
MIT Open Access Articles

Matching Triangles and Basing Hardness
on an Extremely Popular Conjecture

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Abboud, Amir, Williams, Virginia Vassilevska and Yu, Huacheng. 2018. "Matching
Triangles and Basing Hardness on an Extremely Popular Conjecture." 47 (3).

As Published: 10.1137/15m1050987

Publisher: Society for Industrial & Applied Mathematics (SIAM)

Persistent URL: https://hdl.handle.net/1721.1/137622

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137622

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 1098–1122

MATCHING TRIANGLES AND BASING HARDNESS ON AN
EXTREMELY POPULAR CONJECTURE∗

AMIR ABBOUD† , VIRGINIA VASSILEVSKA WILLIAMS‡ , AND HUACHENG YU§

Abstract. Due to the lack of unconditional polynomial lower bounds, it is now in fashion
to prove conditional lower bounds in order to advance our understanding of the class P. The vast
majority of these lower bounds are based on one of three famous hypotheses: the 3-SUM conjecture,
the all pairs shortest paths (APSP) conjecture, and the Strong Exponential Time Hypothesis. Only
circumstantial evidence is known in support of these hypotheses, and no formal relationship between
them is known. In hopes of obtaining “less conditional” and therefore more reliable lower bounds,
we consider the conjecture that at least one of the above three hypotheses is true. We design novel
reductions from 3-SUM, APSP, and CNF-SAT, and derive interesting consequences of this very
plausible conjecture, including tight n3−o(1) lower bounds for purely combinatorial problems about
the triangles in unweighted graphs; new n1−o(1) lower bounds for the amortized update and query
times of dynamic algorithms for Single-Source Reachability, Strongly Connected Components, and
Max-Flow; new n1.5−o(1) lower bound for computing a set of n st-maximum-flow values in a directed
graph with n nodes and Õ(n) edges; and a hierarchy of natural graph problems on n nodes with
complexity nc for c ∈ (2, 3). Only slightly nontrivial consequences of this conjecture were known
prior to our work. Along the way we also obtain new conditional lower bounds for the Single-Source
Max-Flow problem.

Key words. SETH, APSP, 3-SUM, triangle finding, conditional hardness, hardness in P

AMS subject classifications. 68Q17, 68W05

DOI. 10.1137/15M1050987

1. Introduction. A central goal in theoretical computer science is to understand
the exact complexity of natural computational problems. For many such problems,
O(nc) time algorithms are known, for some constant c > 1, and a proof that O(nc−ε)
algorithms, for some ε > 0, do not exist is highly desirable. Unfortunately, obtaining
such “truly superlinear” unconditional lower bounds for problems in P seems far
beyond the current state of the art in complexity. The urgency of such lower bounds,
due to both intellectual curiosity and practical relevance, has led researchers to settle
for conditional lower bounds. A reductions-based approach, which can be viewed as
a refinement of NP-hardness, has been gaining popularity, with many recent results
providing satisfactory answers to our urgent needs for lower bounds. In this approach,
one assumes that a certain famous problem with an O(na) time upper bound that
has resisted improvements for many years requires na−o(1) time and derives nb−o(1)

lower bounds for other problems.
Most known conditional lower bounds for the exact polynomial time complexity

of problems are based on one of the following three popular conjectures, regarding
fundamental problems in computational geometry, graph algorithms, and satisfiabil-

∗Received by the editors December 2, 2015; accepted for publication (in revised form) March 21,
2018; published electronically June 26, 2018. A preliminary version of this paper [9] has appeared in
STOC 2015.

http://www.siam.org/journals/sicomp/47-3/M105098.html
Funding: The first and second authors were supported by NSF grants CCF-1417238, CCF-

1528078, and CCF-1514339 and BSF grant BSF:2012338. The third author was supported by an
Alfred P. Sloan Fellowship and NSF grants CCF-1212372 and CCF-1552651 (CAREER).
†IBM Almaden Research Center, Stanford, CA 94305 (amir.abboud@gmail.com).
‡EECS Department, CSAIL, MIT, Cambridge, MA 02139 (virgi@mit.edu).
§John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,

MA 02139 (yuhch123@gmail.com).

1098

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/47-3/M105098.html
mailto:amir.abboud@gmail.com
mailto:virgi@mit.edu
mailto:yuhch123@gmail.com

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1099

ity. See Appendix A for background on these conjectures and a brief survey of the
known conditional lower bounds.

The 3-SUM conjecture. There is no algorithm that can check whether a list of n
numbers contains three that sum to zero (the 3-SUM problem) in O(n2−ε) time for
any ε > 0.

The APSP conjecture. There is no algorithm that can compute all pairs shortest
paths (APSP) on n node graphs with edge weights in {−nc, . . . , nc} for some large1

constant c ≥ 1, in O(n3−ε) time for any ε > 0.
Strong Exponential Time Hypothesis (SETH). For every ε > 0 there is an integer

k ≥ 3 such that k-SAT on n variables cannot be solved in O(2(1−ε)n) time.
No formal relationship is known between these conjectures, and as far as we know,

any subset of them can be true. A loose relationship between SETH and 3-SUM was
shown by Pǎtraşcu and Williams [68]: if k-SUM can be solved in no(k) time, then
the weaker conjecture ETH2 is false, and since SETH implies ETH, SETH must be
false as well. We remark that the conjectured lower bounds are assumed to hold even
against randomized algorithms.

Lower bounds based on a weaker conjecture. In this work we search for the weak-
est hypothesis that is still useful for proving interesting lower bounds for natural
polynomial time problems. An obvious candidate is the assumption that at least one
of the popular conjectures is true.

Conjecture 1. At least one of the 3-SUM conjecture, the APSP conjecture, or
SETH is true.

Conjecture 1 seems much more believable than any of the above three conjectures,
since to refute it, it must be the case that all three of the computational geometry,
graph algorithms, and exact algorithms communities have missed breakthrough algo-
rithms for their core problems. Given the great popularity of each of these conjectures
individually, Conjecture 1 is extremely popular.

Conjecture 1 is especially useful when trying to prove limitations to powerful new
algorithmic tools. The recent groundbreaking tools of Laplacian system solvers [80]
and interior-point methods [57, 67] are a great example. These new tools have allowed
for celebrated algorithmic improvements over longstanding upper bounds for different
versions of Max-Flow, including recent best-paper award winners [66, 78, 63, 58, 31].
With such a powerful tool at hand, one might consider a lower bound based on the
hardness of a single problem, e.g., APSP, as a challenge to refute the APSP conjecture
with the tool, rather than an impossibility result. However, lower bounds based on
Conjecture 1 can be more safely regarded as impossibility results; in fact, such lower
bounds are at least as believable as any other known conditional lower bounds for a
problem in P.

Previous results. Besides the large number of lower bounds that are based on a
single conjecture, there are few examples of lower bounds that are based on two of
the conjectures. The works of Pǎtraşcu [70], and Vassilevska Williams and Williams
[82] prove that if a triangle of total weight 0 in an edge-weighted graph on n nodes
can be found in O(n3−ε) time, both the 3-SUM and APSP conjectures would be
refuted. More recently, Abboud, Vassilevska Williams, and Weimann [11] show that
an O(n2−ε) algorithm for the local alignment problem from bioinformatics refutes

1To refute this conjecture, one has to find an algorithm that, for all c ≥ 1, solves APSP in
O(n3−ε) whenever the weights are in {−nc, . . . , nc}. A bolder but still plausible conjecture is that
truly subcubic algorithms do not exist even when c = 1.

2ETH stipulates that there is some ε > 0 such that 3SAT is not in 2εnpolyn time.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1100 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

both the 3-SUM conjecture and SETH. No nontrivial lower bounds were known under
Conjecture 1.

1.1. Our results. Using a large collection of new reductions and algorithms we
obtain interesting consequences of Conjecture 1.

Intermediate problems. Our main contribution is in the identification of two
innocent-looking graph problems, which we call Triangle-Collection and ∆-Matching-
Triangles, that allow for tightly efficient reductions from each of our hard problems.
Let ∆ ≥ 1 be an integer.

Definition 1.1 (Triangle-Collection). Given a node-colored graph G, is it true
that for all triples of distinct colors a, b, c there is a triangle (x, y, z) in G in which x
has color a, y has color b, and z has color c?

(Does the set of all triangles in the graph “collect” all triples of colors?)

Definition 1.2 (∆-Matching-Triangles). Given a node-colored graph G, is there
a triple of distinct colors a, b, c such that there are at least ∆ triangles (x, y, z) in G
in which x has color a, y has color b, and z has color c?

(Are there ∆ triangles with “matching” colors?)

An equivalent way to define these problems is as follows: given a k-partite graph
G on n nodes, Triangle-Collection asks whether every triple of partitions has a triangle
among them, and ∆-Matching-Triangles asks whether there is a triple of partitions
with at least ∆ triangles among them.

Note that an O(n3) algorithm for each of these problems is trivial and the output
is a single bit, yet the following theorem shows that if an O(n3−ε) algorithm existed for
some ε > 0, we would have groundbreaking algorithms for 3-SUM, APSP, and CNF-
SAT! It is quite surprising that these simple problems are hiding such “hardness”
to be a bottleneck for these three famous problems (and many others by the known
reductions).

Theorem 1.1. Conjecture 1 implies that Triangle-Collection and ∆-Matching-
Triangles, with ω(1) < ∆ < no(1), on graphs with n nodes cannot be solved in O(n3−ε)
time, for any ε > 0.

Observe that the ∆-Matching-Triangles problem with ∆ = 1 simply asks if there
is a triangle in the graph and can therefore be solved in O(nω) time, where ω < 2.373
is the matrix multiplication exponent [87, 44]. However, when ∆ increases to ω(1)
it must require n3−o(1) time under Conjecture 1. It is natural to wonder what the
complexity of the problem is when ∆ > 1 is a constant. Studying this question,
we have discovered a surprising hierarchy of n-node graph problems with increasing
complexities, starting at nω±o(1) and approaching n3±o(1). These results are presented
at the end of this section.

Besides allowing us to give a tight lower bound for a natural combinatorial prob-
lem based on the extremely weak Conjecture 1, the Triangle-Collection problem serves
as a good intermediate problem for obtaining other interesting results from Conjec-
ture 1. The simplicity and purely combinatorial nature of the problem allow for
simple reductions to other (more well-studied) problems, while the tightness of the
lower bound means that no efficiency is lost by reducing from it.

New lower bounds for dynamic problems. A very active area of research concerns
finding efficient algorithms that can maintain certain properties of a dynamic graph,
i.e., a graph that undergoes a sequence of insertions and deletions of nodes or edges.
Algorithms with low amortized update and query times are desirable. The classic

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1101

connectivity problem in undirected graphs has an algorithm with O(log n log3 log n)
amortized update time [81] and a near-matching Ω(log n) unconditional, cell-probe,
lower bound [71]. For many other classic problems, the best known algorithms re-
quire an O(nc) amortized update time for some c > 0, while no unconditional lower
bounds beyond Ω(log n) are known. Some examples include maintaining the number
of strongly connected components (#SCC) [46, 17, 74, 61, 72, 49], the number of nodes
reachable from a fixed source node (#SSR) [76, 36, 40, 54] in a directed graph under
edge updates. Another example is to maintain the number of nodes connected to a
fixed source in an undirected graph under node updates (#SS-Subgraph-Connectivity)
[41, 26, 27, 37]. Trivial O(m+ n) update time algorithms for these problems recom-
pute the answer after every update, and many faster algorithms have been proposed
in recent years.

