal can be ezxpressed as a geometrically

periodic signal, and vice versa.

Proof: The two points of view, namely geometrically periodic (GP) and ezponentially

modulated periodic (EMP) signals, can be reconciled by noting that
z=eT (3.46)

The proof follows directly from this fact, and that any periodic signal can be expanded
uniquely in a complex Fourier series. m]

A strong analogy will be proposed at this point. Geometrically periodic (or ezponentially
modulated periodic) signals are to LTP systems as complez ezponential signals are to LTI
systems. One difficulty that is introduced by the notion of the EMP signal is the infinite
number of Fourier coefficients that might be required to describe a periodic signal. This is
certainly a drawback, but one that is inherent to the analysis of LTP systems and cannot
be avoided.

Clearly, GP signals for which |2| < 1 are L,[0,T] signals, and have bounded energy.
Similarly, EMP signals for which Re(s) < 0, are L,[0,T] signals. In addition, an orthonormal
basis for GP or EMP signals consists of complex exponentials at all multiples of the pump
frequency.

Two closely related representations of an LTP system will be introduced. The first
representation is based on an integral operator approach, and uses the definition of the
geometrically periodic signal. The integral operator approach will permit the exploitation of
the many results available in the mathematical literature on the kernels of integral operators
[17]. The second approach is a generalization of the harmonic balance or describing function
approaches that is more familiar to the theory of dyna.mics and control, and utilizes the
definition of the (complex) exponentially modulated periodic signal. However, the harmonic
balance approach has not been stated in the linear operator form as will be done here.

Both approaches are strongly related and this relationship will be discussed and quan-
tified. Also, the benefits and disadvantages of each é.pproach will be discussed in the re-
mainder of this chapter.
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3.5 LTP Frequency Response Using Integral Operators

In this section, the notion of the GP test input signal will be used to deduce frequency
response notions for LTP systems. First, the response of LTP systems to GP signals will

be examined.

Theorem 3.4 (LTP system response to GP signals) Consider the state space model
of an LTP system with time periodic dynamics, S = [A(t), B(t),C(t), D(t)]. If the input

to the LTP system is a geometrically periodic signal,
u(t+ NT) = zNu(1) (3.47)

where z is not an eigenvalue of the monodromy matriz, then the total state response is the

sum of a geometrically periodic steady state response,
Top(t) = (4,0)[zI - &(T,0)]" /0 " &(T, 7)B(rYu(r)dr
+ /0 " &(t, 7)B(r)u(r)dr (3.48)
and a transient state response of the form
x,,(t) = $(t,0) {&, — [2I — &(T,0)]! /{;T (T, T)B(r)u(r)dr} (3.49)

which vanishes as t — oo if the system is asymptotically stable. Also, the geometrically

periodic steady state output response is given by
Yo(t) = C(t)B(t,0)[=I — &(T,0)]* /0 " (T, 1) B(r)u(r)dr
+ @) /0 " &(t, 1)B(r)u(r)dr + D(t)u(t) (3.50)
and the transient output response is given by
V() = C()%(2,0) {eo ~ (oI - &(T, 0)] /o ’ Q(T,T)B(r)u(r)dr} (3.51)

Proof: The total state response is given by the superposition equation [110] for initial state

condition &,,

2(t) = $(t,0)6 + /0 * &(t,7)B(r)u(r)dr (3.52)
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If the input to the LTP system is GP, then a GP steady state response, x;5(t), exists (unless

z is an eigenvalue of the monodromy matrix). To determine this GP solution, recall that

z(T)

z€o
T
&(T, 0)¢, + /0 &(T, 7)B(r)u(r)dr

Solving the above equations for the initial state, &,, yields

T .
£, = [T — B(T,0)"* /0 &(T, 7)B(r)u(r)dr

(3.53)

The steady state response is then obtained by substitution of the above initial condition

into the superposition equation (3.52), to obtain (3.48). Now, let us verify that the steady

state response is indeed a GP signal, that is,
T5s(t+ T) = 2,,(t)
To simplify the algebra, set
T
& = [ — &(T,0)]" / &(T, 7)B(r)u(r)dr
0

so that
Z4u(t) = B(t, 0)cx + /0 *&(1,7)B(r)u(r)dr

One full period later, the steady state response is given by

TH(t+7T) &$(t+ T,0)a + OH-T &(t + T,7)B(r)u(r)dr

’ T
&(t + T,0)a + / &(t + T,7)B(r)u(r)dr
0
t+T
+ /T &(t + T, 7)B(r)u(r)dr
Applying a property of the ctate transition matrix
T
Eu(t+T) = &(+T,T)(T,0)a+ / &(t + T, T)&(T, 7) B(r)u(r)dr
0
t+T
+ [ 8@+ TB(ryu(rr
Since the state transition matrix is also periodic, that is,
$(t+ T,T) = #(¢,0)
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a further simplification can be made,

: T
2ot +T) = &(t,0)8(T,0)a + B(1,0) / &(T, 7)B(r)u(r)dr
0
t+T
+ A S(t+ T,7)B(t)u(r)dr (3.60)
The first integral can be expressed in terms of ¢,

/OT &(T,7)B(r)u{r)dr = [2I — $(T,0)] a (3.61)

so that grouping terms multiplied by a,

zes(t+T) &(t,0)[S(T,0) + zI — $(T,0)] a + /TH-T &(t + T,7)B(7)u(r)dr
t+T
= 28(t,0)a+ /T &(t + T, 7)B(r)u(r)dr (3.62)

Let us consider the remaining integral separately. Making the change of variable, p = 7T,

/TH-T &$(t+ T,7)B(t)u(r)dr = /Ot $(t+T,n+T)B(n+ T)u(n+ T)dy

t
z /0 ®(t,n)B(n)u(n)dn (3.63)
Thus, grouping terms in 2, and making the change of variable 7 = 7,

2 (di(t,o)a + /0 ' 45(t,T)B(r)u(1')dr)
= 2@4,(1) (3.64)

To(t+T)

Therefore, the steady state response is a GP signal.
The transient response is obtained by noting that it is the difference between the total

response from the superposition integral (3.52), and the GP steady state response (3.48),
T (1) = z(t) — ,,(1) (3.65)

The steady state output, y,,(t), is found by substitution of the GP state response into

the output equation,
Yss(t) = C(t)zu(t) + D(t)u(?) (3.66)

The steady state output is alsc GP, since

Yoot +T) = C(t+T)zsu(t+T)+ D(t+ T)u(t+T)

z[C(t)zs4(t) + D(t)u(t)]

= zyn(t) (3'67)
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The resulting transient output response is found from
Yir(t) = C(t)aer(2) (3.68)

concluding the proof.

Remark: The fundamental result shown above is that if a GP test signal, u(t), is the input
to an LTP system, then in steady state both the state, x(t), and the output, y(t), are also
GP signals. L o

Thus, the steady state output leads to a transfer function for LTP systems.

Definition 3.5 (LTP integral operator representation) The steady state output re-

sponse can be expressed as
y(t) = /0 " &z, ryu(r)dr (3.69)
where t € [0,T), and the ir.‘2gral operator kernel é(z;t, T) is defined as
G(zt,7) = C(1)8(t,0)[=I - &(T,0)]" &(T,7)B(r)
0, T>t
+D(t)6(t - 1) + le@w)B@), rt=t (3.70)
C(t)d(t,7)B(r), <t

The integral operator defined by (3.69-3.70) will be denoted by G(z), so that (5.69) can be

ezpressed in a more compact form,

y(t) = G(2)u(t) (3.71)
where z € C. (m]

Note that &(z; t,7) has been defined, for t = 7, as the average of the integral operator
kernel across the discontinuity. Since this is a set of measure zero, it does not affect the
value of the integral. However, this choice of fv‘( z;t,t) is necessary to obtain correct limits in
certain limiting procedures that will be required in the next chapter. Later, this requirement
will be carefully described.

It will be shown that the integral operator G(z) plays a similar role in the study of LTP
systems as the transfer function matrix does in the theory of linear time invariant (LTI)
multi-input multi-output (MIMO) systems. In order to continue the analogies with LTI
systems, the state space model appropriate to the description of LTP systems evolving from

period to period will be defined.
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Definition 3.8 (Integral operator state space model) A linear time periodic system

can be represented by an integral operator state space model of the form

Zry1 = Aig+ Bay

g, = Cii+ Diy (3.72)
Here, &, € R", and describes the state at the beginning of the kth period. The input,
u, € LT[0,T], and the output §, € LT'[0,T), are defined over the subinterval k as

w, = u(t+kT)

¥ = y(+kT) (3.73)

for k€ Z and t € [0,T). The dynamic integral operator, A, maps the state at time kT, de-
noted by &y, to the state at time (k+1)T', denoted by Tk4+1. The control distribution operator,
B, maps a piece of the continuous time control signal, ity, defined on the kth subinterval,
to the state at time (k + 1)T. The measurement operator, C, maps the state at time kT
to a piece of the continuous time measurement signal, Y., defined on the kth subinterval.
Finally, the feedforward operator, D, maps a piece of the continous time control signal,
U, to a piece of the continuous time output signal, §y, both defined on the kth subinterval.
These maps can be ezpressed in the compact form; A : C* — C™, B : L}[0,T] — C™,
C:C" — LP[0,T), D: LP[0,T] — LP[0,T). The operators are defined as

A = &(T,0)
; T
Ba, = /0 &(T, )B(r )i dr
C = C(1)%(1,0)
Da, = /0' (C(t)#(,7)B(r) + D()8(t — 7)} g dr (3.74)

The integral operator state space model will be denoted by S. The notation

A|B &(T,0) | B

C|D C D

S =

(3.75)

orS =[A, B, C, D] = [(T,0), B, C, D], is adopted to denote the the integral operator
state space model. o
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It should be noted that the above integral operator state space model is reminiscent
of the state space models used to develop the discrete time control theory. The above
definitions permit us to express the integral operator in a compact form, as stated in the

following lemma.

Definition 3.7 (Integral cperator transfer function) The integral operator transfer
function, &(z), ezplicitly describes the relationship between the input, u(t) € LT'[0,T] and
the output, y(t) € L5[0,T],

y(?) = G(2)u(?) (3.76)

where
G(z)=C(:1-4)" B+ D (3.77)
where z € C. O

Although the notation, A, has been introduced for the monodromy matrix, tle notation
&(T,0) will be retained for clarity.

The integral operztor approach outlined above will prove useful in the development of
a generalized Nyquist criterion for linear time periodic systems in Chapter 4 mainly due to
the available results on the eigenvalues of integral operators [17], and will be useful primarily
in an analytical context. However, the integral operator approach does not easily lend itself

to numerical calculations, and alternative procedures will be developed for numerical work.

3.5.1 Poles in the z-plane

The eigenstructure of LTP systems has been examined in the Floquet context. However,
the eigenstructure, as well as the transmission zeroes and associated directions, of an LTP
system can be examined in the integral operator context to obtain useful insights into LTP
system behavior.

The -poles of an LTP system can be described in both the z-plane, using Floquet theory
or the integral operator form of the LTP frequency response, or in the s-plane, using the
generalized harmonic balance representation developed in the sequel. Both approaches lead
to equivalent definitions of LTP system poles. Traditionally, the poles of an LTP system

have been described in the z-plane as below.
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Definition 3.8 (LTP poles in the z-plane) The poles of an LTP system are the lo-
cations in the complez z-plane where the integral operator transfer function (3.48) is not

analytic. a

This definition is based on the analyticity of the integral operator developed above, but
the computation of the LTP poles is still the familiar eigenvalue problem from the Floquet

theory.

Theorem 3.9 (LTP pole eigenvalue problem in the z-plane) The z-plane poles of
an LTP system, and their associated directions, are computed using the monodromy matriz

eigenvalue problem,
{zI - #(T,0)}v = (3.78)

where z € C.

Proof: This is obvious from the Floquet theorem, and is equally clear from the derivation
of the steady state response using the integral operator formulation in Theorem 3.4. a

The usual ciassification scheme (72,83] for the eigenvalues of the monodromy matrix will
be adopted. The eigenvalues of the monodromy matrix are of three types: positive real,
negative real, complei conjugate. The corresponding poles and mode shapes will be referred
to as P type, N type, and C type, respectively. Each type of z—plane pole corresponds to
a specific type of pole and mode shape in the s-plane as well, which will be made clear in

the development of an s—plane operator in the sequel.

Definition 3.10 (LTP characteristic polynomial in the z-plane) An LTP system
has a characteristic polynomial, ¢(z), defined by the determinant

@ z) = det [z — H(T,0)] (3.79)

where z € C. ]

This definition leads to an alternative computational method to the above eigenvalue

problem, that is, to compute the roots of the characteristic polynomial.

Theorem 3.11 (LTP poles in the z-plane via the characteristic polynomial) The
poles of the LTP system can be determined by finding the roots of the characteristic polyno-
mial, ¢(2) = 0.
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no directional information, that is, the eigenvectors, can be extracted from the analysis. The
only informatjon obtained from tle characteristic polynomial root finding problem js the

pole locations. 0

vector evolving from period to period.

3.5.2 LTP transmission zeroes in the z-plane

A transmission zero (or blocking zero) of an LTP system js determined from the internal and

Definition 3.12 (LTP transmission Zeroes in the z-plane) An LTP transmission zero
is a location, 2, in the 2-plane, along with an initial state condition, £,, and q geometrically

periodic signal

that is, y(t) = 0 forallt > 9.

This definition leads to the following theorem.

:2I-&(T,0) -B &
-C -D | | u()

where the operators B, C,and D were defined in Definition 3.6. (]
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Proof: Recall that the total output response is the sum of the steady state response (3.50)

and the transient response (3.51). The transient output response will vanish if
0=§y— (20 — S(T,0)]" /0 ! &(T, 7)B(r)u(r)dr (3.82)
The steady state response must also vanish, and noting the above,
0= C(t)®(t,0)¢, + /ot C(t)®d(t,r)B(m)u(r)dr + D(t)u(t) (3.83)

Incorporating the definitions of the operators B, C, and D into (3.82) and (3.83), and

rearranging, yields the system of equations

0 (2] — B(T,0)] & — Bu(t)

0

—-C¢&, — Du(t) (3.84)

concluding the proof. o

This integral operator form of the transmission zero generalized eigenvalue problem is
completely analogous to its LTI counterpart. In principle, it would be possible to compute
the zero locations and the form of the geometrically periodic signal, or direction of the
zero, leading to zero output. Iterative methods based on a straightforward application
of successive substitutions and a time discretization might be used, such as suggested by
Cochran [17, page 103] for the computation of eigenvalues of integral operators. However,
this computation is tedious in the time domain, and does not take advantage of the harmonic
structure of GP signals. In the next section methods for computing the zeroes will be

developed.

3.5.3 Principal gains and directions

The integral operator transfer function is a linear one-to-one map, and as a result, this
linear map can be described by a singular value de;omposition (SVD) that is analogous to
the SVD analysis for the LTI transfer function matrix. The SVD analysis of an integral
operator is described by Cochran [17]. The singular Qa.lues provide the principal gains of
the LTP system, and the singular vectors provide the principal directions, associated with
the specific input—output relationship under investigation. However, the integral operator
formulation as presented thus far, does not provide rﬁuch insight into how these principal
gains and directions are computed. Essentially the only conclusion that can be drawn is
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that for every value of 2 on the unit circle (that is, a periodic input), there is a direction
of maximal amplification. Alternatively, there is an input direction (signal) that leads to
a maximally amplified output direction (signal) for a given 2. These maximum input and
output directions are a single basis vector of an infinite dimensional domain (input) and
range (output) space associated with the particular integral operator transfer function in
question. Finally, all of the singular values, input and output directions are parameterized
by z.

A more satisfactory interpretation, and methods for computation, of the principal gains
(singular values) and the principal directions (singular vectors), will be described in the

next section, by utilizing the harmonic balance methodology.

3.6 LTP Frequency Response Using Harmonic Balance

To develop useful numerical calculation techniques, an approach different from that of inte-
gral operators is needed. A collection of numerical procedures will be required to compute
poles, zeroes, principal gains, and their associated directional properties. The dichotomy
of operator theoretic versus practical numerical procedures is not unusual, and in fact this
dichotomy exists for the LTI theory as well. The linear operator for LTI systems is the
transfer function. The fundamental arithmetic operation between transfer functions is the
convolution of matrix polynomials. However, the convolution of matrix polynomials can-
not be implemented on the computer very easily since it is a symbolic operation. Thus,
virtually all of the numerical procedures developed for LTI systems use state space models
where multiplication of matrices, both real and complex, are the fundamental operation of
interest, and are easily dealt with by a computer. In fact, many authors, including Francis
(31] and Doyle et al [23], concede that although the operator theory leads to many useful
and elegant results, in the end the state space is used for computational methods, which
are inferred from the operator theoretic results.

The numerical procedures developed here can be motivated by a simple and common
observation. The time periodic parametric excitation associated with most physical systems
can be expressed by a sum of sinusoids of relatively low harmonic cumber. This is certainly
true of the Mathieu equation [72], the helicopter rotor [52, page 602], wind turbines [94],

and satellites of various types in eccentric orbits [50,89], where at most only the first three
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or four harmonics are required to describe the parametric excitation. Therefore, from an
engineering standpoint, a sensible numerical procedure would attempt to exploit this ten-
dency. Instead of attempting to develop methods based on a time discretization approach
as suggested in [17], an approach based on the harmonic balance methodology is developed
[27,46,47]. The harmonic balance approach offers two primary advantages. The first ad-
vantage is that low frequency contributions to the parametric excitation can be more easily
captured than with a time discretization approach. Secondly, time periodic parametric ex-
citation, and (complex) exponentially modulated periodi(; signals, are naturally described
by the complex Fourier series.

According to Theorem 2.13, any LTP state space representation with a time periodic
dynamics matrix, A(t), can be expressed as a state space representaticn with a time in-
variant dynamics matrix, Q, but with possibly time periodic B(t), C(t), and D(t). This
fact will, again, be of central importance in deriving the harmonic balance form of the LTP
frequency response. Here, it is desired to determine the frequency response of the state
space model of an LTP system to a exponentially madulated periodic signal of the form
(3.44), where the set of Fourier coefficients {u,,|m € Z} are constant vectors. This leads

to the following theorem.

Theorem 3.14 (LTP system response to EMP signals) Consider the state space
model of an LTP system with time periodic dynamics matriz, S = [A(t), B(t),C(t), D(t)].
The LTP state space model can always be transformed to a state space model with time
invariant dynamics, S = [Q, B(t),C(t), D(t)], where B(t) = P~\(t)B(t) and C(t) =
C(t)P(t). The time periodic matriz B(t) can be ezpanded in a complez Fourier series of

the form

B(r) = i Byeitwrt (3.85)

l==00

and similarly for C(t) and D(t). If the input to the LTP system above is an EMP signal,
u(t)= ) ume™t t>0 (3.86)
m=-=0o
where s, = s + jmw, and s € C, then the state response consists of an exponentially
modulated periodic steady state response given by
m -—
()= Y, Pu(sI-Q)'Bi_pupme’ (3.87)
nlm=-00
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and a transient state response given by

I,m=-o00

z.(t) = ¥(t,0) {fo - i (st - Q)“Ez,_mum} (3.88)

which vanishes as t — oo if the system is asymptotically stable. In addition, the steady

state output response is an EMP signal of the form

yaa(t) = i { i én—l (S[I - Q)—l Bl_mum + i Dn_mum} e’nt (389)

n=—-oco |l,m=-0c0 m=-00

and the transient output response is given by

Yur(t) = C)(1,0) {eo - Y wI-Q) Bf-mum} (3.90)

Iim=—o00

Proof: The total state response is given by the superposition integral with initial condition

on the states, &,,
() = B(t,0), + /0 &(t, 7)B(r)u(r)dr (3.91)

where the first term is the homogeneous response, x(t), and the second term is the forced

response, x¢(t). First, let’s examine the forced response,
13
/(1) = / &(t,7)B(r)u(r)dr (3.92)
0
From the properties of the state transition matrix,

&(t,7) = &(t,0)9(0,7)

&(t,0)871(r,0) (3.93)

so that
z4(t) = $(t,0) /ot &7 1(7,0)B(r)u(r)dr | (3.94)

Using the Floquet result from Theorem 2.13,
$(t,0) = P(t)eD (3.95)
$1(r,0) = e QT P1(r) (3.96)
the forced response can be expressed as
z4(2) = &(2,0) /0 Q7 p-1(1)B(r)u(r)dr (3.97)
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To simplify the algebra, let
B(r)= P7}(1)B(r) (3.98)

Note that B(7) is a periodically time varying matrix and can be expanded in a complex
Fourier series as in (3.85), and substituting for u(7) from (3.86);

t o o
mf(t) = @(t,o)/o e—QT Z BgeJ’“'P"' z une T dr

l=—00 m=-—oc

t o
= é(t,O)/ e~Qr Z B, e’+m7dr
0

l.m=-=co

t o
&(1,0) /0 e @ Y BinumetTdr

l,m=-o00

Interchanging the order of integration and double summation yields

) t _
() = 2,0 Y [T Vb pu,

I,m=—c0

= &(t,0) f: {e("I‘Q)‘ - I} (st - Q) 'Bi_pun,

{,m=~oc0
so that the forced response is
w —
2;(t)=P(t) Y {eI-eQ}(aI-Q) B pun (3.99)
lim=-—0c0

After grouping terms, the total state response is given by

m(t) = @(t,O)\ {£0 - i (31I— Q)_IBl—mum}

l,m=~0co

b PO) S (af = @) Biomume® (3.100)

l,m=—0c0

The first term in the total state response represents the transient state response,

z¢(t) = B(t,0) {eo - Y (s - Q)"E;-mum} (3.101)
lm=-00
and the second term represents the steady state response,
Z,u(t)=P(t) Y. (s -Q) 'Bi_mume™t (3.102)
I,m=-o00 ’

Expanding P(t) in a complex Fourier series,

P(t) = f: P ei™rt (3.103)

n=—0oo
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and substituting into (3.102) yields

wsa(t) = z Pnejant Z (SII_Q)—IBI—mumes‘t

n=-00 l,m=-=00

Y. Po(sil - Q)'Bi_pupetint

nlm=-oco

Making a change in the index variable produces a more convenient representation, namely,

[ o]
Too(t) = Y. Pooi(siI - Q) ' Biipume™ (3.104)

n,l,m=-o00

The transient output response is determined from

Yir(t) = C()zur(?)

C(t)®(t,0) {so - i (si - Q)1 B,_mum} (3.105)

l,m=-o00

The steady state output response is determined from

Yu(t) = C(t)z,(t) + D(t)u(t)
= C(t)P(t) i (it - Q)" 'B_pupme + io: D,un,e’+mt
im=-c0 n,m=-—00

After making appropriate changes of index, the steady state output response becomes

Yao(t) = f: { i Cni(siI - Q) 'Bi_mum + f: Dn-m‘um} et (3.106)
n=—00 |lm=—00 m=-—o00
concluding the proof. ]

The fundamental result shown above is that when an EMP test signal is injected into an
LTP system with a time periodic dynamics matrix, the steady state output response is also
an EMP signal. Thus, the steady state output response leads to the concept of a transfer
function for LTP systems because the input and output signal spaces are equal. Hence, the
LTP frequency response can be stated: in steady state, an LTP system maps an EMP input
signal, to an EMP output signal of the same frequency, but with possibly different amplitude
and phase (as long as s is not an eigenvalue of Q). The LTP frequency response notion
is completely analogous to the LTI frequency response notion. Of course, the amplitude in

the LTP case refers to the amplitude of all the harmonics in the input and output signals,
that is, the LTP system has directional properties that will be quantified in the sequel.
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3.6.1 The harmonic transfer function

Manipulation of infinite series is cumbersome, so that an alternative notation is developed.
In this section a linear operator, called the harmonic transfer function, is developed to
represent the steady state response from Theorem 3.14. The harmonic transfer function
relates all of the input harmonics to all of the output harmonics in a systematic way. Here,
harmonic balance is applied directly without taking advantage of the Floquet result that
transforms an LTP state space model with time periodic dynamics to an LTP state space
mode! with time invariant dynamics, and possibly time periodic control distribution and
measurement matrices.
Consider the proper LTP state space model with time periodic dynamics, § = [A(?),
B(t), C(t),D(t)]. The test signal considered here is an EMP signal of the form,
oo
u(t) = Z ume™ t>0 (3.107)

m=-—00

According to Theorem 3.14, the steady state response is an EMP signal of the form,

z(t) = > Tme™ (3.108)
(t) = ). SpEme’™ (3.109)

The output signal, y(t), is simply a linear combination of the state and the control, so that
it may also be expanded in a complex Fourier series,
[ o)
yt)= Y yne (3.110)
n=-o0o
The T-periodic dynamics matrix can be expanded in a complex Fourier series,
m .
A(t)= ) Apeimt (3.111)
m=—00
and similarly for B(t), C(t), and D(t). Now, expanding the ¢ ate dynamics equation from

the LTP state space model in terms of the above complex Fourier series;

[= ] o0 . o0 [ o] . 00
E s,,a:,.e"" = Z: Aﬂejnwpt Z: wme’"‘t+ Z Bne;mwpt E ume”"‘
n=-o0o n=—oo m=-—00 n=—00 m=—00
o0 o0
= E Apzme’rtmt 4 E Bhu,e’tmt
n,m=-00 n,m=—co
[o o] o0
= Y AwmZme™'+ Y Bumume™ (3.112)
n,m=-00 n,m=—co
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A similar expansion of the measurement equation results in the following:

o o0 o0
Yo Yae = Y CoucmZme™ + Y. Da_mupe (3.113)

n=-—0o n,m=—0oo n,m=-—00

Moving all terms to the RHS in equations (3.112—3.113) yields:

0 f: {snmn— i A @y — f: Bn_mum}e’“t

n=-—0o m=—00 m=—00
=) oo 0
0 = Z {yn - Z Comy — Z Dn_mum} e’n! (3114)
n==00 m=—00 m=—00

Now, multiplying through by e, we note that the complex exponentials, {e!™*! | n € Z},
form an orthonormal basis in L3[0,7']. Thus, from the principle of harmonic balance, the
terms enclosed by braces in the above infinite sets of equations must vanish. Hence, the

two equations below hold for all n € Z:

oo o
$npn = Z AnmnTm + E B, _nun
m=-—0oQ m=-—00
00 )
y'n. = z: Cn—mmm + Z Dn—mum (3.115)
m=-o0 m=-o00

Although the above equations are a concise representation of the input—output relationship
between the Fourier coefficients of the input and output signals, manipulating summations
can be tedious. Therefore, the Toeplitz form notation developed in Chapter 2 will be utilized

as in the following definition.

Definition 3.15 (Harmonic state space model) The system of equations from (8.115)

can be ezpressed as the doubly infinite matriz equation,

SX

(A= MN)x + Bu

y

Cx +Du (3.116)

where the doubly infinite vectors representing the harmonics of the state, control, and output
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signals, are

x_9 uU_2 Y_2
1 u_, Y
X=| xo [ U=| uw |, ¥Y=| gy, |- (3.117)
b 2] uy Y1
T2 U Y2
| | |

The T-periodic dynamics matriz, A(t), is expressed in terms of its complez Fourier coeffi-

cients, {An|n € Z}, as a doubly infinite block Toeplitz matriz called a Toeplitz form,

A9 A1 A, A3 Ay
Ay Ay A, A, A_;
A=1 ... A4, Ay Ay A, A_, -.. (3.118)
Az A; A, Ay A,
Ay A3 A, A, A

with a similar definition for B in terms of its Fourier coefficients represented by {B,|n € Z},
C in terms of {Cy|n € Z}, and D in terms of {Dy|n € Z}. Finally, define a doubly infinite

block diagonal matriz containing all harmonics of the pumping frequency,
N = blkdiag{jnw,I} Vne Z (3.119)

This doubly infinite matriz equation (3.116) is called the harmonic state space model,

denoted by S. The notation,

A-N|B
S = (3.120)
c D
or S = [(A-N), B, C, D}, is adopted to denote the harmonic state space model. o

The above harmonic state space model is a useful representation of the LTP system,
and is very similar to the Toeplitz and circulant systems state space models for spatially

invariant linear systems. A Toeplitz system is composed of an infinite number of identical
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subsystems {105]. In fact, if the modulation frequency matrix in the harmonic state space
model is set to zero, A" = 0, then the harmonic state space model is identical to the infinite
dimensional Toeplitz system. Toeplitz systems have been studied in great detail by Chu [15],
Melzer and Kuo [75], and Wall [105]. The cited research explores the use of the z~transform
in the design of optimal feedback controllers for both the centralized and decentralized cases
for continuous time Toeplitz systems. Wall [105] developed a transiormation to alleviate
some of the computational difficulties associated with the infinite dimensionality of Toeplitz
systems. Circulant systems are finite dimensional analogs of Toeplitz systems, and are also
examined in [105].

