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Kevin K. Wang, Michael D. Wittman and Adam Bockelie

 
Abstract 

The New Distribution Capability and new retailing platforms will enable airlines to 

respond to shopping requests with bundled offers of flights and ancillary services, 
representing an evolution from traditional, flight- focused optimization. Assembling an 

attractive set of offers to display to customers therefore represents a new joint pricing and 
assortment optimization problem in airline revenue management.  
 

In this paper, we introduce an initial optimization approach for the selection and pricing 
of a la carte and bundled flight and ancillary offers. First, we propose a customer choice 

model that captures the impact of ancillary bundles on flight itinerary choice. We then 
calculate prices for each offer from a continuous range of price points and display the 
offer set that maximizes expected revenue for a given customer segment. We illustrate 

the approach using a single-flight, single-ancillary base case and discuss extensions to 
more complex environments. 

 
Tests in the Passenger Origin-Destination Simulator (PODS) show that dynamic offer 
generation (DOG) can increase net revenue when used by one or more airlines in a 

competitive network, assuming that the airlines are able to accurately segment incoming 
requests and estimate the average willingness-to-pay of each segment. We find that the 

majority of the revenue gains of DOG are due to competitive effects from the dynamic 
pricing of the flight component of the offer. The bundling mechanism of DOG is a 
secondary source of revenue gain that can be realized when customers take bundled 

ancillary services into account when choosing the flight. 
 

Our results provide insight for practitioners that are implementing offer optimization 
systems and processes. For example, in line with previous literature on bundle pricing, 
we find that in transparent distribution channels an ancillary service should be bundled 

with the flight when the valuation for the ancillary is high or when its marginal cost of 
provision is low. We close by discussing the strategic and managerial implications of a 

move from traditional distribution strategies to a next-generation, offer-focused approach. 

 

Keywords: dynamic offers, dynamic pricing, assortment optimization, airline revenue 
management, New Distribution Capability 
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INTRODUCTION 

An offer is a set of products and services that is displayed to a customer along with an 

associated price. In the airline industry, the construction and pricing of attractive and 

profitable offers – consisting of flight itineraries, core components such as the flight 

cabin and in-flight service, and ancillary services such as checked bags and extra legroom 

– is the central responsibility of the airline’s commercial organization.  

In a typical shopping session, airlines often display offer components to customers 

sequentially. For example, a customer may be shown a list of flight itineraries, followed 

by a choice of branded fare options, and then finally a selection of optional ancillary 

services. It is only after these consecutive decisions that the customer is shown a total 

price for the airline’s offer. Airlines do not typically display cohesive offers that bundle a 
flight itinerary with one or more ancillary services at a single price.  

There are several reasons why airlines have not moved to fully offer-centric retailing. 

First, current distribution and reservation system technologies limit the ways in which 

airlines can construct, display, and service bundled offers. For example, messaging 

standards limit what information can be passed between the customer and the airline on 

the indirect distribution channel. Even on the airline’s own direct channel, technological 
limitations often restrict the degree to which airlines can sell and fulfill bundled offers. 

Furthermore, silos in airline commercial organizations often lead airlines to optimize 

each component of the offer separately. For example, the schedule and network planning 

departments define the set of possible itineraries, the pricing and revenue management 

(RM) departments determine the fare products and fare class availability, and the 

marketing department designs the loyalty program benefits and prices the ancillary 

services. When constructing offers, airlines must also comply with legislative guidelines 

on the use of customer data and tariff filing requirements, which can be quite complex 
and vary by country. 

Despite these challenges, recent innovations in distribution technology have led to new 

possibilities for offer-centric retailing. The International Air Transport Association 

(IATA)’s New Distribution Capability (NDC) allows products and services to be 

combined together into bundled offers that can then be distributed to customers at a 

single price (Westermann, 2013). NDC also allows for more customer-specific and 

context-specific information, such as frequent-flyer status and desired ancillary services, 

to be used during offer construction. This allows airlines to customize offers in real time 
to meet the needs of the customer making the request. 

While NDC is still a new technology, the offer optimization it enables – in which flights 

and ancillary services are combined and priced in real time using context- or customer-

specific information – is far more advanced than how airlines generate and price offers 

today. The scientific models that airlines currently use to optimize individual offer 

components are not fully suited for joint optimization of the entire offer. This paper aims 

to bridge this gap by introducing an approach for airline offer optimization that we call 
dynamic offer generation (DOG). 
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DOG selects and prices the optimal revenue-maximizing offer set, consisting of one or 

more offers, out of the full catalog of products that is offered by the airline. Offers, 

prices, and offer sets can be customized by customer type, allowing the possibility for 

contextualization based on the content of the search request or information about the 

customer. We show how this type of offer optimization can provide revenue benefits to 

airlines, due to the dynamic pricing of the flight and ancillary components of the offer 

and the bundling of ancillary services. We also assess the conditions in which it is 

favorable for airlines to offer only bundled offers versus offering ancillary services a la 
carte. 

Unlike prior work, DOG is specifically designed for the airline offer optimization 

problem and incorporates information from a traditional airline revenue management 

system (RMS). Furthermore, our work is the first to simulate the impacts of offer 

optimization in a competitive airline environment, providing valuable insight to industry 

practitioners about the potential benefits and competitive effects of such a strategy 
compared to traditional RM. 

The remainder of the paper is structured as follows: first, we discuss recent advancements 

in the offer optimization context in the airline industry literature and in other fields. Next, 

we formulate the general airline offer optimization problem for flights and ancillary 

services. We test our solution approach alongside a traditional RMS in a competitive 

simulation and show that dynamic offer generation can lead to revenue gains. We discuss 

the potential implications for industry practitioners, before concluding with 
recommendations for further work in this area. 

 

LITERATURE REVIEW 

Incorporating ancillary services into traditional airline RM 

The airline RM literature has traditionally focused on the optimization of the flight seat 

alone, without incorporating optional ancillary services. The available prices for each 

flight itinerary are selected from a set of pre-priced filed fare classes. This setting, which 

we call traditional RM, is due to current distribution standards that limit the number of 
price points that airlines can make available in the marketplace. 

Several studies have investigated how traditional RM could be extended to incorporate 

ancillary services. Hao (2014) proposed a simple heuristic to add the average revenue 

from the ancillary services for each fare class to the yields used by the RMS to optimize 

availability. Bockelie and Belobaba (2017) proposed a more complex customer choice 

framework to model how customers choose whether to purchase an ancillary service. 

They proposed two different customer behavior types: sequential customers, who make 

their flight itinerary selection unaware of the existence of ancillary services, and 

simultaneous customers, who incorporate their desired ancillary service into their flight 

itinerary selection process. Bockelie (2019) later designed a method based on the choice-

based RM framework of Talluri and van Ryzin (2004) to incorporate this ancillary 

customer choice model into RMS forecasting and optimization.  
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These studies assume traditional pricing and distribution practices with filed fare classes, 

and do not focus on dynamic pricing of the flights or ancillary services. The prices of the 

ancillary services are not optimized in these studies. 

Dynamic pricing of flight seats and ancillary services 

Since NDC offers a possibility to distribute a wider range of price points (Dezelak and 

Ratliff, 2017), recent studies have also investigated dynamic pricing (DP) of flight seats 

and ancillary services. With DP, the price of the flight seat or ancillary service is selected 

from a continuous range of possible prices instead of from a set of pre-filed fares. A 

dynamic price could be represented either as an adjustment (increment or discount) from 

a filed fare, or without any reference to a filed fare (Wittman and Belobaba, 2019). DP 

also allows the use of contextual information about the shopping session – for instance, 

characteristics of the search request or the offers proposed by competitors – to further 
customize the price. 