With the goal of improving our understanding of the complexity of these problems,
Pǎtraşcu [70] proposed to prove lower bounds conditioned on the 3-SUM conjecture.
After a sequence of reductions from 3-SUM by Pǎtraşcu [70] that was later optimized
by Abboud and Vassilevska Williams [7] and by Kopelowitz, Pettie, and Porat [59],
we can conclude that the above problems require an n2/3−o(1) amortized update if
the 3-SUM conjecture holds. This lower bound does not match the known upper
bounds, and, in fact, Abboud and Vassilevska Williams [7] show that there is a higher
n1−o(1) lower bound under SETH. However, as explained by the later works, obtaining
a higher lower bound from the 3-SUM conjecture using Pǎtraşcu’s approach seems
impossible, due to certain inefficiencies in some of the steps in the reduction, and
obtaining a higher lower bound from 3-SUM has remained an open question. No
lower bound for these problems was known under the APSP conjecture.

In section 4, we give simple reductions from the Triangle-Collection to these
classic dynamic problems to obtain linear n1−o(1) lower bounds on the amortized
update times, under our very weak Conjecture 1. The tightness of our reduction from
3-SUM to the purely combinatorial Triangle-Collection problem allows us to overcome
the n2/3−o(1) barrier for lower bounds under the 3-SUM conjecture.

We also add the dynamic Max-Flow problem to the list: what is the maximum
flow from a source s to a target t in an n-node directed graph with capacities in [n]
that undergoes edge insertions and deletions.

Theorem 1.2. Conjecture 1 implies that any dynamic algorithm for #SSR, #SCC,
#SS-Sub-Conn, and Max-Flow requires either amortized n1−o(1) update or query times,
or n3−o(1) preprocessing time.

Our lower bound for dynamic Max-Flow hints at a barrier for efficient Max-Flow
algorithms: changing one edge of the input, corresponding to one constraint in the
linear program, will make the algorithm spend linear time to recompute the optimal
solution, in an amortized sense. Next, we look for barriers for Max-Flow computations
in static graphs.

New lower bounds for variants of Max-Flow. Equipped with Conjecture 1 and its
realization in the simple Triangle-Collection problem, we try to obtain reductions to
Max-Flow in the hopes of proving under a weak assumption that certain tasks will
not be solvable in near-linear time.

Breakthrough algorithms for s, t-Max-Flow were found in recent years using the
powerful tools of Laplacian systems solvers and interior-point methods [78, 58, 66, 63].
It also seems that these algorithms take near-linear time in practice, and the bottle-
neck for improving the upper bounds might be a weakness in the current algorithm
analysis. Thus, attempting to prove superlinear lower bounds for Max-Flow under

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1102 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

a conjecture we believe to hold might be ill-advised. Instead, we consider two other
versions of Max-Flow, in which we have multiple pairs of sources and sinks, and for
which the potential of these new powerful tools is still unexplored.

Definition 1.3 (Single-Source-Max-Flow). Given a directed edge-capacitated graph
G and source vertex s ∈ V , output, for every t ∈ V , the maximum flow that can be
transferred in G from s to t.

Definition 1.4 (ST-Max-Flow). Given a directed edge-capacitated graph G and
two subsets of vertices S, T ⊆ V (G), output, for every pair of nodes s ∈ S, t ∈ T , the
maximum flow that can be transferred in G from s to t.

Let T (n,m) be the time complexity of Max-Flow. The current bound is T (n,m) =
Õ(m

√
n) by Lee and Sidford [63].3 Obviously, Single-Source-Max-Flow can be solved

in O(n · T (n,m)) time, and ST-Max-Flow can be solved in O(|S||T |T (n,m)) time.
In the unit-capacity case, Cheung, Lau, and Leung [30] solve the all-pairs version,
i.e., ST-Max-Flow with S = T = V (G) in O(mω) time, and Single-Source-Max-Flow
in O(nω−1m) time. In general graphs, Hao and Orlin [47] show that the maximum
flow between Ω(n) st-pairs can be found in the time it takes for a single Max-Flow
computation; however, these pairs cannot be specified in advance; i.e. the algorithm is
free to choose which Ω(n) pairs to output. La̧cki et al. [62] obtained a near-linear time
algorithm for Single-Source-Max-Flow in planar digraphs. Note that in undirected
graphs, all-pairs-max-flow can be read from the Gomory–Hu tree of the graph, which
can be computed in Õ(mn) time for unit-capacity graphs [48].

First, we devise a simple reduction from Triangle-Collection to ST-Max-Flow and
prove that a near-linear time algorithm for it would shatter our conjectures.

Theorem 1.3. Conjecture 1 implies that ST-Max-Flow on a network with n nodes
and O(n) edges requires n1.5−o(1) time, even when |S| = |T | =

√
n.

Although this lower bound does not match the currently known n · T (n) upper
bounds, where T (n) = Õ(n1.5) is the time it takes to solve Max-Flow on sparse
graphs, it gives the first connection between a Max-Flow-like problem and our popular
conjectures. Moreover, this result implies that under Conjecture 1, any O(m1.5−ε)
time algorithm for Max-Flow cannot also output the maximum flow between n st-pairs
of our choice.

This new connection to Max-Flow allows us to obtain perhaps more currently
relevant conditional lower bounds for Single-Source-Max-Flow.

Theorem 1.4. If, for some ε > 0, Single-Source-Max-Flow on a graph with n
nodes, Õ(n) edges with capacities in [n], can be solved in O(n2−ε) time, then MAX-
CNF-SAT on n variables and poly(n) clauses can be solved in 2(1−δ)npoly(n) time,
for some δ > 0, and SETH is false.

Note that the current best upper bound is n · T (m), and this lower bound would
be tight if Max-Flow is in T (m) = m1+o(1) time. A first interesting consequence of
this result is that, under SETH, unlike for shortest paths where the s, t version and
the single-source versions have roughly the same complexity, the single-source version
of Max-Flow (requires n2−o(1)) is much harder than the s, t version (is in O(n1.5)
time), at least on sparse graphs. Another interesting consequence is that, under
SETH, either Max-Flow requires m1+δ−o(1) time, for some δ > 0, or the following
counterintuitive thing is true: it is not possible to compute n single-source flows in

3Throughout this paper, Õ(f(n)) stands for O(f(n) · logO(1) n).

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1103

a network faster than by calling an st-flow algorithm n times.4 In section 4 we give
other reductions from Triangle-Detection and APSP to single-source Max-Flow and
Min-Cost-Flow, obtaining other interesting consequences.

Towards a better understanding of P. The time hierarchy theorem promises the
existence of problems with complexity Θ(nc) for any constant c > 1 and is proven
by constructing a diagonalizing Turing Machine, but are there natural problems with
complexity n2.1, n2.7, or n2.9? And what would such problems look like? Obviously, an
unconditional answer to this question will require concrete polynomial lower bounds,
and we are satisfied with a conditional answer. For integers k > 2, we have a good
sense of what an nk hierarchy might look like: the k-Dominating-Set problem has
complexity nk±o(1) under SETH [68, 38], and it is quite intuitive that the complexity
of this problem increases from n5 to n6 as k increases from 5 to 6. But what about
a hierarchy of problems with complexity Θ(nc) for c ∈ (2, 3)? Even under one of the
conjectures, it is not clear how to find such problems.5

It turns out that the ∆-Matching-Triangles problem, which asks if there is a triple
of colors containing at least ∆ triangles, allows us to find such a hierarchy of problems,
even under our very weak Conjecture 1! Recall that when ∆ = 1 there is an O(nω)
upper bound, and when ω(1) < ∆ < no(1) we have an n3−o(1) lower bound based on
the very weak Conjecture 1. In section 3, we obtain a truly subcubic algorithm for
∆-Matching-Triangles for any fixed integer ∆ ≥ 1.

Theorem 1.5. The ∆-Matching-Triangles problem on an n-node graph G can be

solved in Õ
(
n3−c∆

)
time for c∆ = 2(3−ω)2

(5−ω)∆+1−ω > 0.

Moreover, Theorem 1.1 also proves a truly superquadratic lower bound that ap-
proaches n3−o(1) for ∆-Matching-Triangles, for a large enough constant ∆, assuming
Conjecture 1.

Corollary 1.1. Conjecture 1 implies that for any δ < 1, there is an integer
∆ ≥ 1 such that ∆-Matching-Triangles requires Ω(n2+δ) time.

Combining the lower and the upper bounds, we conclude that there is some con-
stant D such that for every integer ∆ > D, ∆-Matching-Triangles has time complexity
that is both truly subcubic and truly superquadratic (that is, Ω(n2+ε) for some ε > 0).
Note that for smaller ∆ ≤ D the time complexity could be O(n2+o(1)) as far as we
know. We also remark that when ∆ reaches nε for some constant ε, the complexity
of ∆-Matching-Triangles decreases to truly subcubic yet again.6

Finally, in order to obtain a better understanding of the complexity of ∆-Matching-
Triangles for smaller constants ∆, like ∆ = 3, we consider the following conjecture.

Conjecture 2. At least one of the 3-SUM conjecture or the APSP-conjecture
holds.

We are able to show a much better lower bound from Conjecture 2, which is

4 La̧cki et al. [62] conjecture that computing all n2 st-flows in a general graph can be done faster
than by calling a Max-Flow algorithm n2 time.

5An uninteresting way to find such problems is by padding the input to APSP, for example, so
that all nodes but the first nc/3 are ignored; however, we would not consider such a problem natural
as it would not contribute to our understanding of what makes the computational complexity of a
problem increase from n2.7 to n2.8.

6If ∆ = Ω(nε), then at least one of the three colors in the solution has to have Ω(nε/3) nodes.
For each such “heavy” color A with nA nodes, we can use an n× nA × n matrix product to count,
for each pair of other colors B,C, the number of triangles with colors A,B,C. This product takes

time O(n2 · n(1−ε′)
A) for some ε′ > 0, since nA = Ω(nε/3), and the total time is truly subcubic.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1104 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

n3−9/(∆+3)−o(1). For example, this bound is n2.1−o(1) when ∆ = 7, and is n2.9−o(1)

when ∆ = 87. Examining the reductions, we notice that this lower bound applies for
a restricted version of the problem which we call ∆-Matching-Triangles* (defined in
section 2), which turns out to have a matching upper bound, allowing us to prove the
following hierarchy theorem.

Theorem 1.6. Conjecture 2 implies that for any ∆ > 6, the complexity of ∆-
Matching-Triangles* is exactly N3−9/(∆+3)±o(1).

2. Reductions to matching triangles. Recall the definitions of ∆-Matching-
Triangles and the Triangle-Collection problem in the introduction. In this section, we
are going to reduce the three hard problems to ∆-Matching-Triangles and Triangle-
Collection.

First, we show 3-SUM and APSP-hardness using ExactWeight-Triangle (EW-
Triangle) as an intermediate problem, since it requires n3−o(1) time unless both con-
jectures are false [6].

Definition 2.1 (EW-Triangle). Given a graph G = (V,E) with integer edge
weights w : E → [−nc, nc], determine if there is a triangle (x, y, z) of total weight
w(x, y) + w(y, z) + w(x, z) = 0.

Our main ingredient in the reductions from EW-Triangle is a set of no(1) mappings
from integers in [−nc, nc] to vectors in [−p, p]d where (p/3)d > nc so that three
numbers sum to 0 iff in at least one of the mappings the three corresponding vectors
will sum to a certain target vector t. The basic idea is to group the bits of a number
into blocks of size log p and guess all the carries. The following mapping was suggested
by Abboud, Lewi, and Williams [6] as a step toward reducing k-SUM to k-Clique.
Besides using this lemma, our reductions are very different from theirs.