Unfortunately, the Toeplitz system results are not directly applicable to the LTP case.
The dynamic operator, (A — N), associated with the harmonic state space model is quasi-
Toeplitz, that is, the dynamic operator is the difference between a doubly infinite block
Toeplitz matrix or Toeplitz form, .4, and a doubly infinite block diagonal complex matrix,
N. In addition, the harmonic state space model has much more structure than the typical
Toeplitz system. The harmonic operators A, B, C, and D, are Toeplitz forms as defined by
Grenander [38], and are Hermitian. The harmonics associated with a given system matrix
generally grow small as the harmonic number grows large and can be represented by a
complex Fourier series. A truncated complex Fourier series suffices for most dynamical
systems. Thus, the harmonic operators are effectively banded Toeplitz forms. However,
these are not requirements for general Toeplitz systems as described by Wall [105], so that
the additional structure in the LTP problem would not be exploited by Wall’s results.

The objective of the above analysis was to determine an explicit input-output functional
relationship between the Fourier coefficients or harmonics of the input, {us|n € Z}, and
those of the output, {y, |n € Z}. This relationship is represented by the harmonic transfer
function, G(s).

Definition 3.16 (Harmonic transfer functions) The harmonic transfer function,
a(s), is an infinite dimensional matriz of Fourier coefficients that describes the input-output
relationship between the harmonics of the input signal, and those of the output signal, such

that
y=G(s)u (3.121)
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where

G(s)=C[sT - (A-N)|"'B+D (3.122)

as long as the inverse ezxists. 0

This definition of the harmonic transfer function is obtained by eliminating x from
(3.116), in favor of ¥ and u, results in the the desired input—output relationship.

However, there are two problems associated with the harmonic transfer function as
stated above. First, it is not clear that the harmonic transter function, which requires the
inversion of a doubly infinite matrix, will always exist. This problem will be dealt with,
in general, by application of the Floquet Theorem as was done in Theorem 3.14. This is
done in the first example considered below. Second, the harmonic transfer function is a
doubly infinite matrix operator, which cannot be implemented on the computer. However,
truncation of the harmonic transfer function leads to numerical procedures that can be
easily implemented on the computer.

Now, let us consider some simplifying cases of the harmonic transfer function.

Example 3.1 (Transformation to time invariant dynamics) In this example, the
Floquet transformation is applied to simplify the doubly infinite bleck Toeplitz of the dy-
namics matrix, A, to a simpler doubly infinite block diagonal form. Consider the lin-
ear time periodic system, S = [A(t), B(t),C(t), D(t)], with time periodic dynamics and
state vector, z(t). Application of the Floquet transformation results in a new realization,
S = [Q, B(t),C(t), D(t)], with a constant dynamics matrix and stzte vector, v(t). Here,
Q is a constant matrix, so that

Q = blkdiag{Q} (3.123)

As a result, the system of equations (3.115) can be simplified after solving for v,

A

v = (S(I—Q)"l z: Bl_—mum Vie Z

m=--00
© 1% ’
", = Z C._1v + Z D,_n,u, VnezZ (3.124)
I=—00 m=-o0

Substituting for v; in the output equation yields the input—output relationship:

oo o0 ‘

===00
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Hence, the harmoric transfer function is simply the terms in parentheses and can be ex-
pressed as
oo
Grnm(s)= Y. Coct(siI-Q) "' Biyn + Doy Ymyne Z (3.126)
I=—co .-

Although application of the Floquet transfovmation has simplified the form of the har-
monic transfer function, each block element of a(s) is evaluated using an infinite summation
of Fourier coefficients. This result produces the same EMP steady state output response
that was obtained in Theorem 3.14. Finally, the application of the secornd Floquet result
has demonstrated that the inverse [sT — (A — N]~1) exists as long as s, is not an eigenvalue

of Qforalln e Z. m]

A large class of problems that are important in the study of periodically time varying
systems are those represented by LTI plants with input or output amplitude modulations.
These include such things as N-path networks [103, see Chapter 11] and commutated net-
works [97], as well as a host of communication network applications. The harmonic transfer

functions for both these cases simplify murkedly as shown in the following two examples.

Example 3.2 (LTI plant with modulated input) Consider the state space models
of an amplitude modulated input to an LTI plant, S = (@, B(t),C,D(t)]. Again, Q is
a constant matrix, so that Q is a~ irfnite dimensional block diagonal matrix given by

equation (3.123). As a2 result, equations (3.115) can be further simplified after solving for

Zn, 50 that
[o <)
Ty = ('9nI—Q)_l E B, _nun
m=-—00
xR
Y¥n = Czn+ Y. Dunun (3.127)
m=-00

Substituting for 2, in the output equation yields the input—output relationship

Yn= f: {C(-’nI -Q)'Bpm + Dn-m} u, VneZ (3.128)

m=-—00

Hence, the harmonic transfer function is simply the terms in parentheses,
an.ﬂl(’) =C(3.J-Q) "' Byn + Do Vm,n€Z (3.129)

Here, no infinite sums are required to determine the elements of the harmonic transfer
function as was the case in the previous example. ]
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Exﬁmple 3.3 (LTI plant with modulated output) Consider the state space model of
an amplitude modulated output from an LTI plant, S = [Q, B,C(t), D(t)]. Following the

identical procedure to Example 3.2 yields the harmonic transfer function
Gnm(8) = Cnom (s5mI-Q)'B+D,_, Ym,neZ (3.130)
As in Example 3.2, no infinite sums must be computed. a

Two different forms of the harmonic transfer function were presented. The first form of
the harmonic transfer function developed in Theorem 3.14 and in Example 3.1, corresponds
to the harmonic state space model S = [(Q-N), B, C, D), and has a block diagonal dynamics
matrix in its harmonic balance form. The second form of the harmonic transfer function,
as developed in Lemma 3.16, corresponds to the harmonic state space model § = [(A-N),
B, C, D), and has a dynamic operator that is a full quasi-Toeplitz matrix. However, both
representations of the harmonic transfer function must be related since they describe the
same input-output relationship. In the following lemma, a similarity transformation is

described that quantifies this relationship.

Lemma 3.17 (A similarity transformation) Consider the LTP state space model,
S = [A(t), B(t),C(t), D(t)]). Its harmonic state space model, denoted by the 4-tuplet S =
[(A - N),B,C,D), has a doubly infinite block Toeplitz dynamics matriz, A:

sx = (A-N)x+ Bu
Yy = Cx+Du (3.131)
A similarity transformation is gsven by
x=7Pv (3.132)

where P is the doubly infinite block Toeplitz matriz formed from the Fourier coefficients of
the T-perindic matriz P(t) introduced in the Floguet Theorem. Using the above similarity
transformation, the above harmonic state space model can be transformed to a harmonic
state space model, denoted by the §-tuplet S = [(Q — N),B,C, D}, such that Q is a doubly

infinite block diagonal dynamics matriz,

(@ - N+ Bu

sy

Cv+Du (3.132)
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Here:

Q-N = P YHA-N)P
B = P8
C = CP (3.134)

Proof: Recall from the Floquet theorem that the similarity transformation applicable in
the time domain is _

x(t) = P(t)v(t) (3.135)
and led to the relationships in (2.42). Multiplying the first two of these relationships by
P(t) yields:

P(1)Q A(t)P(t) - P(t)

P(t)B(1)

B(t)
C(t) = C(t)P(t)

Since all of the above matrices are T-periodic, taking the Tczplitz transform of both sides

yields:
PQ = AP - (NP -PN)
PB = B
C = CP
Rearranging yields the relationships in (3.134). m}

This similarity transformation is analogous to that for LTI systems and has the virtue
that it is an algebraic similarity transformation, instead of a time varying similarity trans-
formation requiring the solution of an ODE. Unfortunately, the similarity transformation
requires the infinite dimensional Toeplitz form P.

Although several simplifications to the harmonic transfer function have been presented,
they are neither essential, nor are they limitations to the harmonic transfer function. The
truncated harmonic transfer function can be determined experimentally by inputting a
complex exponential, and measuring as many harmonic as desired.

Befere discussing truncation of the harmonic transfer functidn, let us consider the def-
initions of poles and transmission zefoes, and methods for computing their locations and

directions using harmonic balance.
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3.6.2 LTP poles in the s-plane

In the discussion of the integral operator representation of an LTP system, the poles of an
LTP system were defined in the 2-plane. However, an equivalent statement can be made in

the s-plane using the generalized harmonic balance formulation.

Definition 3.18 (LTP poles in the s-plane) The poles of an LTP system are the

locations in the complez s-plane where the harmonic transfer function is not analytic. O
This definition leads to the following theorem.

Theorem 3.19 (LTP pole eigenvalue problem in the s-plane) The poles of the
LTP system, and their associated directions, are computed in the compler s-plane using the

eigenvalue problem

(sT-(A-N)}v=0 (3.136)

In the case where the dynamics are similarity transformed to be time invariant, then the

poles are given by the union of the eigenvalues from the eigenvalue problems
{sI - (Q —jruwpI)}v=0; YneZ (3.137)
where s € C.

Proof: This is clear from the development of the harmonic transfer function, and can be
deduced for time invariant dynamics from the form of the steady state response and from
the similarity transformation derived in Lemma 3.17. 0O

The definitions of LTP poles in the z-plane and the s-plane are equivalent because all

of the s-plane poles map to the Floquet poles in the z-plane according to
z=eT (3.138)

so that an infinite folding of poles occurs due to the infinite branches of the complex log-
arithm function. However, there are only as many unique poles as there are states in the
linear time periodic state space model, that is, n unique poles, or the dimension of A{:},
or, equivalently, of Q. These unique poles are located in the fur:damental strip, illustrated

in Figure 3.3, defined as that infinite strip region in the s-plane for which

_Wp Wp 2 13
Im(s)e( ] 139)
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Figure 3.3: LTP pole-zero diagram. LTP systems have infinite folding of poles about the
fundamental strip as shown in (2). The fundamental strip provides the unique set of s-plane
poles that is transformed into the z-plane pole zero diagram shown in (b).

The branches of the logarithm function fold this set of unique poles about the fundamental
strip such that there are n infinite families of poles, which are simply reflections of the poles
in the fundamental strip into the complementary strips. The kth complementary strip is

defined as that infinite strip region in the s-plane for which

m(s) € ((2'° ‘21)“"’, (2k s ”“"’] kEZk#£0 (3.140)

The fundamental and complementary astrips are shown in the pole-zero diagram in Fig-

ure 3.3.
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This infinite folding of poles is well understood from the classical notion of the charac-
teristic ezponents of an LTP system [83]. As a practical observation, the pole locations in
the complementary strips are obtained by adding +jmw,, YVm € Z, to the pole locations in
the fundamental strip, as stated in Theorem 3.19. In this thesis, the convention of consid-
ering only those pole locations in the fundamental strip of the complex s-plane is adopted,
since the fundamental strip poles are a unique set.

Consideration of only a single branch of the logarithm function may lead one to believe
that LTP systems do not have complex conjugate poles in the s-plane. In fact, LTP sys-
tems always have complex conjugate poles when all branches of the legarithm function are

consid=red. To illustrate this, recall the definition of the complex logarithm [58, page 815],
1 . .
$=r (log|z| + jLz] + jruwp (3.141)

where each value of n € Z defines a different branch. However, since the poles in the z—
plane are either real or complex conjugate, then the poles in the s-plane are either real or
complex conjugate when all branches of the logarithm function are considered.

However, it is entirely possible that a complex pole location in the fundamental strip
may not have a corresponding complex conjugate pole that is also in the fundamental strip.
Recall that the eigenvalues of the monodromy matrix were classified as N type (negative
real), P type (positive real), and C type (complex conjugate), and that they correspond
to the z-plane poles of the LTP integral operator transfer function. For a P type z—plane
pole, |

8= —;:log(a)+jmup, z2=a,a>0,VneZ (3.142)

that is, a P type pole in the z-plane corresponds to a pole on the real axis in the fundamental
strip of the s—plane. For an N type z—plane pole,

8= -;—,log(a) +jw, z=-a,a>0 (3.143)

that is,.the N type pole in the z-plane corresponds to a pole on the horizontal boundary
of the fundamental strip of the s-plane, for which Im(s) = j%2. Since the fundamental
strip does not include the boundary, Im(s) = ~j=£, an N type pole cannot have a complex
conjugate in the fundamental strip. However, N type poles come in pairs, although not in
complex conjugate pairs. Finally, a C type pole is a complex conjugate pole in the z—plane,
and as a result, corresponds to complex conjugate pair of poles in the fundamental strip of

the complex s-plane.
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Associated with the pole is a direction that can be expressed as a complex periodic signal,
or a mode shape of the LTP system. The pole direction is computed as follows. Associated
with the ith pole in the fundamental strip, s{*), is an infinite dimensional right eigenvector,
V), both computed using the above LTP pole eigenvalue problem in the s—plane. The block
vector elements, {vff) [n€ Z}, of the right eigenvector V(?) are the Fourier coefficients of
the complex periodic signal that represents the fundamental mode shape. Thus, the ith

mode shape can be expressed as the complex periodic signal

v(')(t) = Z vg)ejnwpt (3.144)

n=-—0o
The time response of the ith fundamental mode is given by
. y w . .
20(1) = et Z i) Inwst (3.145)
n=-—00
Note that the mode shapes are folded just as the pole locations are folded into the comple-
mentary strips. To illustrate this, make the change of variable, n = m + k, in the above

time response of the ith mode,

() = eVt Z ”S;Lkej(m.l.k)upt
m=-—00
()4 = N
e(a +ka,,)t Z vs;)*-ke_ymwpt (3-146)
m=-—00

Thus, the coefficients of the mode shape are shifted by the index k, and the pole is now
located in the kth complementary strip.

The type of pole under consideration has some ramifications on the exact nature of the
mode shape. For a P type pole, the pole in the fundamental strip of the s—plane is strictly
real, so that s = a. Hence, the time response of the P type mode is given by

o
z{t) = e ) vpelnert (3.147)
. n=—o0
which is the familar EMP signal. However, for an N type pole, the fundamental strip pole
is given by s = a + j""-zﬂ, so that the time response of the P type mode is given by

(>}
z(t) = e T Y vpelmrt (3.148)

n=-—0o0
Thus, the N type pole also corresponds to an EMP signal. However, a subharmonic of
period 2T or a % /rev subharmonic shows up in the modal response. Much of the discussion
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by Johnson [52] on mode shapes concerns apportioning this % /rev periodicity in the mode
shapes or in the pole. In this thesis, the convention of considering only those poles located
in the fundamental strip was adopted. This implies that ali %/rev periodicity is lumped
into the pole location, and only the periodicity occuring at integer multiples of the pumping
frequency, that is, the T-periodic portion of the modal response, is included in the mode
shape. Finally, a C type pole is given by s = a + £j8 in the fundamental strip. The
modal response will appear as a complex exponential modulation of two T-periodic mode
shapes. Of course, this leads to the well known exponentially modulated double sideband
suppressed carrier behavior [83, page 24].

As an aside, if Q is defective, then this gives rise to boundary modes, or t—-multiplied
modes designated as P, tP, etc. or N, tN, etc. These are sometimes referred to as the
Brillouin modes.

The T-periodic portion of the Floquet solution is easily identified using these techniques,
P(t) = [ o) v@(t) ... »™(2) ] (3.149)

The corresponding exponential rate matrix, Q, associated with the above P(t) is given by
Q = diag [ s 5@ ... g ] (3.150)

It should be noted that the above matrices are unique by convention, since the poles that
make up the matrix, Q, are the uniquehset of s-planes poles from the fundamental strip, and
the periodic portion of the Floquet solution, P(t), corresponds to the unique normalized
eigenvectors of (A — N'). However, an equally valid Floquet solution can be obtained via
any time invariant or time periodic simila.rity transformation applied to the state vector of
the LTP state spa;ce model with time invarianut dynamics.

The characteristic polynomial for the LTP system can also be defined in the s-plane

using an infinite determinant representation. Based our intuition of LTI systems, we would

expect the characteristic polynomial to be
#(8) = det [sT — (A - N)| (3.151)

However, the above determinant, which is the state space generalizaticn of the pre-Hill
determinant, does not converge.

Again, we resort to a simple normalization to render the above determinant convergent.
The normalization is obtained by rewriting the homogeneous dynamics equation in the
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harmonic state space model as
(s + V)x = Ax (3.152)
so that
[Z-(T+ N A x =0 (3.153)
The above equation has a nontrivial solution if the infinite determinant

A(s) = det [T — (sT + M)A (3.154)

equals zero, as long as the determinant is convergent. Therefore, let us consider the question
of convergence. It can be shown that the above infinite determinant belongs to a known

class of convergent determinants called normal determinants. The determinant

14+ cen C12 <13 e W
e l+cm  ca e
A=det| 2 (3.155)
€31 €32 1+ ecas
is normal if the double series
[0 o]
Y cnm (3.156)
n,m=-o0o

is absolutely convergent [9, page 21]. We can apply this result here. The summation over
the index m corresponds to the mth block row sum of (sZ +A)~' A, which can be expressed

as
1 o0
— Y Awm (3.157)
Sn m=—c0o

Now, we have assumed that A(t) can be expanded in an absolutely convergent complex
Fourier series, so that is can be summed to A. Thus, each block row sum is absolutely
convergent, since it corresponds to the Fourier coefficients of A(t). The summation over

the index n sums together all of the block row sums of (sZ + A)~1 A4, so that if
©0
- 1
A _ 3.158
":\;w S+ i (3.158)

converges, then the infinite determinant also converges. The above infinite series can be

summed in a special way,

(o d o4
1 1 1 1
2 _ = -+ z - + -
e § T+ JWp s oS tinwp 33— Jnw
1, & 2s
= <+ nz;; TE ) (3.159)



From [37], the series expansion of the hyperbolic cotangent is given by

> 1 T 1

k2=:1 m = Z (COth Ta — W—a) (3160)
After some simplification,

1 & 2s TS

S+ —F — =coth|{ — (3.161

s ngl 82 + (nwp)? (wp) - )

so that the above series is absolutely convergent for s in the fundamental strip. Thus, the
infinite determinant, A(s), is 2 normal determinant, and is the state space interpretation
of the Hill determinant.

Thus, we proceed to the following definition.

Definition 3.20 (The open loop Hill determinant) An LTP system has a Hill deter-

minant, A(s), defined as the convergent infinite determinant
A(s) = det [T+ (sT + )14 (3.162)
where s € C. a

The above Hill determinant can be expressed in terms of the exponential rate matrix,

Q, from the Floquet solution.

Lemma 3.21 The characteristic polynomial can be ezpressed as the infinite product of finite
dimensional determinants,
=~ 1

A@ = ]I de [1 - ZQ] (3.163)
Proof: The proof is an application of the similarity transformation that was derived in
Lemma 3.17.
Remark: One difficulty introduc:d by the normalization that leads to the Hill determinant
is the introduction of singularities on the jw axis at s = jmw, for all n € Z, including a
singularity at the origin. To use the Hill determinant as a numerical method requires that we
define a new function that only has singularities at the poles of the LTP system. This can be
accomplished using Louisville’s theorem as described in [83]. However, the method of choice
for determining the open loop poles is the truncated s—plane pole eigenvalue problem, or the
z—plane pole eigenvalue problem, so that application of the Hill determinant' methodology

is not considered further. a
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3.6.3 LTP transmission zeroes in the s-plane

As was the case for poles, the zeroes of an LTP system can be determined using both the

integral operator (z-plane) and generalized harmonic balance (s-plane) formulations.

Definition 3.22 (LTP transmission zeroes in the s-plane) An LTP transmission
zero is a location in the compler s-plane, s., along with an input direction corresponding
to an EMP signal -

u(t) = Z u,, el Himwp)t (3.164)

m=—0o

and an initial condition for the states, €., which when input to an LTP system with a
square LTP state space model, leads to all outputs being identically zero for all time; that

is, y(t) =0, for allt > 0. m]

This definition is an extension of the definition for LTP zeroes in the z-plane using the

definition of the EMP signal, and leads to the theorem below.

Theorem 3.23 (LTP transmission zero eigenvalue problem in the s-plane) Con-
sider a square LTP state space model, that is, an LTP state space model with the same
number of inputs as outputs. The LTP transmission zero located at s = s,, with input
direction Ug and initial condition vy, is determined from the infinite dimensional generalized
eigenvalue problem

L= (? ERt e I Il (3.165)

-C -D U

where &, is the non-trivial partition of vo, and complez valued ug contains the harmonics of

the EMP signal associated with the transmission zere, or the direction of the transmission

zero.

Proof: The proof essentially involves expanding the total output response from Theo-
rem 3.14 in harmonics, and selecting the initial condition such that the transient and steady
state portions of the output response vanish for all time. Recall the transient output re-

sponse, from (3.90),
ytr(t) =0

C(t)ﬁ(t’ 0) {Eo - i (3lI - Q)_lBl—mum}

l,m=—co
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which will vanish for all ¢ > 0, if

oS

& = z (.S[-I - Q)—lBl—mum (3.166)

l,m=-—o00

The above equation can also be expressed as the infinite dimensional matrix equation,
vo = {sZ - (Q - M)} ' Buo (3.167)

where it is understood that &g contains the harmonics of the EMP signal that must be the
system input for trivial output. Vo contains the harmonics of the initial condition, for which
there is only one non-zero block containing £,. Recall the steady state output response from

Eq. (3.89), which must also vanish for all ¢ > 0,
Yss(t) = O

[>.e} o0 _ _ o0

= Z Z Cni (311 - Q)_l Bi_npum + Z D, _nun et
n=-co |lm=-00 m=—00

Applying the principle of harmonic balance, we obtain a second infinite dimensional matrix

equation,

0=_C{sT - (Q-N)}""Bug + Dug (3.748)

This equation can be simplified using the previous result from (3.167), so that

0= —Cvo - Dup (3.169)

Rearranging (3.167), yields
0= {sZ = (Q - N)}vo - Bup (3.170)
concluding the proof. O

It is also possible to compute the transmission zero locations and directions directly from

the harmonic state space model of the LTP state space model with time periodic dynamics.

Corollary 8.24 (A similar transmission zero eigenvalue problem in the s-plane)
The LTP transmission zero at 8 = 8,, inpul direction, Ug, and initial condition Xo, are
determined from the infinite dimensiona! generalized eigenvalue problem

-C -D Uy

=0 (3.171)

where €, is the block sum of x¢, and complez valued Ug contains the harmonics of the EMP
signal associated with the transmission zero, or the direction of the transmission zero.
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Proof: The above generalized eigenvalue problem can be developed by applying the simi-
larity transformation

Xo _ P O Vo (3 172)

U 0 7 Ug

o

to the transmission zero generalized eigenvalue problem in Theorem 3.23. The interpretation
of 4o remains the same. However, an interpretation of xo is required.

The similarity transformation is given by
z(t) = P(t)v(t) (3.173)

and since x(t) and v(t) are EMP signals, and P(t) is a T-periodic matrix, then
o0 o0
0= 5 {a:,, -y Pn_mvm} et (3.174)
n=-—0o0o m=-=00o
Applying the principle of harmonic balance, .
o0
Tp = Z Po vy VReZ (3.175)
m=-—00
But from Theorem 3.23, the initial state condition associated with the transmission zero in

the kth complementary strip shows up in a single block of Vo, say the kth block, so that

Om = €o6m—k
& form=k

= (3.176)
0 otherwise

However, we are only interested in the unique fundamental strip transmission zero, so that
k=0, and
vm = &obm (3.177)

The initial condition for the similarity transformed problem becomes

0
&y = Z Pn_mvn

m=-—0oo

(o o]
S Pumbobnm

m=-o00

= P& (3.178)

that is, the initial state condition, &, is sifted through the harmonics of P(t). Alternatively
if we sear~h for a transmission zero in the kth complementary strip , then v,, = Eobm—k,
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and
z, =P, &, VneZ (3.179)

Recall that the state transition matrix for the LTP system can be expressed as
&(1,0) = P(1)e9" (3.180)

Since ®(0,0) = I, evaluating at ¢t = 0, determines that P(0)=F. Also, since P(t) is T-
periodic, evaluating its complex Fourier series for ¢ = 0 produces the result

2. Pa
n=-—oo

= I (3.181)

P(0)

Now, summing both sides of (3.179) over all values of =,

Z En = Z Pn-kfo

n=—0co n=-—00

(£ 7)e

n=-—0o /

= & (3.182)

Thus, the initial condition for the transmission zero eigenvalue problem is the block sum of
Xo. m]

By again utilizing the generalized harmonic balance methodology, the transmission zero
computation can be performed in relatively simple fashion using standard eigenvalue prob-
fem software.

The transmission zeroes, and transmission zero directions, are also folded about the
fundamental strip in the same manner as the poles, leading to infinite families of trans-
mission zeroes. Again, only zeroes in the fundamental strip will be considered. Consider
the ith transmission zero in the fundamental strip, s{"). The direction of the transmiseion
zero leads to the form of the EMP signal that must be input to the LTP system, aiong
with the initial condition £, to obtain trivial output forvall time. This transmission zero
signal (direction) is computed as follows. The block vector elements, {uf,'z, neZ }, of the
infinite dimensional vector ug ), are the Fourier coefficients of the input spuu. 1, so that the
transmission zero direction is given by the EMP signal

ug(t) = e f: u},’l e™r YneZ (3.183)

n=-00
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3.6.4 Pole-zero diagram

Having stated how the poles and zeroes of an LTP system can be computed, the pole-zero
diagram can be constructed in beth the z-plane and the s-plane. The pole-zero diagram of
a typical LTP system is shown in Figure 3.3. In the s-plane, the poles and zeroes are folded
about the fundamental strip, which contains the imaginary axis from w € (~wp/2,w;/2],
by multiples of the fundamental or pumping frequency, w,, as shown in Figure 3.3a. The
infinite number of s-plane poles are all mapped to a finite unique set of poles and zeroes in
the z-plane, as shown in Figure 3.3b. Clearly, the z-plane representation of the pole-zero
diagram is much more convenient than its counterpart in the s-plane for the simple reason
that the z-plane poles are finite in number. In addition, consideration of different branches

of the logarithm function is not necessary in the z—plane.

3.6.5 Principal gains and directions

In this section, we propose to study the principal gains of the LTP system, by studying the
singular value decomposition (SVD) of the truncated harmonic transfer function.

Here, N will denote the number of positive harmonics included in a given analysis, with
the implication being that an equal number of negative harmonics and the zero harmonic are
also included in the truncated HTF. Hence, the set of integers Zy = {-N,-N +1,---,N —
1, N} is defined.

The complex Fourier series associated with the state, input, and output are truncated,

as below: X . , ) ] ]
T-N U-N Y_N
T U_1 Y
AN = Xy yWunN = ug yIN = Yo . (3.184)
| TN | UN | | YN |

Hence, a truncated input-output relationship is formed

YN = Gnun (3.185)
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where the harmonic transfer function has been truncated to have dimension m(2N + 1) x
m(2N + 1). with an equal number of positive and negative harmonics. The implication
here is that if enough harmonics are included in the truncated harmonic transfer function,
correct answers will be obtained in the principal gain analyses outlined in this section. The
dependence of the truncated quantities on the integer N will be suppressed to simplify
notation.

Directional properties of LTP systems can be generalized as any property of the harmonic
transfer function or geometrically periodic signals that exhibits a miltivariable dependency,
that is, in the multi~input multi-output sense, in addition to the frequency dependency
shared with scalar LTI transfer functions and scalar sinusoidal signals. The directional
properties of the harmonic transfer function are manifested both by the multichannel na-
ture of multivariable systems, and in the infinite number of Fourier coefficients required
to characterize EMP signals. Here, the principal gains and their directional properties are
described in terms of the singular value decomposition of the truncated harmonic transfer
function.