DP has been applied separately to the flight seat and to ancillary services. For the flight 

seat, several studies have shown that DP provides revenue benefits over traditional RM 

(Fiig et al., 2016; Kumar et al., 2017; Wittman and Belobaba, 2018). These benefits result 

from the customization of prices to each shopping session, as well as the increased range 

of price points that can be offered by DP. For ancillary services, Shukla et al. (2019) 

proposed a machine learning method for computing dynamic prices for one or more 

ancillary services based on past sales data, also considering customer context. They also 
found revenue benefits over static ancillary pricing models.  

Joint optimization of flight seats and ancillary services 

As NDC has become more mature, the literature has started to examine joint optimization 

and pricing of the flight seat and ancillary services. Several studies have discussed the 

scientific and technical components of the offer management systems (OMS) that would 

be needed to create, distribute, and fulfill offers (Madireddy et al., 2017; Fiig et al., 2018; 

Vinod et al., 2018). These studies serve as roadmaps for the design of such systems, but 
do not offer specific models for the pricing and optimization of bundled offers. 

Several studies have proposed models for solving the joint optimization and pricing of 

flight seats and ancillary services. Ødegaard and Wilson (2016) model dynamic pricing 

of a flight and a single ancillary service for three types of ancillary purchase behavior 

types. They investigate in detail the pricing behavior assuming uniformly distributed 

willingness-to-pay. More recently, Shao and Kauermann (2020) estimate the price 

elasticities of airline customers facing a la carte or bundled offers using airline data. 

They investigate three different bundle pricing policies and estimate the change in 
expected revenue of shifting from one policy to another. 

Joint optimization of bundled offers in the economics and operations research literature 

While joint optimization of bundled offers is a relatively new concept in the airline 

industry literature, there are parallels to be found in the economics literature on bundle 

pricing and add-on pricing, and in the operations research on joint pricing and assortment 
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optimization problems. In the economics literature, Adams and Yellen (1976) provide a 

canonical model of the bundle pricing of two products. They show when it is best for the 

seller to bundle the products and when it is best to sell the products a la carte, depending 
on the valuations of the customers for the two products. 

Ellison (2005), Gabaix and Laibson (2006), and Shulman and Geng (2013), among 

others, explore the problem of add-on pricing, in which the price of a core product is 

determined along with an optional add-on product that enhances the core product’s 

quality. This can be compared to optional ancillary services that increase the quality of 

the travel experience, or to an airline fare family that bundles additional benefits with a 

base fare. However, these papers are highly theoretical in nature and do not offer specific 
heuristics or methods tailored for the airline offer optimization problem. 

In the operations research literature, several studies have investigated joint pricing and 

assortment optimization where an optimal subset of products, perhaps subject to a display 

space constraint, is selected and priced to maximize the seller’s expected revenue 

(Jagabathula and Rusmevichientong, 2017; Cataldo and Ferrer, 2017). These papers in 

the economics and OR literature do not typically consider a capacity constraint on the 

products contained in the offer, which is the case in the traditional airline RM problem. 

In our paper, we focus on applying some of the general techniques of joint pricing and 

assortment optimization to the specific context of airline offer optimization. We extend 

the simultaneous/sequential customer choice framework first proposed by Bockelie and 

Belobaba (2017) to model customer choice amongst bundled offers and simulate the 

performance of our model compared to traditional RM and DP of the flight seat using the 
Passenger Origin-Destination Simulator (PODS). 

 

OVERVIEW OF DYNAMIC OFFER GENERATION 

The airline offer optimization problem 

[Figure 1 about here] 

Figure 1 shows a schematic of the airline offer optimization problem and its relationship 

to traditional pricing and RM. Airlines operate flight itineraries 𝑓𝑗 ∈ {𝑓1, … ,𝑓𝐽} that each 

consist of one or more flight legs. Using a set of filed fares and a historical database of 

past booking behavior, a traditional RMS calculates flight leg bid prices as a function of a 

demand forecast and the remaining capacity on each flight leg. The flight itinerary bid 

prices 𝜋𝑗 are computed by summing the bid prices for each flight leg in each itinerary 𝑓𝑗.  

 

These flight leg bid prices are taken as an input to dynamic offer generation. 

Airlines also offer a catalog of ancillary services. Each ancillary service 𝑎𝑘 ∈

{𝑎1, … , 𝑎𝐾} has a cost of provision 𝑚𝑘, which represents the cost to the airline of offering 

the service. For example, offering a customer lounge access may require the airline to 

make a payment to the lounge operator. 
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[Figure 2 about here] 

In the Offer Set Generation process, airlines first construct offers 𝑂𝑖 ∈ {𝑂1, … , 𝑂𝐼} from 

their catalogs of itineraries and ancillary services. An offer 𝑂𝑖 = {𝑓𝑗,𝑎1, … , 𝑎𝑘} contains 

exactly one flight itinerary and zero or more ancillary services. Each offer 𝑂𝑖 has an 

associated offer cost 𝑐𝑖 = 𝜋𝑗:𝑓𝑗∈𝑂𝑖 + ∑ 𝑚𝑘𝑘:𝑎𝑘∈𝑂𝑖
. Since the flight itinerary bid price 

represents the cost to the airline of selling one seat on the itinerary, the offer cost 

represents the cost to the airline of providing the offer.  Figure 2 shows an example where 

the airline has one flight itinerary and two ancillary services. In this case, there are four 
possible offers that the airline could display. 

The airline then constructs an offer set 𝑆 = {𝑂1, . . . , 𝑂𝑛} consisting of one or more offers. 

We define Ω = {𝑆1, … , 𝑆𝑀} as the universe of all possible offer sets. Each offer 𝑂𝑖 in an 

offer set has a corresponding offer price 𝑝𝑖. We define 𝒑(𝑆) = (𝑝1, … , 𝑝𝑛) as the vector 

of prices for all offers in offer set 𝑆, which is determined in the Offer Set Pricing process. 

The airline then selects a single offer set 𝑆∗ to display to the customer in the Offer Set 

Selection process. In Figure 2, the displayed offer set contains offers 𝑂2 and 𝑂4.  

Customer choice between offers 

When faced with an offer set, a customer selects exactly one offer to purchase or chooses 

to purchase nothing. His choice depends on the other offers in the offer set, as well as the 
prices of the offers. 

To model the probability that a customer selects a given offer from an offer set, we 

extend the continuous purchase behavior from the ancillary choice framework first 

proposed by Bockelie and Belobaba (2017). Customers draw a maximum willingness-to-

pay (WTP) 𝜃𝑗 for the flight itinerary 𝑓𝑗 and maximum WTPs 𝛾𝑘  for each ancillary service 

𝑎𝑘 . The maximum WTPs are drawn from independent random distributions, which could 

vary between different customer segments. 