Lemma 2.1 ([6]). For any integers n, c, d, p ≥ 1 such that p ≥ 3nc/d, there is a
set of s = 2O(d) mappings f1, . . . , fs : [−nc, nc] → [−p/3, p/3]d and s target vectors
t1, . . . , ts ∈ [−p, p]d such that for any three numbers x, y, z ∈ [−nc, nc], x+ y + z = 0
iff for some i ∈ [s], fi(x) + fi(y) + fi(z) = ti.

EW-Triangle to ∆-Matching-Triangles. We are now ready to prove the new re-
duction from EW-Triangle to ∆-Matching-Triangles. This is perhaps the most novel
reduction in this work. After reducing the edge-weights to vectors with small values in
each coordinate, we remove the numbers completely and simulate them using edges.
The summation of numbers is simulated by a path that walks along these edges. A
path on three edges that starts and ends at the same node (a triangle) will correspond
to a sum of three numbers being zero.

Lemma 2.2. An instance of EW-Triangle on n nodes, m edges, and edge weights
in [−nc, nc] can be reduced to s = 2O(∆) instances of ∆-Matching-Triangles on O(n ·
nc/∆ ·∆) nodes and O(mnc/∆∆) edges in linear time.

Proof. Given G = (V,E), V = A ∪ B ∪ C,w : E → [−nc, nc] as input to EW-
Triangle, we construct an unweighted graph G′i = (V ′i , E

′
i) on O(n · nc/∆ ·∆) nodes

with node colors χ : V ′i → [n] as follows.
First, apply Lemma 2.1 with d = ∆ and p = O(nc/∆) to construct s = 2O(∆)

mappings from integers to vectors and apply them to each of the edge weights in G.
For each i ∈ [s], we use the mapping fi and the target vector ti to construct a graph
G′i with nodes V ′i = A′i ∪B′i ∪ C ′i. For each node a ∈ A we add d nodes a1, . . . , ad to
A′i and set their color to a (we abuse notation and assume that each node in A is a
number in [n]). The node ai will help us simulate the addition in the ith dimension

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1105

of the vectors. For nodes b ∈ B, c ∈ C we add d · 2p nodes bj,x and cj,x to B′i and C ′i,
where j ∈ [d] and x ∈ [−p, p]. Intuitively, the index j corresponds to the dimension
and the index x corresponds to the value in that dimension. Let the color of every
bj,x node be b and the color of every cj,x node be c (we abuse notation again and
assume that every node in B ∪C has a unique number in [n+ 1, 3n]). We now define
the edges of G′i.

• (A to B) For each edge (a, b) in G where a ∈ A, b ∈ B, we map the weight
of the edge using fi to get a vector fi(w(a, b)) ∈ [−p, p]d and we add d
edges to G′i: for each dimension j ∈ [d] we add an edge from aj to bj,x where
x = fi(w(a, b))[j] is the value in the jth dimension of the vector corresponding
to the weight.

• (B to C) For each edge (b, c) in G where b ∈ B, c ∈ C, we map the weight of
the edge using fi to get a vector fi(w(b, c)) ∈ [−p, p]d and for each dimension
j ∈ [d] we add up to 2p edges to G′i: for each value x ∈ [−p, p] we let
y = x + fi(w(b, c))[j] and if y ∈ [−p, p] we add an edge from bj,x to cj,y.
That is, for each dimension j ∈ [d] the edges we add simulate an increase of
fi(w(b, c))[j] in the value at the jth dimension.

• (C to A) Finally, for each edge (c, a) in G where c ∈ C, a ∈ A, we map the
weight of the edge using fi to get a vector fi(w(c, a)) ∈ [−p, p]d and we add d
edges to G′i: for each dimension j ∈ [d] we add an edge from cj,x to aj where
x = ti[j]− fi(w(c, a))[j].

The number of nodes inG′i is n∆+n∆2p+n∆2p = O(n1+c/∆∆), while the number
of edges is m∆+m∆nc/∆ = O(mnc/∆∆). The number of colors is |A|+|B|+|C| = 3n.
If one of the s = 2O(∆) instances of ∆-Matching-Triangles is a YES instance, we say
that G contains a triangle of weight 0. The following claim shows the correctness of
our reduction.

Claim 1. There is a triangle (a, b, c) ∈ A× B × C in G of weight 0 iff for some
i ∈ [s] there are at least ∆ triangles in G′i with colors a, b, c.

For the first direction, assume (a, b, c) ∈ A×B×C is a triangle in G and w(a, b)+
w(b, c) + w(c, a) = 0. By Lemma 2.1, we know that for some i ∈ [s], the vectors
sum to fi(w(a, b)) + fi(w(b, c)) + fi(w(c, a)) = ti. Therefore, for every j ∈ [d] we
have that (aj , bj,x), (bj,x, cj,y), (cj,y, aj) ∈ E(G′i) where x = fi(w(a, b))[j] and y =
x + fi(w(b, c))[j] = fi(w(a, b))[j] + fi(w(b, c))[j], since under our assumption y =
ti[j] − fi(w(c, a))[j]. By our assignment of colors to nodes, we get ∆(= d) triangles
with colors a, b, c in G′i.

For the second direction, assume that there are ∆ triangles in G′i for some i ∈ [s]
using the same triple of colors. First note that a triangle cannot use two colors from a
single partition A,B, or C, since the nodes of each partition form an independent set.
Therefore, the triple of colors must be of the form a, b, c for some colors corresponding
to nodes a ∈ A, b ∈ B, c ∈ C. By construction of our graphs G′i, we know exactly
which are the ∆ triangles: for each j ∈ [d] the node aj has only one neighbor in B
with color b and one neighbor in C with color c and therefore we can have at most
one triangle, which is (aj , bj,x, cj,y) in G′i. For each j ∈ [d], this triangle exists iff
fi(w(a, b))[j] + fi(w(b, c))[j] = ti[j] − fi(w(c, a))[j]. Thus, there are ∆ triangles iff
fi(w(a, b))[j] + fi(w(b, c))[j] + fi(w(c, a))[j] = ti[j] for every j ∈ [d]. By Lemma 2.1,
this occurs only if w(a, b) + w(b, c) + w(c, a) = 0.

Corollary 2.1. If there is an algorithm which solves ∆-Matching-Triangles on
an n-node graph in O(n3−ε) time for any constant ε > 0, any ω(1) < ∆(n) < o(log n),
we can solve EW-Triangle in O(n3−ε+o(1)) time.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1106 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

Note that our lower bounds for ∆-Matching-Triangles increase as ∆ grows from 1
to O(log n/ log log n). In fact, the ∆ = 1 can be solved in truly subcubic O(nω) time.
Interestingly, we are able to show the highest n3−o(1) lower bounds for the “∆ = 0
case” as well, by reductions from APSP, 3-SUM, and CNF-SAT.

EW-Triangle to Triangle-Collection. We first define a “restricted” version of
Triangle-Collection, called Triangle-Collection*. Then we reduce the EW-Triangle
problem to the restricted version. Finally, we will reduce Triangle-Collection* to
Triangle-Collection.

Definition 2.2 (Triangle-Collection*). Given an undirected tripartite node col-
ored graph G with partitions A,B,C of the following form:

• A contains n∆ nodes denoted aj where a ∈ [n] and j ∈ [∆] so that aj is
colored with color a,

• B and C contain n∆p nodes each, denoted bj,x and cj,x where b, c ∈ [n],
j ∈ [∆], and x ∈ [p] so that bj,x (cj,x) is colored b (c),

• For each node aj in A and colors b, c, there is exactly one edge of the form
{aj , bj,x} and exactly one edge of the form {aj , cj,y}, for some x, y ∈ [p],

• A node bj,x in B can only be connected to nodes of the form cj,y in C (no
edges across different j’s).

Is it true that for all triples of distinct colors a, b, c that are in parts A,B,C
respectively, there is a triangle (x, y, z) in G in which x has color a, y has color b,
and z has color c?

Lemma 2.3. An instance of EW-Triangle on n nodes and edge weights in [−nc, nc]
can be reduced to s = 2O(∆) instances of Triangle-Collection* on O(n ·nc/∆ ·∆) nodes
and O(n2+2c/∆∆) edges in linear time.

Proof. The reduction is similar to the one in the proof of Lemma 2.2, except we
take the complement of one side of the edges to make the absence of an (aj , bj,?, cj,?)
triangle correspond to the sum being zero on the jth dimension.

Take the unweighted graphs G′i = (V ′i , E
′
i) in the proof of Lemma 2.2, where

V ′i = A′i ∪ B′i ∪ C ′i. We complement all the edges between B′i and C ′i (a pair is now
connected by an edge iff it was not an edge originally) and get a collection of 2O(∆)

new graphs G′′i . According to the proof of Claim 1, there is a zero-weight triangle
(a, b, c) in G iff there are no triangles of colors (a, b, c) in G′′i for some i. It is not hard
to verify that all G′′i s have the format of Triangle-Collection* input graphs.

Lemma 2.4. An instance of Triangle-Collection* on n-node graphs can be reduced
to an instance of Triangle-Collection on O(n) nodes.

Proof. The only problem we need to worry about is that there is no restriction
on the triple of colors in the general Triangle-Collection problem. That is, we do not
want to find a triangle-free triple of colors such that they are not from sets A,B,C,
respectively. To solve this issue, given an input graph G for Triangle-Collection*, we
construct a new colored graph G′ with vertex sets A′, B′, C ′. For each vertex a ∈ A
of G, we create vertices a, aB , and aC in A′, which all have the same color as vertex a
in G. Similarly, for each b ∈ B and c ∈ C, we create b, bC , bA and c, cA, cB . For every
edge in G, we add the same edge to G′. In addition, for every pair of nodes a, a′ ∈ A
we add edges (aB , a

′
B), (aC , a

′
C) to G′. Similarly, for nodes b, b′ ∈ B and c, c′ ∈ C, we

add edges (bA, b
′
A), (bC , b

′
C), (cA, c

′
A), (cB , c

′
B). Then, for every pair a ∈ A, b ∈ B we

add an edge (aB , bA), for every pair a ∈ A, c ∈ C we add an edge (aC , cA), and for
every pair b ∈ B, c ∈ C we add an edge (bC , cB). G′ preserves every triangle in G and
makes every triple of colors that is not in A′ × B′ × C ′ contain a triangle, but does

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1107

not add new triangles for triples in A′ ×B′ × C ′.
Claim 2. If a triple of colors (x, y, z) is not in A×B×C, then that triple contains

a triangle in G′.

Proof. If all three colors come from the same partition, e.g., x, y, z ∈ A (or B
or C), then the nodes xB , yB , zB form a triangle, by construction. If, however, two
nodes come from the same partition, e.g., x, y ∈ A but z ∈ B (the other cases are
similar), then the nodes xB , yB , zA form a triangle in every G′i, by construction. This
completes the proof of the claim.

The new nodes in G′ add triangles to every “invalid” triple of colors, while for
every “valid” triple, the existence of triangles does not change. This proves the
correctness of our reduction.

Setting ∆ = 2Θ(
√

logn) in Lemma 2.4 gives us the following corollary.

Corollary 2.2. If there is an algorithm solving Triangle-Collection on n-node
graph in O(n3−ε) time for any constant ε > 0, we can solve EW-Triangle in O(n3−ε+o(1))
time.

A hierarchy with exact bounds. We note that by standard random hashing of the
edge-weights by working modulo a random prime, EW-Triangle with c = 3 (weights
in [−nc, nc]) is as hard as the more general case [6]. Thus, Conjecture 2 implies
an n3−o(1) lower bound for EW-Triangle even with c = 3, and therefore together
with Lemma 2.2 it implies an n3−9/(∆+3)−o(1) lower bound for ∆-Matching-Triangles.
Observe that the proof of Lemma 2.2 proves hardness even for input graphs of a
restricted form, thus obtaining the same lower bound even for the following problem.

