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ABSTRACT

The deployment of massive MIMO systems has revived much of the
interest in the study of the large-system performance of multiuser
detection systems. In this paper, we prove a non-trivial upper bound
on the bit-error rate (BER) of the MAP detector for BPSK signal
transmission and equal-power condition. In particular, our bound is
approximately tight at high-SNR. The proof is simple and relies on
Gordon’s comparison inequality. Interestingly, we show that under
the assumption that Gordon’s inequality is tight, the resulting BER
prediction matches that of the replica method under the replica sym-
metry (RS) ansatz. Also, we prove that, when the ratio of receive
to transmit antennas exceeds 0.9251, the replica prediction matches
the matched filter lower bound (MFB) at high-SNR. We corroborate
our results by numerical evidence.

Index Terms— massive mimo, large-system analysis, JO detec-
tor, Gaussian process inequalities, replica method.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems, where the
base station is equipped with hundreds of thousands of antennas,
promise improved spectral efficiency, coverage and range compared
to small-scale systems. As such, they are widely believed to play
an important role in 5G wireless communication systems [1]. Their
deployment has revived much of the recent interest for the study of
multiuser detection schemes in high-dimensions, e.g., [2, 3, 4, 5].

A large host of exact and heuristic detection schemes have been
proposed over the years. Decoders such as zero-forcing (ZF) and
linear minimum mean square error (LMMSE) have inferior perfor-
mances [6], and others such as local neighborhood search-based
methods [7] and lattice reduction-aided (LRA) decoders [8, 9] are of-
ten difficult to precisely characterize. Recently, [10] studied in detail
the performance of the box-relaxation optimization (BRO), which is
a natural convex relaxation of the maximum a posteriori (MAP) de-
coder, and which allows one to recover the signal via efficient con-
vex optimization followed by hard thresholding. In particular, [10]
precisely quantifies the performance gain of the BRO compared to
the ZF and the LMMSE. Despite such gains, it remains unclear the
degree of sub-optimality of the convex relaxation compared to the
combinatorial MAP detector. The challenge lies in the complexity
of analyzing the latter. In particular, known predictions of the perfor-
mance of the MAP detector are known only via the (non-rigorous)
replica method from statistical physics [11].

In this paper, we derive a simple, yet non-trivial, upper bound on
the bit error rate (BER) of the MAP detector. We show (in a precise

This material is based upon work supported by the National Science
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manner) that our bound is approximately tight at high-SNR, since
it is close to the matched filter lower bound (MFB). Our numeri-
cal simulations verify our claims and further include comparisons to
the replica prediction and to the BER of the BRO. Our proof relies
on Gordon’s Gaussian comparison inequality [12]. While Gordon’s
inequality is not guaranteed to be tight, we make the following pos-
sibly interesting and useful observation. If Gordon’s inequality was
asymptotically tight, then its BER prediction would match the pre-
diction of the replica method (under replica-symmetry).

2. SETTING

We assume a real Gaussian wireless channel, additive Gaussian noise
and and uncoded modulation scheme. For concreteness, we focus on
the binary-phase-shift-keying (BPSK) transmission; but, the tech-
niques naturally extend to other constellations. Formally, we seek to
recover an n-dimensional BPSK vector x0 ∈ {±1}n from the noisy
MIMO relation y = Ax0 + σz ∈ Rm, where A ∈ Rm×n is the
channel matrix (assumed to be known) with entries iid N (0, 1/n).
and z ∈ Rm the noise vector with entries iid N (0, 1). The normal-
ization is such that the reciprocal of the noise variance σ2 is equal to
the SNR, i.e., SNR = 1/σ2. The performance metric of interest is
the bit-error rate (BER). The BER of a detector which outputs x̂ as an
estimate to x0 is formally defined as BER := 1

n

∑n
i=1 1{x̂i 6=x0,i}.