Recall that a GP (EMP) input to an LTP system produces a GP (EMP) output in steady
state with possibly differing amplitude and phase, according to Theorems 3.4, and 3.14.
Clearly, this map is linear since the underlying dynamics were linear. This suggests that
the singular value decomposition will provide useful information because singular values and
singular directions lead to useful interpretations of domain and range spaces, and directions
of maximal amplification for arbitrary linear maps [32].

The harmonic transfer function maps an EMP input into a EMP output where the plant
has m independent inputs and m independent outputs. The input, u(t), is a bounded EMP
signal,

00
u(t) = Z upe™ u, € C™Vn (3.186)

n=-oo

and, provided the internal dynamics represented by A(t) are asymptotically stable (the
eigenvalues of the monodromy matrix are on the unit disk, or the eigenvalues of Q are in
the LHP), the steady state output signal will also be a bounded EMP signal,
' 00
y(t) = Z Yyt Yy, €C™ VnezZ ' (3.187)
n

===00

Now, the harmonic transfer function matrix provides the linear map, so that

y=G(s)u (3.188)
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The harmonic transfer functicn is a complex matrix that changes value with frequency,
w, where the frequency range of interest is given by

, = (=% %
wEQ = ( 2, (3.189)
Now, for any value of frequency, w € Q,, the singular value decomposition (SVD) of the

harmonic transfer function can be computed, as given by
G (jw) = U(jw)E(jw) V" (jw) (3.190)

where the superscript * denotes the Hermitian or complex conjugate transpose operation.
Each quantity in the SVD is parameterized by frequency in the frequency range of interest,
w € Q,. For practical reasons, the number of harmonics included in the HTF is finite, say

N, and it will be assumed that G N(jw) is invertible, then

(a) the quantity En(jw) is a m(2N + 1) x m(2N + 1) complex diagonal matrix consisting

of the singular values of the truncated harmonic transfer function such that
Omaz(W) = 01(w) 2 03(w) 2 +++ 2 Fan41(w) = Oin(w). (3.191)

The minimum singular value o min(w) is simply the gain associated with the minimum
amplification direction for the number of harmonics included in the harmonic transfer
function. However, if more harmonics are included in the truncated harmonic transfer
function, a smaller minimum singular value may be found. These singular values are

the principal gains of the LTP system.

(b) The quantity V(jw) is an m(2N + 1) x m(2N + 1) complex matrix whose column
vectors {v(“)(w)} are the right singular vectors of Gn(jw) and form a basis for the

domain space. The right singular vectors are the principal input directions.

(c) The quantity U(jw) is an m(2N 4+ 1) x m(2N +1) complex matrix whose column vectors
{u(")(w)} are the left singular vectors of G (jw) and form a basis for the range space.
The left singular directions are the principal butput directions.

This singular value analysis can be carried out for w € (2, so that these singular values
can be plotted versus frequency as a Bode plot‘(tha.t is, decibels versus frequency, w € ,).
This principal gain diagram is analogous in many respects to the singular value plot for
multivariable LTI systems, although the specific interpretation must be carefully worked as

will be done here.
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Principal gain diagram

The principal gain diagram provides a useful gain characteristic that is analogous to SV
plots for LTI systems. How is the information in the SVD at a given frequency interpreted?
At each frequency it is assumed that the input to the asymptotically stabie systern is a unit
complez periodic signal of the form

=]
u(t)= Y upell@tneplt (3.192)

n=-—0o

where

e, = 1 (3.193)

Then assuming that the system is in steady state the resulting output will be

y(t) = Y ypellwtnenlt (3.194)

n=-—oo

where
9 = | Gwul, (3.195)

The magnitude will depend on the direction of the input signal.

Maximum amplification direction analysis

Consider an SVD analysis at a specified frequency w € Q,. The SVD analysis will produce a
maximum singular value, 5(w), with a corresponding complex valued right singular vector,
%(w), with m(2N +1) elements, and a corresponding left singular vector, (w) with m(2N +
1) elements. The maximum right and left singular vectors correspond to the first columns
of V(jw) and U(jw), respectively. The block vector elements of 9(w) can be expressed in
polar form as

Ba(w) = @p 0 e¥n; Vne Z. (3.196)
Here, the o denotes the Schur product as defined by Kailath [53, page 646], which is an
element by element multiplication of compatible niatricesl (vectors). The quantities @,, and
1, are parameterized by frequency, although this frequency dependence will be implicit to
simplify notation. Also, n denotes that portion of (w) corresponding to the nth harmonic.
Each element of the block vector #(w) contribute a different amplitude and a different phase.

The block vector elements of #(w) can also be written in polar form as

tig(w) = by 0 ejan; Vn € Z. (3.197)
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Agéjn, the quantities i, and ¢, depend implicitly on frequency.

In steady state, the input¢ and output signals that correspond to the direction of max-
imum amplification can be reconstructed from the information contained in the maximum
SV analysis. First, the input signal corresponding to the maximum amplification direction
can be reconstructed from the quantities @,, and 1]),1, forall n € Z, as

a(t) = Z ano e7¥n gilwinup)t, (3.198)

n=-—-00

The steady state output signal corresponding to the maximum amplification direction, (t).
can also be reconstructed using the quantities &, b,, and &’m as

§(1) =5 3 bnoeiPngilwtnunlt (3.199)

n=-—-oo

Thus, the direction of maximum amplification is a complex periodic signal represented
by a complex Fourier series, that when input to an LTP system, results in the ma.ximun}
amplitication as determined by the maximum singular value, and with very precise phase
and amplitude characteristics for each harmonic of the complex Fourier series associated
with the input and output signals.

Note that all of these directional properties vary with frequency in the frequency range of
interest, w € .. In addition, the above analysis can be applied to all of the singular values,
0, and their corresponding right and left singular vectors, »(")(w) and u(")(w), respectively.
In fact, since the right singular vectors, v(")(w), are linearly independent and orthonormal,
they form a basis for the domain space of the harmonic transfer function. Also, since the
left singular vectors, ©(")(w), are linearly independent and orthonormal, they are a basis for
the range space of the harmonic transfer function. The amplitude and phase of any periodic
input to the LTP system at a frequency w € Q; can be expressed as a linear combination of
the right singular vectors at that frequency. The amplitude and phase of the corresponding
output can be predicted at steady state by the same linear combination of the left singular
vactors. Unfortunately, 2 SISO LTP system does not ﬁave a scalar phase notion comparable
to the Bode phase notion for SISO LTI transfer functions, but has a directional phase notion

due to the directionality contributed by the harmonics.

3.6.6 Effects of truncation

To this point, the properties developed using the generalized harmonic balance method
have glibly dealt with infinite dimensionality of the harmonic state space model, harmonic
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transfer function, and associated pole and zero eigenvalue problems. Clearly, in order to
implement these analyses on the computer, these procedures must be truncated to have
only a few harmonics, or at least as many harmonics as the computer memory allows.

The computations described in this section will work better for systems with parametric
excitation that can be described exactly by a truncated complex Fourier series (such as a
sum of sinusoids of low harmonic number or the sinusoidal parametric excitation of the
Mathieu equation) than for parametric excitation that cannot be expressed as a uniformly
convergent complex Fourier series (such as a square wave or sawtooth wave).

What constitutes “enough harmonics”? Consider the computation of LTP system poles
using the infinite dimensional eigenvalue problem posed in Theorem 3.19. Due to the
structure of the poles in the s-plane, that is, the infinite folding of the poles about the
fundamental strip, and the fact that the fundamental strip contains all of the unique poles,
enough harmonics are included to guarantee convergence of the pole location in some neigh-
borhood in the fundamental strip. In addition, it is hoped that the identification of the
poles in the fundamental strip is straightforward, and that as harmonics are added, the
fundamental strip continues to coatain only the n poles of interest. The pole locations
in the complementary strips are then inferred from the pole locations in the fundamental
strip. However, the number of harmonics required is problem depenarnt, so that no global
convergence criteria were developed in the course of this research. Thus, based on current
knowledge, an examination of convergence of the pole locations tends to degenerate to a nu-
merical exercise for a given example. This is no better, nor any worse, than what is currently
available in the literature. Essentia]ly the same discussion applies for the determination of

the transinission zero locations, principal gains, etc.

3.7 Connections to Classical Theory

The theory developed thus far has as its underpinnings the signal spaces identified by
Floquet and Hill over a century ago. However, it is useful to reiterate in what ways the
methods of Floquet, Hill, and of harmonic balance relate to the operator representations of

LTP systems developed in the previous sections.
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3.7.1 The Floquet theory

The connection between the integral operator-representation and the Floquet theory is clear.
Floquet theory is the search for solutions to the state dynamic equation that that increase
geometrically from period to period. This interpretation is presented in most textbooks
that deal with Floquet theory including [83]. This cbservation spurred the introduction
of the geometrically periodic (GP) signal space in a formal manner. However, the GP
signal has only been used as the form of the solution of the open-loop homogenous state
dynamic equation. In order to develop a frequency domain interpretation fcr LTP systems,
an explicit input-output relationship was developed, namely the integral operator transfer
function, a(z) This linear operator maps a GP input signal to a GP output signal when
the LTP system is in steady state, and is completely analogous to the LTI transfer function

for which the complex exponential is the test input signal of interest.

3.7.2 The Hill theory and harmonic balance

In Chapter 2, the traditional method of formulating the Hill determinant was outlined for a
second order Hill equation. Here, the Hill determinant procedure will be interpreted using
the notions developed in the previous section. Traditionally the Hill determinant has been

used to examine open loop stability of LTP systems described by an ODE of the form,
£(t) + [a — 2q¥(t)]) z(t) = 0 (3.200)

where the system under consideration has only two free parameters, a and q. Many authors,
including Richards [83], have attempted to formulate the Hill determinant methodology for
a general order Hill equation by a brute force extension of the formulation used for the
second order equation. This is done by using vector valued a and q, but this leads to
results that are cumbersome in the extreme.

Here, the state space formulation will be introduced, along with the same complex
Fourier series expansions used by Hill, in order to extend the Hill determinant formulation
to its most general form in a straightforward manner. Consider the unforced‘ open loop

state space model

&(t) = A(t)z(t) (3.201)
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The state vector is assumed to be an EMP signal, so that

.C

z(t) = Z T,emt
Mm=-=—20
(= o)

z(t) = Z SmTmet
m=-00

Since A(t) is T-periodic, it can be expanded in a complex Fourier series,

[>]
A(t)= > Apelmrt

n=-—0oo

Now, expanding (3.201) in terms of these series,

[0 o] [ e] . [o o]
Z Spxnet = Z A, elmwrt Z Tpe’mt

n=—0oo n=-—0o m=-—00
oo
Snt
= _S_ An_nx,e’”
n,m=-o0o

Grouping terms,

[o o] [o o]
0= E {3,@,,— Z A,._ma:m}e""t

n=-—0oo m=-00

multiplying through by e=**, and applying the principle of harmonic balance,

oo
0=s,2, — E A_nzm VRneZ

m=-—00

This infinite set of equations can be expressed in matrix form as

[z—(sz+N)'1A] x=0

(3.202)

(3.203)

(3.204)

(3.205)

(3.206)

(3.207)

As an aside, let us consider the harmonic balance approach as it is traditionally applied

in dynamics textbooks, or as described by Dugundji [27]. Here we expand only the periodic

portion of the Floquet solution, and leave the complex exponential part of the Floquet

solution embedded (implicit) in the state vector, 2(t). Then,

z(t) = ). za(t)e™
E(t) = Y {&n(t) + jnwpza(t)} st

Expanding (3.201) in terms of the above series

o0 > e} o0
2 {Ea() + jnwpza()}e™rt = Y Aneinrt 3 g, (g)eiment
n=-—00 n=-—co m=-—00
W .
= ) An_mem(t)emrt

n,m=-00

106

(3.208)

(3.209)



Moving all terms to the LHS

o< o0
0= > {a’:n(t) + jnwpza(t) = Y An_m:nm(t)} e/ rt (3.210)
n=-—00 m=-—00
and applying the principle of harmonic balance,
oo
0 = &n(t) + jrwp@a(t) = Y. An-mTm(t) VneZ (3.211)
m=-—00

Taking Laplace transforms,

0 = szn(s)+ jnwpea(s) — f: A ()

m=—o00

= Spn(8) - i An_mTm(s) VneZ (3.212)

mM=—00

This infinite set of equations can be expressed in matrix form as
ZT-(sT+N)Alx=0 (3.213)

which is the same result as determined using the Hill approach of EMP signals. Thus,
the only difference between the traditional application of harmonic balance in [27], and
the generalized harmonic balance approach advocated here is whether or not the complex
exponential part of the Floquet solution is included explicitly in the expansions, as is the
case in the Hill theory [46,47,83], or left implicitly as part of the state vector, as is the case
in the harmonic balance approaches discussed by Dugundji [27] and others [99,101].

In either case, the above infinite set of equations has a nontrivial soluticn if the infinite
determinant

A(s) = det [T = (sT + M) 4] (3.214)

equals zero. Thus, A(s) is the usual form of the Hill determinant, except for the fact that
it has been applied here to the unforced LTP state space model.

The Hill determinant procedure usually takes the following form. Suppose that A(t)
has a set of parameters (ay, az, - - -,ax), for which a characterization of the stability regions
is sought. The stability boundaries are characterized by the existence of periodic solu-
tions. The goal of the Hill determinant analysis is then to determine for which values of
the parameters (a1, 42, -,ax), the Hill determinant A(jw) vanishes. This is a computa-
tionally intensive task, involving a search over the parameter space (a;,az,:--,ax), and an

examination of the effects of truncation of the Hill determinant.
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Let us draw an analogy with LTI systems for clarification. Consider the second order
oscillator,

E(t) + 2Cwnz(t) + wiz(t) =0 (3.215)

where the damping ratio, ¢, and the natural frequency, w,, are the free parameters over
which the search for periodic solutions will be conducted. The stability boundaries are
determined by finding for which combinations of ( and w, the characteristic polynomial
vanishes, and the roots of the characteristic polynomial are purely imaginary. The charac-
teristic polynomial is given by

82+ 2(wps +wi =0 (3.216)

Since the search is for periodic solutions, set s = jw, so that
— w4 2w +wi=0 (3.217)

Clearly, ¢ = 0 and w = wy, produces a periodic solution, and specifies the stability boundary.
Thus, the conclusion to be drawn is that the Hill determinant methodology can be

interpreted as a way of evaluating the roots of the characteristic polynomial in the s—plane.

3.8 Some Comments on the Frequency Domain

Up to this point, the notion of the frequency domain has been somewhat imprecise, and in
this section, the notion of the frequency domain is developed in terms of the GP and EMP

signals, and the linear operators developed above.

3.8.1 The frequency domain and the z-plane

At this point, let us consider the connection between the time and the frequency domain
in the z-plane. As in the case of LTI systems, we are concerned with L;(—o00,00) signals.
The usual basis signal for LT1 systems is the complex exponential, which can be expressed
as the product of a complex exponential signal for which Im(s) € (-~wp/2,wp/2], that is, a
complex exponential in the fundamental strip, and some harmonic of the pumping frequency
or the T-periodic portion of the complex exponential. The fundamental strip exponential is
then the geometric variation over a period that is extracted from the complex exponential
basis signal as the complex parameter 2, and describes the effect of the fundamental strip

exponential over one period. The remaining T-periodic portion of the complex exponential
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basis signal is then an L»[0,T] signal. Thus, this gives rise to the GP signal, which turns
out to be convenient in the study of LTP systems, and is an alternative basis signal for
Ly(—00,00).

By introducing the GP signal, the square integrable signal has been mapped into the z
domain. The unit circle in the 2-plane is parameterized by § € (—w, 7], since z = €% on
the unit circle. The frequency domain is then given by the direct product of the unit circle

in the z—plane, denoted by Ly(—m, 7], and all L2[0,T] signals, that is,
Ly(—00,00) = Ly(—m,7] ® L3[0,T] (3.218)

This is somewhat odd in that the frequency domain is expressed as the direct product of
a frequency domain function space, Ly(—, 7], and a time domain function space, L;[0,T].
However, this is just a consequence of the integral operator formulation, and the fact that
the complex exponential was folded down into a product of a fundamental strip exponential

and a T-periodic signal.

3.8.2 The frequency domain and the s—plane

In the integral operator formulation, it was deduced that the introduction of the GP signal
transformed Lz(—o00,00) signals to a direct product of Ly(—m, ], that is, the unit circle in
the 2-plane, and L;[0,T] signals. It is a well known fact that the unit circle is equivalent
to the imaginary axis in the fundamental strip from the map z = e°T, so that
—paT

Lo(=m, 7] =27 L, (—5‘-’22 = (3.219)
The class of signals in L2[0,T] can be expressed as convergent complex Fourier series defined
as the class l;. It is a well known fact that the complex Fourier series is a Hilbert space

isomorphism from L[0,T] onto I, (82, page 101], so that
Lif0,1] L 1y (3.220)

where F denotes the Fourier series. Thus, the frequency domain for the s-plane or harmonic
balance formulation of the LTP transfer function maps square integrable signals to the direct
product of Lz (-2, 2] and complex Fourier series, l;. This relationship can be described
as

wp wp

L2(-00,00) Z Ly (——2-, ?] ® Iz (3.221)
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3.8.3 Isomorphism between z-plane and s-plane

Based on this discussion, it follows that the harmonic transfer function is an isomorphic
representation of the integral operator transfer function since the underlying test signals
are isomorphic, that is, they are both basis signals for Ly(-o0,00).

In the equation below, the relationships between the frequency domain in the LTP

s-plane, and the LTP 2-plane are depicted.

z-plane: Ly(—00,00) —= Ly(-m,m] ® Ly[0,T)
I I LT (3.222)

s-plane: Ly(—00,00) - Ly (-%,%2] © I,
3.9 Analysis Examples

In order to illustrate the utility of the analysis tools that were described above, two examples
will be discussed. The first example is a second order LTT oscillator for which the input to
the LTI plant is amplitude modulated by a periodic signal. The state space model for this
example has a time invariant dynamics matrix, but has a time periodic control distribution
matrix. The second example is a form of the lossy Mathieu equation, which has time

periodic dynamics and time invariant control distribution and measurement matrices.

3.9.1 LTI oscillator with modulated input

Consider the LTI plant,

82 + 2(wn s + w2
which has an input that is amplitude modulated by the signal, 1 — 28 cos wpt, as shown in

G(s) = (‘l%?‘l) ° 2 (3.223)

Figure 3.4. The values of the above parameters are w, = 0.5,( = 0.3,a = —1, and 8 = 0.2.
The state space model of the LTP system is given by

0 1
Ay =
| —wi —2(w,
0
B(t) =
| 1- 203 coswyt

Co = (%)[1 _a] (3.224)
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1 — 28 coswpt
u(t) u*(t) . y(1)
~0© G(s) -~
£D = m(t)|t=0

Figure 3.4: Block diagram for LTI plant with amplitude modulated input.

The matrices A, and C, are time invariant. However, B(t) is T-periodic and can be

expanded in a complex Fourier series as

B(t) = {"°9OaB—l$BD,Bh07"'}

0 0 0
“101 ) [ ’O,"' (3.225)

-B 1 -B

Now, following the procedure outlined in Example 3.2, the harmonic transfer function

can be determined

G, -BG_, 0 0 0

-Gy G, -BG, O 0
Gg(s)=|... 0 -BGo Go -BGo 0 .- (3.226)

0 0 -8G, G -BGy
0 0 0  -AG: G,
I o
where

Gn = C;[(s + jnwp)I — Ao]"'Bo (3.227)

In Figure 3.5, the system poles are plotted in both the s-plane, as shown in Figure 3.5a,

and in the z-plane as shown in Figure 3.5b. In the s-plane, there are only two poles in the
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a) s-plane b) z-plane
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Figure 3.5: Pole-zero diagram of LTI plant with modulated input. The poles and zeroes are
plotted in both the s—plane, as shown in (a), and in the z—plane, as shown in (b). 'n the
s~plane, the poles and zeroes are folded about the fundamental strip, so that there are two
infinite families of poles. The z—plane representation is somewhat more convenient since there
are 2 finite number of poles and zeroes in the z—plane.

fundamental strip, which are folded into the complementary strips by factors of +jnw,. Asa
result, the LTP system has an infinite number of poles in the s-piane, although there are only
two infinite families of poles in this example. All of the poles in the s-plane are mapped
to a unique set of z-plane poles as shown in Figure 3.5b. These two diagramns illustrate
the equivalence between the s-plane and the z-plane poles, which is expected from results
of the Floquet theory, and illustrates how the poles in the s-plane are folded about the
fundamental strip. The directions associated with the poles have the same interpretation
as for LTT systems, so are not considered further.

The example being considered is an LTI plant with a transmission zero, where the
input to the LTI plant is amplitude modulated by a signal that has no zero crossings (that
is, B < 0.5). The plant is I'"P due only to the amplitude modulation, so i:hat the LTP
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transmission zero can be deduced using the LTI theory.

The LTI transmission zero eigenvalue problem is solved for the embedded LTI state

space model, S,=[A,, B,, C,]. The solution yields the zero location, s(zLTI)

(LTI)

, the initial

condition direction, £,

(LTI)

case), ug ', with the following numerical values:

, and the input direction (which will be a scalar value in this

-.5615
SFTD ) g, (LT - , w{UTD = 0.5334. (3.228)
5615
Hence, for the above initial condition, if the signal
LTI
u*(t) = u(()LTI)e"£ )
= 0.5334e7" (3.229)

is injected at the point indicated in Figure 3.4, then the output signal, y(t), will be zero for
all time after the initial time.

Based on purely intuitive arguments and the fact that 8 < 0.5 so that the modulating
signal has no zero crossings, it is reasonable to expect that the LTP transmission zero will
be located at s, = —1, which is in the fundamental strip. The LTP transmission zero will
then be folded into the complementary strips. In addition, the initial condition direction
should be the same, and the input direction should be the LTI input direction divided by
the modulating signal, that is,

& = &I = 5615 | (3.230)
5615 _I
t) = ! *(t
Wt) = .1—2ﬂcos¢;p_t w(?)
0.5334 |\ _
= (m)et (3.231)

Using the LTP transmission zero eigenvalue problem in the s—plane (truncated to N = 10
harmonics), the LTP transmission zero can be obtained directly. The transmission zero
locations are s, = —1 % jnw, as expected, and the initial condition indicated above is

" obtained. The transmission zero input direction leads to the computation of an EMP input
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signal,

_ 1T r .\ _ AT . 1
u_y e~ Iwpt 0.1215 e I
u(t) = et |y 1 =e"" | 0.5820 1 (3.232)
Uy eiwpt 0.1215 ei2t
N N A R O O
which can be expanded in cosines as
u(t) = e~ {0.5820 + 0.2429 cos 2t + 0.0507 cos 4¢ + - - -} (3.233)

that is, the transmission zero direction is an EMP signal consisting of a sum of cosines only.
For 8 < 0.5, the transmission zero input direction provides the complex Fourier coefficients
of the leading term in parentheses in (3.231), as expected from intuitive arguments. _

For # > 0.5, the amplitude modulation signal has zero crossings, so that no bounded pre-
modulated signal exists that will produce the required LTI transmission zero input direction
at the plant input. Therefore, there are no transmission zeroes for 8 > 0.5.

To reiterate, the pole-zero diagram in the 2-plane is much more convenient than its
counterpart in the s-plane for the simple reason that the poles and zeroes in the z-plane
are finite in number. However, the s-plane formulations permit determination of directional
information in a systematic way, whereas the z—plane formulations do not.

The principal gain diagram is shown in Figure 3.6. The LTP principal gain diagram is
plotted over the fundamental strip only, and repeats itself in the complementary strips. The
principal gains are analogous to the gain notions for LTI systems, but it should be noted
that there are an infinite number of gain curves, although a finite number are shown here.

Let us consider a maximum singular value analysis at w = w,/4 = 0.5, as indicated
by the shaded circle in Figure 3.6. Based on the SVD analysis of the truncated harmonic
transfer function, there is a direction of maximum amplification in both the input and

output sense. The maximal input direction is given by the right singular vector associated
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with the maximum singular value,

- 7T 9 - _ 2T -
Ty e~ Jwpt 0.1933 e—i2t

at) = & | gy 1 | =¢"*] -0.9612 1 (3.234)
h elwrt 0.1933 g2t

Note, in this case, that all of the harmonics enter with zero phase. The maximum principal
gain is given by the maximum singular value, & = 1.9388, and indicates how the LTP
system amplifies the above signal. The maximum output direction is given by the left

singular vector associated with the maximum singular value,

- -T - - - . -T . -
71 e~ Jwst —0.0150 + j0.0412 e 2
g(t) = ae | g, 1| =1.9388¢/2 | _0.4467 + 0.8933 1
7 elwrt —0.0056 — j0.0214 el
L 2 - J L * 4 L ° J

To illustrate the notion of phase for LTP systems, the complex coefficients in the output
direction will be expressed in polar form

- Y - T

0.0442 £110.0° e 72
§(t) = 1.9388¢7/2 | 0.9988 £116.5° 1 (3.235)

0.0221 £255.3° ei2t

Note that the direction associated with the maximum principal gain consists predominantly
of three harmonics, and that each harmonic has a different associated phase change. This is
an illustration of how LTP SISO systems have directional phase notions that are comparable
to LTI multivariable systems, and not scalar phase notions such as those for LTI SISO
systems.

The maximum input direction is shown in Figure 3.7a, and the corresponding output

direction is shown in Figure 3.7b, both as predicted from the singular value analysis. The
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input signal in Figure 3.7a was used as the input to a simulation of the linear time periodic
system with zero initial conditions. The resulting output signal is shown in Figure 3.7c. In
steady state, the simulated system output and the output as predicted from the singular
value analysis coincide. Thus, this serves as an illustration of the LTP frequency response:
if a complez periodic signal is the input to an LTP system, then the output signal is also
compler periodic in steady state, but with possibly different gain and phase (as long as s = jw
is not a pole of the system).

In the above maximum direction analysis at frequency w = 0.5, the maximum input
direction is a single basis direction in the infinite dimensional domain (input) space, and
the maximum output direction is a single basis direction in the infinite dimensional range
(output) space. The maximum singular value is the largest gain associated with the har-
monic transfer function evaluated at w = 0.5. All of the principal gains, input and output
directions are parameterized by frequency, so that different results will be obtained for every
w E N,.

Before commencing a feedback control design, it is important to understand the open
loop properties of the linear system or plant under consideration. The above exercise
illustrates that basic open loop aunalyses can be carried out for an LTP plant, that are

completely analogous to those for an LTI plant.

3.9.2 Lossy Mathieu equation

The first example had time invariant dynamics and a time periodic control distribution
matrix. Here, the time periodic dynamics of the Lossy Mathieu equation are considered.

Defining the state vector as

2T = [ 9 6 ] (3.236)
leads to the system matrices
0 1 0
A(R) = . B= , C= [ 11 ] (3.237)
—(1—-2Bcoswpt) -2¢ 1

Here, the measurement and control distribution matrices are time invariant. It is assumed
that the a linear combination of displacement, z(t), and velocity, #(t), is measured. The
parameter values selected for this example are wp, = 2, {( = 0.2, and 8 = 0.2. For most

of the analyses performed in this section, truncation of the harmonic balance procedures
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Figure 3.6: Principal gain diagram for LTi plant with modulated input. The principal gains of
the LTP system are characterized by its singular value plot of the harmonic transfer function
- over the fundamental strip given by the frequency range w € ;. The shaded circle on the
maximum principal gain locus corresponds to the frequency of the maximum direction analysis
shown in Figure 3.7.
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a) MAXIMUM INPUT DIRECTION

INPUT SIGNAL

—20 2 4 6 8 10 12 14 18 18 20

TIME IN INTEGER FUNDAMENTAL PERIODS

b) MAXIMUM OUTPUT DIRECTION

OUTPUT SIGNAL
o

_2 L i - — n I .

o 2 4 8 8 10 12 14 16 18 20
TIME IN INTEGER FUNDAMENTAL PERIODS

c) ZERO INITIAL CONDITION RESPONSE TO MAXIMUM INPUT DIRECTI(?N

SIMULATED OUTPUT

I i 1 i n i i

0 2 4 6 8 10 12 14 18 18 20

TIME IN INTEGER FUNDAMENTAL. PERIODS

Figure 3.7: Maximum direction analysis of an LT plant with modulated input. The direction of
maximum amplification is the direction associated with the largest singular value of the SVD of
the harmonic transfer function at a particular frequency. In this figure, the maximal direction
analysis is carried out at w = 0.5. The maximal input direction, represented by the EMP signal
shown in (a), is amplified by the maximum principal gain, and is changed to the maximal output
direction, represented by the EMP signal shown in (b). The simulated output for the maximal
input direction is shown in (c). The maximal output direction and the simulated signals coincide
as t grows large.
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a) s-plane b) z-plane
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Figure 3.8: Pole-zero diagram for lossy Mathieu equation example The poles and zeroes are
plotted in both the s—plane, as shown in (a), and in the z-plane, as shown in (b). In the
s—plane, the poles and zeroes are folded about the fundamental strip, so that there are two
infinite families of poles, and a single infinite family of zeroes. The harmonic balance procedure
was truncated to include only N = 10 harmonics in this analysis.

to N = 10 harmonics proved to be sufficient to obtain reasonable results. In addition, the
harmonic state space model consists of tridiagonal block Toeplitz dynamics matrix, and the
Toeplitz forms associated with the input and output matrices are block diagonal.