Definition 2.3 (∆-Matching-Triangles*). Given an undirected tripartite node
colored graph G on N = O(n∆p) nodes, with partitions A,B,C of the following form,
where p = O(n3/∆):

• A contains n∆ nodes denoted aj where a ∈ [n] and j ∈ [∆] so that aj is
colored with color a,

• B and C contain n∆p nodes each, denoted bj,x and cj,x where b, c ∈ [n], j ∈
[d], and x ∈ [p] so that bj,x (cj,x) is colored b (c),

• For each node aj in A and colors b, c, there is exactly one edge of the form
{aj , bj,x} and exactly one edge of the form {aj , cj,y}, for some x, y ∈ [p],

• A node bj,x in B can only be connected to nodes of the form cj,y in C (no
edges across different j’s),

determine whether there is a triple of distinct colors a, b, c such that there are at least
∆ triangles (x, y, z) in G in which x has color a, y has color b, and z has color c?

Reminder of Theorem 1.6. Conjecture 2 implies that for any ∆ > 6, the
complexity of ∆-Matching-Triangles* is exactly N3−9/(∆+3)±o(1).

In such restricted instances, one can check in O(∆) time whether there are ∆
triangles with a given triple of colors after preprocessing the graph in O(N2) time.
Therefore, the problem can be solved in time

O((#colors)3 + (#nodes)2) = O(n3 +N2) = O(N3∆/(∆+3)) = O(N3−9/(∆+3)),

when ∆ > 6 is constant, matching our lower bound, and proving Theorem 1.6.
SETH to Matching-Triangles. Next, we prove a new SETH lower bound. Our

reduction uses the same split-and-list technique that is used in all of the SETH-
based lower bounds, yet unlike most previous reductions, ours splits the variables into

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1108 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

three sets, not two. Moreover, since our reduction incurs an overhead of 2M where
M is proportional to the number of clauses, we introduce new tricks to reduce the
dependence on the number of clauses.

Lemma 2.5. If ∆-Matching-Triangles on N -node graphs can be solved in O(N c∆)
time, then CNF-SAT on n variables and m clauses can be solved in O((∆2n/3+m/3∆)c∆)
time.

Proof. Given a CNF formula F on n variables and m clauses as input of CNF-
SAT, first we split the variables into three sets U1, U2, U3 of size n/3 each and enu-
merate over all the N = 2n/3 partial assignments to each set. Also we arbitrarily
divide m clauses into 3∆ groups C1, . . . , C3∆, each of which contains m/3∆ clauses.

Then we construct a graph G on O(N∆2m/3∆) nodes V1 ∪ V2 ∪ V3, containing
O(∆2m/3∆) nodes for each partial assignment. Let αi be a partial assignment to
variables in Ui. For each group C3k+i, partial assignment αi, and bit string si ∈
{0, 1}m/3∆, we build a vertex vαi,k,si ∈ Vi. The bit string si will correspond to some
subset of clauses of group C3k+i. Then for every partial assignment, we assign a
different color. Thus we have 3N colors in total. Finally, we need to describe the
edges in G. We add an edge between vαi,k,si ∈ Vi and vαi+1,k,si+1

∈ Vi+1 if αi+1

satisfies exactly the subset si of group C3k+i and αi, αi+1 together with the subset
si+1 satisfy all clauses in C3k+i+1 (C3k+1 if i = 3).7 Basically, si corresponds to the
subset which αi+1 satisfies. When considering a pair of partial assignments, together
with the information carried about the third part, we can decide whether we have
satisfied enough clauses in one group.

We claim that for any triple of partial assignments α1, α2, α3 and k ∈ [∆],
there is a triangle among vertices vα1,k,∗, vα2,k,∗, vα3,k,∗ iff they satisfy all clauses in
C3k+1, C3k+2, C3k+3. If there is a triangle (vα1,k,s1 , vα2,k,s2 , vα3,k,s3), there are edges
between any two of them. This means α2 satisfies exactly the subset s1 of C3k+1, and
α1, α3 together with s1 satisfy all clauses of C3k+1. Therefore, they satisfy clauses in
all of these three groups due to symmetry. On the other hand, if they satisfy clauses in
the three groups, let si be the subset of clauses αi+1 satisfies; there can only be edges
between vαi,k,si and every vαi+1,k,∗. Since α1, α2, α3 satisfy all clauses in C3k+i+1

(C3k+1 if i = 3), vαi,k,si and vαi+1,k,si+1 will be connected by an edge. They form the
only triangle between these vertices.

Based on the above claim and the way we assign colors, it is not hard to see
that there are ∆ triangles of the same triple of colors iff there is a triple of partial
assignments that satisfies enough clauses in every group. Using the algorithm for
∆-Matching-Triangles, we can solve CNF-SAT in O((∆2n/3+m/3∆)c∆) time as we
stated.

The above reduction together with the sparsification lemma [23] gives us the
following corollary.

Corollary 2.3. If there is an algorithm solving ∆-Matching-Triangles on an N -
node graph in O(N3−ε) time for any constant ε > 0, any ω(1) < ∆(N) < No(1), we
can solve k-SAT in O

(
2n(1−ε/6+o(1))

)
time for every k ≥ 3, refuting SETH.

Proof. Given a k-SAT instance, we first apply the sparsification lemma [23] to
generate 2εn/6 sparse k-SAT instances with n variables and cn clauses, where c ≤
(6k/ε)O(k). By Lemma 2.5, each instance runs in O

(
2n(1−ε/3+o(1))

)
time. The total

running time will be O
(
2n(1−ε/6+o(1))

)
.

7For simplicity of notation, let α4 = α1, s4 = s1, V4 = V1.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1109

SETH to Triangle-Collection. Now we reduce CNF-SAT to Triangle-Collection.
By Lemma 2.4, it is sufficient to reduce it to the restricted version.

Lemma 2.6. If there is an algorithm which solves Triangle-Collection* on N -node
graphs in O(N c1∆c2) time, then CNF-SAT on n variables and m = nO(1) clauses can
be solved in 2nc1/3nO(1) time.

Proof. Given a CNF formula F on n variables and m = nc clauses, we split
the variables into three sets U1, U2, U3 of size n/3 each and enumerate over all the
N = 2n/3 partial assignments to each set.

We will construct a graph G on O(Nm) nodes A∪B∪C, containing O(m) nodes
for each partial assignment. Let α(i) be the ith partial assignment to the variables in
U1; we add m nodes αi1, . . . , α

i
m to the set A and set their color to i. Let β(i) be the

ith partial assignment to the variables in U2; we add 2m nodes βi1,T , . . . , β
i
m,T and

βi1,F , . . . , β
i
m,F to B and set their color to N + i.8 Finally, let γ(i) be the ith partial

assignment to the variables in U3; then add nodes γi1, . . . , γ
i
m to the set C with color

2N + i. Note that every color corresponds to a partial assignment.
The edges of G are defined according to the satisfiability relations between partial

assignments and clauses. We say that a partial assignment ρ satisfies a clause C iff ρ
sets one of the literals of C to true. For each triple of partial assignments α, β, γ to
U1, U2, U3 (respectively), we define the following edges. For each j ∈ [m], we check
whether α, β, γ satisfy the jth clause Cj in our formula F , and then do the following:

• We add an edge between αj and βj,T if α or β satisfies Cj , and we add an
edge between αj and βj,F otherwise.

• We add an edge between βj,F and γj if γ does not satisfy Cj .
• We add an edge between αj and γj .

By the construction of G, it fits the input graph of Triangle-Collection*. We claim
that a triple of colors will have no triangles in G iff the corresponding triple of partial
assignments satisfies all clauses. To see this, note that a triangle must be of the form
αj → βj,F → γj . Such a triangle exists iff clause Cj is not satisfied by assignment
(α, β, γ); i.e., all triples of colors contain a triangle iff any assignment does not satisfy
the formula.

By the assumption on the Triangle-Collection* algorithm, we solve CNF-SAT in
2nc1/3nO(1) time.

Corollary 2.1 only proves hardness of ∆-Matching-Triangles when ∆ is sub-
logarithm in n. However, the following lemma shows the hardness does not decrease
(omitting no(1) factors) when ∆ increases, as long as it is subpolynomial in n.

Lemma 2.7. If we can solve ∆-Matching-Triangles on n-node graph G in O(nc∆)
time, then we can solve ∆′-Matching-Triangles in O

(
((∆−∆′)n)

c∆
)

time for ∆′ <
∆.

Proof. Given an instance of ∆′-Matching-Triangles G on n nodes, we add ∆−∆′

nodes to each of the colors. Then take the ith newly added nodes in all colors and
make them a complete graph. It adds exactly ∆−∆′ triangles to every triple of colors.
Then run the ∆-Matching-Triangles algorithm on the new graph. The running time
is O(((∆−∆′)n)c∆).

Now we are ready to prove Theorem 1.1.

8We added the nodes βi
j,T merely to fit the definition of Triangle-Collection*. The reduction

works without them, but having this definition of Triangle-Collection* will simplify later reductions
to other problems.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1110 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

Reminder of Theorem 1.1. Conjecture 1 implies that Triangle-Collection and
∆-Matching-Triangles, with ω(1) < ∆(n) < no(1), on graphs with n nodes cannot be
solved in O(n3−ε) time, for any ε > 0.

Proof. By Corollary 2.1, Corollary 2.3, and Lemma 2.7, we can get for ω(1) <
∆ < no(1) that ∆-Matching-Triangles cannot be solved in O(n3−ε) time, for any ε > 0
under Conjecture 1. Then by Corollary 2.2, Lemma 2.6, and Lemma 2.4, we can prove
the hardness for Triangle-Collection under Conjecture 1.

From the theorem, we have the following corollary stating a “Hierarchy” between
n2 and n3.

Reminder of Corollary 1.1. Conjecture 1 implies that for any δ < 1, there
is an integer ∆ ≥ 1 such that ∆-Matching-Triangles requires Ω(n2+δ) time.

Proof. Assume for contradiction that there is an ε > 0 such that ∆-Matching-
Triangles can be solved in O(n3−ε) for all constant ∆ ≥ 1. Therefore, there is a
sequence {a∆}∆≥1 of positive numbers such that ∆-Matching-Triangles on n-node
graphs can be solved in a∆n

3−ε steps. Let ∆(n) = max{∆ : a∆ ≤ nε/2a1,∆ ≤ n1/ log logn}.
We claim that with this parameter ∆(n), our assumption contradicts with Theo-
rem 1.1.

When n ≥ max{k2 log log k, (ak/a1)2/ε}, ∆(n) ≥ k, since ak ≤ nε/2a1 and k ≤
n1/ log logn. This shows ∆(n) > ω(1). Also, by definition, ∆(n) < no(1). But ∆(n)-
Matching-Triangles can be solved in a∆(n)n

3−ε ≤ a1n
3−ε/2 = O(n3−ε/2) time. It

contradicts with the fact that such ∆(n)-Matching-Triangles cannot be solved in any
truly subcubic time.

3. Algorithm for matching triangles. In this section, we show how to solve
∆-Matching-Triangles efficiently when ∆ is small.

Reminder of Theorem 1.5. The ∆-Matching-Triangles problem on an n-node

graph G can be solved in Õ
(
n3−c∆

)
time for c∆ = 2(3−ω)2

(5−ω)∆+1−ω > 0.