In this paper, we study the BER of the MAP (also commonly
referred to in this context as the jointly-optimal (JO) multiuser) de-
tector, which is defined by

x̂ = arg min
x∈{±1}n

‖y −Ax‖2. (1)

We state our results in the large-system limit where m,n → ∞,
while the ratio of receive to transmit antennas is maintained fix to
δ = m/n1 It is well known that in the worst case, solving (1)
is an NP-hard combinatorial optimization problem in the number
of users [13]. The BRO is a relaxation of (1) to an efficient con-
vex quadratic program, namely x̂ = sign

(
argminx∈[−1,1]n ‖y −

Ax‖2
)
. Its performance in the large-system limit has been recently

analyzed in [10]. Regarding the performance of (1), Tse and Verdu
[14] have shown that the BER approaches zero at high-SNR. Beyond
that, there is a now long literature that studied (1) using the replica
method, developed in the field of spin-glasses. The use of the method
in the context of multiuser detection was pioneered by Tanaka [11]
and several extensions have followed up since then [15, 16]. The
replica method has the remarkable ability to yield highly nontrivial
predictions, which in certain problem instances they can been for-
mally shown to be correct (e.g., [17, 18, 19]). However, it is still
lacking a complete rigorous mathematical justification.

1The proof of our main result Theorem 3.1 reveals that a non-asymptotic
bound is also possible with only slight more effort.

ar
X

iv
:1

90
3.

03
94

9v
1 

 [
cs

.I
T

] 
 1

0 
M

ar
 2

01
9



3. RESULTS

3.1. Upper bound

This section contains our main result: a simple upper bound on
the BER of (1). First, we introduce some useful notation. We say
that an event E(n) holds with probability approaching 1 (wpa 1) if
limn→ Pr(E(n)) = 1. Let Xn a sequence of random variables in-

dexed by n and X some constant. We write Xn
P
= X and Xn

P

≤ X ,
if for all ε > 0 the events {|Xn − X| ≤ ε} and {Xn ≤ X + ε}
hold wpa 1. Finally, let φ(x) = 1√

2π
e−x

2/2, Q(x) =
∫∞
x
φ(τ)dτ

the Gaussian tail function and Q−1 its inverse.

Theorem 3.1. Fix constant noise variance σ2 > 0 and δ > 0. Let
BER denote the bit-error-rate of the MAP detector in (1) for fixed
but unknown x0 ∈ {±1}n. Define the function `(θ) : (0, 1)→ R:

`(θ) :=
√
δ
√

4θ + σ2 −
√

2

π
e−

(Q−1(θ))2

2 , (2)

and let θ0 ∈ (0, 1) be the largest solution to the equation `(θ) =

σ
√
δ. Then, in the limit of m,n→∞, m

n
= δ, it holds BER

P

≤ θ0.

Propositions A.1 and A.2 in the Appendix gathers several useful
properties of the function `. Notice that `(1−) > `(0+) =

√
δσ.

Also, ` is continuous and `′(0+) < 0. Thus, θ0 in Theorem 3.1
is well-defined. Moreover, we show in Proposition A.2(i) that if
δ > 0.9251 or σ2 > 0.1419, then θ0 is the unique solution of the
equation `(θ) = σ

√
δ in (0, 1).

Remark 1 (On the function `(θ)). Let us elaborate on the opera-
tional role of the function `. We partition the feasible vectors x ∈
{±1}n according to their Hamming distance from the true vector x0.
Specifically, for θ ∈ [0, 1] let Sθ := {x ∈ {±1}n : ‖x − x0‖0 =
θn} and consider the optimal cost of (1) for each partition, i.e.,

c?(θ) := min
x∈Sθ

1√
n
‖y −Ax‖2. (3)

Evaluating the BER of (1) is of course closely related to understand-
ing the typical behavior of c?(θ) in the large system limit. The proof
of the theorem in Section 3.3 shows that `(θ) is a high-probability
lower bound on c?(θ). Hence, we get an estimate on the BER via
studying `(θ) instead. In this direction, note that the value σ