We assume that the customer’s maximum WTP 𝑤𝑖 for offer 𝑂𝑖 is the sum of the offer’s 

individual components and that the WTPs for the individual services are independent and 
uncorrelated:  

𝑤𝑖 = 𝜃𝑗:𝑓𝑗∈𝑂𝑖 + ∑ 𝛾𝑘
𝑘:𝑎𝑘∈𝑂𝑖

(1) 

These assumptions are common in the bundle pricing literature (Adams and Yellen, 

1976). Generally, the profitability of bundling has been shown to be greater when the 

WTP for bundled products are negatively correlated, meaning that a customer’s valuation 

is typically lower for a second product if their valuation is high for the first product 

(Schmalensee, 1984). In the airline context, this can be seen with leisure-oriented 

ancillary services such as checked baggage: passengers willing to pay more for the flight 

are more likely to be business passengers with a lower valuation for baggage (we 

investigate such a relationship in our simulations). Among ancillary services, business-
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oriented services such as fast track security could also be negatively correlated with 
checked baggage. 

We assume that the customer chooses exactly one offer in the offer set, and that they 

choose the offer that has the highest utility (or consumer surplus) 𝑢𝑖 = 𝑤𝑖 −𝑝𝑖, which is 

defined as the difference between the customer’s maximum WTP for the offer and its 

price. Such maximum utility models are commonly used in the economics literature to 

model rational customer choice (Dobson and Kalish, 1988; Hanson and Martin, 1990).  

The probability 𝑃𝑟(𝑂𝑖|𝑆, 𝒑(𝑆)) that a customer selects offer 𝑂𝑖 from offer set 𝑆 is thus: 

 𝑃𝑟(𝑂𝑖 |𝑆, 𝒑(𝑆)) = 𝑃𝑟( 𝑢𝑖 > 𝑢𝑗) ∀ 𝑗 ∈ 𝑆 ∪ {Ø}; 𝑗 ≠ 𝑖 (2) 

If all offers in 𝑆 have a negative utility, the customer chooses not to book by selecting the 

empty offer ∅ that has a utility of zero. 

 

Optimization of offer set selection and pricing 

The expected net revenue contribution of offer 𝑂𝑖 in offer set 𝑆 is computed by 

multiplying the offer’s net revenue (𝑝𝑖 − 𝑐𝑖) by the probability 𝑃𝑟(𝑂𝑖|𝑆, 𝒑(𝑆)) that a 

customer will select that offer from the offer set. The expected net revenue contribution 

of the entire offer set 𝑅(𝑆, 𝒑(𝑆)) is the sum of the expected net revenues of all offers in 

the offer set: 

𝑅(𝑆, 𝒑(𝑆)) =∑ (𝑝𝑖 − 𝑐𝑖) ∗ Pr(𝑂𝑖|𝑆,𝒑(𝑠))
𝑂𝑖∈𝑆

(3) 

The airline offer optimization problem is to select the optimal offer set 𝑆∗ and 

correspondingly the optimal offer prices 𝒑∗(𝑆∗) that maximize expected net revenue 

𝑅(𝑆, 𝒑(𝑆)) for a given search request. The optimal offer set and prices may depend on 

characteristics of the customer or the search request.  

This problem can be separated into two distinct optimization problems: 

 Offer Set Pricing: For a given offer set 𝑆, which offer prices 𝒑∗(𝑆) maximize the 

offer set’s expected net revenue 𝑅(𝑆, 𝒑(𝑆))?  

 Offer Set Selection: Which offer set 𝑆∗ ∈ Ω maximizes the airline’s expected net 

revenue from the search request? 
The Offer Set Pricing problem can be represented mathematically as follows: 

 

𝒑∗(𝑆) = argmax
𝒑(𝑆)

𝑅(𝑆, 𝒑(𝑆)) = argmax
𝒑(𝑆)

∑ (𝑝𝑖− 𝑐𝑖) ∗ Pr(𝑂𝑖|𝑆, 𝒑(𝑆))
𝑂𝑖∈𝑆

(4) 

 

Given each offer set’s optimal prices 𝒑∗(𝑆) from the Offer Set Pricing problem, the Offer 

Set Selection problem identifies the offer set with the highest expected net revenue: 
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𝑆∗ = argmax
𝑆∈Ω

𝑅(𝑆, 𝒑∗(𝑆)) (5) 

Note that an airline could effectively perform Offer Set Selection by always offering the 

full offer set (consisting of all possible offers) and pricing the undesirable (to the airline) 

offers sufficiently high, such that customers would not purchase these unattractive offers. 

However, we believe that Offer Set Selection is an important second step: airlines face 

display space and bandwidth constraints that limit the offers that can be displayed, and 

may have a desire to provide customers with appealing content. In practice, Offer Set 

Selection is already performed today: by controlling availability of Basic Economy, 

airlines choose to make the brand unavailable (instead of pricing it unattractively) when 
they prefer to only sell their other economy brands. 

In practice, airlines employ a variety of pure bundling, mixed bundling, and a la carte 

pricing for ancillary services. In recent years, there has been a trend of unbundling 

checked baggage from the flight itself. Many airlines charge an a la carte price for the 

bag, whereas others also offer a discounted price at the time of booking (mixed bundling) 

and a few still include it with all tickets (pure bundling). Yet there is no clear trend 

towards unbundling for other ancillary services. While carry-on bags are commonly 

offered a la carte at ultra low-cost carriers as of 2021 (i.e. Spirit Airlines and Ryanair), 

they remain bundled with the fare at most legacy airlines (i.e. Delta Air Lines and Air 

Canada). Some, like American Airlines, reverted their initial policy of prohibiting carry-

on bags with basic economy fares and now bundle them with the fare. 

Relationship between Dynamic Offer Generation, Dynamic Pricing, and traditional RMS 

[Table 1 about here] 

Table 1 summarizes how Dynamic Offer Generation differs from traditional RMS and 

dynamic pricing of the flight seat and ancillary services. With traditional RMS, prices are 

selected for the flight itinerary from a pre-defined set of filed fares. The price selected for 

an itinerary do not vary by customer segment. Ancillary services are also statically priced 

and do not vary by customer segment. Finally, flight itineraries and ancillary services are 

not bundled together; ancillary services are offered as optional purchases. 

With dynamic pricing of the flight seat and ancillary services, the prices of the flight 

itinerary and ancillary services are selected from a continuous range of possible price 

points instead of from a set of pre-determined price points. These prices can also vary by 

customer segment. However, no bundling of flight itineraries and ancillary services is 

performed; in essence, the airline’s offer set always allows the ancillary services to be 
purchased a la carte. We therefore refer to this strategy as Dynamic A La Carte pricing. 

With Dynamic Offer Generation, flight itineraries and ancillary services may be bundled 

together into offers. The prices of the flight itinerary and ancillary services are optimized 

jointly when determining the offer price. These prices are determined as a function of the 

contents of each offer, as well as the other offers in the offer set. As we show below, the 
pricing and selection of the optimal offer set can also differ by customer segment. 
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Comparing DOG to traditional RMS and Dynamic A La Carte strategies allows us to 

investigate the benefits of the bundling component of DOG separately from the dynamic 

pricing of the flight and ancillary services. 

Example: One flight itinerary, one ancillary service 

Consider the example in Figure 3 with one flight itinerary 𝑓1 and one ancillary service 𝑎1. 

There are two possible offers, 𝑂1 = {𝑓1} and 𝑂2 = {𝑓1 , 𝑎1}. Offer 𝑂1 contains only the 

standalone flight, whereas offer 𝑂2 contains both the flight and the ancillary service. 