Proof. Without loss of generality, we may assume that the graph G is tripartite.
Since for a general graph G, we may create a new tripartite graph with three copies of
the vertex set V1, V2, V3 and three copies o1, o2, o3 for each color o, such that for each
vertex v ∈ V with color o, the corresponding copy vi ∈ Vi has color oi. For each edge
(u, v) with different colors, we add edges (ui, vj) for i 6= j. It is not hard to verify
that the new tripartite graph has a triple of colors with ∆ triangles iff the original
graph does.

We use two different approaches to detect if there are ∆ triangles with the same
triple of colors based on the number of nodes in the color classes. The size of a color
c from now on will refer to the number of nodes with color c. Also, without loss of
generality, we can renumber the colors so that each color appears only in one of the
partitions of G; picking the color identifies the partition.

Suppose that there is a triple of colors with ∆ triangles. Let C1, C2, C3 be the
sizes of these three colors.

First approach. In this case, we check if there are ∆ triangles with the same triple
of colors such that the sizes of the three colors are at most C1, C2, C3, respectively.
Let us focus on the colors with at most C1, C2, C3 vertices in each part of the graph.

First, for each color c, we arbitrarily order the vertices of color c and associate
the ith vertex in this order with the number i. Now, we will go over the possible
choices of ∆− 1 triples of indices (i1, j1, k1), (i2, j2, k2), . . . , (i∆−1, j∆−1, k∆−1) where

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1111

ir ∈ {1, . . . , C1}, jr ∈ {1, . . . , C2}, kr ∈ {1, . . . , C3} for all r ∈ {1, . . . ,∆− 1}. These
indices are supposed to represent the nodes in the first ∆ − 1 of the ∆ matching
triangles. There are

(
C1C2C3

∆−1

)
possibilities. Notice that we do not know which colors

the vertices of the matching triangles are in yet, but if someone tells us the color
triple of the triangles, we know exactly which vertices in the triple form the first
∆− 1 triangles.

Now, we will build a graph in which we will search for the last triangle from the
∆ matching triangles. For any two colors c, c′ from different parts in G, we check if
all indices and corresponding edges of the ∆− 1 triangles exist in these two colors. If
some of them are missing, it means, together with any third color, the two colors c, c′

cannot have those ∆− 1 triangles whose indices we picked. Thus we delete all edges
between nodes of colors c, c′ from G.

After we have checked for every pair of colors, we get a new graph G′ depending
on the indices of ∆− 1 triangles. At this point, if we guessed the indices of the first
∆− 1 matching triangles correctly, then these triangles are still in G′, and if we have
three colors c1, c2, c3 such that there is at least one edge between each pair of colors,
then this triple of colors must contain ∆−1 triangles, namely those whose indices are
exactly (i1, j1, k1), (i2, j2, k2), . . . , (i∆−1, j∆−1, k∆−1), the current triples that we are
attempting.

Using G′, we want to search for the ∆th triangle T . This last triangle T will be
different from all of the first ∆− 1. That is, for each of the first ∆− 1 triangles, there
is at least one edge that does not appear in T . We enumerate all 3∆−1 possibilities of
which edge can be omitted from each of the ∆− 1 triangles so that the graph would
still contain T . For each such choice, we remove the corresponding edges from each
possible pair of colors in G′. For instance, if our choice says that the first edge from
the second triangle can be omitted, for every color c in the first partition and every
color c′ in the second partition of G′, we remove the edge between the i2th node of c
and the j2th node of c′.

If our choice of the ∆−1 edges to remove from the ∆−1 triangles is correct, the last
triangle T would still be in G′. Moreover, if G′ contains any triangle, say (p, q, r) for p
with color c, q with color c′, and r with color c′′, then by our earlier observation, since
there are edges between c, c′, c′′, this triple must contain (in G) the ∆−1 triangles with
indices (in the color classes c, c′, c′′) (i1, j1, k1), (i2, j2, k2), . . . , (i∆−1, j∆−1, k∆−1). Now,
since (p, q, r) is a brand new triangle that differs from all of these in at least one edge,
the color triple c, c′, c′′ must contain ∆ matching triangles. This statement is an iff
statement—if a color triple does contain ∆ matching triangles, for some choice of
edges to remove and some choice of the indices of the first ∆ − 1 triangles, we will
have the last triangle remaining in G′.

At last we check if the remaining graph has a triangle (without color restriction)
using matrix multiplication in O(nω) time.

The first approach correctly finds ∆ matching triangles (if they exist), for all
small-sized colors, in time

Õ

((
C1C2C3

∆− 1

)
3∆nω

)
.

Second approach. We check if there are ∆ triangles with the same triple of colors
with size at least C1, C2, C3, respectively. First we delete all colors of small size from G
and get a graph G′. Note that in each part of G′, there are at most n/C1, n/C2, n/C3

different colors, respectively. If there are more than (∆−1)n3/(C1C2C3)+1 triangles,
which can be detected in Õ(nω) time by fast matrix multiplication, there must be ∆

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1112 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

matching triangles. We can report YES immediately. Otherwise, we can list all
the triangles in G′ efficiently. Björklund et al. [18] proposed an algorithm that can
list t triangles in an n-node graph in Õ

(
nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)

)
time. Let

c = 2(3− ω)/(5− ω). Applying this algorithm to G′, in

Õ
(
nω + n3(ω−1)/(5−ω)(∆n3/(C1C2C3))2(3−ω)/(5−ω)

)
= Õ

(
nω + n3(∆/(C1C2C3))c

)
time, we can list all triangles and check if there are ∆ of them with the same triple
of colors using a table of size n3/(C1C2C3).

Main algorithm. We have given two approaches—one that works very well when
all colors in the color triple are small, and one that works very well when all colors
are large. In the following, we show how to combine these two approaches to get an
efficient algorithm for a general graph G. We divide the colors into log n groups based
on their size. The colors in Group i will have between 2i and 2i+1 nodes. We go over
all triples of groups. For Groups u, v, w, the first approach runs in

Õ

((
2u+v+w

∆− 1

)
3∆nω

)
time, while the second approach runs in

Õ
(
nω + n3(∆/2u+v+w)c

)
time. The algorithm first computes these two values and then picks the faster approach
to detect if there are ∆ matching triangles among Groups u, v, w. There are log3 n
such triples of groups; the algorithm runs in

Õ

(
max

0≤u,v,w≤logn
min

{(
2u+v+w

∆− 1

)
3∆nω, nω + n3(∆/2u+v+w)c

})
time. The maximum value of the running time is achieved when two terms are equal

(when 2u+v+w =
(
n3−ω∆c3−∆(∆− 1)!

)1/(∆−1+c)
):

Õ

(
max

0≤u,v,w≤logn
min

{(
2u+v+w

∆− 1

)
3∆nω, nω + n3(∆/2u+v+w)c

})
≤Õ

(
max

0≤s≤3 logn
min

{
2s(∆−1)3∆nω/(∆− 1)!, n3(∆/2s)c

})
≤Õ

((
n3−ω∆c3−∆(∆− 1)!

)(∆−1)/(∆−1+c)
3∆nω/(∆− 1)!

)
≤Õ

((
n3∆c

)(∆−1)/(∆−1+c) (
3∆nω/(∆− 1)!

)c/(∆−1+c)
)

≤Õ
(
n3−(3−ω)c/(∆−1+c)

)
=Õ

(
n3−c∆

)
.

We have the running time as we stated.

4. Reductions to other problems. Recall the definition of Triangle-Collection*
from section 2. Lemmas 2.6 and 2.3 prove that even this restricted version of Triangle-
Collection has an n3−o(1) lower bound under Conjecture 1. In this section we reduce
this version to well-studied problems to prove our new lower bounds.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1113

Triangle-Collection* to Dynamic Problems. The following reductions to dynamic
problems prove Theorem 1.2.

Lemma 4.1. Triangle-Collection* with parameters n,∆, p can be reduced to Õ(N2)
updates and queries of #SSR, #SCC, #SS-Sub-Conn, or Max-Flow on a dynamic
graph on N = O(n∆p) nodes.

Proof. We have slightly different reductions for each one of the problems in the
lemma. We start with the main construction which will be common to all of them,
and then describe how to modify it in each case.

Let G be the input to Triangle-Collection* with parameters n,∆, p as in the
definition. We construct a graph H by directing the edges of G from B to C and
removing part A from the graph (it will be implicitly simulated). We add a source
node s which will dynamically represent the different colors of A. We also add a target
node tc, for every color c of C. Denote the number of nodes in H by N = O(n∆p).

Then, we have a phase for each color a of A, in which we perform two stages.
In the first stage, we go over all colors c of C, and for each c we have a substage

which we will refer to as the (a, c) substage: We add an edge from cj,x to tc for every
j ∈ [∆], where x is so that {aj , cj,x} is an edge in G. Note that after we complete this
stage, H is encoding all the information about the edges in G between the current
color a and all the nodes in C.

In the second stage, we go over all colors b of B, and for each b we perform some
updates and one query as follows. This will be referred to as the (a, b) substage. First,
we add edges s→ bj,x for every j ∈ [∆], where x is so that {aj , bj,x} is an edge in G.
Then, we ask a query to one of our problems and figure out whether, for all colors
c of C, s can reach the node tc. Then, we undo what we did in the (a, b) substage,
by removing the edges we added, and move on to the next b. After going through all
colors b of B, we terminate this stage and move on to the next color a of A.

If, at some point in this process, in some substage (a, b) the query tells us that
in the current graph, s does not reach all nodes tc, then we conclude that there is a
triple (a, b, c) without any triangles, and we output “yes.” Otherwise, if we finish all
the stages and in all queries s could reach all tc nodes, then we output “no.” Note
that we have performed a total of O(N2) updates and queries in the reduction.

To see the correctness of the reduction, observe that if s cannot reach tc in the
graph corresponding to a pair (a, b), then the triple (a, b, c) contains no triangles in G.
This is because any triangle (aj , bj,x, cj,y) corresponds to a path s→ bj,x → cj,y → tc.

Next, we show how to modify this graph H so that the queries that each of our
problems supports is able to tell us whether there is some node tc that s cannot reach.

(#SSR) In this problem, the query tells us the number of nodes that s can reach,
while we are only interested in the number of nodes tc that s can reach. Therefore,
we make the following change to the above construction. For all colors c of C, we
add edges from the node tc back to all the nodes cj,x, for any j ∈ [∆], x ∈ [p]. This
makes it so that if s can reach tc, then it can also reach all ∆ · p nodes of the form
cj,x. Then, when we ask a query, we get that s can reach exactly ∆ nodes in B, plus
exactly n · ∆ · p nodes in C (that is, all of C), plus all n nodes tc, only if s could
reach all nodes tc in the above construction. Otherwise, s cannot reach more than
∆ + n · (∆ · p+ 1)n− 1 nodes.

(Max-Flow) In the above reduction, add a target node t and connect every tc
node to it with an edge of capacity 1. The other edges of the graph will have capacity
n. The query to Max-Flow will tell us how much flow we can push from s to t. This
flow will be n iff s can reach all nodes tc for all the n colors c of C.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1114 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

(#SS-Subgraph-Connectivity) In this problem, the graph is undirected, and an
update can turn a node “on” or “off.” A query tells us whether the graph induced
on the “on” nodes is connected. Thus, we remove the direction from the edges in
the above construction and replace the addition of the cj,x → tc edges by “turning
on” updates on the cj,x nodes. All other nodes in C will be turned “off.” We add
permanent edges between tc and all nodes cj,x for all colors c of C, and the nodes tc
are permanently turned “on.” Similarly, replace the addition of s → bj,x edges with
updates that “turn on” the bj,x nodes. All other nodes in B will be turned “off.”