√
δ,

to which `(θ) is compared to, is nothing but the typical value of
c?(0) = ‖y−Ax0‖2√

n
= ‖z‖2√

n
. Finally, we make the following note

for later reference: the value infθ∈(0,1) `(θ) is a high-probability
lower bound to the optimal cost of (1), i.e., to c? = infθ∈(0,1) c?(θ).
An illustration of these is included in Figure 2.
Remark 2 (A genie lower bound). A lower bound on the BER of
(1) can be obtained easily via comparison to the idealistic matched
filter bound (MFB), where one assumes that all n− 1, but 1, bits of
x0 are known. In particular, the MFB corresponds to the probability
of error in detecting (say) x0,1 ∈ {±1} from ỹ = x0,1a1 + z,
where ỹ = y −

∑n
i=2 x0,iai is assumed known, and ai is the ith

column of A (eqv., the MFB is the error probability of an isolated
transmission of only the first bit over the channel). It can be shown
(e.g., [10]) that the MFB is given by Q(

√
δ SNR). Combining this

with (a straightforward re-parametrization of) Theorem 3.1 it follows
that the BER of (1) satisfies

Q(
√
δ SNR) ≤ BER ≤ Q(τ0), (4)

where τ0 ∈ R is the smallest solution to the equation
√
δSNR +

2φ(τ) =
√
δSNR

√
1 + 4SNRQ(τ).
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Fig. 1: Plots of the function `(θ) defined in (2) for two problem
instances: (δ = 1,SNR = 5dB), (δ = 1, SNR = 10dB). Also
depicted the value of θ0 for each instance (see Theorem 3.1).

Fig. 2: The function `(θ) (in red) is a high-probability lower bound
on the typical value of c?(θ) (in dashed blue) defined in (3). See
Remark 1.

Remark 3 (Behavior at high-SNR). In Proposition A.2(iv) we prove
that at high values of SNR � 1: θ0 → 0. Thus, from Theorem 3.1
we have that BER approaches zero (thus, providing an alternative
proof to the corresponding result in [14]). This thinking confirms
already that our upper bound is non-trivial. In fact, an even stronger
statement can be shown, namely, at SNR� 1: θ0 ≈ Q(

√
δ SNR−

η) for an arbitrarily small η > 0 (see Proposition A.2(iv) for exact
statement). This, when combined with the MFB in (4) shows that
our upper bound is approximately tight at high-SNR.

Remark 4 (Gordon’s comparison inequality). The proof of Theo-
rem 3.1 uses Gordon’s comparison inequality for Gaussian processes
(also known as the Gaussian min-max Theorem (GMT)). In essence,
the GMT provides a simple lower bound on the typical value of c?(θ)
in (3) in the large-system limit. Gordon’s inequality is classically
used to establish (non)-asymptotic probabilistic lower bounds on the
minimum singular value of Gaussian matrices [20], and has a num-
ber of other applications in high-dimensional convex geometry [21].
In general, the inequality is not tight. Recently, Stojnic [22] proved
that the inequality is tight when applied to convex problems. The
result was refined in [23] and has been successfully exploited to pre-
cisely analyze the BER of the BRO [10]. Unfortunately, the mini-
mization in (3) is not convex, thus there are no immediate tightness
guarantees regarding the lower bound `(θ). Interestingly, in Section
3.4 we show that if GMT was (asymptotically) tight then it would
result in a prediction that matches the replica prediction in [24].

Remark 5 (Replica prediction). The replica prediction on the BER of
(1) is given by [11] (based on the ansatz of replica-symmetry (RS))
as the solution to a system of nonlinear equations. It is reported in
[24, Eqn. (15)] that as long as δ is not too small, the saddle-point
equations reduce to the solution of the following fixed-point equa-
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Fig. 3: BER curve as a function of the SNR (in dB) for the fol-
lowing: matched-filter lower bound (MFB) (cf. Remark 2); replica
prediction corresponding to (5)); upper bound of Theorem 3.1 for
(1); box-relaxation optimization (BRO) [10].

tion2:

θ = Q
(√ δ

σ2 + 4θ

)
. (5)

Onwards, we refer to (5) as the replica-symmetry prediction. In
Proposition A.1, we prove that equation (5) has either one or three
solutions. In the later case, the BER formula can exhibit compli-
cated behavior, such as anomalous, non-monotonic dependence on
the SNR [11]. On the other hand, the solution is unique if either
δ > 0.9251 or σ2 ≥ 0.1419. This proves the numerical observa-
tions reported in [25, Fig. 3]. Finally, Proposition A.2(iii) shows that
when δ > 0.9251 and SNR� 1, the unique solution of (5) satisfies
θ? ≈ Q(

√
δ SNR). This suggests that at high-SNR, the BER of the

(1) decreases at an optimal rate.