[Figure 3 about here] 

We consider two possible offer sets, 𝑆1 = {𝑂1, 𝑂2}, and 𝑆2 = {𝑂2}, with associated prices 

𝒑(𝑆1) = (𝑝1, 𝑝2) and 𝒑(𝑆2) = (𝑝2). In the “a la carte offer set” 𝑆1, the customer can 

choose to purchase the flight alone (offer 𝑂1) or pay more to purchase the offer with the 

ancillary service (offer 𝑂2). In the “bundle offer set” 𝑆2, the ancillary service is always 

bundled with the flight, and the customer cannot choose to purchase the flight alone. Note 

that, in general, the price 𝑝2  for offer 𝑂2 differs between offer sets 𝑆1 and 𝑆2. To resolve 

the notational conflict, we thus rewrite 𝑝2  in offer set 𝑆1 as 𝑝2 = 𝑝1 + 𝑝+, where 𝑝+ is 

effectively the additional fee for the ancillary service. 

Figure 4 graphically illustrates how the customer’s choice of offer depends on the offer 

set shown, the customer’s WTPs 𝜃𝑓  and 𝛾𝑎 , and the offer prices 𝑝1, 𝑝+ , and 𝑝2 . In the 

lightly shaded regions where WTPs are lower than the prices, the customer chooses not to 

book (∅). In the gray regions, the customer purchases both the flight and the ancillary 

service because their total WTP 𝑤𝑖 = 𝜃𝑓 + 𝛾𝑎  exceeds the price of the offer 𝑂2. In the 

black regions of a la carte offer set 𝑆1, customers do not purchase the ancillary service 

because 𝛾𝑎 < 𝑝+, but they do purchase the flight since 𝜃𝑓 > 𝑝1. Note that a subset of 

these customers would have purchased the ancillary service if they were shown the 

bundle offer set 𝑆2 instead. 

 

[Figure 4 about here] 
 

Figure 4 visualizes the probability 𝑃𝑟(𝑂𝑖|𝑆, 𝒑(𝑆)) that a random utility-maximizing 

customer will purchase an offer. With independent WTPs 𝜃𝑓  and 𝛾𝑎 , these purchase 

probabilities can be written as: 

𝑆1: {
𝑃𝑟(𝑂1|𝑆1,𝒑(𝑆1)) = 𝑃𝑟(𝛾𝑎 < 𝑝+) ∗ Pr (𝜃𝑓 > 𝑝1)

𝑃𝑟(𝑂2 |𝑆1,𝒑(𝑆1)) = 𝑃𝑟(𝛾𝑎 > 𝑝+) ∗ Pr (𝜃𝑓 +𝛾𝑎 > 𝑝1 +𝑝+|𝛾𝑎 > 𝑝+)
 (6)

 

  

𝑆2: {𝑃𝑟(𝑂2|𝑆2,𝒑(𝑆2)) = 𝑃𝑟(𝜃𝑓 + 𝛾𝑎 > 𝑝2)  

The probabilities above can be interpreted as follows: if a customer is shown Offer Set 

𝑆1, he will choose to purchase Offer 𝑂1 (flight alone) if he is willing to purchase the 

flight (𝜃𝑓 > 𝑝1) but is does not value the ancillary enough to add it a la carte (𝛾𝑎 < 𝑝+). 
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He will purchase Offer 𝑂2 (flight plus ancillary) if he desires the ancillary enough to 

purchase it a la carte (𝛾𝑎 > 𝑝+) and the sum of his valuation for both services exceeds 

the price for the flight and ancillary (𝜃𝑓 +𝛾𝑎 > 𝑝1 +𝑝+|𝛾𝑎 > 𝑝+). If he is shown Offer 

Set 𝑆2, he will purchase the bundled Offer 𝑂2 if the sum of his valuation for both 

products exceeds the bundle price (𝜃𝑓 + 𝛾𝑎 > 𝑝2 ). 

Extension: One flight itinerary, two ancillary services 

In our example with one flight and one ancillary service, we significantly reduced the 

problem size. As we later describe in Curse of Dimensionality, the number of offers 

scales rapidly with the number of ancillary services (𝐼 = 2𝐾), of which airlines often have 

a large catalog. The number of offer sets further escalates the problem size (𝑀 = 2𝐼 −1). 

The expressions for conditional purchase probability become complex for larger 
problems and are not easily solved without heuristic approximations. 

For a catalog of one flight 𝑓1 and two ancillary services 𝑎1, 𝑎2, there are four possible 

offers: 𝑂1 = {𝑓1}, 𝑂2 = {𝑓1 , 𝑎1},𝑂3 = {𝑓1, 𝑎2}, 𝑂4 = {𝑓1, 𝑎1, 𝑎2}. As a result, there are 

𝑀 = 15 possible offer sets. Depending on business requirements, some offer sets may be 

more relevant than others. For example, an airline may be constrained by the number of 

offers that can be displayed in the distribution channel and perform Offer Set Selection 

among offer sets with cardinality 𝑘. Another conceivable constraint is that the 

comprehensive offer 𝑂4 has to be included in all evaluated offer sets, as it may not make 

commercial sense to restrict passengers from buying all ancillary services. 

The choice model naturally extends to larger offer sets. For example, for the largest offer 

set 𝑆 = {𝑂1, 𝑂2, 𝑂3, 𝑂4}, the utility-maximizing customer would purchase each offer with 

the following probabilities: 

𝑆:

{
 
 
 
 

 
 
 
 𝑃𝑟(𝑂1|𝑆, 𝒑(𝑆)) = Pr (

(𝜃𝑓 > 𝑝1) ∧ (𝛾𝑎1 < 𝑝2 − 𝑝1)

∧ (𝛾𝑎2 < 𝑝3 −𝑝1) ∧ (𝛾𝑎1 + 𝛾𝑎2 < 𝑝4 −𝑝1)
)

𝑃𝑟(𝑂2|𝑆, 𝒑(𝑆)) = Pr (
(𝜃𝑓 + 𝛾𝑎1 > 𝑝2) ∧ (𝛾𝑎1 > 𝑝2 − 𝑝1)

∧ (𝛾𝑎2 < 𝑝4 −𝑝2) ∧ (𝛾𝑎1 − 𝛾𝑎2 > 𝑝2 −𝑝3)
)

𝑃𝑟(𝑂3 |𝑆, 𝒑(𝑆)) = Pr (
(𝜃𝑓 + 𝛾𝑎2 > 𝑝3) ∧ (𝛾𝑎1 > 𝑝4 − 𝑝3)

∧ (𝛾𝑎2 < 𝑝3 −𝑝1) ∧ (𝛾𝑎1 − 𝛾𝑎2 < 𝑝2 −𝑝3)
)

𝑃𝑟(𝑂4|𝑆, 𝒑(𝑆)) = Pr (
(𝜃𝑓 +𝛾𝑎1 + 𝛾𝑎2 > 𝑝4) ∧ (𝛾𝑎1 > 𝑝4 − 𝑝3)

∧ (𝛾𝑎2 > 𝑝4 − 𝑝2) ∧ (𝛾𝑎1 + 𝛾𝑎2 > 𝑝4 −𝑝1)
)

 (7)

 

 

The expressions above would simplify further with an assumption of independence 
between 𝜃𝑓 , 𝛾𝑎1 , 𝛾𝑎2  as well as an a la carte price constraint, namely 𝑝4 = 𝑝3 + 𝑝2 −𝑝1 , 

where there is no discount provided for purchasing both ancillary services together in 
offer 4. 
 