The pole-zero diagram is shown in Figure 3.8 in both the s-plane and the z-plane.
The eigenvalues of (A-AN) in the s-plane are folded about the fundamental strip, and are
mapped to the eigenvalues of the monodromy matrix or the Floquet poles in the z-plane.
The transmission zero generalized eigenvalue problem produced a zero in the fundamental
strip, located at s, = —1, as shown in Figure 3.8. These transmission zeroes are also folded

about the fundamental strip as shown in Figure 3.8.
| For the lossy Mathieu equation, the directional properties of the poles and zeroes will

be_explored in greater detail than the previous example.
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The pole directions, or eigenvectors in the s-plane, are actually eigenfunctions in the
time domain. Using the harmonic procedures developed above, it is possible to determine
these eigenfunctions. The pole directions are complex periodic signals for which the Fourier
coefficients are given by the right eigenvectors of the [TP pole eigenvalue problem in the
s-plane.

The first mode of the system corresponds to a pole located at s(1) — —0.2353, and its

associated right direction is given by the complex periodic signal,
o) = (g ollesont 0 | vileint 4.

0.0183 - ;j0.2456

= e 4 e"jwpt.,_

—0.4956 + j0.0211 —0.0085 + 50.0020

0.0360 — j0.0083

~0.0085 + j0.0020 | .
efert 4] (3.238)
0.1242 4 j0.2128

Thus, the first system mode will have a time response of
2)(2) = &2 MVty1(y) (3.239)

The second mode of the system corresponds to a pole locaied at 32 = —0.1647, and its

associated right direction is given by the complex periodic signal
0(2)(t) = (. . + v(_21)e_jwpt + v(()z) + ”gz)ejwpt + .o .)

0.0184 + j0.2461 . 0.0360 + 50.0083

e—prt+
0.4891 - 50.0774 —0.0059 - ;0.0014

—0.0059 - j0.0014 | .
efwrt 4 ... (3.240)
0.1243 — 0.2132

Thus, the second system mode will have a time response of

23)(1) = ¢ ty(2)y) (3.241)

P(t) = [ vll)(t) ,,(2)(t) ] (3.242)
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Figure 3.9: Periodic portion of the Floquet solution for the lossy Mathieu equation The directions
of the LTP poles are obtained using the LTP pole eigenvalue problem in the s-plane. The above
plot is a representation of the time periodic matrix from the Floquet solution, P(t). The
columns of P(t) are the mode shapes, which are complex periodic signals, computed from the
pole directions associated with the poles in the fundamental strip.

This matrix is plotted in Figure 3.9, and illustrates the periodic nonsingular nature of P(t).
The above representation of the Floquet similarity transformation matrix is very simple to
compute using the harmonic balance formulation. In addition, P(t) is completely analogous
to the right eigenvector matrix for linear time invariant systems.

The LTP transmission zero cannot be deduced by the simple intuitive arguments de-
veloped in the previous example. Therefore, the LTP transmission zero eigenvalue problem
will be utilized directly. The zero locations are s, = —1 + jnwyp. The initial condition
direction is given by

&7 = [ 0.1994 -0.1994 ] (3.243)
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—d s
The input direction leads to the EMP signal
- AT . -
. T .
U_q e~ Jwpt -0.1994 e~
u(t) = e | g 1 =e'| 0.9170 1 (3.244)
u elwrt —0.1994 ei?
The transmission zero direction can be expressed as
u(t) = e7*{0.9170 — 0.3988 cos 2t} (3.245)

Thus, if the above signal is injected into the system for the above initial conditions, then
the system output is identically zero for all time after the initial time.

The principal gain diagram of this system is shown in Figure 3.10. Again, there are a1-1
infinite number of principal gain curves corresponding to the infinite dimensional domain
and range spaces of the harmonic transfer function, and only a small number are shown
in this diagram. The largest gains occur for the zeroth, and first harmonics, which can be
concluded by examination of the singular vectors associated with each gain plot.

A maximum amplification analysis is performed in this case, for w = w,/4 = 0.5, as
indicated by the shaded circle in Figure 3.10. Based on the SVD analysis of the truncated
harmonic transfer function (N = 10 harmonics), there is a direction of maximum amplifica-
tion in both the input and output sense. The maximal input direction is given by the right

singular vector associated with the maximum singular value,

- : -T o 7 _ : 1 T . : -
iy e~ Jwpt 0.8227 — j0.1088 e~ 7%t
a(t) = et | g, 1 | =e"*?] 0.3497 + jo.0572 1
o eiwpt 0.3319 + ;0.2692 et
i ] L j i i L )
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Figure 3.10: Principal gain diagram for lossy Mathieu equation example. The gain of the
LTP system at a given frequency is characterized by the principal gains (singular values) of the
harmonic transfer function. The principal gain diagram is a graph of these singular values over
the imaginary axis in the fundamental strip, given by the frequency range w € (—wp/2,wp/2].
~ The shaded circle on the maximum principal gain locus corresponds to the frequency of the
maximum direction analysis shown in Figure 3.11.
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It is instructive to express the input direction in polar form,

- . T -~ . -
0.8299 / — 7.534° e~72t
u(t) = e/* | 0.3544 £9.202° 1 (3.246)
0.4274 £39.05° el2t

Note that in this case all of the harmonics enter with a specific phase. The maximum
principal gain is given by the maximum singular value, & = 1.1798, and indicates how much
the LTP system amplifies the above signal. The maximum output (principal) direction is

given by left singular vector associated with the maximum singular value,

- T - - ) 1T -
Jo1 e~ Iwpt 0.5594 — j0.5626 e~i2t
§(t) = et | g, 1 | =1.1798¢"/% | 0.1664 + j0.0646 1
i elwrt 0.2647 — j0.4809 el
I I i : |

To illustrate the notion of phase for LTP systems, the complex coefficients in the output

direction will be expressed in polar form,

- . -T ( . -
0.7934 £ — 45.17° e 9%
§(t) = 1179862 | 0.1784 £21.21° 1 (3.247)
0.5490 £ — 61.17° e’2t
L - d R ‘ J

Note that the direction associated with the maximum principal gain consists predominantly
of three harmonics, and that each harmonic has a correspending associated phase change.
A phase notion must then reflect the phase change between corresponding harmonics in
the input and output directions. Thus, the phase is a directional property of the harmonic
transfer function.

The maximum input direction is shown in Figure 3.11a, and the corresponding output
ditection is shown in Figure 3.11b, both as predicted from the singular value analysis. The
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input signal in Figure 3.11a was used as the input to a simulation of the linear time periodic
system with zero initial conditions. The resulting output signal is shown in Figure 3.11c.
At steady state, the simulated system output and the output as predicted from the singular

value analysis coincide, illustrating the LTP interpretation of the Bode frequency response.

3.10 Summary

In this chapter, a class of signals called geometrically periodic signals, and its Fourier series
expansion called exponentially modulated periodic signals, was defined. Frequency response
notions for linear time periodic systems were developed using the fact that GP (or EMP)
input signals produced GP (or EMP) output signals at steady state. The linear map was
described using two approaches: integial operators (on the basis of GP signals), harmonic
balance (on the basis of EMP signals).

The integral operator is a finite dimensional time domain operator. Although the inte-
gral operator is somewhat novel in the control theory, it posesses analogous properties to
the LTI transfer function. The concepts of poles, transmission zeroes, and their directional
properties were developed in the integral operator framework. Methods for determining
these properties were also presented in terms of their defining eigenvalue problems. In the
LTI theory, the transfer function matrix and complex exponential signals lead to simple
mathematical manipulations of complex matrices and vectors that can be easily imple-
mented on the computer. In contrast, the fundamental mathematical operation involved in
the integral operator approach to LTP sysiem analysis is an integral operator mapping a
signal, which does not translate easily into a numerical procedure.

However, the observation was made that most linear time periodic systems are timne
periodic due to parametric excitation, and that the parametric excitation can often be
expressed as a truncated complex Fourier series. It was deemed advantageous to exploit
this tendency, so that numerical methods were developed in terms of a harmonic balance of
the time periodic state space modél.

The harmonic balance operator, here called the harmonic transfer function, describes
the explicit input-output relationship between the complex Fourier coefficients of the geo-
metrically periodic input and output signals. It can be interpreted loosely as a demodulated

representation of the linear time periodic system, since the Fourier coefficients are modu-
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Figare 3.11: Maximesm: direction analysis for lossy Muthieu equation example. The direction of
maximum amplification is the directicn associated with the largest singular value of the SVD of
the harmonic transfer function at a particular frequency.
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lated by the carrier signals, {e/"r!|V¥n € Z}. This infinite dimensional representation of
the linear time periodic system was called the harmonic state space model. Notions of
poles and transmission zeroes were then developed in the context of harmonic balance, and
methods for calculating LTP poles, transmission zeroes, and their assocajated directions,
were presented. The singular values or principal gains of the harmonic transfer function
were discussed and the LTP principal gain diagram described. Notions of the domain and
range spaces were presented.

At the conclusion of the chapter, two examples of LTP systems were analyzed in order
to illustrate the benefits of the analysis techniques described above. The first example was
a second order LTI plant with an input amplitude modulation. The second example was the
lossy Mathieu equation where the embedded LTI state space model [Ag, Bo, Co) was chosen
to have a transmission zero at s = —1. In both cases, the analysis procedures developed
using harmonic balance were simple to accomplish on the computer using standard software
(for example, 386-MATLAB), and provided insight into the open loop characteristics of LTP

systems that does not exist in the literature.
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Chapter 4

Nyquist Criterion for LTP

Systems

In this chapter, 2 Nyquist criterion for linear time periodic systems is presented. The
Nyquist criterion offers a method of determining closed loop stability of a system as a
function of feedback gain. Closed loop stability is determined by inspection (counting
encirclements of the —71; point) of 2 Nyquist diagram constructed from the eigenloci of
the LTP transfer function. The Nyquist criterion is also an important ingredient in the

extension of the stability robustness results from the LTI control theory to LTP systems.

4.1 Introduction

The stability of linear time periodic (LTP) systems has classically been of interest, particu-
larly as expressed by Floquet theory and the Hill determinant technique (83]. The Floquet
theory has figured prominently in the study of the stability of rotating machinery such as
helicopter rotors [27,33], wind turbines [94], and various other systems with parametric ex-
citation [26,101]. LTP system stability has also been examined using Lyapunov theory for
autonomous systems [104}, various perturbation analyses [77], and describing functions [61).
However, all of the above techniques suffer from the limitation that stability is determined
for a specific value of gain, that is, only a yes or no answer is pljovided to the question of
stability. | ,

As a result of thir limitation, several sufficient conditions for LTP system stability have

been proposed. The stability of fast periodic systems [6] can be examined by an extension
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to the basic Floquet stability criterion. In addition, several sufficient conditions have been
developed for a specific class of LTP system models, namely, those that can be represented
by the (lossy) Mathieu equation [39,81,102]. However, these sufficient stability conditions
lead to a conservative characterization of a stability bourdary, and, in some cases, lead to
inaccurate results for large damping ratios and /or small amplitudes of parametric excitation
(83].

All of the above are analysis tools, and are of limited usefulness in the synthesis of
feedback controllers.

Hence, the notion of the state space has been applied to the control synthesis problem
for LTP systems. Nations of controllability and observability [7,54, among others) have been
developed for LTP systems, which [54] demonstrates are equivalent statements of these two
properties. The linear quadratic regulator/estimator (LQR/LQE) formulation has been
aggressively applied in the LTP context, especially in the study of helicopter vibrations
(71,70]. However, the LQR/LQE formulation is basically a time domain design methodology
where virtually the only rule of thumb for selecting the quadratic state and control weights
is Bryson’s Rule. As a result, notions of immense importance to the classical control theory
such as bandwidth, stability margins, error constants and the frequency domain transfer
function, which are becoming commonplace in the theory of multivariable LTI feedback
control, are virtually unknown in the context of a continuous time feedback control theory
for LTP systems.

In order to extend the synthesis of feedback controllers for LTP systems into the fre-
quency domain, a generalization of the Nyquist idea for linear time invariant systems, either
single-input single-output (SISO) or multi-input multi-output (MIMO), should prove to
be a useful starting point.

The classical Nyquist stability criterion [79] developed for SISO systems is one of the
most fundamental results in the classical control theory. This Nyquist test reduces the de-
termination of closed loop stability to inspection (by counting encirclements) of a Nyquist
diagram. The classical Nyquist stability criterion also provides much of the motivation for
the frequency response of SISO systems. This same notion has been extended to systems
with delays [19], and to MIMO systems in various ways (3,5,14,13,21,63]. Plotting eigen-
loci of the open loop transfer function matrix is a powerful methodology due to its ease of

numerical implementation and because it permits the verification of stability for a param-
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eterization of feedback gain by inspection of a generalized Nyquist diagram. Barman and
Katzenelson [3] first presented a rigorous théory for a MIMO Nyquist test, and made much
use of the geometric properties of eigenvalues of the open loop transfer function matrix in
the s-plane, particularly the graph theoretic properties of eigenloci. Subsequently, MacFar-
lane and Postlethwaite [63] used Riemann surfaces to develop an eqnivalent MIMO Nyquist
stability criterion for the rational transfer function matrix case. Finally, Desoer and Wang
[21] developed a MIMO Nyquist stability criterion based on eigenloci for the rational trans-
fer function case using straightforward proofs that rely on the theory of analytic functions
and some elementary mathematical analysis, and then extended these results to distributed
systems.

Thus, the primary objective of this chapter is to present a Nyquist criterion for LTP
systems that is completely analogous to the Nyquist criterion (based on eigenloci) for lin.-
ear time invariant (LTI) systems. To date, only the possibility of a Nyquist criterion for
continuous time LTP systems has been mentioned in passing [91,90]. However, to date, no
comparable Nyquist stability criterion has been developed for LTP systems. One disad-
vantage of the classical techniques of Floquet and Lyapunov is that stability is determined
for a single value of feedback gain. The concept of plotting eigenloci of a representation of
the open loop LTP system is particularly attractive because closed loop stability can be
determined for a family of gain parameters using the argument principle. The development
of a Nyquist stability criterion for LTP systems based on eigenloci will add a powerful new
tool to the study of LTP systems, and will complement the Floquet theory which provides
part of the central core of the LTP Nyquist stability criterion.

4.2 The Fredholm-Carleman Integral Operator Theory

In this section, relevant portions of the integral operator theory, originally developed by
Fredholm and Carleman, will be presented mainly to establish notation and to provide a
framework for the developments of this chapter.

Fredholm [17,48] examined integral equations with continuous (thus, bounded) integral
operator kernels. The canonical form of the Fredholm integral equation of the second kind
is given by

o(2) = fz) + s [ K(zu)ela)dy (4.1

131



Here, f(z) is a known function, and ¢(z) is an unknown function, and the objective is to
determine the kernel that is inverse to K(z,y), thus, solving the problem. This problem is
by no means solvable in general, nor is the solution always guaranteed to exist for arbitrary

kernels. For f(z) = 0, that is, the komogenous integral equation,

b
o(z) - #/a K(z,y)p(y)dy =0 (4.2)

an eigenvalue problem results, where T = b — a. The homogenous integral equation is
satisfied trivially for ¢(z) = 0, and, in general, nontrivial solutions exist only for specific

values of p. The values pux are the characteristic values. The inverse values,

1
A = — 4.3
k= (4.3)

are eigenvalues, and along with the associated eigenfunctions, are a direct analogy to the
eigenvalues and eigenvectors of a matrix operator.

The Fredholm determinant [17,48] of an integral operator with kernel K(z,y) is denoted
by D g (p). which is defined as the limit of the determinant of a sequence of matrices that

approximates the operator [I — uK(z,y)] as follows:

Dg(p) = det[I-pK(z,y)

= I ()
- n]"-.I%oDK(z,y)(”)

I—-phK(z1,21) -—phK(z1,22) -+ -—phK(z,,z,)
—uhK(z9,2 I-phK(zy,22) --- —phK(za,z,
- Im B .(2 1) ﬂ.(z 2) © fzz) (4.4)
~phK(z,,21) -phK(zq,22) - I - phK(z,,z,)
where
T
h== (4.5)
z; = ih (4.6)

This limit exists when the trace of the kernel matrix, Tr(K(z,v)), is well defined.
The Fredholm determinant, D g (), can also be expressed as an infinite series [17, page
~ 46)

D)= 3 dus” (47)

n=0
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where
1 n

do=1, d,= -;;:l k. (4.8)
Here,
km = Tr{K™(z,y)} (4.9)
and

K'(z,y) = K(z.y)

K™(z,y) /abK(z,Z)K"‘"(z,y) dz (4.10)

The K™(z,y) are known as the iterated kernels.
Finally, it was assumed that the L[a,b] kernel has a well defined k; = Tr{K(z,y)}, so
that the Fredholm determinant has a factorization of the form
o
Dr(p) = e 4 [ (1 - i) eh/un (4.11)
ne1 Ea
The fundamental point here is that the zeroes of the Fredholm determinant are the charac-
teristic values or inverse eigenvalues of the integral operator kernel. The above form of the
Fredholm determinant will provide the fundamental starting point for the development of
a Nyquist test using the eigenloci of the integral operator transfer function.
Let us reconsider the integral operator kernel for the LTP system case. In order for
the Fredholm determinant in equation (4.4) to have the correct limit, the diagonal entl;ies
shouid be the average of the kernel across the discontinuity, ¢ = 7. Therefore, for strictly

proper LTP systems, G(z;t,t) must be defined as
G(z;t,) = C(t)B(t,0) [T — &(T,0)|"* &(T,1)B(t) + %C’(t)B(t) (4.12)

as defined in Definition 3.5. In addition, the integral operator kernel is parametrically
dependent on the complex parameter z, that is, the geometric variation of the state vector
from the beginning of one period to the beginning of the next.

The Fredholm determinant will play a central role in the development of a generalized
Nyquist criterion for LTP systems using the integral operator approach, as will be seen in

the next section.
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4.3 Nyquist Criterion Via Integral Operators

Consider the block diagram of a feedback servo, as shown Figure 4.1. Here, r is the reference
input, e is the servo error, u is the actuator input, and y is the measurement. It is assumed
that the integral operator a’(z) is square, that is, there are as many inputs as outputs. In
addition, it is assumed that the corresponding LTP state space model, S = [A(t), B(t),
C(t)], is strictly proper (that is, D(t) = 0 for all t € [0,T]). This is not a limiting assumpticn
in practice since all physically realizable systems are strictly proper, that is, all physically
realizable systems experience gain roll off at high frequency when sensor and actuator
dynamics are considered. We also assume that () is zero, or bounded, so that it need not
be considered in an examination of internal stability as will be done here. Assuming that

7(t) = 0, the linear static output feedback control law is given by

u(t) = py(t)
= —ky(t) (4.13)
so that 4 = —k. The notation p is customary in the integral operator theory, and the

notation k is customary in the linear control theory. The notation u for the gain parameter
will be utilized in the sequel in order to utilize the properties of the Fredholm determinant

directly out of the literature. The resulting closed loop dynamics are
i(t) = Aq(t)=(t) (4.14)
where

Aq() = A@)+uB()C(t)

A(t) — kB(1)C(2) (4.15)

The stability of the closed loop system is determined from the eigenvalues of the closed loop
monodromy matrix &.(T,0; s) with obvious definition. Again, however, stability can only

be determined for a single value of gain, u (= —k).

4.3.1 A Nyquist criterion

An approach that introduces the feedback gain as a parameter would provide a more useful
closed loop stability analysis. Recall the i~*egral operator state space model from Defini-
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Figure 4.1: LTP feedback system under consideration.

tion 3.6,

&(T,0)z) + B, (4.16)

ik+1

9. = Cia+ Duy (4.17)

Note that the LTP state space model associated with the integral operator transfer function

is strictly proper (that is, D(t) = 0), so that the feedforward integral operator becomes ‘
Diy = /o * C(t)8(t, 1) B(r)an(r)dr (4.18)

The kernel of the above integral operator is the impulse response matriz [59, page 12]
K(t,r)=C@)®(t,7)B(r); t>r (4.19)

The static output feedback control law is applied

U = pgy (4.20)
Substituting (4.17) into (4.20)
ay = pCiy + pDiy (4.21)
and solving for g,
ay = p(I - pD)"'Cxy (4.22)

If the input to the LTP system is a GP signal, then
53[;4.1 = Zék (4.23)
so that from (4.16) and (4.22)

0 = [2F—-&(T,0))zs + Bit,
0 = —pC+ (I~ pD)in (4.24)
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These equations can be expressed in matrix form,

I-&(T,0) -B &y
- - . =0 (4.25)
-uC I-uD Uy
A solution exists when
:I-$T,00) -B
¢(z) = det i =0 (4.26)

-uC I-uD
where the above determinant is found using a limiting procedure similar to the one used

to define the Fredholm determinant. Applying the Schur formulae [34] for determinants of

partitioned matrices,
@(z) = |=I - &(T,0)| |I — pD - pClar - @(T,0)1-11'9| (4.27)
Recall from Lemma 3.7 that the integral operator transfer function can be expressed as
G(z) = C[zI - &(T,0)"'B + D (4.28)
so that (4.27) can be simplified,
o(z) = |2I - &(T,0)| |I’ — uG(z)| (4.29)
Applying the Schur formulae to (4.26) a second time yields
¢(z) = [T - uD||o1 - &(T,0) - uB(T - uD)™¢| (4.30)

Consider the first determinant in the above product. The kernel of the integral operator
associated with D is the impulse response, which is a Volterra integral operator kernel.
Again, the diagonal entries of the kernel must be the average of the kernel across the
djscontiliuity, so that

D(r,7) = %C(T)B(T) (4.31)

According to [48, page 243], the Fredholm determinant of a Volterra integral operator kernel

converges to the trace of the Fredholm determinant, so that
Dp(w) = |I— #DI

= exp {-g /o ' C(r)B(r)dr} (4.32)
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Clearly, D D(p) can never vanish, and is greater than zero for all values of y, so that the
Volterra kernel has no characteristic values.
Now, consider the second determinant of the product in (4.30). If the feedback signal

in (4.22) is the input to the dynamic equation (4.16), then
Brp1 = Ag i (4.33)

where
Aq = [8(T,0)+ uB(I - uD)™'C] (4.34)

However, another connection must be made. Recall that the closed loop transition matrix

satisfies the differential equation
& (t,7) = [A(t) + uB(t)C(1)|B(t, T) (4.35)
Evaluating for 7 = 0,
$,)(1,0) = [A(t) + uB()C(1)}#c(2,0) (4.36)
The above equation has a Volterra integral equation as a solution,
t
$.(t,0) = $(t,0)$(t,0) + u/ &(t,7)B(1)C(1)P(T,0)dr (4.37)
0

Now, evaluating the above at t = T, and noting that #(0,0) = I, yields

&4(T,0) = B(T,0)+u /OT¢(T,r)3(r)0(r)¢c,(r,0)dr

&(T,0) + pBC(1)$4(T,0) (4.38)
Multiplying (4.37) by C(2),

C(t)®(¢,0) = C(t)8(t,0) + uDC(t)P4(t,0) (4.39)
so that

C(t)P,(t,0) = (i-pb)" C(t)®(t,0)

= (1- ,‘b)' ¢ (4.40)
Substituting the above result into (4.38) yields
e N
$,(T,0) = &T,0)+uB(I-pub)" €
= Ac! (4.41)
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Hence, the above together with (4.32) results in the following simplification of (4.30):
@(2) = D (n) |21 - $(T,0; 1)) (4.42)

Therefore, combining (4.29) and (4.42),

#(z) = |21~ #(T,0)[[T - uG(2)|
= Dp(u)lzI - S(T,0;p)| (1.43)
produces the following equation,
A 3 . ~ oy o det [zD — B (T,0; )]
De(s(K) = det [T - wB(2)] = D (W =3 T =575 (4.49)

Now, D a(z)(ﬂ) is analytic in the complex z-plane except at the poles of the open loop
system. Therefore, the argument principle can be used to count the number of closed loop
poles outside the unit circle using the Nyquist path illustrated in Figure 4.2. An important
point to remember is that the Fredholm determinant or the impulse response, D ) (1), does
not contribute any characteristic values on the Nyquist contour and as a result does not
contribute any encirclements. This leads to the following theorem, which is a generalization

of the well known result for linear time invariant MIMO systems.

Theorem 4.1 (Stability Theorem based on |j' - p@(z)l) Let Ny be the Nyquist con-
tour defined in Figure 4.2. The closed loop system (4.14) is asymptotically stable if and
only if:

(1) 'Da(z)(u) #0, forallze Ny,
(2) D &(z)(u) encircles the origin ny times in the counterclockwise sense, where n, is the

number of zeroes of the open loop system characteristic polynomial with magnitude

greater than or equal to unity, counting multipliciiies.

Remark: The above theorem follows directly from the argument principle, and is the fun-
damental connection between the Fredholm determinant and the Floquet theory. However,
this theorem is of limited utility in the direct determination of closed loop system stability.
To utilize the above theorem as a Nyquist test, a value of feedback gain is selected. Then,
the Fredholm determinant is computed along the Nyquist contour, and the result plotted in

the complex plane. The encirclements of the origin by the Fredholm determinant can then
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Figure 4.2: The LTP Nyquist contour. The Nyquist path is denoted by Ni. The “x" denote
the poles of G(z) and appropriate indentations are shown such that poles on the umt circle are
considered unstable.

be counted and closed loop stability determined for a single value of feedback gain. This is
certainly as difficult a computation as computing the closed loop monodromy matrix and

its eigenvalues. O

4.3.2 A Nyquist test using eigenloci

The objective of the following analysis is to generalize the Nyquist stability criterion, so
that it may be applied to linear time periodic systems for any p < 0 (k > 0), or a pa-
rameterization of feedback gain, and stability deterrﬁined by inspection. Using the above
Nyquist test, we compute the Fredholm determinant, D a'(z)(")’ on the Nyquist contour
in the 2-plane, that is, the unit circle, and count encirclements of the origin. However,
by computing the eigenloci of G(z), that is, the eigenvalues of G(z) as z is varied along
the Nyquist contour in the z—plane, we can count encirclements of the —i— point by these
eigenloci in order to determine stability. Thus, the Nyquist test can be ‘pa.ra.meterized by

feedback gair, so that stability of the closed loop system can be determined. for any value
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of feedback gain. In this section, the concept of a Nyquist test using eigenloci is developed.

Here, we shall consider the strictly proper feedback system in Figure 4.1 with a square
integral operator transfer function, G(z). For each z € N1, G(-,+;2) is an L, kernel, and
therefore the Fredholm determinart Dé(z)(;;) is an entire function of u [48]. Therefore,
there are a countable number of zeroes in the u plane denoted by u;(z) that are the char-
acteristic values of é(z) The eigenvalues of the integral operator are given by

1

MO= 0o

i=1,23,... (4.45)
Now, the Fredholm determinant can be expressed in terms of the eigenvalues by

oQ
DA =TI (1 - pAi(2)) e 4.46
where the product expansion is known to ccnverge absolutely [17]. .
First, recall the foilowing result on the algebraic dependence of characteristic values [17,

see Theorem 12.3-2].