3.2. Numerical Evaluations

Figure 3 includes numerical illustrations that help visualize the pre-
diction of Theorem 3.1 and several of the remarks that followed.
For two values of δ, we plot BER as a function of SNR = 1/σ2.
Each plot includes four curves: (i) the MFB; (ii) the solution to (5)

2For the reader’s convenience we note the following mapping between
notation here and [24]: δ ↔ α, σ2 ↔ β−1

s and BER↔ (1−m)/2.

corresponding to the replica prediction; (iii) the upper bound θ0 of
Theorem 3.1; (iv) the BER of the BRO according to [10, Thm. II.I].
We make several observations. First, it is interesting to note that our
upper bound follows the same trend as the replica prediction. For
example, note the kink at values of SNR ∼ 7dB in both the curves
in Figure 3a. Second, note that the upper bound of Theorem 3.1 ap-
proaches the MFB at high-SNR confirming our theoretical findings
in Remark 3. Also, as predicted in Remark 5, the solution θ? to (5)
goes to zero exactly at the rate of the MFB. Finally, let us compare
the upper bound θ0 of Theorem 3.1 to the BER of the BRO. At low
SNR, θ0 takes values larger than the latter. We remark that Theorem
3.1 is not entirely to be blamed for this behavior, since the replica
prediction experiences the very same one. There is no contradic-
tion here: the MAP detector is not optimal for minimizing the BER
(e.g., [11, Sec. 2]), thus it is likely that its convex approximation
(aka, the BRO) shows better BER performance at low-SNR. On the
other hand, for high-SNR our upper bound takes values significantly
smaller than the BER of the BRO. This proves that at high-SNR the
latter is still quite far from that of the combinatorial optimization it
tries to approximate.

3.3. Proof Theorem 3.1

Let x̂ be the solution to (1). First, observe that ‖x̂ − x0‖22 = 2n −
2(n−

∑n
i=1 1{x̂i 6=x0,i}) = 4nBER. Hence, we will prove that

‖x̂− x0‖2√
n

P

≤ α0 =: 2
√
θ0 ∈ (0, 1). (6)

Second, due to rotational invariance of the Gaussian measure we can
assume without loss of generality that x0 = +1. For convenience,
define the (normalized) error vector w := n−1/2(x − 1) and con-
sider the set of feasible such vectors that do not satisfy (6), i.e.,

S(α0) :=
{
w ∈ {−2/

√
n, 0}n : ‖w‖2 ≥ α0 + ε

}
,

for some fixed (but arbitrary) ε > 0. Also, denote the (normalized)
objective function of (1) as F (w) = F (w; z,G) := n−1/2‖z −
Gw‖2, where G =

√
nA has entries iid standard normal. With

this notation, our goal towards establishing (6) is proving that there
exists constant η := η(ε) > 0 such that the following holds wpa 1,

min
w∈S(α0)

F (w) ≥ min
w∈{−2/

√
n,0}n

F (w) + η. (7)

Our strategy in showing the above is as follows.
First, we use Gordon’s inequality to obtain a high-probability

lower bound on the left-hand side (LHS) of (7). In particular, it can
be shown (see for example [10, Sec. D.3]) that the primary opti-
mization (PO) in the (LHS) of (7) can be lower bounded with high-
probability by an auxiliary optimization (AO) problem, which is de-
fined as follows:

min
w∈S(α0)

G(w;g,h) :=
√
‖w‖22 + σ2 ‖g‖2 − hTw, (8)

where g ∈ Rm and h ∈ Rn have entries iid Gaussian N (0, 1/n).
Specifically, the following statement holds for all c ∈ R:

Pr
(

min
w∈S(α0)

F (w; z,G) ≤ c
)
≤ 2 Pr

(
min

w∈S(α0)
G(w;g,h) ≤ c

)
.