Sensitivity analysis 
Figure 5 shows the optimal offer prices 𝑝1

∗ and 𝑝2
∗ that result from the single-ancillary 

offer optimization problem. We assume a single customer type with flight WTP 𝜃𝑓  that is 
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Normally distributed with mean 𝜇𝑓  and standard deviation 𝜎𝑓 , and ancillary WTP 𝛾𝑎  that 

is Normally distributed with mean 𝜇𝑎 and standard deviation 𝜎𝑎. 
 
In the left panel of Figure 5, we vary the mean flight WTP 𝜇𝑓  from $10 to $400 and bid 

price 𝜋𝑓  from $0 to $200, while holding the ancillary-related parameters constant at 

𝑚𝑎 = $20, 𝜇𝑎 = $25, and 𝜎𝑎 = $7.5. In the right panel, we vary the ancillary-related 
parameters from $0 to $70, while holding the flight-related parameters constant at 𝜋𝑓 =

$50, 𝜇𝑓 = $200, and 𝜎𝑓 = $60. In all cases, as 𝜇𝑓  and 𝜇𝑎 change, the standard 

deviations 𝜎𝑓  and 𝜎𝑎 scale as 30% of the mean. 

 
[Figure 5 about here] 

 

As seen in the left panel, the prices 𝑝1
∗ and 𝑝2

∗ increase with both the mean flight WTP 𝜇𝑓  

and the bid price 𝜋𝑓 . The increase is nearly linear where 𝜇𝑓 > 𝜋𝑓 . When 𝜇𝑓 < 𝜋𝑓 , the 

prices are generally bounded from below by their cost of provision (𝑝1
∗ > 𝜋𝑓 ; 𝑝2

∗ > 𝜋𝑓 +

𝑚𝑎). Given that passengers are expected to be willing to pay more for the bundle that 

includes the ancillary service, 𝑝2
∗ is consistently more expensive than the flight price 𝑝1

∗. 

In the right panel, note that the flight price is nearly, but not completely, independent of 

the ancillary parameters 𝜇𝑎 and 𝑚𝑎, but the bundle price 𝑝2
∗ shows a strong dependence 

on both sets of parameters.  

Next, we compare the expected net revenue of the a la carte (𝑆1) and bundle (𝑆2) offer 

sets at the optimized prices 𝒑∗ to understand when bundle pricing is expected to generate 

higher revenue for the airline. In Figure 6, this condition is indicated by the bundle 

surface laying above the a la carte surface. We observe that the flight-related parameters 

have a very limited effect on the offer set selection, as the expected net revenue is very 

similar for the two offer sets. Nonetheless, we observe that when the bid price 𝜋𝑓  is low, 

the algorithm has a slight preference for the a la carte offer set. In the remaining regions, 

the bundle offer set is preferred. 

[Figure 6 about here] 
 

On the other hand, ancillary-related parameters strongly influence the offer set selection 

(Figure 6). When 𝜇𝑎 is sufficiently higher than the cost 𝑚𝑎, bundling is the preferred 

pricing strategy, providing higher expected net revenue than the a la carte offer set by a 

small margin. But when 𝜇𝑎 < 𝑚𝑎, a la carte pricing significantly outperforms bundling. 

Figure 6 shows a decision boundary where both offer sets have the same 𝑅(𝑆, 𝒑∗(𝑆)). 

This boundary is relatively consistent across a variety of tested 𝜇𝑓  and 𝜋𝑓 . It can be 

linearly approximated by the following rule of thumb: 

 

If 𝛾𝑎 ∼ 𝒩(𝜇𝑎 , (0.3 ∗ 𝜇𝑎)
2), then:  

𝑅(𝑆2, 𝒑
∗(𝑆2)) > 𝑅(𝑆1,𝒑

∗(𝑆1)) ⇒ 𝜇𝑎 ≥ 1.25 ∗ 𝑚𝑎 
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These observations have implications for dynamic offer generation: For a segment of 

passengers whose ancillary WTP can be modeled with a normal distribution, the selection 

of the optimal offer set (i.e. bundle vs a la carte) is often independent of the flight price. 

This means that for any one segment, the offer set selection might not need to be very 

dynamic during the selling horizon and bundling could be realizable through simple 

business rules. 
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PERFORMANCE OF DOG IN THE PASSENGER ORIGIN-DESTINATION 

SIMULATOR (PODS) 

 

Simulation setup 

Dynamic offer generation was implemented and tested in the Passenger Origin-

Destination Simulator (PODS), a multi-agent simulation of the passenger choice process 

in a competitive airline network. For a more detailed description of the PODS simulator 

and its models, see Bockelie (2019). All tests were conducted in a hypothetical network 

with four competing airlines, each operating a primarily hub-and-spoke network with a 

total of 442 flights per day serving 572 origin-destination markets. All airlines file a fully 

unrestricted fare structure in each market, like fare structures commonly found within 

Europe today, with no advance purchase requirements.
1
 All airlines use sell-up WTP 

forecasting (Belobaba and Hopperstad, 2004) and marginal revenue fare adjustment (Fiig 

et al., 2010) with a network RM optimizer based on Displacement Adjusted Virtual 
Nesting (Smith and Penn, 1988). 

We test DOG with one ancillary service that is modeled after a checked bag. As in Figure 

3, DOG can decide for every search request whether to offer the ancillary a la carte for 

an additional fee (offer set 𝑆1), or whether to bundle it with the flight at a single price 

(offer set 𝑆2). We provide a summary of the implementation of DOG in PODS below; 

readers interested in a more detailed description can refer to Wang (2020).  

In our simulations, leisure passengers are willing to pay more than business passengers 

for the ancillary service, whereas business passengers have higher mean flight WTP 𝜇𝑓 . 

Following the “Q-multiplier” heuristic proposed by Wittman and Belobaba (2018), we 

approximate flight WTP for a passenger segment as Normally distributed with mean 

𝜇𝑓 = 𝑄𝑚𝑢𝑙𝑡 ∗ 𝑃𝐿(𝑚) and standard deviation 𝜎𝑓 = 𝛼 ∗ 𝜇𝑓 , where 𝑃𝐿(𝑚) is the lowest 

filed fare by the airline in market 𝑚. 

Half of all business passengers draw their ancillary WTP from a Normal distribution with 

𝜇𝑎 = $25 and 𝛼 = 0.3, while the other half does not require checked baggage (𝛾𝑎 = $0). 

All leisure passengers have a Normally distributed ancillary WTP with 𝜇𝑎 = $31 (𝛼 =
0.3), which is roughly 25% higher than that of business passengers. All airlines incur a 

cost of 𝑚𝑎 = $25 per ancillary sold. 

We assume that all DOG airlines can correctly classify a search request to its customer 

segment. They also accurately estimate both passenger types’ mean ancillary WTP 𝜇𝑎. 

They approximate the passengers’ flight WTP 𝜇𝑓  using constant Q-multipliers of 2.7 and 

1.1 for business and leisure segments respectively. The estimation of the WTP parameters 

from historical data is outside the scope of this paper; maximum likelihood estimation 

                                                 
1 Unrestricted fare structures are also common in North America, though often with advance purchase 

requirements. Fare adjustment, part of some RM systems, can replicate the function of advance purchase 

requirements. 

14            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

 

  15 

CONFIDENTIAL & RESTRICTED 

methods similar to those proposed in Fiig et al. (2014) and Newman et al. (2014) could 
be used to estimate these parameters. 