Theorem 4.2 Let the L; kernel K(z,y,¢) depend analytically on ¢, and consider a simple
closed contour C which encloses a single arbitrary characteristic value of K(z,y, 0), of mul-
tiplicity N and no others. For small enough ¢, the charucteristic value of X (z,y,€) within
C consists of branches of one or several analytic functions which have at most algebraic
singularities of order 1 <p—-1< N-1lete=0.

This theorem is instrumental in proving the following lemma.
Lemma 4.3 The eigenvalues \;(z),z € N; approach 0 uniformly on N,.

Proof: The proof is by centradiction. Suppose that the limit is not uniform for z € N;.
Then for any ¢, there exists an infinite sequence n;,n3,... and 2, 25, ... such that

[Ani(zi)] 2 € (4.47)

or, equivalently,

L)

Ini ()] < (4.48)

Now, N, is compact. We define the disk D, = {z €C:|z| < %}, which is also compact.
Thus, N} x D, is also compact, so that the infinite sequence {(z1,41),(22,42),...} has a
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limit point in N; x De, which we will denote by (Zoos foo)- Since 'Da(z)(p) is continuous in
z and p, and
D~ N=0 4.49
Gz M) (4.49)
it follows that

Da(zw)(”m) =0 (4.50)

where poo is 2 characteristic value of G(200)- Since (Zo0s o) i 2 limit point, in any
neighborhood of (Zo0s Moo ) there are an infinite number of points (Ziy pi)- Corresponding
to each (z;,ui) is the index n; and the branch fn;(2) of the solution to the characteristic
equation D a(z‘_)(u) — 0. But, this contradicts Theorem 4.2, thus proving the lemma. o

Now, following the example of [21], we define some graph theoretic terms. Let v(+) :
[«,8] = C,a # 8, [a,B] C R, then ~(:) is said to be a path in the complex plane if 7(-) is
continuous. A path y(-) is a loop if 7(a) = 7(B). A path ~(-) is said to be a road if v() is
differentiable except at a finite number of points. A road 7(+)is a circuit if y(a) = 7(B)-
Let v(-): [a,8] = C bea circuit. Let the point Ao & 7, where 7 := ([, B]). Then C(pi7)

denotes the number of counterclockwise (CCW) encirclements of p € C by the circuit -y [22]

1 dz

C(p,7) = 77 b 7= o

(4.51)

Now, we are prepared to develop the generalized Nyquist diagram for LTP systems.

To construct the Nyquist diagram, we resort to a stratagem similar to that employed in
[21], which deals with the distributed parameter LTI case. Because the eigenvalues of G(z)
uniformly converge to the origin on N, some eigenloci, Ai, form continuous indc«-d families
of paths that lie outside a disk of radius ¢, namely Dk, centered at the origin in the complex
plane. These indexed families of paths begin and end within the disk D, an example of
which is shown in Figure 4.3 by solid lines. By arbitrarily closing the continuous indexed
family of paths within the disk to form families of loops, {Xli= 1,2,---,p}, as shown by a
dashed line in Figure 4.3, the number of encirclements of the -—,1; point by these loops can
be determined. The sum of these encirclements is precisely the number of encirclements of
D f}(z)(") about the origin.

Now, we are prepared to state the generalized Nyquist stability criterion for systems

with periodically time varying parameters.
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of paths that lie outside a disk of radius ¢, namely D,, centered at the origin in the complex
plane. These indexed families of paths begin and end within the disk D,, an example of
which is shown in Figure 4.3 by solid lines. By arbitrarily closing the continuous indexed
family of paths within the disk to form families of loops, {Ali=1,2,---,p}, as shown by a
dashed line in Figure 4.3, the number of encirclements of the —7‘; point by these loops can
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Now, we are prepared to state the generalized Nyquist stability criterion for systems

with periodically time varying parameters.

141



Im A

aRe A

Figure 4.3:' Loops used in the Nyquist test. The eigenloci of &(z) are continuous and are
uniformly convergent on N, so that an indexed family of paths can be arbitrarily closed within
the disk D, to form a loop. Only those paths that travel outside D, are considered. The resulting
loops can then be used to count encirclements according to the Nyquist stability criterion for
LTP systems. :

Theorem 4.4 (Generalized Nyquist stability criterion for lumped LTP case)
Consider the feedback system S shown in Figure {.1. Associated with &(z) and I,‘;I >e>0
are the eigenloci \;. Then the closed-loop system is stable

l) - 11; € {A;IJ = 1927"'vp}
i) XFey C(=%i2) =myp

where n, denotes the number of unstable open loop poles, or zeroes of the open-loop system

(4.52)

characteristic polynomial with magnitude greater than or equal to unity counting multiplic-
ities, and A} denotes any indezed family of loops formed from the eigenloci and arbitrarily
closed inside a disk of radius epsilon, D,., centered on the origin in the complez plane.
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Remark 1: The proof is essentially similar to the proof of Theorem L3 in Desoer and
Wang [21], since the problem has been rendered analogous to the LTI lumped parameter
case.

Remark 2: Theorem 4.4 generalizes the multivariable Nyquist stability criterion for LTI
systems to systems with periodically time varying parameters. To guarantee closed loop
stability, the number of CCW encirclements of the —% point by a family of loops, {A}|j =
1,2,---,p}, which is formed as z travels around the Nyquist path N; in CCW fashion, must
equal the number of open loop unstable poles. Also by only considering those loops that

exit the disk, D, only a finite number of eigenloci are considered. a

4.4 Nyquist Criterion Via Harmonic Theory

In Chapter 3, the integral operator transfer function was used to describe the explicit
relationship between GP input and GP output signals. However, the integral operator
approach does not provide numerical techniques directly because the integral operator is
essentially a functional operating on vector functions, which cannot be implemented on
the computer directly. Numerical methods must be developed that are inferred from the
integral operator results, and the usual approach taken is a time discretization of the integral
operator kernel [17]. In this thesis, Hill theory or harmonic balance apnroaches have been
developed largely due to the convenient representation of the GP signal as an EMP signal.

By expanding the periodic portion of the GP signal in a complex Fourier series (an
application of the Hill theory or harmonic balance), the integral operator transfer function
was transformed into a frequency domain operator called the harmonic transfer function.
The harmonic transfer function is isomorphic in the fundamental strip of the s-plane to
the integral operator in the z—plane. Alternatively, the integral operator in the z-plane can
be uniquely represented by the harmenic transfer function in the s—plane. Moreover, the
eigenloci of the harmonic transfer function can be easily computed using standard eigenvalue
software, as long as the harmonic transfer function is truncated.

In this section, the Nyquist criterion is developed from the harmonic balance peint of

view, and a numerical method is proposed to develop the Nyquist diagram.
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4.4.1 A Nyquist criterion

Consider a square strictly proper LTP state space model, S = [A(t), B(t), C(t)]. To

reiterate, a square LTP state space model has the same number of inputs as outputs. Strictly

proper implies that the feedforward matrix, D(t), is identically zero. Corresponding to this

LTP state space model is the harmonic state space model of the form

(IT+N)x = Ax+Bu

y = Cx
Assume that a linear static output feedback law is applied
u = -—ky
= —kCx
Rearranging (4.53) and (4.55) results in two equations

0 [Z-(sT+AN)'AJx = (sT+N)'Bu

0 = —-kCx-TIu
The above equations can be expressed in matrix form as

T-(I+M7A —(z+N 8| [ 2]
—kC -7 -

The above infinite set of equations has a solution when

p(s) = det I-(sZ+N)'A —(sI+N)'B ]

-kC -z

Applying the Schur lemma for determinants of partitioned matrices,

o(s) = [T = (T + M)A Iz +kC [T = (T + M)A T+ N) B

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

Now, the first determinant in the above product is the open loop Hill determinant, A(s).

The second determinant can be simplified by noting that

(T = (A= M) = (T = (ST + M)A T +N)7
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To show this, take the inverse of both sides of the above equation
ST - (A=N)=(sT+ NI ~(sT +N)'A) (4.61)

and simplify. The second determinant is the open loop harmonic transfer function, _a(s), S0

that (4.59) can be expressed as
0(s) = A(s) Iz + k&(s), (4.62)
Applying the Schur lemma a second time,

@(s) = |[T-(sT+N)TA=K(sT+ N)B|
= |[I-(T+M) A= kBC)| (4.63)
Substituting the linear feedback control law into (4.53), the closed loop dynamics can be

expressed by
(sT+M)x =(A-kBC)x (4.64)

Also, the Toeplitz form associated with the closed loop dynamic matrix, A(t), is given by
A =A-kBC (4.65)
Thus, the infinite determinant in (4.63) is the closed loop Hill determinant, which is denoted
by A (s;k), so that
w(s) = Acy(s; k) (4.66)

Combining (4.62) and (4.66),

p(s) = det [I + ka(s)] A(s)
= Aql(sik)
produces the following relationship
Ved A(si k)
B (o)) = det [z +#G(s)] = AIT‘:)
det [Z - (sT + N)1Ay]
det [T — (sT + N)-1 4]

det[Z — (sT + N)~1(A - kBC)]
det[Z — (5T + N)1A4]

(4.67)
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Both the closed and open loop Hill determinants are absolutely convergent, since the Hill

determinant was shown to be a member of a class of converging determinants called normal

determinants. The infinite determinant, Aa (s)(k), is the quotient of two convergent infinite

determinants, and so must itself be convergent as long as (sZ+A')~! exists. The above is the

harmonic balance or Hill theory analog to (4.44), and is constructed using Hill determinants.
The expression in (4.67) can be expressed as

nz—oo det[] — Q]
gi—oo det[I - : Q]

s-jnwp

B ey k) = det [Z+#G(s)] = (4.68)

Again, the conclusion is that zeroes of the infinite determinant, A G (3)(k) are periodic across
the complementary strips, or that the zeroes are reflected from the fundamental strip into
the complementary strips.

As in previous discussions of the harmonic theory, we are only concerned with behavior
of the above function in the fundamental strip, since s has been restricted to be in the
fundamental strip of the complex s-plane. The Hill determinant, Aa(s)(k) is analytic
everywhere in the fundamental strip except at the open loop poles of the system. Therefore,
the argument principle can be used to count the number of closed loop poles in the right
half fundamental strip using the Nyquist contour, s € Ny, shown in Figure 4.4.

Thus, the above discussion leads to the statement of a Nyquist stability theorem based

on a harmonic theory approach.

Theorem 4.5 (Stability theorem based on the Hill determinant of the harmonic
transfer function) Let Ny be the Nyquist contour defined in Figure 4.4. The closed loop
system is asymptotically stable if and only if

(1) Az, (k) #0 for all s € Ny,

G(s)
(2) Aa’(s)(k) encircles the origin n, times in the counterclockwise sense, where n, is the
number of zeroes of the open loop Hill determinant in the closed right half plane (that
is, the right half plane including the imaginary azis) of the fundamental strip, counting

hmltiplicitiea.

Remark: In order to use the above Nyquist test, the Hill determinant of the harmonic
transfer function must be computed for a given value of k, for a parameterization of s in

the complex s-plane, that is, the Nyquist contour N;. The encirclements of the origin by
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Figure 4.4: The LTP Nyqulst contour in the s-plane. The Nyquist path is denoted by N f. The

“x" denote the poles of g(s) Appropriate indentations are shown such that poles in the RHP
fundamertal strip are considerad unstable.

the Hill determinant can then be counted, and stability determined, for the given value of
feedback gain. However, this computation must be performed for each value of feedback
gaix of interest. In contrast, the zeroes of the closed loop Hill determinant can be computed
quite readily using truncated determinants as is common practice in the literature, so that
the closed loop pole locations are easily obtained. As in the integral operator case, a method
of determining closed loop stability for a parameterization of feedback gain is desired, so
that a Nyquist diagram based on eigenloci will be developed. Also, note that the above
theorem provides the fundamental connection between the Hill theory and the Nyquist
criterion developed earlier using the integral operator approach. (]

4.4.2 Numerical method using eigenloci of the HTF

It is a simple matter to compute the eigenloci of the truncated harmonic transfer function

using standard eigenvalue routines on the computer. Stability can then be determined by
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counting encirclements of the — % point by the eigenloci of the harmonic transfer function.
Thus, closed loop stability can be determined for a parameterization of feedback gain. The
harmonic transfer function captures all of the behavior of the LTP system, since it is simply
a transformation of the integral operator transfer function, so that the eigenloci of the HTF
provide an excellent numerical alternative to the eigenloci of the integral operator transfer
function.
Although the Nyquist test will not be rigorously proven using the harmonic theory,
heuristic arguments are presented to motivate the numerical method. The eigenloci of the
HTF are parameterized by s € N;. The Hill determinant II + k_a'(s)l can be expressed in
terms of the eigenvalues of the harmonic transfer function
|2+ £8(s)| = ﬁ [1+ kXn(s)] s € Ny (4.69)
n=—o0 .
However, it is difficult to count encirclements of this infinite product, so that it will be
truncated as done previously.
Recall that the eigenvalues, Ai(z), of the integral operator transfer function, G(z), con-
verge uniformly to the origin on Ny. If we consider only those eigenloci of the HTF generated
on the Nyquist contour s € Ny, then the same may be said for the eigenloci of f}(s) since
G(s) is isomorphic to G(z), so that the An(8) converge uniformly to the origin on N, as
n grows large. Thus, it is not necessary to consider the infinite product above, but only
a finite number of terms, say those terms corresponding to including N eigenloci in the
analysis, defined by the set of integers Zy = {-N,---,-1,0,1,--+,N}. Thus, the infinite
product can be expressed as the product below:
|z +£G(s)| = TT 1+ k0a(s)] T [L+KkMa(s)] s € Ny (4.70)
neZy ngZn

Now, tke infinite product in the above expression corresponds to the eigenloci for all 2| > N
that remain inside a disk, say D, centered on the origin. Therefore, all of the eigenloci
corresponding to |n| > N cannot contribute to encirclements of the —} point as long as
l’l"l > €. The eigenloci that exit D, may not form closed loops due to the truncation of the
infinite product, but these may be closed arbitrarily within the disk D,, in order to count

encirclements. Hence, we count encirclements of
Llz+ kG(s)| = ¢ T] 1+ kra(s)] s € Ay (4.71)

n€Zn
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This equation is similar to that of the LTI case, so that the results in Desoer [21] can be
applied directly. Thus, for closed loop stability, the eigenloci of the truncated HTF must
produce n, CCW encirclements of the —% point, where |%| > |e| and n, is the number
of closed RHP fundamental strip poles enclosed by the Nyquist path, s € N 7, counting
multiplicities.

The above discussion then forms the basis for the numerical method. In summary, the
eigenloci of the truncated HTF are computed along the imaginary axis in the fundamental
strip and plotted in the complex plane. Then, some eigenloci may connect to form closed
loops, and some may not. Those that do not form closed loops may have to be closed
arbitrarily within the disk D.. The argument principle can then be applied to the Nyquist
diagram constructed using the eigenloci of the truncated HTF, that is, for closed loop
stability, the eigenloci of the HTF must encircle the —% point, n, times where n, is the
number of open loop poles (counting multiplicity) enclosed by the Nyquist contour Ny or
the number of right half plane poles in the fundamental strip.

In the next section, the harmonic balance methods will be applied to the lossy Mathieu

and lossy Meissner equations in order to illustrate the use of the Nyquist test.

4.5 Application of the Nyquist Criterion

Several stability criteria applicable to LTP systems have been presented in the literature.
Primarily Floquet and Lyapunov theory have been most successfully applied. But every
stability analysis technique presented suffers from the limitation that closed loop stability
can be determined only for a specific value of gain. The primary objective of this section
is to present some comparative discussion of the Nyquist criterion to examples of Floquet
type analyses in the literature, and to illustrate the benefits of the Nyquist criterion. In
addition, several sufficient conditions available in the literature are compa,red to the Nyquist
analysis results, and numerical issues associated with computation of the eigenloci using the

harmonic transfer function are discussed.

4.5.1 The lossy Mathieu equation

The most widely studied LTP system mode! is the Mathieu equation [72,83], and so it

is.appropriate that it be treated as our first example. The canonical form of the lossy
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(damped) Mathieu equation is
£(t) + 2C2(t) + (e — 2gcoswyt)z(t) = 0 (4.72)

where classically the pumping frequency, w, = 2, implying a pumping period of T = . Here,
a represents the constant portion of the time periodic coefficient of z(t), and ¢ represents
the amplitude of the time periodic variation. Clearly, the Mathieu equation reduces to a
dissipative simple harmonic oscillator for ¢ = 0. The parameter q is often referred to as the
pumping amplitude or the amplitude of parametric ezcitation. The lossy Mathieu equation
has been used extensively to describe the physical behavior of many types of engineering

systems, as discussed in Chapter 1.

Stability criteria

The first stability criterion to be examined is, of course, that due to Floquet, which is
necessary and sufficient. The solid lines in Figure 4.5, were produced using the Floquet
Theorem, and illustrate the stability boundaries of the lossy Mathieu equation for ¢ = 0.2.
In this classical stability (Strutt) diagram [96], the stability boundaries correspond to the
contours in the (g, a) plane for which the solutions of the lossy Mathieu equation are periodic.
The stability boundaries were produced using the following procedure. The monodromy
matrix, #(T,0), was determined by integrating its defining ODE for a mesh of points in
the (g, a) plane. The integration technique used was a variable step Runge-Kutta-Fehlberg
algorithm with a step error tolerance of 1 x 10~6. At each point in the mesh, the maximum
absolute value of the eigenvalues of the monodromy matrix was saved in a table. A contour
plot was then drawn through this table where the maximum absolute value of the eigenvalues
equals one, thus indicating where a single eigenvalue is on the unit circle.

Classically, the method of Hill determinants has been used to determine the stability
boundaries shown in the Strutt diagram. The values of (g, @) for which the Hill determinant
vanishes provides the same contours as illustrated in Figure 4.5. Regardless of the method
used in producing the Strutt diagram, these methodologies only permit determination of
stability for a specific choice of (g, ); or equivalently, a specific value of gain.

Several sufficient stability conditions have been developed for the lossy Mathieu equa-
tion. First, the LTI version of the Small Gain Theorem [64, page 23] can be apylied. The
simulation diagram is shown in Figure 4.6. The stiffness in the lossy Mathieu equation can
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Figure 4.5: Stability conditions for the lossy Mathieu equation with { = 0.2. The solid contour
lines are obtained using the (necessary and sufficient) Floquet Theorem and correspond to purely
periodic solutions of the lossy Mathieu equation, that is, eigenvalues of the monodromy matrix
with unit magnitude. Also shown are the stability criteria due to application of the small gain
theorem, of Taylor and Narendra [102], and Gunderson et al [39].
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Figure 4.6: The lossy Mathieu equation with internal time periodic feedback gain. Stability of
the above feedback loop is guaranteed if the product of ”G" and ||A||, is less than one.
oo

be expressed as the sum of a time invariant term, a, and a time periodic term, —2q cos wpt.
In the simulation diagram, the time pzriodic portion of the stiffness is interpreted as an
operator in the feedback loop, A(s), and the time invariant feedback terms are lumped with

the forward loop to construct an LTI transfer function G(s), as below:

A 1
6() = Fraeta
A = -—2qcoswyt

The lossy Mathieu equation can then be represented by a closed loop system with the LTI
oscillator in the forward loop, and a time periodic perturbation in the feedback loop, as
shown in Figure 4.6. The Small Gain Theorem [64] guarantees siability if the product of
the ||-||, of each of the above quantities is less than unity. It should be noted that ||-||, is
simply the maximum magnitude.

Thus,

[¢@l., = se7m=m
1Al = 2
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so that the lossy Mathieu equation is stable if the product

e 1ol = -5 <1 (4.73)

The stability condition predicted by the Small Gain Theorem is thus given by
g<(\fa~-¢? (4.74)

which is pletted in Figure 4.5. The Small Gain Theorem stability boundary is the closest
to the vertical e axis and is the most conservative of the sufficient stability conditions. The
Small Gain Theorem is also a necessary condition if A is permitted to be an arbitrary
perturbation, which is not the case here.

Taylor and Narendra [76,102] have determined two sufficient conditions for stability:

IA

g < (Va (4.75)

g < (Ja(i+a) (4.76)

In addition, an approximate criterion for { € 1, a 3» { and a > 1 was developed,

9 < zaC (4.77)

The stability boundaries from (4.75-4.76) are illustrated in Figure 4.5. Although the suf-
ficient conditien in (4.75) is less conservative than the Smal! Gain Theorem stability con-
dition, it overlays the Small Gain Theorem result in Figure 4.5. The sufficient condition in
(4.76) is much less conservative than both the Small Gain Theorem stability boundary and
the sufficient condition in (4.75). Both of these sufficient conditions show some improvement
over the Small Gain Theorem result, but are still conservative.

Gundarson et al [39] also produced two sufficient conditicns for stability of the lossy
Macthieu equation:

IA

4

g < (Va+(? (4.79)

5(a~ () tanhx( (4.78)

These two stability boundaries are shown in Figure 4.5. However, the more conservative
of the two sufficient conditions (4.79) overlays the Small Gain Theorem stability condition
in Figure 4.5. It is clear from Figure 4.5 that (4.78) is the least conservative of the above

sufficient conditions.

153



All of the above stability conditions are sufficient conditions. In contrast, the Nyquist
test can treat arbitrary linear variations of a with g, that is, the Nyquist test is necessary
and sufficient. The advantages of the Nyquist methodology will be demonstrated in the

sequel.

Nyquist stability analysis
Defining the parameter, 8 = ¢/a, the lossy Mathieu equation can be rewritten as
E(t) + 2C2(t) + a[l — 28 coswpt]z(t) = 0 (4.80)

Here, the meaning of § is clear. For 8 < 1, the periodic effects are small, so that the
behavior of the time periodic system will not vary much from that of the LTI oscillator.
For large values of 3, the periodic effects must be incorporated into the analysis. .

Using the Nyquist methodology, we can determine stability for linear variations of ¢

with a in a necessary and sufficient sense. If the feedback control law,
u(t) = —az(t) (4.81)
is applied to the open loop system
E(t) + 2¢(t) = [1 — 28 cos wyt]u(t) (4.82)

then the lossy Mathieu equation in (4.80) results. Thus, the lossy Mathieu equation can be
represented by the simple block diagram configuration shown in Figure 4.7. In the figure,
the “plant” transfer function, determined by applying the Laplace transform to the LTI

dynamics in (4.82),

1
(s +20)
has an input that is amplitude modulated by the time periodic signal, 1 — 28%(t), where

G(s) = (4.83)

P(t) = coswpt (4.84)

The states of (4.82) are 7(t) = [z(t) #(t)]. The parameter a can now be thought of
as the feedback gain, k. Selecting z(t) as the measurement leads to the open loop dynamics

expressed by the state space model

z(t) Az(t) + B(lt)u(t)
y(t) = Cz(t) (4.85)
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Break loop at plant 1 —2B8%(t)
output for Nyquist test

/{/ ~k | G(s)

Figure 4.7: System block diagram. Block diagram illustrating system configuration examined
in the lossy Mathieu and Meissner equation examples. The input, u(t), to the plant, @(s), is
amplitude modulated by a time periodic signal. This block diagram is a simple representation
of a second order damped Hill equation with time periodic stiffness.

where
0 1
A =
i 60 -2
0
B(t) =
| 1- 2[ coswpt
C = L 10 ] (4.86)

Clearly, A and C are time invariant. However, B(t) is T-periodic and can be expanded in

a complex Fourier series as

- B(t) = {"'107-B—lvB01Bla0a"'}

0 0 0
"101 ’ ) $01"' (487)

-B 1 -B
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Now, following the procedure outlined in Example 3.2 yields the harmonic transfer function

i h
G_2 -BG_2 0 0 0
-Gy G-y =BG, 0 0
G(s) = 0 -BGo Go -BGo 0 (4.88)
0 0 -Gy G -pBG,
0. 0 0 -BG2 Gy
| -
where for all n € Z,
Gn = G(s+ jnwp)
= C[(s + jrwy)I - A]7' B
1
= : - 4.89
(8 + Jnwp)(s + jnw, + 2(¢) ( )

The stability (Strutt) diagram for the lossy Mathieu equation with ¢ = 0.2 is shown in
Figure 4.8. This diagram was obtained using the Floquet Theorem, using the same software
that produced Figure 4.5. The rays emanating from the origin correspond to the contours
of constant § that will be used in the Nyquist test.

The inverse Nyquist diagram is plotted for the values § = {0,0.4,0.5,0.75}. Figure 4.9a
shows the LTP inverse Nyquist diagram for 8 = 0, which recovers the inverse Nyquist
diagram for G(s). Recall that the gain, k, in this context is simply the value of @ in
the lossy Mathieu equation. In order to compare the Nyquist results to those of classical
stability analyses, radial contours of constant § have been plotted as dashed lines in the
Strutt diagram for the Mathieu equation in Figure 4.8. As z travels around the unit circle
in CCW fashion (or up the imaginary axis in the fundamental strip and then clockwise
around the Nyquist path N t), the loops in the inverse Nyquist diagram travel in CCW
fashion. There is a single open lcop pole outside the open unit disk in the z-plane, so that
we require a single CCW encirclement of the —k point in order for the closed loop system
to be stable. The Nyquist diagram is closed at the far left in CCW fashion, so that it
forms a CCW loop about the negative real axis. Thus, by counting encirclements of the
—k point, we conclude that k > 0 (that is, those points on the negative real axis) produces
stable closed loop configurations and k¥ < 0 (that is, those points on the positive real axis)
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Figure 4.8: Claasical stability (Strutt) diagram for the lossy Mathieu equation with darnping ratio
¢ = 0.2. The contour lines correspond to purely periodic solutions of the lossy Mathieu equation,
that is, eigenvalues of the monodromy matrix with unit magnitude. The rays emanating from
the origin are lines of constant 3 = q/a used in the Nyquist test.
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Figure 4.9: LTP inverse Nyquist diagram for the lossy Mathieu equation. Here, the damping
ratio is ( = .2. When 3 = 0, the LTI inverse Nyquist diagram is recovered. As J is increased,
so that the periodic effects grow stronger, the Nyquist diagram starts to ripple, and eventually
a single closed CCW circuit is formed (8 ~ 0.4). For larger values of 3, the inverse eigenloci
form a finite number of CCW circuits, each of which is symmetrical about the real axis.

produces unstable configurations. As f increases, the Nyquist diagram starts to ripple until
approximately 3 = 0.4 where a single CCW circuit is formed. As f is increased further, a
finite number of closed CCW circuits are formed that are symmetrical about the real axis.
As before, those points on the real axis enclosed by a CCW cirruit produce stable solutions
of the lossy Mathieu equation, while those points on the real axis not enclosed by a CCW
circuit produce unstable solutions of the lossy Mathieu equation. It interesting to note that
portions of the positive real axis in the complex plane were also enclosed by CCW circuits,
8o that the Nyquist test predicts stable configurations of the lossy Mathieu equation for
a < 0. These same stable regions are predicted using the Floquet theory and are illustrated

in Strutt diagrams elsewhere [83].
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Comparison of Floquet and Nyquist

It is rela.tivély straightforward to compute the stability boundaries using either Floquet or
Nyquist techniques. In Table 4.1, the values of a at the stability boundaries are compiled
for the three non-zero values of § = {0.4,0.5,0.75} used in the Nyquist test.

The Floquet stability boundaries were determined by constructing a function that com-
puted the maximum absolute value of the two Floquet poles determined from the mon-
odromy matrix calculation for a constant value of 3. In this case the monodromy matrix,
&(T,0), was determined by integration of its defining ODE using a variable step Runge-
Kutta-Fehlberg algorithm with a step error tolerance of 1 x 1071%. A secant root finding
technique was then applied to this function minus unity, thus, determining when the Flo-
quet poles left the open unit disk in the z-pla.he. The accuracy imposed on the root finding
procedure was 1 x 1012, These values are listed as the Floquet results in Table 4.1.

The stability boundaries were also determined using the Nyquist test by observing that
tiie stability boundaries are simply the real axis crossings of the closed CCW contours in
the Nyquist diagrams. If, in fact, these closed CCW contours crossed the negative axis, this
occurred when w = +wp/2 and/or w — 0. In Table 4.1, twenty harmonics, N = 20, were
included in the harmonic transfer function when computing the eigenloci used in the Nyquist
diagram. Excellent agreement is obtained from comparison of the Nyquist and Floquet
results. They agree, in general, to nine decimal places using the techniques described
above for the stability boundaries shown in the table. Note, however, that the Nyquist
test provides a stability analysis for a line in the (g,a) plane (that is, a parameterization
of feedback gain), while the Floquét analysis provides a stability aralysis for only a single
point in the (g,a) plane.