(9)

The AO can be easily simplified as follows

min
1≥α≥α0+ε

√
α2 + σ2 ‖g‖2 −

2√
n

(α2/4)n∑
i=1

h↓i , (10)



where, h↓1 ≥ h↓2 ≥ . . . ≥ h↓n denotes the ordered statistics of the
entries of h and we have used the fact that for w ∈ {−2/

√
n, 0}n it

holds ‖w‖2 = α⇔ ‖w‖0 = α2/4. Furthermore, note that ‖g‖2
P
=√

δ and 3 for any fixed θ ∈ (0, 1) : 1√
n

∑θn
i=1 h

↓
i

P
= φ

(
Q−1(θ)

)
.

Thus, the objective function in (10) converges in probability, point-
wise on α, to `(α2/4) (cf. (2)). In fact, since the minimization
in (10) is over a compact set, uniform convergence holds and the
minimum value converges to min1≥α≥α0+ε `(α

2/4). Combining
the above, shows that for all η > 0 the following event holds wpa 1:

min
w∈S(α0)

G(w;g,h) ≥ min
1≥α≥α0+ε

`
(
α2/4

)
− η. (11)

Hence, from (9) the above statement holds withG(w;g,h) replaced
by F (w; z,G).

Next, we obtain a simple upper bound on the RHS in (7):

min
w∈{−2/

√
n,0}n

F (w) ≤ F (0) =
‖z‖2√
n
, (12)

which we combine with the fact that wpa 1 it holds ‖z‖2/
√
n ≤√

δ σ + η.
Combining the two displays in (11) and (12), we have shown

that (7) holds as long as there exists η > 0 such that

min
1≥α≥α0+ε

`
(
α2/4

)
≥
√
δ σ + 3η. (13)

At this point, recall that α2
0/4 = θ0 and the definition of θ0 as the

largest solution to the equation `(θ) =
√
δ σ. By this definition

and the fact that `(θ) is continuous and satisfies `(1−) >
√
δ σ we

have that `(θ) >
√
δ for all θ > θ0. Thus, there always exist η(ε)

satisfying (13) and the proof is complete.

3.4. Gordon’s prediction meets Tanaka

Inspecting the proof of Theorem 3.1 reveals two possible explana-
tions for why the resulting upper bound might be loose. First, recall
that we obtain a lower bound in the LHS of (7) via Gordon’s inequal-
ity. As mentioned, in Remark 4 the inequality is not guaranteed to be
tight in this instance. Second, recall that in upper bounding the RHS
of (7) we use the crude bound (12). Specifically, we upper bound
the optimal cost c? of the MAP in (1) simply by the value of the
objective function at a known feasible solution, namely x = x0.

In this section, we make the following leap of faith. We assume
that infθ∈(0,1) `(θ) is an asymptotically tight high-probability lower
bound of c?, i.e., for all η > 0 wpa 1:

min
x∈{±1}n

1√
n
‖y −Ax‖2

?

≤ inf
θ∈(0,1)

`(θ) + η. (14)

Assuming (14) is true and repeating the arguments of Section
3.3 leads to the following conclusion: the BER of the MAP detec-
tor is upper bounded by θ? = argminθ∈(0,1) `(θ). This can be also
be expressed as the solution to the fixed-point equation `′(θ?) = 0.
Interestingly, this is shown in Proposition A.1(i) to be equivalent
to (5). In other words, under the assumption above, Gordon’s pre-
diction on the BER of the MAP detector coincides with the replica
prediction under the RS ansatz. While it is known that the MAP
detector exhibits replica symmetry breaking (RSB) behavior [25],
we believe that our observation on a possible connection between
Gordon’s inequality and the replica symmetric prediction is worth
exploring further.

3Let γi
iid∼ N (0, 1) and θ ∈ (0, 1). Then, for large n: 1

n

∑θn
i=1 γ

↓
i ≈

1
n

∑
{i:γi≥Q−1(θ)} hi ≈ E[γ | γ ≥ Q−1(θ)] = φ

(
(Q−1(θ)

)
.