In our simulations, we bound the offer prices from DOG to the 𝐿 filed fares from the 

airline’s traditional pricing structure 𝑷 = (𝑃1,… , 𝑃𝐿). This allows the airline to maintain 

the hierarchy of booking classes in the RMS. Bounding DOG prices to traditional prices 

could also be desirable in a competitive market, where any large price disturbances might 

lead to competitive responses by other airlines.  

 

Let us define 𝑃𝑐  as the filed fare of the lowest available fare class in a traditional RMS, 

𝑃𝑐−1 as the filed fare of the next higher (more expensive) fare class, and 𝑃𝑐+1 is the filed 

fare of the next lower (unavailable) fare class. If 𝑃𝑐 = 𝑃𝐿 (the lowest-priced fare class), 

we set 𝑃𝑐+1 = 𝑃𝑐 and if 𝑃𝑐 = 𝑃1 (the highest fare class), then 𝑃𝑐−1 = 𝑃𝑐 .  

 

In our modeling, the flight price in offer set 𝑆1, 𝑝1, is bounded to be within 
𝑃𝑐+𝑃𝑐+1

2
≤

𝑝1 ≤
𝑃𝑐+𝑃𝑐−1

2
, such that every price point 𝑝1 is uniquely mapped to a single fare class in 

the traditional pricing structure. The prices of all other offers are bounded based on 𝑝1 to 

maintain the relative price difference 𝑝𝑖
∗ − 𝑝1

∗ of the original unbounded prices 𝑝1
∗: 

 

𝑝𝑖 = 𝑝1 + (𝑝𝑖
∗ −𝑝1

∗)  ∀ 1 < 𝑖 ≤ 𝐼 (8) 

 

We illustrate the bounding with a numerical example in Figure 7: Suppose the optimized 

prices from the DOG price optimization are 𝑝1
∗ = $170 and 𝑝2

∗ = $193 for offer sets 𝑆1 

and 𝑆2, respectively. If 𝑃𝑐−1 = $260, 𝑃𝑐 = $200 and 𝑃𝑐+1 = $160, the flight price will 

be bounded to 𝑝1 = $180. Then the bundle price will be 𝑝2 = $180 + ($193− $170) =
$203. The selection of the optimal offer set 𝑆∗ is then performed with the bounded prices 

𝒑(𝑆). 

[Figure 7 about here] 

 

We compare DOG to the traditional RMS and Dynamic A La Carte pricing strategies. 

Recall from Table 1 that an airline using either strategy offers only the a la carte offer set 

𝑆1 = {𝑂1, 𝑂2}, and sets the price of the ancillary service 𝑝+ independently of the flight 

itinerary price 𝑝1. With traditional RMS, 𝑝1 is selected among the pre-filed fares 𝑷 and 

𝑝+ is fixed at $33.59, which myopically maximizes ancillary net revenue under the 

39%/61% mix of business and leisure bookings observed in the simulation. In Dynamic A 

La Carte pricing, 𝑝1 is segmented by passenger type and dynamically priced using the 

DOG heuristic. 𝑝+ is also segmented and priced to maximize ancillary net revenue at 

$30.64 or $34.10 for business and leisure passengers, respectively. 

 

Simulation Results 

Table 2 summarizes the impact of dynamic offer generation on one airline’s (Airline 1) 

net revenue (flight and ancillary revenue net of ancillary cost of provision), net yield (net 
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revenue divided by revenue passenger miles) and load factor (revenue passenger miles 

divided by available seat miles). When only Airline 1 uses DOG, its net revenue 

increases by +4.6% and its load factor increases by +0.6pts. If all four airlines switch 

from traditional RMS to DOG, Airline 1’s net revenue gain reduces to +1.7% with a load 

factor increase of +0.2pts. DOG is therefore revenue positive in both asymmetric and 
symmetric tests. 

[Table 2 about here] 

Figure 8 shows the impact of DOG on the total net revenue of all four airlines in the 

simulation. When only Airline 1 uses DOG, its gain comes at the expense of the 

remaining airlines using traditional RMS. When all airlines use DOG, the competitive 

benefit for Airline 1 is reduced and all airlines increase their revenue over the traditional 

baseline.  

[Figure 8 about here] 

We also show equivalent results for Dynamic A La Carte pricing, where no bundles are 

offered but the flight seat and ancillary services are dynamically priced. Dynamic A La 

Carte results in a smaller +3.7% revenue gain for Airline 1 when it is the first mover, but 

a +1.8% revenue gain (comparable to DOG) when all airlines implement it. These results 

are similar to previously reported simulation studies on the value of segmented dynamic 

pricing of the flight seat (Wittman and Belobaba, 2018). The results also show that the 

bundling of the ancillary service drives an incremental +0.9% revenue benefit, when it is 

used as a competitive tool to offer a lower total price than competitors selling ancillaries 
a la carte. 

[Figure 9 about here] 

Figure 9 shows the breakdown of offers purchased by passengers of Airline 1. With 

traditional RMS (No DOG), 26% of passengers choose to buy the ancillary service 

(representing 39.0% of leisure passengers and 6.3% of business passengers). When all 

airlines use DOG (All DOG), the ancillary service was already bundled in the offer 

selected by 36% of passengers. The remaining 63% of passengers could purchase the 

service at a segmented price 𝑝+
∗  of $30.64 for business passengers or $34.10 for leisure 

passengers. 

With our choice of ancillary WTP parameters, all business passengers are offered the a la 

carte offer set 𝑆1, which maximizes expected net revenue given the low WTP for the 

ancillary service. Meanwhile, 60% of leisure passengers were offered the bundle, which 

generally occurred at higher flight prices. Overall, 41% of AL1’s passengers purchased 

the bundle when it was the only airline to offer bundles, but only 36% of passengers do 

so once other airlines offered bundles as well. This suggests that the primary benefit of 

dynamic bundling is as a competitive tool against a la carte competitors. 

These values appear reasonable: Shao and Kauermann (2020) report observed purchase 

rates for a European airline’s branded fares that are primarily distinguished through their 
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checked baggage allowances. In a mixed bundling scenario where passengers could either 

purchase the ancillary service bundled with the flight or separately from the flight, 47-

58% of passengers chose to purchase the bundled fare in their study, while an additional 
9-15% of passengers purchased the a la carte fare and added the ancillary service later. 

[Figure 10 about here] 

Figure 10 shows the relative change in average net revenue (price paid less ancillary 

costs) from AL1’s business and leisure passengers as it switches from traditional RMS to 

DOG. Note that the flight prices generally increase towards the day of departure, which is 

not visible in the relative change. DOG prices differ from those of traditional RMS due to 

the price segmentation across business and leisure passengers. With our choice of Q-

multipliers used in DOG, leisure flight prices decrease and business prices generally 

increase compared to traditional RMS.  

[Figure 11 about here] 

As the segmented pricing of the flight (Dynamic A La Carte) contributes the majority of 

the revenue benefit of DOG, the Q-multipliers as estimates of each passenger segment’s 

flight WTP 𝜃 are the most important parameters of the model. As shown in Figures 11 

and 12, the revenue gain of DOG is sensitive to both the business and leisure Q-

multipliers used in the simulation as they directly influence the flight price offered to the 

customers. In general, we observe that increasing the Q-multiplier decreases Airline 1’s 

revenue in asymmetric scenarios (its flights become more expensive compared to the 

unchanged competitors). On the other hand, the revenue increases for all airlines when all 
competitors match the higher Q-multipliers in the symmetric tests. 