Effects of truncation

Usually, the stability boundaries are sought for specific ranges of a and ¢ such as shown
in Figure 4.8. However, there are two sources of error due to truncation that will affect
the accuracy of the computed stability boundaries in the given region of the (g,a) plane.
Truncation of the harmoric transfer function in the sense of the main diagonal (that is,
upper left to lower right) corresponds to a truncation of the Fourier series expansions of

the steady state solutions of the state, control and measurement signals. On the other
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Table 4.1: Comparison of Floquet and Nyquist analyses for the Lossy Mathieu equation. Here,
the damping ratio is (=0.2. The values of a, or of feedback gain k, are presented at each point
a stability boundary is encountered. The Nyquist diagram was constructed with eigenloci com-
puted using N'=20 harmonics in the harmonic transfer function, implying a 41 x 41 eigenvalue
problem at each value of frequency in the fundamental strip.

Stability Boundary

B Analysis First Second Second Third
Type Unstable Stable Unstable Stable

0.4 Nyquist 1.01038396671  1.27956036846 — —_
Floquet 1.01038396648  1.27956036870 - —

0.5 Nyquist 0.84768955928  1.60021555487  4.09897619802  5.72109930334
Floguet  0.84768955918  1.60021555496  4.09897619769  5.72109930364

0.75 Nyquist 0.67079159348  2.17981504798  3.60843864899  7.74951351337
Floquet 0.67079159341 217981504796  3.60843864881  7.74951351333

Table {continued)
Stability Boundary

B Analysis Third Fourth Fourth Fifth
Type Unstable Stable Unstable Stable

0.4 Nyquist — —_ — —
Floquet — — —_ _

0.5 Nyquist 9.82428898738 12.31516144551 18.01986769151 21.37896847826
Floquet 9.82428898670 12.31516144613 18.01986769033 21.37896847938

0.75 Nyquist 9.16171180645 16.31771540226 17.45768806959 27.71569830669
Floquet 9.16171180614 16.31771540216 17.457688069019 27.71569830651

hand, truncation of the harmonic transfer function in the sense of the skew diagonal (that
is, lower left to upper right) corresponds to a truncation of the Fourier series expansions
of the system parametric excitation. Each of these sources of error is present to a certain
extent, however, the truncation error in the skew sense is reduced in significance if the
harmonic transfer function is banded, that is, the parametric excitation can be described
by a truncated complex Fourier series.

The time periodic modulation in the lossy Mathieu equation, which consists of a cosi-
nusoid at the pumping frequency and a bias, can be described exactly by a complex Fourier
series with only three terins, as shown in (4.87). This leads to a harmonic transfer function
that is a doubly infinite tridiagonal or banded complex matrix at every value of frequency
in the fundamental strip. Therefore, the error in this case is due entirely to truncation in
the main diagonal sense, which cannct be avoided since the truncation is a pragmatic ne-

cessity. Thus, the truncated HTF will be a tridiagonal complex valued matrix of dimension
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(2N +1)m x (2N +1)m at every frequency w € (—wp/2,wp/2). Intuitively, we would expect
the eigenloci of the harmonic transfer function to accurately predict the real axis crossings
with relatively few harmonics, since the harmonic content of the parametric excitation, or
LTP state space model, consists of only the zeroth and first harmonic.

In Table 4.2, the stability boundaries have been computed along a contour of constant
B = 0.5, using both Nyquist and Floquet. The eigenloci of the harmonic transfer function
were computed for several different values of the number of harmonics, N, included in
the HTF. It is assumed in this case that the Nyquist results are the more accurate of the
Floquet and Nyquist results due to the inevitably large errors accrued in the integration
used to obtain the monodromy matrix. The step error tolerance imposed on the Runge-
Kutta-Fehlberg integration was 1 x 10710, requiring very long processing times to complete
the Floquet analyses for a single value of 3 (on the order of a few hours), even on a 20MHz
Intel 386/7 personal computer. Imposing a smaller step error tolerance would have been
impractical from a computational standpoint. To render the table easier to read, where the
Floquet and Nyquist results disagree, an italic font is used. Also, the insignificant figures
in the Floquet results, which are due to the step error tolerance in the integration routine,
are italicized. The Nyquist and Floquet results agree, in general, to nine decimal places
for the first few stability boundaries, with as few as ten harmonics, N = 10, included in
the HTF. Therefore, the Nyquist test provides an excellent characterization of the stability
boundaries, even though few harmonics are included in the HTF. Cn the other hand, the
Floquet theory, which requires the integration of the monodromy matrix for every choice

of (g, a) of interest is much more tedious.

Approximate Nyquist analysis for Mathieu equation

Although the lossy Mathieu equation was cousidered above, the LTP Nyquist diagram of
the undamped Mathieu equation can be approximated by computing the eigenloci for a
very small value of damping ratio, say ( = 1 x 10™4. The Strutt diagram is plotted in
Figure 4.10. Here, the same values of 3 are selected for the Nyquist analyses.

As before, the LTP inverse Nyquist diagram will be plotted instead of the Nyquist
diagram for convenience and ease of interpretation, therefore, encirclements of the —k point
will be counted, instead of the —71; point as would be the case for the Nyquiet diagram. Recall
that the gain, k, in this context is simply the value of a in the lossy Ma.thieu equation. In
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Table 4.2: Comparison of Floquet and Nyquist stability boundaries for the Lossy Mathieu
equation with (=0.2 and 3=0.5. To iilustrate convergence of the stability boundaries computed
using the Nyquist test, different numbers of harmonics were included in the harmonic transfer
function until the stability boundaries converged. The Nyquist results are more accurate due to
performance limitations of the integration routine used to apply the Floquet theory.

Stability Boundary

Analysis First Second Second Third

Type Unstable Stable Unstable Stable
N=1 0.84931502823884  1.69902068898176  4.35075774975293  7.64924225024706
N=2 0.84768881849881  1.60054689628544  4.10025416414121  5.715291633918666
N=3 0.84768955891037  1.60021574730962  4.09897 755870427  5.72125189624481
N=4 0.84768955928208 1.60021555490968  4.09897619823156  5.72109953399966
N=5 0.84768955928210 1.60021555487723 4.09897619802353  5.72109930348669
N=6 0.34768955928210 1.60021555487723 4.09897619802366 5.72109930334153
N=7 0.84768955928210 1.60021555487723 4.09897619802366 5.721099303341 49
N=8 0.84768955928210 1.60021555487723  4.09897619802363 5.72109930334153
N=9 0.84768955928210 1.60021555487723 4.09897619802367  5.72109930334144
N=10 0.84768955928210  1.60021555487723  4.09897619802366  5.72109930334147
N=15 0.84768955928210  1.60021555487723  4.09897619802365  5.72109930334151
N=20 0.84768955928210  1.60021555487723  4.09897619802369  5.72109930334144
N=25 0.84768955928210  1.60021555487723  4.09897619802362  5.72109930334154
N=30 0.84768955928210  1.60021555487723  4.09897619802370  5.72109930334150
Floquat 0.84768955918250  1.60021555496816  4.09897619769413  5.72109930364913

Table (continued)
— T - Stability Boundary

Analysis Third Fourth Fourth Fifth

Type Unstable Stable Unstable Stable
N=1 — , —_ —_— —_
N=2 10.14279785548181 15.94516698598970 -_ 23.60802644997851
N=3 9.83856920190258 12.44902531812798 18.24447998455505 22.49677971167218
N=4 9.82438924457189 12.31725115247109 18.02857169148811 21.41712350587178
N=5 9.82428918813354 12.315172{3078162 18.01989064401156 21.37944952865552
N=6 9.82428898754685 12.31516147034193 18.019867 75542407 21.37897112579982
N=7 9.82428898738309 12.31516144554065 18.01986769159854§ 21.37896848577490
N=8 9.82428898738302 12.31516144551221 18.01986769150748 21.37896847828977
N=9 9.82428898738304 12.31516144551220 18.01986769150898 21.37896847826909
N=10 9.82428898738304 12.31516144551219 18.01986769150837 21.37896847826958
N=15 9.82428898738304 12.31516144551222 18.01986769150669 21.37896847827154
N=20 9.82428898738304 12.3151614455122/ 18.01986769151144 21.37896847826602
N=25 9.82428898738304 12.31516144551227 18.01986769150484 21.37896847827396
N=30 9.82428898738304 12.31516144551222 18.01986769150885 21.37896847827307
Floquet 9.82428898670343 12.31516144619940 18.01986769033029 21.37896847 938300
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Figure 4.10: Classical stability (Strutt) diagram for the Mathieu equation. The Strutt diagram
is symmetrical about the a axis, and the unstable regions are labeled as such. This diagram was
produced from data in Appendix 2 of [72]. The radial contours of constant 3 corresponding to
the proportional variation of gain used in the Nyquist test cases, are plotted.
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order to compare the Nyquist results to those of classical stability analyses, radial contours
of constant 8 have been plotted as dashed lines in the Strutt diagram for the Mathieu
equation in Figure 4.10. Figure 4.9a shows the LTP inverse Nyquist diagram for 8 = 0,
which corresponds to the LTI inverse Nyquist diagram for the transfer function G’(s). Recall
also that due to the single pole outside the unit circle, a single CCW encirclement of the
—k point is required for closed loop stability.

As z travels CCW around the unit circle (or equivalently, w varies from w = —wp/2 to
w = wp/2), which corresponds to traveling CW around the Nyquist path Ny, the Nyquist
diagram forms the CCW circuit shown in Figure 4.11a. For all £ > 0, that is, the negative
real axis, the closed loop system is stable, since there is a CCW encirclement of the —k
point. For all k¥ < 0, tkat is, points of the positive real axis, the closed loop system is
unstable since there is no CCW encirclement of the —k point. Thus, the LTI Nyquist
diagram can be viewed as a special case of the LTP Nyquist diagram, since Figure 4.11a i.s
identical to the LTI inverse Nyquist diagram. As increases, an infinite number of CCW
closed circuits are formed, each of which is symmetric about the negative real axis, as shown
in Figure 4.11b~d. The values of —k within each of these CCW circuits leads to a value of
gain that stabilizes the closed loop system, that is, the Mathieu equation. In the figures,
stable portions of the real axis are labeled by dashed lines. As 8 increases, the stable regions
dwindle in size. A comparison of the inverse Nyquist diagrams with the Strutt diagram in
Figure 4.10, shows perfect agreement for the values of & or a, along a contour of constant
f3, for which the closed loop system is stable.

It should be noted that even though a finite number of closed CCW circuits are shown
in Figure 4.11b-d, there are an infinite number of closed CCW circuits in the LTP inverse
Nyquist diagram for the Mathieu equation emanating outward from the origin into the left
half plane. This is in contrast to the lossy Mathieu equation for which a finite number of

CCW circuits were formed for a specific value of B.

Alternative stability diagram computation

An alternative method for the computation of the Strutt diagram for the (lossy) Mathieu
equation can be deduced using these results. The CCW circuits from the inverse eigenloci
were symmetric about the real axis, and the real axis crossovers occurred only for frequencies

w = 0 and/or w = +1 when evaluating the eigenloci of the harmonic transfer functioe. Thus,
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Figure 4.11: LTP inverse Nyquist diagram for the Mathieu equation. Here, a small amount
of damping (¢ = .0001) has been added to the system so that the inverse eigenloci do not lie
completely on the real axis. When 3 = 0, the LTI inverse Nyquist diagram is racovered. As 3
is increased, so that the periodic effects grow stronger, an infinitc number of loops emanating
outward from the origin into the left half plane are formed from the eigenloci, each of which is
CCW and symmetrical about the real axis.

a simple algorithm suggests itself for determining the stability boundaries. For a given value
of 3, determine the real axis crossings by computing the eigenvalue problem for the HTF
at both w = 0, and at w = —1 or w = 1, and place these eigenvalues in an augmented
vector. Eliminate those eigenvalues for which the imaginary part is above a given threshold
(this is necessary because some of the closed CCW circuits may be formed from more than
one eigenlocus). Sort the remaining eigenvalues in ascending order. This provides the
stability boundary crossings for a given value of 3, so that the stability diagram can be
constructed for a parameterization of 3, in the regions (¢ > 0,a > 0), and (q < 0,a < 0).
The remaining two quadrants are obtained by noting that the Strutt diagram for the (lossy)

Mathieu equation is symmetrical about the a axis.
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This algorithm was, in fact, utilized to construct Table 4.1 and Table 4.2. The method
relies on a series of eigenvalue problems and a final sort to construct the stability diagram,
which are readily handled by a computer. The Floquet based methods require a muck larger
number of integrations to obtain the monodromy matrix for a mesh of points in the (q,a)
plane. The Hill determinant method requires a large number of determinant calculations
based on an iteration scheme on the Hill determinant, which also requires much more
computation. In addition, the method is much more reliable than the approximate Floquet

methods advocated by Richards [83,85] in close proximity to the stability boundaries.

4.5.2 The lossy Meissner equation

In 1918, Meissner (74] presented an important paper on the stability of time periodic systems
that dealt with instabilities in the side rods of locomotives. This investigation led to an

equation of the Hill type,
() + 2¢z(t) + [a — 2q¥(2)]z(t) = 0 (4.90)

in which the periodically time varying parameter, ¥(t), is a unit rectangular waveform as
shown in Figure 4.12. It is a well known fact that the complex Fourier series associated with
the rectangular waveform cannot be truncated, that is, an infinite number of Fourier coeffi-
cients are required to describe the rectangular wave. In addition, the complex Fourier series
that describes the rectangular waveform converges very slowly (relative to the parametric
excitation in the Mathieu equation), so that substantial errors result if the Fourier series is
truncated. In fact, the effect of this slow convergence is the well-known Gibbs phenomenon,
which is a consequence of the fact that the Fourier series of a discontinuous waveform on
L2[0,T] does not converge uniformly.

In this example, the lossy form of the Meissner equation will be considered, which can

be described by two LTI systems over alternating intervals,
£(t)+2(2(t)+ (a —29)z(t) = 0 te]o,7]
£(t)+2¢2(t) + (a+2¢9)z(t) = 0 te|r,T] : (4.91)
with the usual convention of T = 7 and w, = 2. The lossy Meissner equation has the

virtue that a closed form solution is easily obtained, unlike the lossy Mathieu equation. The

availability of a closed form solution allows extremely accurate determination of the stability
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Figure 4.12: The unit rectangular waveform coefficient for the lossy Meissner equation.

boundaries using the Floquet theory, so that comparison of the Nyquist results can be
accomplished with confidence. Determination of the monodromy matrix is straightforward

using a property of the state transition matrix,

&$(T,0) = &H(T,r)¥(r,0)

= eAs(T-7) oAbt (4.92)
where
[ 0 1]
A, =
| —(a-29) -2¢
[ h
0 1
A = (4.93)
| —(a+29) -2

Thus, stability boundaries can be easily determined in this case using the Floquet theo-
rem. The computation of the monadromy matrix is simple, requiring no integration routine,
so that the stability diagram for the lossy Meissner equation can be readily obtained using
a slightly different algorithm than that described for the lossy Mathieu equation. Setting
T= 1,'-, that is, the parametric excitation is assumed to be a unit square wave, the stabil-
ity diagram shown ii: Figure 4.13 can be determined. Tke stability diagram is a contour
plot, for a table of values in the (g,a) plane consisting of the maximum absolute value of
the eigenvalues of the monodromy matrix, for which a single eigenvalue of the monodromy
matrix is on the unit circle in the z-plane. The rays emanating from the origin correspond
to the contours of constant # ihat will be used in the Nyquist analyses.
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Figure 4.13: Stability (Strutt) diagram for the lossy Meissner equation with damping ratio

¢=0.2. The contour lines correspond to purely periodic solutions of the lossy Meissner equation,
that is, unit magnitude eigenvalues of the monodromy matrix.

In the same manner as for the lossy Mathieu equation example, stability of the lossy
Meissner equation can be determined for linear variations of q with a, that is, for constant
values of 8 = g/a. Introducing the feedback control law, u(t) = —az(t), into the open loop
system.

E(t) + 2¢(t) = [1 - 269(t)]u(t) (4.94)

produces the lossy Meissner equation in (4.90). The parameter a can now be treated as
the feedback gain. Thus, by applying the Nyquist methodology to the above open loop
system, the stability of the lossy Meissner equation, that is, the closed loop syctem, can be

determined. As before; selecting the state vector to be 7 (t) = [z(t),), and z(t) as the
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measurement (or output), leads to the state space model below:

0 1 0
A= B(t) = cT =
0 -2 1 - 269(t) 0

Here, B(t) can be expanded in a complex Fourier series,

B(t) — {Bga|n€ Z}

’
0 .
n=>0
J 1 - 2B,
0
neZ,n#0
{ _213"/)71

(4.95)

(4.96)

where the general unit rectangular waveform for = € [0,T)] has nonzero Fourier coefficients

at all harmonics,

T T
e l— e neZ, n#0

(4.97)

Here it is assumed that the time periodic parametric excitation is a unit square wave, so

that 7 = % and all of the even harmonics vanish,

b= e m=2n+ln€Z
n =
0 otherwise

Thus, define the Fourier coefficients of the control distribution matrix as

B(t)

{'"’OvB—S"O,B-laBO’BlaoyBS,ov" }

= {' i ’01 -ﬂ—3BO1 01 —ﬂ—le BOy _ﬂlBOv 07 -ﬂ3BO1 0, . '}

where 8, = 20,. The harmonic transfer function in this case is

G2 —p-1G_, 0 -B-3aG_; 0
-G G-, —B-1G 4 0 —B-3G 1
ge)=|-. o ~ABGo  Go  —B1Go 0
P3G 0 -Gy G1 —B-1G1
0 —B3G 0 -$1G2 G
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where for all n € Z,

Gn = G(3+jnwp)

= C|(s + jnwp)I - A]"! By

1
= (51 jnwp)(s 1 dnwp + 20) (4.100)

Interpretation of the Nyquist diagrams

Again, the inverse eigenloci are plotted instead of the eigenloci in the LTP Nyquist diagram
for ease of interpretation, so that encirclements of the —k point will be counted instead of
the -71; point. In Figure 4.14, the eigenloci are shown for a € [0,20], the same range of
values of a as shown in Figure 4.13. In this case, the open loop transfer function has a
single pole inside the unit circle, and a pole on the unit circle, so that to guarantee closed
loop stability, a single CCW encirclement of the —£ point is required. In Figure 4.14a, the
Nyquist diagram constructed from the inverse eigenloci is shown for 8 = 0, which recovers
the LTI inverse Nyquist diagram, as was the case for the lossy Mathieu equation. The loop
is closed at the far left in CCW fashion, so that every value of —k on the negative real axis
corresponds to a CCW encirclement. Thus, we conclude that closed loop configurations for
which & > 0 (that is, points on the negative real axis) are stable, and unstable configurations
are produced for k < 0 (or point on the the positive real axis for which the Nyquist diagram
is not shown).

As (3 increases, the Nyquist diagram begins to ripple, as shown in Figure 4.14b until
closed CCW circuits, symmetricai about the real axis, are formed. As before, the portions of
the real axis enclosed by a CCW circuit lead to stable configurations of the lossy Meissner
equation. The first closed CCW circuit is formed at approximately § = 0.31. As 3 is
increased further, the portions of the real axis enclosed by CCW circuits are diminished.
The CCW circuits are roughly ellipsoidal in the interval a € [0, 20). However, if the Nyquist
diagram is plotted for the expanded interval of interest, a € [0,100], as showa in Figure 4.15,
it is clear that the nature of the LTP inverse Nyquist diagram for the lossy Meissner equation
is much different than that of the lossy Mathieu equation. In the lossy Mathieu equation,
the CCW circuits formed very regular closed convex curves symmetrical about the real
axis. However, in the lossy Meissner example, the shapes of the CCW circuits can be very

irregular and not convex, although the symmetry of the CCW circuits about the real axis
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Figure 4.14: LTP Inverse Nyquist diagram for the lossy Meissner equation for a € [0,20]. Here,
the damping ratio is { = .2. The inverse Nyquist diagrams are plotted for the same range of gain
shown in the stability diagram in Figure 4.13. When 8 = 0, the LTI inverse Nyquist diagram is
recovered. As [ is increased, so that the periodic effects grow stronger, the diagram starts to
ripple until eventually a single CCW circuit is formed (8 ~= .31). For larger values of 3, the
inverse eigenloci form circuits that are symimetrical about the real axis. All circuits are CCW.
The dashed lines correspond to values of stabilizing feedback gain.
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is maintained. This irregularity in the CCW circuits suggests more complex interactions
between the harmonic content of the parametric excitation and closed loop stability of the
lossy Meissner equation. It should be noted that when the CCW circuits approach, but
do not touch, the real axis, the contour of constant 3 in Figure 4.13 is close to a stability

boundary.

Comparison of Flequet and Nyquist

The stability boundaries can be computed in straightforward fashion using either Floquet
or Nyquist techniques. In Table 4.3, the values of a (or k) at the stability boundaries are
compilea for four non-zero values of § = {0.35,0.4,0.45,0.5} used in the Nyquist test.

The Floquet stability boundaries were determined by constructing a function that com-
puted the maximum absolute value of the two Floquet poles determined from the mon-
odromy matrix calculation for a constant value of 3. In this case the monodromy matrix,
&(T,0), was determined numerically using (4.92). A function was then constructed that
computed the maximum absolute value of the two eigenvalues of the monodromy matrix. A
secant root finding technique was then applied to this function minus unity, thus, determin-
ing when either of the Floquet poles left the open unit disk in the 2-plane. The accuracy
imposed on the root finding procedure was 1 x 10~!2. These values are listed as the Floquet
results in Table 4.3.

The stability boundaries were also determined using the Nyquist test by observing that
the stability boundaries are simply the real axis crossings of the closed CCW contours in
the Nyquist diagrams. If, in fact, these closed CCW circuits crossed the negative axis,
this occurred when w = +w,/2 and/or w — 0. In Table 4.3, eighty harmonics, N = 80,
were included in the harmonic transfer function when computing the eigenloci used in the
Nyquist diagram in order to achieve results accurate to a minimum of six significant figures
for the stability boundaries considered in the table. Excellent agreement is obtained from
comparison of the Nyquist and Floquet results from nine significant figures for the first
unstable region to six significant figures for the fifth stable boundary using the techniques
described above. In general, the accuracy of the stability computation decreases as the
gain, a = k is increased. It is interesting to note that the Nyqﬁist test predicted the first
unstable boundary to two decimal plé,ces even though only a single harmonic was included

in the harmoric transfer function. Thus, the Floquet and Nyquist results compare very
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Figure 4.15: LTP inverse Nyquist diagram for the lossy Meissner equation for a € [0,100]. Here,

the damping ratio is { = .2. AII circuits are CCW. The dashed lines correspond to stabilizing
feedback gains.
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well. However, it must be remembered that the Nyquist test provides a stability analysis
for a line in the (g, ) plane, while the Floquet analysis provides a stability analysis for only

a single point in the (g,a) plane.

Effects of truncation

The time periodic parametric excitation in the lossy Meissner equation consisting of a
square wave at the pumping frequency and a bias must be described by a complex Fourier
series with an infinite number of terms. The harmonic transfer function is a doubly infinite
complex matrix at every value of frequency along the imaginary axis in the fundamental
strip. The HTF is truncated for pragmatic reasons, so that the HTF will be a complex
valued matrix of dimension (2N + 1) X (2N +1). Since the parametric excitation cannot be
described by a truncated complex Fourier series, we would expect that the truncation error
in the skew diagonal sense will be much more significant than in the lossy Mathieu equation
example. Thus, many more harmonics of the parametric excitation must be included in
the harmonic transfer function in order for the eigenloci to accurately predict the real axis
crossings, and hence the stability boundaries.

In Table 4.4, the stability boundaries are computed along a contour of constant 8 = 0.45
using the eigenloci of the harmonic transfer function for several different values of N, the
number of harmonics included in the HTF. Up to eighty harmonics were included in the
computation of the stability boundaries of the lossy Meissner equation. In addition, the
insignificant figures in the values of the stability boundaries obtained using Nyquist are
italicized in the table. Clearly, many more harmonics must be included in the harmonic
transfer function in order to obtain good results using Nyquist. This is due primarily to the
fact that a truncated complex Fourier series is always insufficient to describe the parametric
excitation in the lossy Meissner equation, resulting in an HTF that is not even banded. In
contrast, the lossy Mathieu equation example required fewer harmonics for accurate results

because the HTF was tridiagonal.

4.6 Conclusions

The classical stability analysis methods of Floquet and Hill can only determine closed loop
stability for a specific value of feedback. The objective of this chapter was to develop a
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Table 4.3: Comparison of Floquet and Nyquist anaiyses for the Lossy Meissner equation. Here,
the damping ratio is (=0.2. The values of a, or of feedback gain k, are presented at each point a
stability boundary is encountered. In computing the eigenloci of the harmonic transfer function
used in the Nyquist test, N=80 harmonics were included, implying an 161 x 161 eigenvalue
problem at each frequency in the fundamental strip. The Floquet results should be regarded as
the most accurate.

Stability Boundary

B  Analysis First Second Second Third
Type Unstable Stable Unstable Stable
0.35 Nyquist 0.916275394791 1.430344329145 3.994303942260 5.622542822018
Floquet 0.916275392220 1.430344174990 3.994303031002 5.622541932449
0.40 Nyquist 0.838272386733  1.603488613760 3.790488659706 6.492752546826
Floquet 0.838272378784  1.603488371110 3.790487746346 6.492749854334
0.45 Nyquist 0.781711391370 1.755194149193 3.635654220460 7.303324920163
Floquet 0.781711380876 1.755193782656 3.635653228399 7.303319413106
0.50 Nyquist 0.736046949977 1.888570967911 3.502777366334 7.895167480647
Floquet 0.736046937790  1.888570448777 3.502776293377 7.895158923405
Table (continued)
Stability Boundary
B Analysis Third Fourth Fourth Fifth
Type Unstable Stable Unstable Stable
0.35 Nyquist 27.105441587100 31.346851739408  71.677465782886  77.218816682875
Floquet  27.105410124760 31.346805215793  71.677347279928  77.218418854017
0.40 Nyquist 10.479953102209 12.831286620816  29.029399365639  32.634589890584
Floquet 10.479942204328 12.831285373380  29.029393154682  32.634480449978
0.45 Nyquist 9.997742160250 16.025042300979  20.411663584393  26.413218616094
Floquet  9.997732066636 16.025020314574  2(.411614962233  26.413192433889
0.50 Nyquist  9.694555628043 17.896259027615  19.755565795585  31.896716278049
Floquet 9.694544791229 17.896214809522  19.755515993965  31.896574347522
Table (continued)
Stability Boundary
B Analysis Fifth Sixth Sixth Seventh
Type Unstable Stable Unstable Stable
0.35 Nyquist 92.179564710410 97.771229141740 140.095409745532 141.263667625460
Floquet  92.178904223607 97.771133148987 140.098851204862 141.258480617433
0.40 Nyquist 41.168629156735 49.121759903864  59.424989627358  64.701911890927
- Floquet 41.168712348994 49.121601684323  59.424608159416  64.701899141958
0.45 Nyquist 61.231622550791 72.716662363453  81.328896079068  97.290349030582
Floquet 61.231386364849 72.716050503113  81.328208064986  97.289407248244
0.50 Nyquist 33.780885109680 49.897091773143  51.793637254281  71.897571284968
Floquet 33.780731199126  49.896739069338 71.896828105506

51.793263426506
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Table 4.4: Comparison of Floquet and Nyquist stability boundaries for the Lossy Meissner
equation with (=0.2 and 3=0.45.