Observe that the only way s and tc can be in the same connected component is if
we have turned “on” two nodes bj,x and cj,y that have an edge between them, and aj
is connected to both of them in G. That is, if the triple (a, b, c) contains a triangle.
Thus, the query allows us to learn whether s can “reach” every tc node.

(#Strongly Connected Components) Consider the above reduction again. Add
two new nodes xB and xC . Connect every node in B bidirectionally to xB , similarly
from C and xC . Add edges from the tc nodes to s. At the (a, c) substage, consider
the cj,x nodes (the neighbors of aj) and remove their edges to and from xC ; instead,
bi-connect them to tc. At the (a, b) substage, consider the bj,x nodes (the neighbors
of aj) and remove their edges to and from xB ; instead, bi-connect them to s. The
claim now is that the number of strongly connected components is 3 iff s can reach
all the tc nodes. The first direction is clear: if s can reach every tc, then we have that
xB and xC are in their own connected components, while the rest of the graph is one
big component containing all the neighbors of a and the tc nodes. The second is also
simple: if some tc cannot be reached from s through B, then there is no way it can
be reached at all, and it will be in a fourth component which does not include s.

Reductions to flow problems. Finally, we present our reduction to ST-Max-Flow
on a static graph, proving Theorem 1.3. The reduction shows how to use flow to
count the number of different groups of nodes through which there is a path from the
source to the target.

Lemma 4.2. Triangle-Collection* with parameters n,∆, p and on N = O(n∆p)
nodes can be reduced in O(N2) time to ST-Max-Flow on a graph with O(N2) nodes
and edges, and |S| = |T | = O(N).

Proof. Given a tripartite graph G as input to Triangle-Collection*, we construct
a flow network H as input to ST-Max-Flow as follows.

The nodes of H will be composed of five partitions: S,A′, B′, C ′, T . For each
color a of A (in G) we create a node sa in S. For each pair of colors a of A and b
of B we create a node ab in A′. For each node bj,x ∈ B we create a node b′j,x in B′.
For each node cj,x ∈ C we create a node c′j,x in C ′. For each color c of C we create a
node tc in T .

Next, we define the edges of H. Add edges of capacity 1 from sa to the ab nodes
for every color b of B. For each edge {aj , bj,x} in G, add an edge ab → b′j,x to H with
capacity 1. For each edge {bj,x, cj,y} in G, add an edge b′j,x → c′j,y to H with capacity
1. For each node c′j,x ∈ C ′, add an edge of capacity n from c′j,x to tc to H. Finally,
for every color a of A and node cj,x ∈ C such that {aj , cj,x} is not an edge in G, we
add an edge sa → c′j,x of capacity n to H.

Note that the number of nodes and edges in H is O(|A||B|) = O(N2) and that
|S| = |T | = n. The next claim proves the correctness of our reduction.

Claim 3. For a pair of nodes sa ∈ S, tc ∈ T , the maximum flow from sa to tc in
H is nd(p− 1) + n if for every color b of B, the subgraph of G induced by the colors

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1115

a, b, c contains a triangle, and is smaller otherwise.

For the first direction, assume that for every color b of B, the triple a, b, c contains
a triangle. Note that sa can push n units of flow along each of the edges sa → c′j,x
and then along the edges c′j,x → tc, and by our assumptions on G, there are exactly
d(p− 1) such edges in H, resulting in a total of nd(p− 1) units of flow. We will call
this “base flow.” We claim that every color b can contribute another unit of flow if the
triple a, b, c contains a triangle in G. Indeed, sa can push one unit of flow to ab for
every color b and then find the j ∈ [d] for which (aj , bj,x, cj,y) is a triangle in G and
push a unit of flow along the edges ab → b′j,x → c′j,y → tc. Note that since {aj , cj,y}
is an edge in G, we have not pushed any flow along the edge c′j,y → tc in our “base
flow.” Moreover, since we are adding up to n additional units of flow, we will not
violate any of the capacity constraints. Thus, after these additions we end up with
nd(p− 1) + n units of flow.

For the other direction, assume that for some color b, the triple a, b, c does not
contain a triangle. This implies that for every j ∈ [d], the edge b′j,x → c′j,y is not
in H, where x, y are such that the edges {aj , bj,x} and {aj , cj,y} are in G. We will
show that at least one of the edges leaving sa cannot be saturated in a legal flow in
H, thus implying that the maximum flow is less than the sum of capacities on the
({sa}, H \ {sa}) cut, which is nd(p− 1) + n. If there is no flow on the edge sa → ab,
we are done. Otherwise, one unit of flow is pushed along the path sa → ab → b′j,x →
c′j,z → tc for some j ∈ [d] and x, z such that {aj , bj,x}, {bj,x, cj,z} are in G. But by the
above, we know that {aj , cj,z} is not an edge in G, and therefore the edge sa → c′j,z is
in H. Only n flow can leave c′j,z, while there is one unit coming from part B′, which
implies that only n − 1 units of flow can come from the edge sa → c′j,z, and we are
done again, since we found an edge leaving sa that is not saturated.

5. Reductions to Single-Source Max-Flow. To prove Theorem 1.4 we give
a simple reduction from MAX-CNF-SAT to Single-Source-Max-Flow. Note that our
lower bound is not only based on SETH, but on the weaker assumption that MAX-
CNF-SAT on formulas with n variables and m = poly(n) clauses cannot be solved in
O(2(1−ε)n) time—a problem for which even 2n/poly(n) algorithms are not known (as
opposed to the usual CNF-SAT).

Lemma 5.1. MAX-CNF-SAT on n variables and m clauses can be reduced to
O(m) instances of Single-Source-Max-Flow on graphs with N = 2n/2 nodes and
O(2n/2m) edges with capacities in [N].

Proof. Let F be the input CNF formula on n variables and m clauses. As usual,
we split the variables into two parts of size n/2 and enumerate all N = 2n/2 partial
assignments for each part. Our goal is to find the pair of partial assignments α, β that
satisfies the maximum number of clauses. We have an instance of Single-Source-Max-
Flow for each value K ∈ [m] in which we check if there is a pair α, β that satisfies at
least K clauses, using a single call to Single-Source-Max-Flow on a graph defined as
follows.

Create a layer A containing a node vα for each partial assignment α to the first
set of variables, and create a layer B containing a node vβ for each partial assignment
β to the second set of variables. Add a layer C in the middle, containing a node cj
for each clause Cj in our CNF formula. Add edges vα → cj of capacity 1 for each pair
of α,Cj such that α does not satisfy Cj (does not set any of the literals to true), and
add edges cj → vβ of capacity N for each pair β,Cj such that β does not satisfy Cj .
Finally, add a source node s, and connect it with edges s→ vα of capacity (m−K+1)

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1116 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

for each α.
Observe that the number of paths from a node vα to a node vβ is exactly the

number of clauses that are not satisfied by the (α, β) assignment. Therefore, the
maximum flow from s to a node vβ would be N · (m − K + 1), unless for some α,
there do not exist (m−K+ 1) paths from vα to vβ , and thus we have a pair α, β that
satisfies at least m− (m−K + 1) + 1 = K clauses.

Finally, we present reductions from Triangle-Detection to Single-Source-Max-
Flow. A standard trick is to take an instance G = (V,E) of Triangle-Detection
and create three copies of the node set A = B = C = V and create three copies
(uA, vB), (uB , vC), (uC , vA) for each edge (u, v) in E, so that it is enough to solve the
following version of Triangle-Detection: given a tripartite graph (A,B,C), determine
if there is a triple of nodes, one from each partition, that forms a clique. It is easy to
see that the answer to the latter problem is “yes” iff there is a triangle in G. Thus,
from now on, we assume that the input to Triangle-Detection is a tripartite graph of
this form.

Proposition 1. If Single-Source-Max-Flow with capacities in {1, N} on a di-
rected graph with N nodes and M edges can be solved in T (N,M) time, then Triangle-
Detection on a graph with n nodes and m edges can be solved in T (O(n), O(m +
n log n)) time.

Proof. Given a Triangle-Detection instance (A,B,C) on 3n nodes and m edges,
where |A| = n, construct the following flow instance. First, create another copy of
the nodes of A; call it A′. For every edge between parts A and B, add a directed
edge from A to B, and similarly direct the edges from B to C. Then, replace the
edges between A and C with corresponding edges from C to A′. Add a layer X on
O(log n) nodes X = {x1, . . . , xdlogne} ∪ {x′1, . . . , x′dlogne}. Connect a ∈ A to every

node xi ∈ X for which the ith bit in the integer a ∈ [n] is 1, and to x′i if the ith bit is
0. Connect xi ∈ X to every node a′ ∈ A′ for which the ith bit in the integer a ∈ [n]
is 0, and connect x′i to a′ if the ith bit is 1. These nodes X make it so that there is
always a path from a1 to a′2 for all a1 ∈ A and a′2 ∈ A′ where a1 6= a2, i.e., they do
not correspond to the same node in the original graph, while if a1 = a2, then the only
way a1 can reach a′2 is by going through the B ∪ C nodes. We could have achieved
the same functionality by adding direct edges from a1 to a′2 for all a1 6= a2, but this
would cost us Ω(n2) edges instead of O(n log n). Observe that a path from a in A to
its copy in A′ that goes through B ∪C exists iff the node a is in a triangle in G. Set
all of the above capacities to n. Add a source node s and connect it to all the nodes in
A with capacity 1. The correctness of the reduction follows from the following simple
claim: for a node t = a′ ∈ A′, the max s, t-flow is n if a is in a triangle, and n − 1
otherwise. To see this, note that the max flow from s to a′ is n iff there is a path
from a to a′, and such path must go through B ∪C, and every such path corresponds
to a triangle.

By incurring an overhead of O(n2) extra edges, we can get a reduction to the unit
capacity case.

Proposition 2. If Single-Source-Max-Flow with unit capacities on a directed
graph with N nodes and M edges can be solved in T (N,M) time, then Triangle-
Detection on a graph on n nodes can be solved in T (O(n), O(n2)) time.

Proof. In the previous proof, remove the X layer, and instead add a directed edge
from a1 to a′2 for any a1 6= a2. Set the capacity of all the edges to 1, and the same

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1117

claim still holds.

One interesting corollary of the above reductions is that a combinatorial algo-
rithm for Single-Source-Max-Flow on dense unit capacity networks that runs in truly
subcubic time would imply, via [82], a combinatorial truly subcubic Boolean Matrix
Multiplication algorithm.

A final simple modification to the above reductions is to augment the Triangle-
Detection instance with edge weights, in order to solve the Minimum Weight Triangle
problem (a problem equivalent to APSP under subcubic reductions [82]). In the
above reductions, we would add the weights as costs to the flow instance and ask for
the Single-Source min-cost-max-flow. This gives an APSP based lower bound for the
min-cost version.

Proposition 3. If Single-Source-Min-Cost-Max-Flow with unit capacities on a
directed graph with N nodes can be solved in O(N3−ε) time, for some ε > 0, then
APSP on n node graphs can be solved in O(n3−δ) time, for some δ > 0.

Subsequent work. Since the conference version of this paper [9], there have been
many exciting developments in this rapidly growing field of Hardness in P within
the context of Fine-Grained Complexity. While in Appendix A we tried to survey
most previous lower bounds under these popular conjectures, an exposition of all the
lower bounds that were proven since then would require many more pages and is left
for dedicated survey articles. Here, we mention some of the most related subsequent
results.