4. CONCLUSION

In this paper, we prove a simple yet highly non-trivial upper bound
on the BER of the MAP detector in the case of BPSK signals and of
equal-power condition. Theorem 3.1 naturally extends to allow for
other constellation types (such as M-PAM) and power control and
it also enjoys a non-asymptotic version. Perhaps more challenging,
but certainly of interest, is the extension of our results to complex
Gaussian channels. Also, we wish to develop a deeper understand-
ing of the connection between Gordon’s inequality and the replica-
symmetric prediction.
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A. PROPERTIES OF `(θ)

Let ` : (0, 1)→ R and θ0 be defined as in Theorem 3.1. The proofs
of the propositions below are deferred to Appendices B.1 and B.2.

Proposition A.1. The following statements are true:

(i) θ ∈ (0, 1) is a critical point of ` if and only if it solves (5). All
critical points belong in (0, 1

2
).

(ii) ` has either one or three critical points.

(iii) ` has a unique critical point if either one of the following two
holds: δ > 0.9251 or σ2 > 0.1419.

Proposition A.2. If ` has a unique critical point (see Prop. A.1(iii)),
then the following are true:

(i) θ0 is the unique solution of the equation `(θ) = σ
√
δ in (0, 1).

(ii) The unique solution of (5) is the unique θ? = argminθ `(θ).

Moreover, if δ > 0.9251 it holds that:

(iii) The unique solution θ∗ = θ∗(σ) of (5) satisfies θ∗

Q
(√

δ/σ
) → 1,

in the limit of σ2 → 0.

(iv) For η > 0, θ0 = θ0(σ) satisfies lim supσ→0
θ0

Q
(√

δ
σ
−η
) ≤ 1.

B. APPENDIX

B.1. Proof of Proposition A.1

Setting u := Q−1(θ), we will equivalently study the critical points
of the function

˜̀(u) := `(Q−1(θ)) =
√
δ
√

4Q(u) + σ2 − 2φ(u).

By simple algebra,

˜̀′(u) = −2Q′(u)
(
u−
√
δ(4Q(u) + σ2)−1/2),

where Q′(u) = −φ(u). Clearly, ˜̀′(u) < 0 for all u ≤ 0. Thus, all
critical points of ˜̀are in (0,+∞). Now, let us define

F (u) := u2(4Q(u) + σ2). (15)



Note that for u > 0

˜̀′(u) = 0⇔ F (u) = δ. (16)

Using the transformation θ = Q(u) and simple algebra shows that
the equation on the RHS of (16) is identical to (5). This proves
statement (i) of the proposition.

Next, we study the function F (u). It can be shown that F ′(u) =
2u
(
G(u) + σ2), where we define

G(u) := 4Q(u) + 2uQ′(u). (17)

By differentiating G, setting the derivative equal to zero, and using
the identityQ′′(u) = −uQ′(u), it can be shown thatG is decreasing
in [0,

√
3] and increasing in [

√
3,+∞). In particular,

∀u > 0 : G(u) ≥ G(
√
3) ≈ −0.14183. (18)

Thus, for σ2 ≥ 0.1419 > −G(
√
3), it holds F ′(u) > 0 for all

u > 0. Thus, F is increasing, which implies (cf. (16)) that ˜̀has a
unique critical point. Moreover, for σ2 ∈

[
0, G(

√
3)
)
, the equation

F ′(u) = 0 has two solution. Thus, F has exactly two critical points,
which we denote by uA and uB , onwards.

From the above properties of F , we conclude that F is increas-
ing in [0, uA], decreasing in [uA, uB ] and increasing in [uB ,+∞].
Moreover, uA ≤

√
3. Thus, for σ2 ∈

[
0, G(

√
3)
)
: ˜̀has three crit-

ical points if δ ∈ [F (uA), F (uB)] and one critical point, otherwise.
This proves statement (ii) of the proposition.