Stability Boundary

Analysis First Second Second Third

Type Unstable Stable Unstable Stable
N=1 0.784778308552  1.961511810761  4.251998358417 11.394911703320
N=2 0.781697054704  1.792781307360  3.915559368162  6.581839620784
N=3 0.781851701546  1.760571490676  3.651847347139  1.439159777596
N=4 0.781758273680  1.7158720402824  3.646939331738  7.422006671156
N=5 0.781743977399  1.756435304828  3.639363472236  7.326149938819
N=6 0.781729975699  1.7156167556187  3.638577327368  7.323420401267
N=17 0.7817238985623  1.7155665189484  3.637040721310  7.311307583235
N=8 0.781720107194  1.755591412866  3.636814428835  1.310476266290
N=9 0.781723985623 1.755665189484 3.637040721310 7.311807583235
N=10 0.781716098189  1.755893569475  3.636226948445  1.306701951427
N=15 0.781712810258  1.755245045025  3.635798382009  7.304121562908
N=20 0.781712022089  1.755217866103  3.635719988238  7.303694132020
N=30 0.781711575188  1.755200835080  3.6356 72538422  7.303427392543
N=40 0.781711463565  1.7155196740594  3.635661277610  7.303364379979
N=50 0.781711443508  1.755195291847  3.6358573918181  7.303342276831
N=60 0.781711405639  1.755194654005  3.635655548818  7.303332703386
N=80 0.781711391870  1.755194149198  3.635654220460  7.303324920162
Floquet 0.781711380875  1.755193782656  3.635653228398  7.303319413105

Table (continued)
T Stability Boundary

Analysis Third Fourth Fourth Fifth

Type Unstable Stable Unstable Stable
N=1 19.724074973292 — - -
N=2 10.206776284175 21.625685477367 26.479667953751 —_
N=3 10.524562970155 16.436710894150 21.786466878626 33.45{790194722
N=4 10.449750895792 15.180746424928 20.099322981774 25.879631168752
N=5 10.050767917606 16.230839037022 21.221572458489 25.629476575519
N=6 10.045015071094 16.161425232679 21.145793955108 25.401331798664
N=17 10.014864262325 16.078452934689 20.537427253762 26.477246751649
N=8 10.013481426774 16.058695494491 20.528545615071 26.411374797367
N=9 10.014804262825 16.078452934689 20.587427253762 26.477246751649
N=10 10.004915762426 16.039991519662 20.455296186322 26.414004071216
N=15 9.999296617796 16.028651567498 20.420153268102 26.417690509922
N=20 9.998468656908 16.026495513104 20.415408259608 26.414094398864
N=30 9.997987669983 16.0254447184.37 20.412636765055 26.418559087709
N=40 9.997816326430 16.025197682052 20.412027651479 26.413869214018
N=50 9.997774473888 16.025110752819 20.411820919276 26.413290058118
N=60 9.997756391166 16.025072538635 20.411792394000 26.413251260700

=80 9.997742160249 16.025042300979 20.411669584393 26.413218616098
Floquet 9.997732066636 16.025020314574 26.413192433889

20.411614962232
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method that would permit determination of closed loop system stability using only open
loop information. that is, a Nyquist test for LTP systems. It was determined that the MIMO
Nyquist criterion for LTT systems could be extended to the LTP case using the notions of
the LTP integral operator transfer function and the harmonic transfer function developed
in Chapter 3. The Nyquist criterion provides a method of determining closed loop system
stability for a parameterization of feedback gain, by plotting the eigenloci of the open loop
LTP transfer function.

Although the examples used to illustrate the multivariable Nyquist test were single input
single output cases, a completely general multivariable LTP Nyquist test was presented. The
Nyquist methodology presented here was shown to be a powerful alternative to the classical
stability notions of Floquet and Hill, and should ultimately prove useful in the general study

of the control of linear time periodic systems.
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Chapter 5

Stability Robustness and
Feedback Control Design

The introduction of the linear operator theoretic framework for LTP systems has thus far led
to a frequency domain interpretation for LTP systems. To reiterate, poles, zeroes, principal
gain, phase, and all of the associated directional properties, as well as a Nyquist diagram
and criterion, have been developed.

An important notion in the linear operator theory is the Small Gain Theorem, which
leads to several useful and important analysis techniques in the linear time invariant control
theory. Central to the Small Cain Theorem are operator norms that quantify the gain of an
operator. In this chapter, the Small Gain Theorem is reviewed, and norms appropriate for
LTP systems are described. Essentially all of the Small Gain Theorem results can be ex-
tended to LTP systems with a slight change of notation, and computations performed using
the harmonic balance procedures developed in this thesis. Therefore, instead of attempt-
ing to transcribe all of the various theorems that rely on the Small Gain Theorem, some
example-driven analyses are developed that illustrate the uses of the Small Gain Theorem.
First, the stability robustness properties (that is, gain and phase margins) of steady state
periodic solutions of the linear quadratic regulator are examined. Second, a compensation
methodology is presented for weakly periodic systems that treats the periodic parametric
~ excitation as a modeling error. This approach permits LTI compensators to be designed for

weakly periodic systems using the familiar tools of the LTI control theory.
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5.1 Preliminaries

The Small Gain Theorem [111,112] has pro;/en to be extremely useful in a multitude of
applications for LTI multivariable control systems. Most of the stability robustness results
(60, for example] can be directly or indirectly attributed to the original Small Gain Theorem
due to Zames [111,112]. Zames took a very broad perspective to interconnected systems,
and essentially required that only two criteria be satisified for acceptable behavior of an

input-output systems:
1) bounded input must produce bounded outputs,

2) outputs must not be sensitive to small variations in the input signal, for example,

noise.

The above two statements form the basis of the definition of stability presented by Zames,

and lead to the Small Gain Theorem. First, let us consider some preliminaries.

5.1.1 Operator norms

In Chapter 3, the principal gains were introduced in order to describe the amplification of
a GP input signal into a GP output signal. These principal gains were computed using the
SVD of the truncated harmonic transfer function. However, it is sometimes more useful to
Lave a global measure of the gain of the LTP transfer function, that is, a single number.
In the literature of LTI control theory [64], this is accomplished through the notions of
the operator norm ||-||,, or the L/ H; norm, and the operator norm ||-||_, or the Lo,/Hoo
norm. Here, we present preliminary definitions for the Ly/H; and Lo,/Ho, operator norns,
and describe some frequency domain function spaces that are analoguus to the frequency

domain function spaces commonly used in the LTI control theory.

Definition 8.1 P denotes the space of all LTP transfer functions deiermined using the
integral operator formulation, determined from proper LTP state space models.

First, let us consider the operator norm, ||-||,.

Definition 5.2 (L2/H; operator norm, ||-||,) Let G(z) be a proper LTP transfer func-
tion with no poles on the unit circle. The L2/ H, operator norm of f'r'(z) is defined as

8], = {& [ [6" )] o) (5.1
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Thus, we define two function spaces.

a) PL; denotes the frequency domain function space consisting of all LTP transfer func-

tions with no poles on the unit circle, and with finite L, norm.

b) PH> denotes the frequency domain function space consisting of all functions in PL,
that have no poles outside the unit circle. Alternatively, if

"(‘;?"2 = {%/ﬁ’ Tr [G'(rejg)é(rejo)] dO}% (5.2)

-7

1s bounded for r < 1, then f;(z) 15 a member of the class PH,. 0

This is an extension of the standard definition of H, functions as described in Grenander
[38]. The trace is introduced because the integral operator transfer function is multi-input
multi-output. Thus, an H; optimization theory comparable to that of the LTI case can
be developed on the basis of the above H; norm. The H, optimization for LTI systems
preduces the LQG design methodology. The LQG design methodology has also been fully
developed for the LTP case, and consists of a linear quadratic regulator (LQR) and a linear
quadratic estimatoer (LQE). The stability ro! :stness properties of the LQR will be examined
in the sequel.

To compute the H; norm, we again resort to the harmonic transfer function, and propose

that the H; norm be computed using

g 1
l&l, =Nli_131°°{§1; / ’; Tr [Gr(jw)on(jw)] w}’ (5-3)
as long as the limit converges. The H; norm certainly deserves further study, but is not
of much use in the context of stability robustness as discussed in this chapter, and the
complete K7 theory for LTP systems is left for future research.
In the context of stability robustness to perturbations in the plant model, we are more

concerned with the greatesi possible magnificaticn of an input signal by the LTP transfer
function. Hence, the ||-l| , is defined.

Definition 8.3 (L.,/H operator norm, ||| ) Let G(z) be a proper LTP transfer func-
tion with no poles en the unit circle. The Lo,/H., operator norm of &(z) is defined as
"é" = SUP Omazr {&(ef’)} (5.4)
oo ee(—=,x)
Thus, we define two function spaces.
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a) PLy, denotes the frequency domain function space consisting of all LTP transfer func-

tions with no poles on the unit circle (or finite Lo, norm).

b) PHy denotes the frequency domain function space consisting of all functions in PLy

that have no poles outside the unit circle. O

Recall that a numerical method was developed to compute the singular values of the
LTP transfer function in Chapter 3. Therefore, an algorithm to compute the H, norm is

given by the formula below

"é" = lim sup Omaz {ON(Fw)} (5.5)
T ez

as long as the limit exists.

The above operator norms satisfy the usual properties of a norm, namely,
L |&] > b, and |&] = 0 if and only if &(2) = 0
2. ||af;|| = |a| ||é|| for all scalar a, and
3. ||E1' + TI" <|&| + ||?I|| that is, the triangle inequality.
The ||c“;||0o operator norm satisfies an additional property,
jea| <14 I, 50

which is derivative of the properties of singular values. Also note that the above inequality

is not satisfied by the "E?"2 operator norm.

5.1.2 Another closed loop stability result

In Chapter 4, the Nyquist criterion for LTP systems was presented using the Fredholm
determinant of the LTP transfer function, and provides a necessary and sufficient condition
for stability of a closed loop system even if the plant and the compensator are unstable.
The Small Gain Theorem applies to any operator with a sensible definition of an operator
norm that describes the maximum amplification of a signal from an input signal space to
an output signal space, where the space of ir put signals equals the space of output signals.

Clearly, the GP input and output signals satisfy the latter requirement, and the Ho,

norimn defined above satisfies the former requirement. However, in stating the Small Gain
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Figure 5.1: A closed loop system.

Theorem below, we are omitting many of the details associated with extended normed linear
spaces, which is required to prove the general case. In addition, the Small Gain Theorem
is a conservative, but very simple method for determining closed loop stability using only

information from the open loop system. Consider the feedback loop in Figure 5.1.

Theorem 5.4 (The Small Gain Theorem) The system in Figure 5.1 is internally stable,
when both G(z) and H (z) are PH, functions, that is, stable, and

&2 <1 (57

or, in terms of singular values,
Cmaz [é(ejo)] Omaz [?I(eja)] <1l 6¢€(-mn] (5.8)

Proof: The proof is a direct application of the Small Gain Theorem by Zames [111). O

Thus, closed loop stability can be determined for a feedback loop composed of stable
elements in a sufficient sense by computing the H, operator norm of every element in the
loop, and requiring that the product of the H., norms be less than one. The Small Gain
Theorem will prove useful in the sequel in determining stability robustness (especially gain

margins) of closed loop systems.
| The second aspect of stability required in Zames’ notion of stability, that is, tolerance
of small perturbations, can now be examined. If the transfer function in the feedback loop,
H (2), is thought of as a perturbation, say A(z), then the stability of the loop in Figure 5.1
is guaranteed if

Omaz [&(e-f‘)] < Ve (-mx] (5.9)

1
Omaz [A(€7 0)]
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The above statement forms the basis for much of the stability robustness analysis, origi-
nally developed by Lehtomaki [60] and others. Other forms of the above equation will be

developed in the sequel cnat are more useful from a control design standpoint.

5.2 Optimal Linear Quadratic Control

The linear quadratic Gaussian (LQG) design methodology has proven to be one of the most
useful feedback control design techniques for LTI systems. In this section, the LQG design
methodology is examined in the context of the theoretical framework developed for LTP
systems in previous chapters. The underlying linear quadratic regulator (LQR) and linear
quadratic estimator (LQE) procedures are well established, however, the majority of the
material presented here is new.

The section is organized as follows. The LQR problem is defined, and its solution pre-
sented, in order to establish terminology. The LQR solution requires solving the usual
matrix Riccati differential equation. A harmonic balance form of the solution is then pro-
posed. Finally, the stability robustness properties of the steady state periodic solutions of
the time periodic LQR problem are described.

5.2.1 The linear quadratic regulator

The linear quadratic regulator for LTP systems is a well known design methodology which

is well suited for several performance goals.

Deilnition 5.5 (Linear quadratic regulator for LTP systems) Consider the LTP
state space model

a(t) = A(t)=(t) + B(¢)u(?) (5.10)
with the usual assumptions that A(t) and B(t) are T-periodic, with initial state condition,
2(0) = & (5.11)

The controlled variable is

z(t) = M(t)=(t) (5.12)
where M(t + T) = M(t). Consider also the quadratic cost

J(0,t5) = /0 " {zT(t)R(t)z(t) + uT(t)Rc(t)u(t)} dt + =% (t;) Pra(ty) (5.13)
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where the controlled variable weighting, R(t), and the weighting on the control effort, R.(t),
are uniformly positive definite, T-periodic, symmetric matrices for allt € [0,T]. The con-
stant matriz, Py, is also positive definite and symmetric. Then, the problem of determining
the input u(t) for t € (0,t] for which the cost J is minimized is called the time periodic

deterministic linear quadratic regulator problem.

Remark: Usually, the LQR weighting functions are assumed to be general uniformly pos-
itive definite time varying functions. However, the scope of the LQR problem has been
limited to the case where M(t), R(t), and R(t), are all T-periodic, although the general
problem need not be restricted in this way. 0.

The solution of the linear quadratic regulator problem for LTP systems is well known,
and can be derived using the elementary calculus of variations as shown in [59] and else-

where. The result is summarized in the following theorem.

Theorem 5.8 (Linear quadratic regulator for LTP systems) The optimal input for
the time periodic deterministic linear quadratic regulator problem is generated by the linear

feedback control law
u(t) = -G(t)x(t) (5.14)
where the optimal full state feedback gains, F(t), are given by

G(t) = R.~'(t)BT(t)P.(t) (5.15)

The symmetric nonnegative definite matriz P,(t) satisfies the control matrix Riccati

differential equation (CMRDE)
— P(t) = P,(t)A(t) + AT(t)P.(t) + Q.(t) - P.(t)B(t)R.~'(t)BT(t)P.(t)  (5.16)
with terminal condition
P(ty) = Py (5.17)
Here,
Q.(t) = MT(1)R(t)M(2) (5.18)
For the optimal solution the terminal cost is given by |

J(t,t7) = T (1) P.(t)x(2) (5.19)

Proof: See Kwakernaak and Sivan [59). O
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5.2.2 Steady state properties of the LQR

Many authors have been concerned with the determination of the asymptotic properties
of the CMRDE, especially in the search for asymptotic solutions as t; — oo. The two

important recults are summarized below:

1) As the terminal time, ¢ty — oo, the solution of the CMRDE, P,(t), with the terminal
condition

P(ty) = Py (5.20)

generally approaches a stead, state solution that is independent of the terminal con-

dition, Py.

2) The steady state control law results, in general, in an asymptotically stable closed

loop system.

It is a well known fact that the above results hold if the state space model is either
exponentially stable or both uniformly controllable and uniformly reconstructible [59]. In
addition, a periodic solution of the CMRDE exists at steady state, P,(t + T) = P(2), if
these same conditions hold [4]. It is this periodic solution that is of interest in determining

the stability robustness properties of the LQR.

5.2.3 Harmonic balance form of the CMRDE

In previous chapters, the harmonic balance methodology invariably led to additional insight
into the implications of results derived using the integral operator approach. Here, the
harmonic balance approach will be used to transform the CMRDE to an algebraic form
that leads to additional insights into the behavior of LQR solutions.

Much of the geometric theory of the time periodic version of the CMRDE has focused
on the development of periodic generators, that is, the determination of an initial condition
for the Riccati matrix, P,(t), that produces the correct time periodic solution by direct
integration of the Hamiltonian system associated with the Riccati equation [4,87]. However,
by applying the Toeplitz transform to the CMRDE, assuming that a periodic solution is to
be found, an analogous infinite dimensional algebraic Riccati equation can be determined.

Recall the CMRDE,

— Pi(t) = Po(t)A(t) + AT()Py(t) + Q.(t) - Po(t)BO)R. ()BT (1)Pi(1)  (5.21)
186



Here, time periodic solutions are being sought in the steady state sense. Thus, at steady
state, it is required that

P.(t+T) = P.(?) (5.22)

or that P(t) is T-periodic. The remaining matrices in the CMRDE are T-periodic by as-
sumption, so that all of the matrices in (5.21) are T-periodic. Taking the Toeplitz transform

of both sides of (5.21),
-~ (NP.—PN)=P.A+ AP+ Q. — P.BR;'B“P, (5.23)

so that
0=P(A-N)+(A-N)P.+ Q. - PBR;'B"P, (5.24)

The above equation is the harmonic balance form of the CMRDE, which is denoted the
control matriz Riccati harmonic balance equation (CMRHBE). This leads to the following

lemma.

Lemma 8.7 A T-periodic solution of the CMRDE given by P.(t), satisfies the CMRHBE
in (5.24).

The CMRHBE will prove useful in determining the stability robustness properties of
the LQR problem.

Solving the CMRDE using unitary transformations

The CMRHBE is an infinite dimensional equation that can be studied by examining its
finite truncation, just as the many other properties developed in this thesis were studied.
Unfortunately, the finite truncation of the CMRHBE is a complex algebraic Riccati equation
(ARE). The usual ARE equation solvers use real arithmetic (such as are.m in MATLAB),
but can be utilized in this instance by following a procedure nearly identical to that de-
veloped for circulant/Toeplitz systems [105,49, for example]. This is advantagecus since
the ARE solvers are very accurate and numerically robust, so that an ARE solver using
complex arithmetic is not necessary using the procedure described below.
Define the augmented matrices
Re(A) Im(A)

Ay =  (5.25)
_Im(A) Re(A)
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and similarly for Bz, P2, Q.2, and Rc2. Finally, by noting that

Re(A) = 0 (5.26)
then
0 —iN
Np= 7 (5.27)
N0

Thus, all of the augmented matrices defined above are strictly real.

As an aside, these two representations of A4 are strongly related by a simple unitary
(similarity) transformation [78], which preserves the eigenvectors as well as the eigenvalues
of A. To illustrate this, consider the similarity transformation matrix

1 I I

Ty = — (5.28)
V2|1 1 '

where, due to the fact that the transformation is unitary,

T =173 (5.29)
Then the following relationship holds:
A 0
= T;.Az'rz
0o A
Re(A) Im(A4)
= T; T, (5.30)
—Im(A)} Re(A)

This is a common stratagem in dealing with Hermitian systems and has beea found useful in
applications such as Toeplitz/circulant systems [49] and in dealing with complex conjugate
modes in the standard eigenstructure assignment problem for linear time invariant systems.

Thus, the augmented Riccati equation
0="Poa(A2 ~ N3) + (A2 = N2)TP.y + Qg — PeaByRBIP,, (5.31)

is an infinite dimensional ARE using real arithmetic. As before, a limiting process is implied
' in that the various quantities are truncated to contain N harmonics, and a limiting solution
is sought as N grows large. Pragmatically, an ARE of order 2(2N + 1)n will be solved on

the computer.
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Sc')lving the CMRDE using similarity transformations

One problem with the above procedure is that the dimensionality of the problem is doubled.
This is an undesirable feature of the procedure since memory on a computer is invariably
limited. Thus, a different approach that does not double the dimensionality of the truncated
ARE would be of interest.

A second method can be applied liere to render all of the matrices in the CMRHBE
strictly real without increasing the dimensionality of the truncated Riccati equation. Recall
that the principle of harmonic balance originally used in developing the harmonic state
space model was applied to the set of complex exponentials, {e/™*t|ln € Z }. In addition,
the state was represented by the doubly infinite vector, x, which was composed of the
complex Fourier coefficients of the state. Both &« and y were defined in similar fashion.
However, the harmonic balance could just as easily have been performed over the set of
functions

1, coswpt, sinwpt, cos 2wpt, sin 2wpt, - - - (5.32)

This leads to the similarity transformations

¥ = Tpx
u = Tnl
y = Tpy (5.33)
Here _ ] ) . X i
T2, U2, Y2,
T1s Uls Y1s
X=|ao | =] u |» ¥= Yo | , (5.34)
Tic Ul Y
T2 U2e Yac
| | |
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The transformation matrix is given by

r .

0 0 0 I,

I, 0 I, ©

0 I, 0 0

I, 0 I, 0

0o o0 o I,
|

(5.35)

where I, is the identity matrix of dimension n X n. The inverse of this matrix is easily

obtained

T =

0 0 0 21;1,1
I. 0 0
i, 0 i, o
0 0 0 il

(5.36)

The transformation matrices 7, and 7T, and their respective inverses, are defined in similar

fashion.

Using the above transformations, the harmonic state space model

Sx

y

(A-MN)x + Bu

Cx + Du

can be similarity transformed to another harmonic state space model of the form

where

(5.37)

(5.38)



N = T;NT,
B = TI\BT,.
C = T;CT.
D = T;'DTn (5.39)

All of the matrices (-), are real infinite dimensional matrices.
If these similarity transforms are applied to the CMRHBE, then a modified form of the
CMRHBE results,

0=P(A-N)+(A-TP. + 3. - PBR.'B P, (5.40)
where
P. = TiP.T,
Q = ThnQTn
R. = TiR.T. (5.41)

The modified CMRHBE is composed of completely real matrices and the Riccati solution
obtained is also a real matrix. Thus, a real ARE solver can be utilized in this instance
without doubling the dimensionality of the CMRHBE. The resulting feedback gain matrix
is then composed of the Fourier sine and cosine coefficients of the time periodic LQR gains,
and is obtained via

G =RETP, (5.42)
The Fourier sine and cosine coefficients of the trigoncmetric Fourier series expansion of the
time periodic LQR feedback gains are then obtained from the center block row of G.

As before, a limiting process is implied in that the various quantities are truncated to
contain N harmonics, and a limiting solution is sought as N grows large. Pragmatically,
an ARE of order (2N + 1)n will be solved on the computer. The above method was used
to determine the time periodic LQR gains for the examples in this chapter, and proved to

be very convenient.

5.2.4 Stability robustness of the steady state LQR

An important omission fiom the LQR theory for LTP systems is an indication of just how
well the LQR compensation performs in terms of gain and phase margins, and if the plant
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remains stable, in the face of plant uncertainty (as in unmodeled dynamics or uncertainty in
the plant inodel). In the classical LTI theory, gain and phase margins are used to quantify
this stability robustness. Until the frequency response notions in this thesis were developed,
notions of stability robustness for LTP systems were not available, so that this important
aspect of the design process could not be evaluated, nor even analyzed in any systematic
- way. In the following discussion, the stability robustness properties of the steady state LQR
compensator will be examined using the tools developed thus far in this thesis. Essentially,
the Kalman frequency domain inequality is derived for LTP systems.

From previous discussion, the harmonic balance form of the CMRDE was determined,
0=P(A-N)+(A-N)P.+ Q. -~ PBR.'B"P, (5.43)
so that the feedback gains can be determined using the formula
G =R;'B"P, (5.44)
Now, add and subtract sP. from the harmonic balance form of the CMRDE,
0=-P(sT—A+N)—(~-sT - A"+ N*)P.+ Q.- P.BR;'B"P, (5.45)
Define
Qe = MM (5.46)
Premultiply the above equation by B*(—sZ — A* + N*)~! and postmultiply by (sZ — A +
N)~1B to obtain
0 = -B*(—sI-A"+N*) 1P (sI-A+N)(sI-A+N) B
—B* (=T - A"+ N*) Y (=8I - A"+ N*")P(sT - A+ N)"'B
+B*(=sT — A* + N°) 10, (sT - A+ N)7!B
-B*(—sI - A* + N*)"'P.BR;'B*P.(sT - A+ N)'B (5.47)
Many of the above terms cancel, so that
0 = —-B(-sI-A"+N*)"'P.BR;'R.
~RR;'B*P(sT - A+ N)"'B
+B* (I — A" + N*) ' M*M(sI - A+ N)"'B

—B*(=sT — A* + N*) 16 RGo(sT — A+ N)'B (5.48)
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Finally
0 = —-B(-sI-A"+N")IGR.
-RG(sT - A+ N)1B
+B%(—sT — A+ N*) TM " M(sI - A+ N)7'B
~B*(=sI - A" + N*)'GIR.G(sT - A+ N)"'B (5.49)
Identify the following harmonic transfer functions,
GLor(s) = Ge(sI-A+N)'B
Gror(s) = B (—sI - A"+N*)'G: (5.50)
and

Ge(s) M(sI - A+ N)'B

Ga(s)

B*(-sI — A* + N*)"IMm* (5.51)
By substituting the above into (5.49), the following result is obtained:
0= -G1qr(s)Re = ReGLan(s) + G:(5)Gc(s) ~ Giqr(s)ROrar(s)  (5:52)
The first, second, and last terms can be grouped together,
0=R. - [T+ G1qr(s)]" Re [T +G1ar(s)] +8()5c(s) (5:53)

The above equation is the LTP analog of the LTI version of the above equation, which was

first introduced by MacFarlane [62]. The following inequality holds:
[I + aLQR(S)]- R. [I + GLQR(-?)] > R. (5.54)
If we set R, = pZ, then the above equation simplifies to
[I + GLQR(")]- [I + G'LQR(S)] >I (5.55)

 Furthermore, it follows that
Omin {I + aLQR(S)} >1 (5.56)
From the isomorphism between the integral operator transfer function and the harmonic

transfer function, we have that

Crmin {I + &LQR(Z)} >1 (5.57)
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This result implies that none of the eigenloci of the LQR transfer function penetrate the unit
circle centered on the -1 point in the Nyquist diagram. Thus, we can state the following

lemmas concerning multiloop phase and gain margins of the LQR compensator.

Lemmza 5.8 (£60° multiloop phase margin for steady state LQR for LTP sys-
tems) If Q. (1) is wniformly positive definite and T-periodic, and R. = pI, and a phase
shift of |;] < 80° is introduced im each of the feedback loops associated with the ith control
sigmal, w;(1), them the LOR compensated LTP system will remain asympiotically stable.

Proof: This follows directly from (5.57), and that the eigenloci of &an(z)) do not penetrate
the wnit circle centered om the —1 point in the Nyquist diagram. O
We also obtain 2 gaim margin property for the steady state LQR problem for LTP

systems.

Lemma 5.2 (Multiloop infinite upward gain margin and one half downward gain
margin for the steady state LQR for LTP systemms) If Q.(1) is uniformly positive
definite and T -periodic, and R. = pl, then the insertion of linear constant gains k; > } in
each of the feedback loops w;(t) of the LOR compensated LTP systesn will leave the closed
loop system asymptotically stable.

Proof: Again, this follows directly from (5.57), and that the eigenloci of GLor(z) do not

penetrate the umit dree centered om the —1 point in the Nyquist diagram.

Remark: These resulis are completely analogous to the gain and phase margin properties

of the LQR determined for LTI systems by Safonov and Athans [88]. o
In practice, the assamption that R. = pI is not a limiting assumption since scaling can

always be introduced by setting B(f) — B(f)R.(1)% and R(t) = I in the CMRDE.

5.2.5 Stabilization of the lossy Mathieu equation

In this section, the lossy Mathieu equation will be examined 2s the open loop plant, and the
stability robestness properties of two different compensation schemes will be. determined.
In the first case, the conatrol law will be a static {time invariant) output feedback of the
displacement measarement. In the second case, an LQR compensation scheme will be
implemented.
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Stabilization using displacement feedback

In many instances, static output feedback is used to stabilize a system. A simple way
to design such a compensation scheme is direct application of the Nyquist criterion. The
following example will illustrate how the Nyquist diagram can be used to design a static
output feedback law, and how to evaluate the gain and phase margins.

Consider the lossy Mathieu equation, for which

0 1
Alt) =
] —(a —2gcoswpt) --2¢
0
B =
| 1
C = 1 0] (5.58)

Here, the parameter values will be @ = 5, ¢ = 4, w, = 2, and ( = 0.2. The open loop
z—-plane poles are given by z; = 3.4380 and 22 = 0.0828. The corresponding open loop
s—plane poles are given by s; = 0.3931 and s; = —0.7931. We wish to design a feedback

law, using displacement feedback, of the form

v0) == ks 0= (5.59)

that stabilizes the above system. Thus, if the Nyquist test is applied, a stabilizing value of
feedback gain will be given by those portions of the real axis enclosed by a CCW encirclement
in the Nyquist diagram. In this example, the design will be driven by gain and phase margin
specifications. In particular, minimal specifications of downward gain margin GM < %
upward gain margin GM > 2, and phase margin PM > 45 degrees, are to be satisfied.