[Figure 12 about here] 

Figure 12 shows clearly that AL1’s revenue is extremely sensitive to the leisure Q-

multiplier in competitive, asymmetric scenarios. In the simulation, large market share 

shifts can occur when Airline 1’s leisure pricing significantly differs from that of its three 

competitors. In the symmetric tests, we note that revenue does not increase further when 

prices are increased beyond a Q-multiplier of 1.2, because of the limited flight WTP of 

leisure passengers in PODS. 

[Figure 13 about here] 

DOG assumes that all passengers act rationally by maximizing their utility across flights 

and ancillary services. In Figure 13, we study the performance of DOG when passengers 

in PODS are instead simulated under the sequential choice model of Bockelie and 

Belobaba (2017). Sequential passengers first choose their flight itinerary without 

considering any ancillary services, and then evaluate the purchase of ancillary services 

independently at a second stage (i.e. when checking in for the flight). Therefore, they do 

not consider the presence of included ancillary services when evaluating offers across 

airlines and will choose the lowest flight price, even if the airline charges for the ancillary 
service and it results in a higher total price compared to a competing bundled offer.   
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We observe that the revenue benefit of DOG diminishes as more passengers evaluate 

ancillary services sequentially. When only Airline 1 uses DOG, it underperforms the 

traditional RMS baseline by -1.9% when all simulated passengers are sequential. On the 

other hand, with Dynamic A La Carte pricing, Airline 1 revenue increases by +3.7% 

independent of the proportion of sequential passengers in the simulation. Even when 

selling the ancillary a la carte, Airline 1 benefits from segmented, dynamic flight pricing 

that undercuts the traditional prices of competing airlines. This benefit of DOG’s price 

optimization persists independent of ancillary choice behavior. But DOG underperforms 

overall when it shows the bundled offer set to sequential passengers as it overestimates 

the sequential passenger’s valuation for bundles compared to the a la carte offers of the 

competitor airlines.  

DISCUSSION AND MANAGERIAL IMPLICATIONS 

Our heuristics show how prices of offers that combine flights with ancillary services can 

be optimized in an offer set, with intuitive results: the price of an offer generally 

increases with the cost of providing it, as well as the passenger’s willingness-to-pay for it, 

and the optimal price for one offer depends on the prices of other offers within the offer 

set. Despite this relative simplicity and intuitiveness, DOG is a fundamental change for 

revenue management. The technological difficulties and human challenges of integrating 

and successfully managing a new dynamic offer generation engine should not be 

underestimated. We list five key considerations here: 
 

1. Competition: Our simulations did not include competitive responses to the new 

dynamic pricing structure and bundling. In reality, traditional airlines could adjust 

their fare structures, bundling strategies, or fare class availability decisions to 

protect their own market share. Depending on the type and magnitude of 

competitive response, the revenue gain realized with DOG could be reduced. 

 

2. Bundling Strategy: The dynamic bundling in DOG introduces an explicit trade-off 

between pursuing more a la carte offers, to increase ancillary revenue, or more 

bundled offers, to increase flight revenue. A comprehensive view of revenue 

streams, and an understanding of the new mechanisms to control bundling, is 

necessary to select the strategy that increases total revenue. To reduce the initial 

change management, an implementation could start with Dynamic A La Carte 

pricing, capturing a significant portion of the revenue benefit, before 

implementing full DOG. Reducing the initial implementation scope could also 

decrease time to market, providing a first mover advantage. In all of our tests, the 

revenue gains were higher for the DOG or Dynamic A La Carte airline when its 

competitors were still using traditional pricing and RM. 

 

3. Curse of Dimensionality: With 𝐼 possible offers, the number of offer sets is 2𝐼 −1 

if no restrictions are placed on which combinations of offers are permitted in an 

offer set. Furthermore, for an airline with one flight and 𝐾 ancillary services, the 

number of possible offers itself also grows as 2𝐾, such that the number of possible 
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offer sets could be as high as 22
𝐾
− 1. This would make the brute-force 

evaluation of 𝑅(𝑆) for all 𝑆 at large 𝐾 infeasible.  To manage the size of the 

solution space, airlines could limit the number of ancillaries included in the DOG 

Offer Set Generation process to only the highest revenue products, while selling 

the remaining low-volume ancillaries through traditional a la carte channels. 

Alternatively, airlines could require that all offer sets consist of exactly 𝑛 offers, 

corresponding to the number of offers that can be displayed in the distribution 

channel. 

 

4. Retailing Becomes a Priority: Our simulations showed that bundling can increase 

revenue with utility-maximizing choice behavior, but can decrease it with 

sequential behavior. Customers must be aware that they are purchasing a bundle 

and must understand what the bundle contains for a bundling strategy to increase 

revenue – information that is traditionally difficult for the airline to communicate 

to customers. New technologies such as NDC, ATPCO’s Amenities, Universal 

Product & Ticket Attributes, and Next Generation Storefront all allow airlines to 

publish rich content and descriptions of their offers to sales channels around the 

world; airlines will need to ensure that their websites and distribution partners are 

effectively leveraging this information. Customers who do not understand that an 

airline is selling a bundle will exhibit sequential behavior and may turn to a 

competitor’s a la carte offer with a lower base fare, even if the final price, 

including desired ancillaries, is higher. In distribution channels where such 

transparency about offer contents and ancillary fees is not achievable, unbundled 

fares and a la carte offer sets yield better results. 

 

5. Breaking Silos: Effective management of DOG will require close cooperation 

between revenue management and work groups who may not have interacted on a 

regular basis in the past, such as e-commerce, loyalty, and customer relationship 

management (CRM). As one example, customer segmentation models are often 

built and maintained by a CRM department, and flight and ancillary WTP 

parameters are controlled by RM & ancillary management departments. DOG 

requires an explicit integration of these areas as its input WTP parameters 𝜃j  & 𝛾𝑘  

are segment-specific. CRM will need to ensure its models meet the needs of 

revenue managers, and revenue managers will need to understand the customer 

segmentation strategy and embed it each step of their daily analysis workflow. 
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CONCLUSIONS 

The transformation of the airline distribution process with the New Distribution 

Capability (NDC) and the growth of airline ancillary revenue streams are two major 

trends in the airline industry. In this paper, we presented a new optimization approach to 

generate customized offers and bundles. Together with a traditional RM system, dynamic 

offer generation (DOG) calculates segmented and continuous prices for both flights and 

ancillaries in pursuit of total revenue optimization. We used DOG to study the potential 
benefits of airline offer optimization and its implications for the airline industry. 

Our simulations led to three important conclusions. First, the majority of revenue gains 

reported from DOG are attributable to the competitive effects of segmented, dynamic 

flight pricing and are also observed when no bundles are offered. Second, bundling can 

be a competitive advantage and further increase revenue by +0.9% in asymmetric tests 

with 100% utility-maximizing passengers. Finally, bundling is shown to be ineffective 

when passengers do not consider the price and value of ancillary services when choosing 

the airline and flight itinerary. Our insights provide valuable guidance to practitioners 

that are navigating the organizational and technological challenges of implementing offer 
optimization, which we explored in the previous section. 

Our problem formulation is very general and can be extended to include more ancillary 

services or inventory constraints. Yet our implementation makes several assumptions. 

The heuristic assumes that customers choose offers that maximize their utility and the 

benefit of bundling diminishes when the distribution channel encourages them to behave 

sequentially instead. We also assume that airlines can estimate flight and ancillary 

willingness-to-pay from their historical data and accurately segment trip requests, which 

are all challenging problems that were outside the scope of this paper. 