Dahlgaard [33] proves that our Conjecture 1 implies interesting lower bounds for
the Diameter problem. The first results are for dynamically maintaining the diame-
ter of a graph under edge insertions or deletions. In particular, unless Conjecture 1
fails, every incremental (or decremental) algorithm that can maintain a 4/3 − ε-
approximation, for ε > 0, for the diameter of a graph needs update time n1/2−o(1); a
stronger lower bound of n0.681−o(1) holds for node insertions or deletions. Dahlgaard
[33] also proves that under Conjecture 1, any (static) algorithm that can compute a
4/3 − ε-approximation to the diameter for ε > 0 requires n1−o(1)

√
m time, for ev-

ery function m of n. Compare this to the prior result of Roditty and Vassilevska
Williams [73]. From a more believable conjecture (Conjecture 1 versus SETH), Dahl-
gaard shows that a better approximation factor (4/3 versus 3/2) cannot be beaten in
worse time (n1−ε√m vs n2−ε) but for all sparsities as opposed to only for m = Õ(n).

Carmosino et al. [25] prove barriers for reducing SETH to APSP and 3SUM; such
reductions would refute a version of SETH (NSETH), stating that SETH cannot be
refuted even by co-nondeterministic algorithms. In particular, their work implies that
for some problems, such as 3SUM, it might be difficult to prove a lower bound under
Conjecture 1. Abboud et al. [4] take a different approach for proving lower bounds
under weaker assumptions. The authors show that many SETH-based lower bounds
(such as [14, 1, 22]) can instead be based on the assumption that SAT on arbitrary
Boolean formulas (not necessarily CNFs) of size 2o(n) cannot be solved in (2−ε)n time,
for some ε > 0. Meanwhile, several works have gone in the other direction and have
proved lower bounds under new and stronger assumptions related to problems such
as k-Clique [2], Online Matrix Vector Multiplication [50], and Hitting Set [8]. Most
recently, Krauthgamer and Trabelsi [60] proved higher lower bounds for ST -Max-Flow
and All-Pairs Max-Flow that are based on the hardness of Max-SAT rather than on
Conjecture 1. For ST -Max-Flow the conditional lower bound is |S||T |m1−o(1) and for

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1118 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

All-Pairs Max-Flow it is n2−o(1)m for m = O(n).

Appendix A. Background.
Conditional lower bounds. Here, we give a brief survey of the three conjectures

and the known lower bounds.
The first, and most prominent, example of this approach concerns the 3-SUM

problem: given n integers in {−O(n3), . . . , O(n3)}, do three of them sum to zero?
A simple algorithm solves the problem in O(n2) time, and only logarithmic im-
provements are known, by Baran, Demaine, and Pǎtraşcu [15] and more recently
by Jørgensen and Pettie [45] for the more general problem on real numbers. The fol-
lowing widely believed conjecture states that no nε factor improvements are possible
for 3-SUM.

The 3-SUM conjecture. There is no algorithm that can solve 3-SUM on n numbers
in O(n2−ε) time for some ε > 0.

Since the seminal work of Gajentaan and Overmars [42, 43], there have been
many papers proving the hardness of computational geometry problems, based on the
3-SUM conjecture, e.g., [35, 65, 39, 13, 29, 16]. More recently, the 3-SUM Conjecture
has been used in surprising ways to show polynomial lower bounds for combinatorial
problems in dynamic algorithms [70, 7, 59], graph algorithms [70, 55, 83, 5], and
pattern-matching [28, 11, 12].

The second example of this approach is the work on subcubic-equivalences with
the All-Pairs-Shortest-Paths (APSP) problem: given an n node graph with edge
weights in {−nc, . . . , nc}, compute the distances between all pairs of nodes. De-
spite many attempts, only subpolynomial improvements are known over the classic
O(n3) algorithms for the problem. The current best is the recent n3/2Ω(

√
logn) of

Williams [85]. A widely believed conjecture in graph algorithms states that n3−o(1)

time is required to solve APSP.
The APSP conjecture. There is no algorithm that can compute all pairs shortest

paths (APSP) on n node graphs with edge weights in {−nc, . . . , nc}, for some large
constant c ≥ 1, in O(n3−ε) time for any ε > 0.

Many problems are known to be subcubic-equivalent to APSP in the sense that if
any of them can be solved in O(n3−ε) time, then all of them can [82, 20, 3]. In addition,
many conditional lower bounds have been shown under the APSP conjecture [83, 5,
75, 7].

As remarked in the introduction, we are considering a conservative version of the
conjecture (which is enough for all the above lower bounds), which states that no
truly subcubic algorithm can solve APSP with weights in {−nc, . . . , nc} for all c ≥ 1.
A bolder but still plausible conjecture is that truly subcubic algorithms do not exist
even when c = 1. We do not find the conjecture plausible for c < 1 since it would
be false if fast enough matrix multiplication algorithms exist. If ω = 2 + o(1), then
Shoshan and Zwick’s algorithm for undirected graphs runs in time O(n2+c+o(1)) [79]
and Zwick’s algorithm for directed graphs runs in time O(n2.5+c/2+o(1)) [88].

The third example concerns the exact complexity of k-SAT: given a k-CNF for-
mula on n variables and m clauses, is it satisfiable? The best upper bounds remain
of the form 2n−o(n)poly(m) when k is superconstant (e.g., [51, 69, 77, 10]). SETH of
Impagliazzo, Paturi, and Zane [52, 53] states that better algorithms do not exist.

The Strong Exponential Time Hypothesis (SETH). For every ε > 0 there is an
integer k ≥ 3 such that k-SAT on n variables cannot be solved in O(2(1−ε)n) time.9

9In fact, it suffices to consider the case where m = O(n) [23].

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1119

Recently, many surprising SETH-based lower bounds have been shown in several
different areas like graph algorithms [68, 73, 19, 3, 7], pattern matching [11, 86, 84],
computational geometry [21], and exact algorithms [24, 34, 64, 32]. Moreover, it is
known that refuting SETH implies new circuit lower bounds [56].

Acknowledgments. We thank Søren Dahlgaard and Ryan Williams for their
helpful comments.

REFERENCES

[1] A. Abboud, A. Backurs, and V. Vassilevska Williams, Tight hardness results for LCS and
other sequence similarity measures, in Proc. of the 56th FOCS, IEEE, Washington, DC,
2015, pp. 59–78.

[2] A. Abboud, A. Backurs, and V. V. Williams, If the current clique algorithms are optimal, so
is Valiant’s parser, in Proc. of the 56th FOCS, IEEE, Washington, DC, 2015, pp. 98–117.

[3] A. Abboud, F. Grandoni, and V. Vassilevska Williams, Subcubic equivalences between
graph centrality problems, APSP and diameter, in Proc. of the 26th SODA, ACM, New
York, SIAM, Philadelphia, 2015, pp. 1681–1697, https://doi.org/10.1137/1.9781611973730.
112.

[4] A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams, Simulating branching programs
with edit distance and friends: or: A polylog shaved is a lower bound made, in Proc. of
the 48th STOC, ACM, New York, 2016, pp. 375–388.

[5] A. Abboud and K. Lewi, Exact weight subgraphs and the k-SUM conjecture, in Proc. of the
40th ICALP, Part I, 2013, pp. 1–12.

[6] A. Abboud, K. Lewi, and R. Williams, Losing weight by gaining edges, in Proc. of the 22nd
ESA, 2014, pp. 1–12.

[7] A. Abboud and V. Vassilevska Williams, Popular conjectures imply strong lower bounds for
dynamic problems, in Proc. of the 55th FOCS, IEEE, Washington, DC, 2014, pp. 434–443.

[8] A. Abboud, V. Vassilevska Williams, and J. R. Wang, Approximation and fixed parameter
subquadratic algorithms for radius and diameter in sparse graphs, in Proc. of the 27th
SODA, ACM, New York, SIAM, Philadelphia, 2016, pp. 377–391, https://doi.org/10.1137/
1.9781611974331.ch28.

[9] A. Abboud, V. Vassilevska Williams, and H. Yu, Matching triangles and basing hardness
on an extremely popular conjecture, in Proc. of the 47th STOC, ACM, New York, 2015,
pp. 41–50.

[10] A. Abboud, R. Williams, and H. Yu, More applications of the polynomial method to algorithm
design, in Proc. of the 26th SODA, ACM, New York, SIAM, Philadelphia, 2015, pp. 218–
230, https://doi.org/10.1137/1.9781611973730.17.

[11] A. Abboud, V. V. Williams, and O. Weimann, Consequences of faster alignment of se-
quences, in Proc. of the 41st ICALP, Part I, 2014, pp. 39–51.

[12] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein, On hardness of jumbled indexing,
in Proc. of the 41st ICALP, Part I, 2014, pp. 114–125.

[13] B. Aronov and S. Har-Peled, On approximating the depth and related problems, SIAM J.
Comput., 38 (2008), pp. 899–921, https://doi.org/10.1137/060669474.

[14] A. Backurs and P. Indyk, Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false), in Proc. of the 47th STOC, ACM, New York, 2015, pp. 51–58.

[15] I. Baran, E. Demaine, and M. Pǎtraşcu, Subquadratic algorithms for 3SUM, Algorithmica,
50 (2008), pp. 584–596.

[16] G. Barequet and S. Har-Peled, Polygon containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard, Internat. J. Comput. Geom. Appl., 11
(2001), pp. 465–474.

[17] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan, A new approach to incremental
cycle detection and related problems, ACM Trans. Algorithms, 12 (2016), 14.

[18] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick, Listing triangles, in Proc. of the
41st ICALP, Part I, 2014, pp. 223–234.

[19] M. Borassi, P. Crescenzi, and M. Habib, Into the square: On the complexity of some
quadratic-time solvable problems, Electron. Notes Theoret. Comput. Sci., 322 (2016),
pp. 51–67.

[20] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langer-
man, M. Patrascu, and P. Taslakian, Necklaces, convolutions, and X+Y, Algorithmica,
69 (2014), pp. 294–314.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1137/060669474

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1120 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

[21] K. Bringmann, Why walking the dog takes time: Fréchet distance has no strongly subquadratic
algorithms unless SETH fails, in Proc. of the 55th FOCS, IEEE, Washington, DC, 2014,
pp. 661–670.

[22] K. Bringmann and M. Kunnemann, Quadratic conditional lower bounds for string problems
and dynamic time warping, in Proc. of the 56th FOCS, IEEE, Washington, DC, 2015,
pp. 79–97.

[23] C. Calabro, R. Impagliazzo, and R. Paturi, A duality between clause width and clause
density for SAT, in Proc. of the 21st CCC, 2006, pp. 252–260.

[24] C. Calabro, R. Impagliazzo, and R. Paturi, The complexity of satisfiability of small depth
circuits, in Parameterized and Exact Computation, Springer, New York, 2009, pp. 75–85.

[25] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider,
Nondeterministic extensions of the strong exponential time hypothesis and consequences
for non-reducibility, in Proc. of the 7th ITCS, ACM, New York, 2016, pp. 261–270.

[26] T. M. Chan, Dynamic subgraph connectivity with geometric applications, SIAM J. Comput.,
36 (2006), pp. 681–694, https://doi.org/10.1137/S009753970343912X.

[27] T. M. Chan, M. Pǎtraşcu, and L. Roditty, Dynamic connectivity: Connecting to networks
and geometry, in Proc. of the 49th FOCS, IEEE, Washington, DC, 2008, pp. 95–104.

[28] K. Chen, P. Hsu, and K. Chao, Approximate matching for run-length encoded strings is
3SUM-hard, in Proc. of the 20th CPM, Springer, New York, 2009, pp. 168–179.