Next, note that if δ > F (uA) then ˜̀has a unique critical point.
We will show that F (uA) ≤ 0.9251, thus establishing statement (iii)
of the proposition. Using the fact that G(uA) + σ2 = 0, it follows
that F (uA) = −2u3

AQ
′(uA). Now, setting H(u) = −2u3Q′(u), it

can be readily shown by studying the derivative H ′(u), that

max
u>0
−2u3Q′(u) ≤ H(

√
3) ≈ 0.925082 < 0.9251, (19)

as desired. This concludes the proof of the proposition.

B.2. Proof of Proposition A.2

(i) We can continuously extend ` to include the endpoints of the
interval [0, 1]. Note that `(0) = `(0+) = σ

√
δ. For the shake

contradiction, suppose that there exists 0 < θ1 < θ0 such that
`(θ1) = σ

√
δ. Then, by Rolle’s theorem ` would have two distinct

critical points, which contradicts the hypothesis.

(ii) For all θ ∈ (0, 1), we have `′(θ) = 2
√
δ√

4θ+σ2
−2Q−1(θ). As

for θ approaching 0, Q−1(θ) approaches +∞, we can conclude that
for θ sufficiently small, `′(θ) < 0. Similarly, as for θ approaching 1,
Q−1(θ) approaches −∞, we conclude that for θ sufficiently close
to 1, `′(θ) > 0. Given that `′(θ) = 0 has a unique solution θc we
conclude that θ < θc implies `′(θ) < 0 and θ > θc, `′(θ) > 0. In
particular, θc is the global minimum of `, i.e. θc = θ∗.

(iii) We first establish that θ∗ → 0, as σ → 0. To see this, con-
sider by contradiction a limiting point, θL ∈ (0, 1/2) of the function

θ∗(σ). By (5) it must be true by taking limits, θL = Q(
√

δ
4θL

).

Thus, setting uL = Q−1(θL), it holds F0(uL) = δ, where we de-
fined the function F0(u) := 4u2Q(u) for u ≥ 0. To conclude with
a contradiction, we prove next that

max
u≥0

F (u) < δ. (20)

Note that F ′0(u) = 2uG(u), where G is defined in (17). Let uA0 be
the solution of G(u) = 0. From the proof of Proposition A.1, it is
known that uA0 is unique and maximizes F0(u). Moreover, it is eas-
ily seen that F0(uA0) = −2u2

A0Q
′(uA0). Thus, maxu≥0 F (u) ≤

F0(uA0) ≤ 0.92508 . . . . where the last inequality was established
in (19). This shows (20).

Now by mean value theorem, for some θT ∈ (0, θ∗),

θ∗ −Q

(√
δ

σ

)
= Q

( √
δ√

σ2 + 4θ∗

)
−Q

( √
δ√
σ2

)

=

[
Q

( √
δ√

σ2 + 4θT

)]′
θ∗

=
2
√
δ

(4θT + σ2)
3
2

Q′
( √

δ√
σ2 + 4θT

)
θ∗

=

√
2
√
δ

√
π(4θT + σ2)

3
2

e
− δ

2(σ2+4θT ) θ∗.

Therefore,

lim sup
σ→0

∣∣∣1− Q
(√

δ
σ

)
θ∗

∣∣∣ ≤ lim sup
σ→0

√
2
√
δ

√
π(4θT + σ2)

3
2

e
− δ

2(σ2+4θT ) .

(21)
Since 0 < θT < θ∗ we know that θT also goes to zero as σ goes to
zero. In particular σ2 + 4θT goes to zero and as δ is fixed, ((21))
implies the desired result.

(vi) By statement (i) of the proposition, θ0 is the unique solution
in (0, 1) of `(θ) = σ

√
δ = `(0+). Now we have θ0 > 0 satisfies

`(θ0) = σ
√
δ, or,
√
δ
√

4θ0 + σ2 − 2φ
(
Q−1(θ0)

)
=
√
δσ. (22)

We first prove that θ0 → 0, as σ → 0. Indeed, if not, suppose
θN > 0 is a positive limiting point of θ0 as σ goes to zero. Then
(22) implies L(θN ) = 0 for L(θ) :=

√
δ
√
4θ − 2φ

(
Q−1(θ)

)
.