The Nyquist diagram for this case is shown in Figure 5.2. The negative real axis is
enclosed by a CCW encirclement for —f € [—0.59,0]. Thus, negative values of stabilizing
feedback are given by k € [1.68,00). In order to achieve reasonable values of gain margin,
the feedback gain chosen is k4 = 5. This choice of feedback gain produces an upward
gain margin of GM — oo and a downward gain margin of GM = 1. These values of gain
margin are deduced by considering how much gain can be introduced without destabilizing
the closed loop system (tkat is, without losing the required CCW encirclement of the —i—

point). However, the phase margin for this system is very pcor. The phase margin is
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Figure 5.2: Nyquist diagram for lossy Mathieu equation with displacement feedback.

evaluated by first drawing a circle centered at the origin, of radius 7":. Then the point on
this circle that intersects the Nyquist diagram, say po, is determined. The angle from the
negative real axis to the line segment drawn from the origin to po is the value of the phase
margin, PM. Usually, compensation is added to the system, so that the closed loop system
will have phase margin in the range of 45 to 60 degrees. In this case, the phase margin is
PM = 8.2 degrees, which is insufficient.

Therefore, an alternative design strategy should be applied to enhance the phase margin

specification.

Stabilization using displacement and rate feedback

In developing the stability robustness properties of the steady state LQR for LTP systems,
it was determined that the LQR provided at least 60 degrees of phase margin and good gain

margins, that is, infinite upward gain margin and downward gain margin of at least one half.
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In addition, the LQR problem provides a systematic way of incorporating rate feedback. In
this example, the LQR gains are determined using the harmonic balance methods described
earlier. In addition, the gain and phase margins of the LQR design are evaluated.
The state weighting matrix is selected to be
1 0

Q= (5.60)
0 0.1

and the control weight is selected to be p = 0.01. The resulting LQR gains are shown
in Figure 5.3. The numerical method described above that exploited the unitary trans-
formation was used. In this case, N = 10 harmonics proved to be sufficient for the first
six harmonics of the control gain matrix to converge to four decimal places. The Fourier
coefficient associated with the seventh harmonic of the LQR gain matrix, G(t), was less
than 1 x 1074, so that the Fourier series associated with the LQR gains was truncated after
six terms.

The Nyquist diagram of the LQR transfer function, obtained from the LTP state space
model, S = [A(t), B(t), G(t)], is plotted in Figure 5.4. For values of feedback gain on the
negative real axis, the Nyquist diagram does not penetrate the unit circle centered on the
—1 point, so that the phase margin is at least 60 degrees, there is downward gain margin of
at least one half, and (ideally) infinite upward gain margin. The actual value of the phase
margin is 77 degrees, which is more than adequate. The downward gain margin is GM = %.

The upward gain margin is infinite, but only in an ideal sense due to physical limitations.

5.3 LTI Compensation for Weakly Periodic Systems

The time periodic parametric excitation in an LTP system is often a small effect. Thus, in
this situation, it would be desirable to design a compensator without having to account for
the periodic effects in the design plant model. In this section, a compensation technique
is described that lumps the weakly periodic effects into a modeling error. In this way, the
stability of the closed loop system can be determined, in terms of the modeling error, using
the Small Gain Theorem. The design plant model is the LTI state space model embedded
in the LTP state space model (that is, the average state space model), so that LTI design

procedures can be applied.
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Figure 5.3: LQR gains for lossy Mathieu equation. The LQR methodology provides a systematic
method for determining time periodic feedback gains.

5.3.1 Design plant model and modeling error

Here, we consider the state space model of a linear time periodic system, S = [A(t), B(t),
C(t)]. However, the design plant model, to which the control design techniques are to be
applied, will be time invariant. The embedded LTI model, that is, the average state space
model over a period, will be designated as the design plant model, and will be denoted by
S, = [A,, B, C,). Thus, the average state space model consists of the zeroth Fourier
coefficients of the LTP state space model. However, the average state space model is
not unique, since a similarity transformation may change the average value of the system
matrices for the transformed states. Of course, the design plant model must satisfy the
~ usual requirements of controllability/stabilizability, and observability/detectability.

It should be noted that the embedded LTI model may in fact be nonsensical in some

instances. For example, if the control distribution matrix, B(t), consisted solely of sinu-
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Figure 5.4: Nyquist diagram of LQR transfer function for lossy Mathieu equation. The Nyquist
diagram does not penetrate the unit circle centered on the —1 point. This diagram demonstrates
that the LQR design provides at least 60 degrees of phase margin, infinite upward gain margin,
and a downward gain margin of at least one half.

soids, then the average control distribution matrix would be a zero matrix. Therefore, the
embedded LTI model would be uncontrollable. This situation can occur in the control of
blade pitch of a helicopter rotor, when the control effort is the lateral and longitudinal
cyclic blade pitch, which introduces sine and cosine modulations in the control distribution
matrix. This situation has in fact occurred in research performed by the author [43).
Hence, the implication here is that the embedded LTI model, or the average state space
model, must account for all of the important behavior of the system. However, how does
one quantify the “importance” of various dynamic effects? A simple way to characterize
the importance of the time periodic effects is to treat them as a modeling error. This
error can be either additive or multiplicative (which is usually more convenient because

the resulting stability robustness boundaries, or uncertainty templates, do not depend on
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the compensator). Then using a small gain argument, the impact of the modeling error on
closed loop bandwidth and gain can be characterized. In this way, LTI compensation can
be applied to the design plant model or embedded LTI model, and stability guaranteed (in
a sufficient sense) in the face of the periodic dynamics that were omitted from the design
plant model.

In the sequel, this type of modeling error will be treated as an unstructured uncertainty.

5.3.2 Unstructured uncertainty and templates

In the LTI control theory, the notion of unstructured uncertainty plays a central role in the
study of stability robustness. Uncertainty can be unstructured in that it is expressed as a
bound on the magnitude (or of the phase in some cases) of possible perturbations, but does
not attempt to identify the specific element of the plant that produces the perturbation..
The notioﬁ of unstructured uncertainty can be easily extended to LTP systems.
Unstructured uncertainty is commonly expressed in three forms. If we denote the actual
plant by G(z), and the design plant model by Go(z), then the LTP transfer function can

be expressed in one of the following ways:
G(z) = Go(2)+ Au(2)
G(z) = Go(2) [T+ Ai(2)]

G(2)

[T+ Au(2)] Go(2) (5.61)

Here, A,(z) is referred to as an additive perturbation, A,(z) is referred to as the ouiput
multiplicative perturbation, and A;(z) is referred to as the input multiplicative perturba-
tion. The only restriction placed on these perturbations is on their size, which is given' by
|A(2)||,,- Of course, this is computed using the SVD of the truucated harmonic transfer
function. The following results are simple extensions of the LTI results developed in part by
Lehtomaki [60], with a more comprehensive treatment in a textbook by Maciejowski [65].
The additive error can be utilized to guarantee stability in the face of modeling error.
We consider a compensator denoted by K (2), that stabilizes the design (nominal) plant
model. In addition, we require that the design and the actual plant have the same number
of unstable poles. Since the loop is stable for A4(z) = 0, then the loop will remain stable

as long as no eigenloci of the open loop transfer function passes through the -1 point. This
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is equivalent to requiring that the Fredholm determinant satisfy
|I + é(ei")f?(ei")| #0 (5.62)

for all 8 € (—m,x]. This is equivalent to saying that

Omin [T+ G(e) K ()] > 0 (5.63)
for § € (—,7]. Then
Omin [T+ Go(e®) K () + Aa(e) K ()] > 0 (5.64)
s0 that
Omin [T+ Go(¢*)K ()] > 0maz [Aa(e”) K ()] (5.65)

Thus, if the above inequality holds for all § € (—m, 7], then the system remains stable
in the face of the additive perturbation. The RHS of the above inequality is referred to
as the stability robustness boundary or template for the additive perturbation. But, the
compensator transfer function shows up in both sides of the above equation (which is the
usual case for additive errors, see [60, pages 80-88]). It should also be noted that the
above stability robustness condition is sufficient, but not necessary. From an engineering
standpoint, we would rather have a method leading to separate evaluation of a stability
robustness boundary, or template, that can be computed a priori, so that subsequent design
iterations can be compared against the template.

The output multiplicative error can be used in such a manner. Again, we consider
a compensator denoted by K (2), that stabilizes the design plant model. In addition, we
require that the nominal and the actual plant have the same number of unstable poles. Since
the loop is stable for A,(2) = 0, then the loop will remain stable as long as no eigenloci of
the open loop transfer function passes through the -1 point. This is equivalent to requiring
that the Fredholm determinant satisfy
- I+ &() R ()| # 0 (5.66)
where 6 € (—m, 7). This is equivalent to saying that

Omin [T + G(e*)K ()] > 0 (5.67)
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for § € (—m,m]. Now, the above can be expanded in terms of the output multiplicative

perturbation,
Imin [T + Go(e) K (e) + Ao(efﬂ)éo(ei")f?(eif’)] >0 (5.68)
or
Omin { [T+ (BBl R(e%) ™+ 873(6)] Aule) ()R ()} >0 (569
This implies that
Omin [I + (Ao(eﬂ’)t‘;o(eﬂ")1r?(ei"))'1 + A;l(eja)] >0 (5.70)
and grouping terms
Omin {IT+ [(E;'o(ei")I’?(ef"))_1 + If] A;‘(eif’)} >0 (5.71)
Recall a property of the ||-||., operator norm,

max(oaamin(Q) - 1) S amin(Q + I) S amiu(Q) +1 (572)

so that the lower bound yields

Ormin {[.’r+ (c‘:o(ei")z?(ei‘))"] A;‘(eﬂ’)} >1 (5.73)
Then |
Tmin [i+ (éo(ei’)k(ei“))"] Omin [A51(e)] > 1 (5.74)
which implies that
Omae [T+ (Go(e R () "] omas [Au(e)] < 1 (5.75)

The above statement is just another way of stating the Small Gain Theorem. A more useful

form of the above equation is given by

Comas [i + (éo(ejo)f?(ej’))-ll < Ve (~m,m] (5.76)

1
Omaz [Bo(e?)]
Thus, if the above inequality holds for all € (-, 7], the system remains stable in the face of
the output multiplicative perturbation. Again, the RHS of the above equation is the stability
robustness boundary (SRB) or template for the output multiplicative perturbation. A useful
property of the above template is that it is independent of the choice of compensator. Thus,
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the SRB can be plotted on a principal gain diagram a priori, so that all subsequent design
iterations can be compared against it in order to guarantee stability in the face of the output
multiplicative perturbation. It is usually more convenient to use a different but equivalent
form of (5.76) given by

1
Omaz [Ao(e7%)]

Clearly, the LHS is the closed loop transfer function, so that the above formula is an

Omaz [E:o(eﬂ’)z?(ei") (1 + &o(eiﬂ)R(ef"))'l] < VOe(-ma] (5.77)

equivalent statement of the Small Gain Theorem.
The input multiplicative perturbation could have been used to develop a similar stability
robustness rule. The comparable result is

1
Omaz [Ai(€79)]

Thus, if the above inequality holds for all § € (—=, 7], then the system remains stable in

Omaz [1 + (R(eiv)éo(eia))’l] < VY 0¢€(-m,7) (5.78)

the face of the input multiplicative perturbation. The above inequality is equivalent to

omas | (1 + R(@)Go(e)) ™ B8] < -ty

where the LHS is just the maximum closed loop transfer function gain.

V 6€(-mm] (5.79)

The sufficient stability conditions presented abcove are special cases of the Small Gain
Theorem, which states that a feedback loop consisting of stable operators will remain stable

if the product of the induced infinity norm of each operator is less than one.

5.3.3 LTI compensation for the lossy Mathieu equation

In this section, we consider the LTI compensation of a linear time periodic system for which
the periodic dynamic dynamic effects are small, that is, a weakly periodic system. Consider
a stable configuration of the the lossy Mathieu equation in (5.58), for which the following
parameters are selected: a = 10, ¢ = %, wp = 2, and ¢ = 0.2. The objective here is to design
a regulator that rejects output disturbances. Since the value of the pumping amplitude,
q, is quite small, it is reasonable to expect that an LTI compensation technique, such as
the LQR compensator, could be applied, and that reasonable results would be obtained.
Here, the periodic effects will be treated as an output multiplicative error, and the LTI
compensation will be designed tc maintain stability robustness.

The actual plant will be denoted by G(z). The design plant model (or nominal plant)

in this case will be the average state space model, S, = [A4,, B,, C,), which corresponds
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to the LTP transfer function, Go(z). These two transfer functions differ by the additive
perturbation

G(z) = Go(2) + Au(2) (5.80)

so that
G(2) = (I + 8a(2)G5 (2)) Go(2) (5.81)

Thus, the output multiplicative perturbation is given by

Ao(z) = AlGy(2)
(@(2) - Go(2)) G5 (2)

~

= G(2)Gy'(2) =T (5.82)

Thus, the maximum singular values of the output multiplicative perturbation can be com-
puted a priori, and a compensation technique applied to the embedded LTI system relz;-
resented by the design plant model. Thus, the LTI compensation can be designed using
the stability robustness rule in (5.76). It should be noted that the various principal gain
diagrams are computed using the respective harmonic transfer functions.

In Figure 5.5a, the uncertainty template for the output multiplicative perturbation is
plotted. From the figure, it is clear that the closed loop LTP transfer function can have
a maximum principal gain of 0 dB. Therefore we can expect good performance from a
regulator design. The stability robustness rule from (5.76) states that none of the closed
loop principal gain loci can be greater than this uncertainty template. The open loop
LTP principal gain diagram is plotted in Figure 5.5b, and from it we conclude that we
can increase the gain by reducing the peak magnitude. Since the uncertainty template is
periodic in frequency, a LTI Bode gain diagram can be constructed whére the uncertainty
template is plotted over all frequencies, as shown in Figure 5.5c. The Bode gain diagram of
the average state space model or the LTI design plant model is also shown. The LTI Bode
gain diagram is simply the unfolded version of the LTP principal gain diagram of the LTI
design pla.nt model.

Thus, as long as the closed loop Bode gain does not exceed the uncertainty template
in Figure 5.5c, then the system will remain stable even though no periodic effects were

included in the design plant model. A set of LQR feedback gains was computed for the
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design plant model by selecting

10 0
Q.= , p=0.01 (5.83)
0 0.1
to produce the feedback gain matrix
G, = [ 23.16 7.12] (5.84)

The LTI Bode gain diagram is plotted in Figure 5.6. A simplified uncertainty template
is also shown in Figure 5.6 as a dashed line. Figure 5.6 mustrates that the LQR transfer -
function will fema.in stable in the face of the time periodic effects, since the maximum
singular value of the LQR transfer function is less than the uncertainty template for all
frequency.

The Nyquist diagram of the LQR transfer function of the actual systein, SiLgr =
[A(t), B(t),G,), is plotted in Figure 5.7. The Nyquist diagram of the compensated LTP
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system does not penetrate the unit circle centered on the -1 point, therefore, we conclude
that the phase and gain margins are exceilent. In fact, the phase margin is PM = 72
degrees. The LTP system compensated using time invariant LQR gains also has (ideally)
infinite upward gain margin, and the downward gain margin is zero (this is because the
open loop system was stable). Thus, it is clear that the time invariant LQR design was a
conservative compensation technique due to the application of the stability robustness rule.
There is still plenty of gain and phase margin that could be exploited in terms of improving

time responses, and other design criterion not considered here.

5.3.4 Truncation of harmonics in the LTP state space model

The above procedure can be applied when the number of harmonics in the design plant state
space model is truncated. In this case, the design plant, G‘o(z), would correspond to a state
space model where the Fourier series associated with each system matrix was truncated to
N terms. The additive perturbation, A,(z), would contain the remaining terms, and the
output multiplicative perturbation could be computed in the same way as shown above.
The design of an LTP controller could then be carried out for a state space model with
N harmonics, and stability guaranteed even though all of the periodic behavior was not

included in the design plant model.

5.4 Summary

In this chapter, some stability robustness ideas from the LTI control theory were applied
to LTP systems. This was possible to do in this case because the Small Gain Theorem was
directly applicable to LTP systems due to the operator theoretic framework developed in
Chapter 3 and due to the Nyquist criterion developed in Chapter 4. Two applications of the
Small Gain Theorem were developed. The first was an examination of the gain and phase
margins of the steady state LQR problem for LTP systems. The second was a compensation
technique for weakly periodic systems. |

In summary, the steady state LQR problem for LTP systems was shown to exhibit
excelient gain and phase margin properties. The ideal steady state LQR problem guarantees
a minimum of 60 degrees of phase margin, infinite upward gain margin, and a downward gain

margin of at least one half. This result is identical to that for the LTI case. In addition,

207



11&'»L

10

IMAG
e
1

Figee £.T: lﬂmm‘mmeﬂiﬂﬁ&nmlﬁﬂm
sation. The time variant LQR compensated lossy Mathieu equation has at least 60 degrees of
phase mapgn and exxcllsat gaim margins.




a new method for computing the LQR gains was discussed, using the harmonic balance
methodology and the Toeplitz transform. The Nyquist methodology was then applied to an
unstable SISO configuration of the lossy Mathieu equation. It was shown that the eigenloci
of the LQR transfer function did not penetrate the unit circle centered on the -1 point in
the Nyquist diagram, thereby demonstrating the stability robustness properties of the LQR
problem for LTP systems.

A compensation technique was developed that treats the periodic effects in the LTP
state space model as a perturbation of the average state space model. This permits an LTI
compensation technique to be applied to the average state space model, although it was

shown that this approach results in a very conservative treatment of the periodic effects.
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Chapter 6

Conclusion

Prior to this research, a relatively complete open loop stability analysis theory was available
for LTP systems in the Floquet and Hill Theory (harmonic balance). In addition, there was a
relatively complete LQG design procedure for LTP systems based on a calculus of variations
approach, although no frequency domain interpretation of the LQG properties was available.
In this thesis, a frequency domain interpretation for LTP systems was provided in a linear
operator framework, and the transfer properties of the resulting operators were developed.
This research bridges the gap between the classical results of Floquet and Hill, and the
modern results of the LQG theory for LTP systems, with frequency domain notions for
LTP systems that are analogous to those for multivariable LTI systems.

In this chapter, the results of this thesis are reviewed briefly, and some directions for

future research are suggested.

6.1 Summary and Conclusions

The primary objective of this thesis was to introduce a linear operator for LTP systems that
is analogous to the transfer function for LTI systems. In Chapter 3, a frequency domair
theory for LTP systems was sought that is comparable to frequency response notions for
LTI systems (with certain caveats concerning directional properties in the muitivariable
case).

First, the fundamentally important signal space of geomeirically periodic (GP) signals
was identified, using insight gleaned from the Floquet theory. The input test signal was
then defined to be bounded and to have the property that the signal varied geometrically
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from the beginning of one period to the beginning of the next period. It was determined
that if a GP test input signal were injected at the input of an LTP plant, the steady state
and steady output response were also GP signals. In addition, the transient responses to
a GP signal were determined. Since the objective was to determine a transfer function, a
linear map between the input signal space and the output signal space was required. The
linear operator that described this linear map was the integral operator transfer function,
é(z), which was the steady output response to a GP signal.

An associated integral operator state space model was then defined, that described the
evolution of the state, &, from the beginning of the kth period to the beginning of the
(k + 1)st period, § = [A, B, C, D]. The integral operator state space model provided a
concise representation of the integral operators describing the system behavior. Using the
the integral operator/linear operator framework, notions of poles, zeroes, principal gains,
and phase, along with their directional properties, were developed. |

Although the integral operator approach provided a clear and concise conceptual frame-
work for the study of LTP systems, the integral operator approach does not provide nu-
merical techniques directly. In the integral operator theory, most authors resort to a time
discretization of the integral operator kernel in order to develop numerical techniques. In
this thesis, a different approach is advocated. Since the time periodic parametric excitation
in most engineering systems can be described by a truncated complex Fourier series, an
approach called the harmonic balance methodology or Hill theory was used that exploited
this tendency.

Essentially the periodic portion of the GP signal is expanded in a complex Fourier series.
The exponentially modulated periodic (EMP) signal is a complex exponential modulation
of a complex Fourier series, and is a series expansion of the GP signal. The transient and
steady state responses were then developed using the EMP test input signal. The steady
output response was also an EMP signal, so that EMP signals induce a one-to-one map at
steady state. The steady output response was then modjﬁed, by applying the principle of
harmonic balance, to obtain a linear operator called the harmonic transfer function (HTF).

The HTF, denoted by fi(s), maps the Fourier coefficients of the EMP test input signal
to the Fourier coefficients of the EMP output signal. The associated harmonic state space
model, § = [(A-N), B, C, D], was proposed as an alternative to the LTP state space model,

where A is the infinite dimensional block Toeplitz matrix associated with the Fourier coef-
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ficients of A(t). Notions of poles, zeroes, principal gains, phase, and all of their associated
directional properties were then developed. By truncating the infinite dimensional eigen-
value problems, numerical methods were developed that were easily implemented on the
- computer. The directional properties of the LTP system were found to be manifested in
the multivariable (multi-input multi-output) nature of the LTP state space model, as well
as in the infinite number of Fourier coefficients required to describe an arbitrary periodic
signal.

All of the above techniques were developed because there was no theoretical framework
that provided the basic open loop analysis tools required to examine the behavior of an LTP
system. In fact, no other research has ever appeared that attempts to describe the explicit
input—output relationship between signals of fundamental importance to LTP systems, such
as is done in this thesis.

Therefore, in Chapter 3 several contributions were made in understanding the transfer
properties of LTP systems using the integral operator formulation of the LTP transfer

function:

a) Formal definition of the geometrically periodic (GP) signal as the test input signal
of interest for LTP systems and its relation to the Floquet theory. The alternative
representation of the GP signal called an exponentially modulated periodic signal and

its connection to the Hill theory and harmonic balance.

b) The integral operator or LTP transfer function, which describes the explicit input—
output relationship between GP input and GP output at steady state, and the asso-

ciated integral operator state space model.

c¢) The definition of LTP poles as locations in the 2-plane where the LTP transfer function
loses analyticity. The associated z-plane pole eigenvalue problem, and its replication

of the Floquet poles.

d) The definition of transmission zeroes of the LTP system, and the physical interpre-
tation of the zeroes as having the transmission blocking property. The associated

2—-plane transmission zero eigenvalue problem was developed.

The integral operator formulation was found to be useful in an analytical context, but

a set of numerical procedures was necessary to compute these transfer properties. Thus, a
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set of numerical procedures was developed using harmonic balance or Hill theory. These

contributions are listed below:

a) Development of the harmonic transfer function, and the associated harmonic state

space model.

b) Definition of poles as locations in the s—plane where he harmonic transfer function
loses analyticity. The s-plane pole eigenvalue problem was developed to compute the
s—plane poles and the mode shapes (as periodic fuhctions). The connection of this

eigenvalue problem with the Hill determinant methodology.

c¢) Definition of s-plane zeroes and the development of the s—plane transmission zero

eigenvalue problem.

Finally, the singular values or principal gains, and their associated directional properties
were developed. Notions of range and domain spaces were presented, and the principal gain
diagram was developed.

In Chapter 4, a Nyquist stability criterion for LTP systems was presented. First, a sta-
bility theorem was stated based on encirclements of the origin by the Fredholm determinant,
D f;’(z)(“) It was determined that the eigenloci of the LTP transfer function could be used
to generate a Nyquist diagram along a suitable Nyquist contour. However, this does not
lead to a useful Nyquist stability criterion because the integral operator approaches do not
lead directly to numerical techniques. Then, the connection between the Hill theory and
the Nyquist theory was developed by develeping a harmonic thecry analog to the Nyquist
criterion developed using the Fredholm determinant. Thus, the eigenloci of the LTP trans-
fer function were computed using the eigenloci of the truncated harmonic transfer function.
The eigenloci of the truncated harmonic transfer function can be computed using standard
software, such as MATLAB.

The Nyquist methodology was applied to the lossy Mathieu and Meissner equations, and
the results are compared to the classical Strutt diagrams. The stable regions correspond in
both the Nyquist and Strutt diagrams, and an extensive numerical analysis was discussed
to show the effects of truncation. _

The Nyquist methodology was shown to be very effective at determining closed loop
stability and alleviates difficulties associated with the classical stability methods of Floquet
and Hill. Although the examples used to illustrate the multivariable N yquist test were single
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input single output cases, a completely general multivariable Nyquist test was presented.
The Nyquist methodology presented here was shown to be a powerful alternative to the
classical stability notions of Floquet and Hill, and should prove ultimately prove useful in
the general study of the control of linear time periodic systems.

In Chapter 5, the notions of stability robustness from the LTI control theory were
discussed in terms of their appli_ability to LTP systems. It was noted that the Small Gain
Theorem is a completely general result that applies to any operator for which the input
signal space is equal to the output signal space, and for which a suitable H,, could be
defined. Since the LTP transfer function satisfied both of these conditions, the Small Gain
Theorem approaches work for LTP systems as well. Two applicatious of the Small Gain
Theorem were considered in this chapter.

The first example was an examination of the stability robustness properties of the steady
state linear quadratic regulator to LTP systems. It was shown that the LQR for LTP
systems has the same stability robustness properties, that is, gain and phase margins, as for
the LQR applied to time invariant systems. Thus, the linear quadratic regulator has +60
degrees of phase margin, infinite upward gain margin, and one half downward gain margin
for both the LTI and LTP case.

The second example examined in Chapter 5 involved the application of stability ro-
bustness rules in the design of LTI controllers for weakly periodic systems. It was shown
that the notions of additive and multiplicative perturbations, and their associated stability
robustness rules apply equally well in the LTP context. To design the LTI compensator for
the weakly periodic system, the time periodic effects were lumped into an output multi-
plicative perturbation, and the time invariant LQR gains were computed using the average
state space model. Satisfying the stability robustness rule ensured that the time periodic
effects would not destabilize the weakly periodic system with the time invariant LQR gains.
This approach was shown to be conservative, so that the Small Gain Theorem approach

tends to overestimate the importance of the time periodicity in the LTP state space model.

6.2 Recommendations for Future Research

Many issues were not examined in the course of this thesis that deserve further study.

In this thesis, the properties of the LTP system were studied numerically using trun-
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cations of yuasi-Toeplitz forms. Adequate convergence criteria were not developed in the
course of this research, in order to understand when the various numerical methods (based
on harmonic balance) will converge a priori. Instead, convergence was checked numeri-
cally. However, it is common in the spectral theory of Toeplitz forms to study the conver-
gence of eigenvalue problems of circulant forms, that is, the finite dimensional truncation
of the Toeplitz form [38]. It may be possible to extend the spectral theory associated with
Toeplitz forms to doubly infinite block Toeplitz matrices, and then to extend the spectral
theory to the quasi-Toeplitz case developed in this thesis. This development would enable
the harmonic theory to serve more capably as a computational tool since the study of the
convergence properties of the various harmonic balance procedures could begin in earnest.

In Chapter 5, the Ly/H, norm was defined. In the LTI theory, optimization of the
L3/ H> norm provided useful interpretations of the LQG methodology. A similar body of
work should prove useful for LTP systems. In addition, a definition of the L.,/H nornll
was proposed. An H,, optimization theory comparable to that under current investigation
in the LTI theory should prove to be interesting. A solution to this problem has been
proposed by Tadmoor [100] using the maximum principle. However, his approach does not
address the optimization of the H,, norm of an LTP operator directly.

Although all of the procedures developed in this thesis are applicable to multivariable
systems, all of the examples in this thesis were of the lossy Mathieu equation or lossy
Meissner equation. This was partly by design, since nearly every paper in the literature on
LTP systems deals with the Mathieu equation or very minor modifications of the Mathien
equation. The motivating problem in this thesis is the helicopter vibration control problem.
Some analytical models are available in a textbook by Johnson [52], however, these models
are no more complicated than the Mathieu equation unless complex aerodynamic effects
are modeled. Therefore, an unanswered question, at this point, is how well the methods
developed in this thesis will work for complex aerodynamic systems suck as the helicopter

rotor.
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