[29] O. Cheong, A. Efrat, and S. Har-Peled, Finding a guard that sees most and a shop that
sells most, Discrete Comput. Geom., 37 (2007), pp. 545–563.

[30] H. Y. Cheung, L. C. Lau, and K. M. Leung, Graph connectivities, network coding, and
expander graphs, SIAM J. Comput., 42 (2013), pp. 733–751, https://doi.org/10.1137/
110844970.

[31] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng, Electrical flows,
Laplacian systems, and faster approximation of Maximum Flow in undirected graphs, in
Proc. of the 43rd STOC, ACM, New York, 2011, pp. 273–282.

[32] M. Cygan, S. Kratsch, and J. Nederlof, Fast Hamiltonicity checking via bases of perfect
matchings, in Proc. of the 45th STOC, ACM, New York, 2013, pp. 301–310.

[33] S. Dahlgaard, On the hardness of partially dynamic graph problems and connections to di-
ameter, in Proc. of the 43rd ICALP, 2016, 48.

[34] E. Dantsin and A. Wolpert, On moderately exponential time for SAT, in Proc. of the 13th In-
ternational Conference on Theory and Applications of Satisfiability Testing, 2010, pp. 313–
325.

[35] M. de Berg, M. de Groot, and M. H. Overmars, Perfect binary space partitions, Comput.
Geom. Theory Appl., 7 (1997), pp. 81–91.

[36] C. Demetrescu and G. F. Italiano, Fully dynamic transitive closure: Breaking through the
O(n2) barrier, in Proc. of the 41st FOCS, IEEE, Washington, DC, 2000, pp. 381–389.

[37] R. Duan, New data structures for subgraph connectivity, in Proc. of the 37th ICALP, Part I,
2010, pp. 201–212.

[38] F. Eisenbrand and F. Grandoni, On the complexity of fixed parameter clique and dominating
set, Theoret. Comput. Sci., 326 (2004), pp. 57–67.

[39] J. Erickson, New lower bounds for convex hull problems in odd dimensions, SIAM J. Comput.,
28 (1999), pp. 1198–1214, https://doi.org/10.1137/S0097539797315410.

[40] S. Even and Y. Shiloach, An on-line edge-deletion problem, J. ACM, 28 (1981), pp. 1–4.
[41] D. Frigioni and G. F. Italiano, Dynamically switching vertices in planar graphs, Algorith-

mica, 28 (2000), pp. 76–103.
[42] A. Gajentaan and M. Overmars, On a class of O(n2) problems in computational geometry,

Comput. Geom., 5 (1995), pp. 165–185.
[43] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geom-

etry, Comput. Geom., 45 (2012), pp. 140–152.
[44] F. L. Gall, Powers of tensors and fast matrix multiplication, in Proc. of the 39th ISSAC,

2014, pp. 296–303.
[45] A. Grønlund and S. Pettie, Threesomes, degenerates, and love triangles, J. ACM, 65 (2018),

22.
[46] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan, Incremental cycle detec-

tion, topological ordering, and strong component maintenance, ACM Trans. Algorithms, 8
(2012), 3.

[47] J. Hao and J. B. Orlin, A faster algorithm for finding the minimum cut in a directed graph,
J. Algorithms, 17 (1994), pp. 424–446.D

ow
nl

oa
de

d
07

/0
9/

19
 to

 1
8.

10
.6

5.
20

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/S009753970343912X
https://doi.org/10.1137/110844970
https://doi.org/10.1137/110844970
https://doi.org/10.1137/S0097539797315410

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATCHING TRIANGLES 1121

[48] R. Hariharan, T. Kavitha, D. Panigrahi, and A. Bhalgat, An Õ(mn) Gomory-Hu tree
construction algorithm for unweighted graphs, in Proc. of the 39th STOC, ACM, New
York, 2007, pp. 605–614.

[49] M. Henzinger, S. Krinninger, and D. Nanongkai, Sublinear-time decremental algorithms
for single-source reachability and shortest paths on directed graphs, in Proc. of the 46th
STOC, ACM, New York, 2014, pp. 674–683.

[50] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak, Unifying and strengthen-
ing hardness for dynamic problems via the online matrix-vector multiplication conjecture,
in Proc. of the 47th STOC, ACM, New York, 2015, pp. 21–30.

[51] E. A. Hirsch, Two new upper bounds for SAT, in Proc. of the 9th SODA, ACM, New York,
SIAM, Philadelphia, 1998, pp. 521–530.

[52] R. Impagliazzo and R. Paturi, On the complexity of k-SAT, J. Comput. System Sci., 62
(2001), pp. 367–375.

[53] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complex-
ity?, J. Comput. System Sci., 63 (2001), pp. 512–530.

[54] G. F. Italiano, Finding paths and deleting edges in directed acyclic graphs, Inform. Process.
Lett., 28 (1988), pp. 5–11.

[55] Z. Jafargholi and E. Viola, 3SUM, 3XOR, triangles, Algorithmica, 74 (2016), pp. 326–343.
[56] H. Jahanjou, E. Miles, and E. Viola, Local reductions, in Proc. of the 42nd ICALP, Part I,

2015, pp. 749–760.
[57] N. Karmarkar, A new polynomial-time algorithm for linear programming, in Proc. of the 16th

STOC, ACM, New York, 1984, pp. 302–311.
[58] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, An almost-linear-time algorithm

for approximate max flow in undirected graphs, and its multicommodity generalizations,
in Proc. of the 25th SODA, ACM, New York, SIAM, Philadelphia, 2014, pp. 217–226,
https://doi.org/10.1137/1.9781611973402.16.

[59] T. Kopelowitz, S. Pettie, and E. Porat, Higher lower bounds from the 3SUM conjecture,
in Proc. of the 26th SODA, ACM, New York, SIAM, Philadelphia, 2016, pp. 1272–1287.

[60] R. Krauthgamer and O. Trabelsi, Conditional Lower Bounds for All-Pairs Max-Flow,
preprint, https://arxiv.org/abs/1702.05805, 2017.

[61] J. La̧cki, Improved deterministic algorithms for decremental reachability and strongly con-
nected components, ACM Trans. Algorithms, 9 (2013), 27.

[62] J. La̧cki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen, Single source—all sinks
Max Flows in planar digraphs, in Proc. of the 53rd FOCS, IEEE, Washington, DC, 2012,
pp. 599–608.

[63] Y. T. Lee and A. Sidford, Path finding methods for linear programming: Solving linear
programs in Õ(vrank) iterations and faster algorithms for Maximum Flow, in Proc. of the
55th FOCS, IEEE, Washington, DC, 2014, pp. 424–433.

[64] D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs on bounded
treewidth are probably optimal, in Proc. of the 22nd SODA, ACM, New York, SIAM,
Philadelphia, 2011, pp. 777–789, https://doi.org/10.1137/1.9781611973082.61.

[65] J. E. M. Soss and M. H. Overmars, Preprocessing chains for fast dihedral rotations is hard
or even impossible, Comput. Geom. Theory Appl., 26 (2002), pp. 235–246.

[66] A. Madry, Navigating central path with electrical flows: From flows to matchings, and back,
in Proc. of the 54th FOCS, IEEE, Washington, DC, 2013, pp. 253–262.

[67] Y. Nesterov and A. S. Nemirovskii, An interior-point method for generalized linear-
fractional programming, Math. Program., 69 (1995), pp. 177–204, https://doi.org/10.1007/
BF01585557.

[68] M. Pǎtraşcu and R. Williams, On the possibility of faster SAT algorithms, in Proc. of the
21st SODA, ACM, New York, SIAM, Philadelphia, 2010, pp. 1065–1075, https://doi.org/
10.1137/1.9781611973075.86.

[69] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, An improved exponential-time algorithm
for k-SAT, J. ACM, 52 (2005), pp. 337–364.

[70] M. Pǎtraşcu, Towards polynomial lower bounds for dynamic problems, in Proc. of the 42nd
STOC, ACM, New York, 2010, pp. 603–610.

[71] M. Pǎtraşcu and E. D. Demaine, Logarithmic lower bounds in the cell-probe model, SIAM
J. Comput., 35 (2006), pp. 932–963, https://doi.org/10.1137/S0097539705447256.

[72] L. Roditty, Decremental maintenance of strongly connected components, in Proc. of the 24th
SODA, ACM, New York, SIAM, Philadelphia, 2013, pp. 1143–1150.

[73] L. Roditty and V. Vassilevska Williams, Fast approximation algorithms for the diameter
and radius of sparse graphs, in Proc. of the 45th STOC, ACM, New York, 2013, pp. 515–
524.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611973402.16
https://arxiv.org/abs/1702.05805
https://doi.org/10.1137/1.9781611973082.61
https://doi.org/10.1007/BF01585557
https://doi.org/10.1007/BF01585557
https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1137/S0097539705447256

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1122 A. ABBOUD, V. VASSILEVSKA WILLIAMS, AND H. YU

[74] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs, in
Proc. of the 43rd FOCS, IEEE, Washington, DC, 2002, pp. 679–689.

[75] L. Roditty and U. Zwick, On dynamic shortest paths problems, in Proc. of the 12th ESA,
2004, pp. 580–591.

[76] P. Sankowski, Dynamic transitive closure via dynamic matrix inverse, in Proc. of the 45th
FOCS, IEEE, Washington, DC, 2004, pp. 509–517.

[77] U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, in
Proc. of the 40th FOCS, IEEE, Washington, DC, 1999, pp. 410–414.

[78] J. Sherman, Nearly maximum flows in nearly linear time, in Proc. of the 54th FOCS, IEEE,
Washington, DC, 2013, pp. 263–269.

[79] A. Shoshan and U. Zwick, All pairs shortest paths in undirected graphs with integer weights,
in Proc. of the 40th FOCS, IEEE, Washington, DC, 1999, pp. 605–614.

[80] D. A. Spielman and S. Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, in Proc. of the 36th STOC, ACM, New York,
2004, pp. 81–90.

[81] M. Thorup, Near-optimal fully-dynamic graph connectivity, in Proc. of the 32nd STOC, ACM,
New York, 2000, pp. 343–350.

[82] V. Vassilevska Williams and R. Williams, Subcubic equivalences between path, matrix and
triangle problems, in Proc. of the 51st FOCS, IEEE, Washington, DC, 2010, pp. 645–654.

[83] V. Vassilevska Williams and R. Williams, Finding, minimizing, and counting weighted
subgraphs, SIAM J. Comput., 42 (2013), pp. 831–854, https://doi.org/10.1137/09076619X.

[84] R. Williams, A new algorithm for optimal constraint satisfaction and its implications, in Proc.
of ICALP, 2004, pp. 1227–1237.

[85] R. Williams, Faster all-pairs shortest paths via circuit complexity, in Proc. of the 46th STOC,
ACM, New York, 2014, pp. 664–673.

[86] R. Williams and H. Yu, Finding orthogonal vectors in discrete structures, in Proc. of the
25th SODA, ACM, New York, SIAM, Philadelphia, 2014, pp. 1867–1877, https://doi.org/
10.1137/1.9781611973402.135.

[87] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in Proc. of the 44th
STOC, ACM, New York, 2012, pp. 887–898.

[88] U. Zwick, All pairs shortest paths using bridging sets and rectangular matrix multiplication,
J. ACM, 49 (2002), pp. 289–317.

D
ow

nl
oa

de
d

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/09076619X
https://doi.org/10.1137/1.9781611973402.135
https://doi.org/10.1137/1.9781611973402.135

	Introduction
	Our results

	Reductions to matching triangles
	Algorithm for matching triangles
	Reductions to other problems
	Reductions to Single-Source Max-Flow
	Appendix A. Background
	References