Since L(0) = 0 by Rolle’s theorem we have for some θL ∈ (0, 1),

L′(θL) = 0 which gives θL = Q(
√

δ
4θL

). This leads to a contra-
diction, exactly as in the proof of statement (iii) above.

Now by (22) by rearranging and φ the Gaussian density, we have
√
δ
(√

4θ0 + σ2 − σ
)
= φ(Q−1(θ0)).

Taylor expansion around 0 and the fact that θ0 = o(1) give
φ(Q−1(θ0)) = 2Q−1(θ0)θ0 + o(θ0). Hence we have

√
δ

1

2θ0

(√
4θ0 + σ2 − σ

)
= Q−1(θ0) + o(1)

or by simple algebra

2
√
δ√

4θ0 + σ2 + σ
= Q−1(θ0) + o(1).

Now since η > 0, we conclude that for σ sufficiently large,

2
√
δ√

4θ0 + σ2 + σ
− η < Q−1(θ0),

or

θ0 < Q

(
2
√
δ√

4θ0 + σ2 + σ
− η

)
. (23)



Finally, by (23 and the mean value theorem we have that for some
θT ∈ (0, θ0),

θ0 −Q

(√
δ

σ
− η

)
< Q

(
2
√
δ√

4θ0 + σ2 + σ
− η

)
−Q

( √
δ√
σ2
− η

)

=

[
Q

(
2
√
δ√

4θT + σ2 + σ
− η

)]′
θ0

=
2
√
δ

(4θT + σ2 − η) 3
2

Q′
( √

δ√
σ2 + 4θT

− η

)
θ0

=

√
2
√
δ

√
π(4θT + σ2 − η) 3

2

e
−
(

√
δ√

σ2+4θT

−η
)2

/2

θ0.

Therefore,

1− lim inf
σ→0

Q
(√

δ
σ
− η
)

θ0
≤

lim sup
σ→0

√
2
√
δ

√
π(4θT + σ2 − η) 3

2

e
−
(

√
δ√

σ2+4θT

−η
)2

/2

. (24)

Since 0 < θT < θ0 we know that θT also goes to zero as σ goes
to zero. In particular σ2 + 4θT goes to zero and as δ is fixed, (24)
implies the desired result.

B.3. Tanaka’s equations

For the reader’s convenience we repeat Tanaka’s fixed-point (FP)
equations [11, Eqn. (43)] using our notation. This is based on the
following mapping between notation here and [11]: δ ↔ β−1, σ2 ↔
B−1

0 = σ2
0/β, and BER↔ (1−m)/2.

1− 2BER =

∫
tanh(

√
Fz + E)φ(z)dz

q =

∫
tanh2(

√
Fz + E)φ(z)dz

E =
δB

1 +B(1− q)

F =
δB2(σ2 + 4BER+ q − 1)

(1 +B(1− q))2 ,

where for the MAP decoder one needs to solve the equations above
for B →∞. In this case,

1− 2BER =

∫
tanh(

√
Fz + E)φ(z)dz

q =

∫
tanh2(

√
Fz + E)φ(z)dz

E =
δ

(1− q)

F =
δ(σ2 + 4BER + q − 1)

(1− q)2

⇔
√
F = E

√
σ2 + 4BER+ q − 1

δ
, (25)

It is empirically observed in [11, Sec. V.A] that for δ > 1/1.08, the
FP equations (25) have a unique solution. Now, consider (5). Let

δ > 1.46 such that (5) has a unique solution θ?. Then, it is not hard
to see that the quadruple

(
m→ 1− 2θ?, q → 1, E → +∞, F →

+∞
)

satisfies (25). Indeed, denoting

c := c(BER) =

√
σ2 + 4BER

δ
,

note that for q → 1:
√
F = cE. Next, using that

tanh
(
E(c z + 1)

)
→1{z≥−c−1} − 1{z≤−c−1}

as E → +∞, shows that the second equation in (25) is consistent
with q → 1. Finally, the first equation becomes

1− 2BER = Pr(z ≥ −c−1)− Pr(z ≤ −c−1)

= 1− 2Pr(z ≤ −c−1) = 1− 2Q(c−1),

which agrees with (5), as desired.
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