DOG is only a first step towards a world of offer optimization. In particular, the 

assortment optimization adds an entirely new dimension to the problem space of revenue 

management. We have shown that optimizing the offer set shown to customers can be a 

competitive advantage and lead to revenue gains. As such, the future of airline RM lies in 

selling the right set of offers to the right consumer at the right time and at the right prices. 

ACKNOWLEDGEMENTS 

The opinions expressed in this paper represent those of the authors only and do not 

necessarily reflect the positions of their respective employers. The authors are grateful to 

Peter Belobaba and the members of the MIT PODS Consortium for financial support and 

for their ideas that culminated in this paper, and to Matthew Berge for assisting with 

development. We also thank Thomas Fiig and Richard Cléaz-Savoyen for reviewing the 

paper and offering their thoughtful feedback. 

 

  

20            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

 

  21 

CONFIDENTIAL & RESTRICTED 

REFERENCES 
Adams, W.J. and J.L. Yellen. 1976. Commodity bundling and the burden of monopoly. The 
Quarterly Journal of Economics 90(3): 475-498. 
Belobaba, P. and C. Hopperstad. 2004. Algorithms for revenue management in unrestricted fare 
markets. Presentation at AGIFORS Reservations and Yield Management Study Group. 
Bockelie, A. 2019. “Ancillary services in the airline industry: Passenger choice and revenue 
management optimization.” PhD thesis, Massachusetts Institute of Technology, 
https://hdl.handle.net/1721.1/121879. 
Bockelie, A. and P. Belobaba. 2017. Incorporating ancillary services in airline passenger choice 
models. Journal of Revenue and Pricing Management 16: 553-568. 
Cataldo, A. and J.-C. Ferrer. 2017. Optimal pricing and composition of bundles: A two-step 
approach. European Journal of Operations Research 259: 766-777. 
Dezelak, M. and R. Ratliff. 2018. Towards new industry-standard specifications for air dynamic 
pricing engines. Journal of Revenue and Pricing Management 17: 394-402. 
Dobson, G. and S. Kalish. 1988. Positioning and pricing a product line. Marketing Science 7.2: 
107-125. 
Ellison, G. 2005. A model of add-on pricing. The Quarterly Journal of Economics 120(2): 585-
637. 
Fiig, T., K. Isler, C. Hopperstad, and P. Belobaba. 2010. Optimization of mixed fare structures: 
Theory and applications. Journal of Revenue and Pricing Management 9(1): 152-170. 
Fiig, T., R. Härdling, S. Pölt, and C. Hopperstad. 2014. Demand forecasting and measuring 
forecast accuracy in general fare structures. Journal of Revenue and Pricing Management 13: 
413-439. 
Fiig, T., O. Goyons, R. Adelving, and B. Smith. 2016. Dynamic pricing – The next revolution in 
RM? Journal of Revenue and Pricing Management 15: 360-379. 
Fiig, T., R. Le Guen, and M. Gauchet. 2018. Dynamic pricing of airline offers. Journal of 
Revenue and Pricing Management 17: 381-393. 
Gabaix, X. and D. Laibson. 2006. Shrouded attributes, consumer myopia, and information 
suppression in competitive markets. The Quarterly Journal of Economics 121(2): 505-540. 
Hanson, W. and R. K. Martin. 1990. Optimal bundle pricing. Management Science 36(2): 155-
174. 
Hao, E. 2014. “Ancillary revenues in the airline industry: impacts of revenue management and 
distribution.” Master’s thesis, Massachusetts Institute of Technology, 
http://hdl.handle.net/1721.1/89854. 
Jagabathula, S. and P. Rusmevichientong. 2017. A nonparametric joint pricing and assortment 
optimization model. Management Science 63(9): 3128-3145. 
Kumar, R., A. Li, and W. Wang. 2018. Learning and optimizing through dynamic pricing. 
Journal of Revenue and Pricing Management 17: 63-77. 
Madireddy, M., R. Sundararajan, G. Doreswamy, M.H. Nia, and A. Mital. 2017. Constructing 
bundled offers for airline customers. Journal of Revenue and Pricing Management 16: 532 – 552. 
Newman, J., M. Ferguson, L. Garrow, and T. Jacobs. 2014. Estimation of choice-based models 
using sales data from a single firm. Manufacturing & Service Operations Management 16(2): 
184-197. 
Ødegaard, F. and J.G. Wilson. 2016. Dynamic pricing of primary products and ancillary services. 
European Journal of Operations Research 251: 586-599. 
Schmalensee, R. 1984. Gaussian demand and commodity bundling. The Journal of Business 
57(1-2): 211-230. 
Shao, S. and G. Kauermann. 2020. Understanding price elasticity for airline ancillary services. 
Journal of Revenue and Pricing Management 19: 74-82. 
Shukla, N., A. Kolbeinsson, K. Otwell, L. Marla, and K. Yellepeddi. 2019. Proceedings of the 
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining: 2174-
2182. 

21            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

 

  22 

CONFIDENTIAL & RESTRICTED 

Shulman, J.D. and X. Geng. 2013. Add-on pricing by asymmetric firms. Management Science 
59(4): 899-917. 
Smith, B. C. and C. W. Penn. 1988. Analysis of alternate origin-destination control strategies. 
Proceedings of the Twenty Eigth Annual AGIFORS Symposium. 
Talluri, K. and G. van Ryzin. 2004. Revenue management under a general discrete choice model 
of consumer behavior. Management Science 50(1): 15-33. 
Vinod, B., R. Ratliff, and V. Jayaram. 2018. An approach to offer management: Maximizing sales 
with fare products and ancillaries. Journal of Revenue and Pricing Management 17: 91-101.  
Wang, K.K. 2020. “Airline revenue management with dynamic offers: Bundling flights and 
ancillary services.” Master’s thesis, Massachusetts Institute of Technology, 
https://hdl.handle.net/1721.1/127110. 
Westermann, D. 2013. The potential impact of IATA’s New Distribution Capability (NDC) on 
revenue management and pricing. Journal of Revenue and Pricing Management 12(6): 565-568. 
Wittman, M.D. and P. Belobaba. 2018. Customized dynamic pricing of airline fare products. 
Journal of Revenue and Pricing Management 17(2): 78-90. 
Wittman, M.D. and P.P. Belobaba. 2019. Dynamic pricing mechanisms for the airline industry: a 
definitional framework. Journal of Revenue and Pricing Management 18: 100-106. 
 
 
  

22            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

 

  23 

CONFIDENTIAL & RESTRICTED 

 

Figure 1: Schematic of interactions between Dynamic Offer Generation and a traditional revenue 

management system 

 

Figure 2: Illustration of an example offer set consisting of two offers 𝑆 = {𝑂2 , 𝑂4}. In this bundled offer set, 

ancillary 𝑎1 (baggage) is bundled with the flight 𝑓1 , while ancillary 𝑎2 (internet) is an optional add-on. 

 
Figure 3: Composition and prices of offer sets 𝑆1 and 𝑆2 with one flight and one ancillary service. 
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Figure 4: Selected offer from Offer Set 𝑆1 (left panel) and Offer Set 𝑆2 (right panel) as a function of 

customer flight WTP and ancillary WTP 
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Figure 5: Optimal offer prices 𝑝1
∗ and 𝑝2

∗ in the single-flight, single-ancillary case as a function of mean 

flight WTP 𝜇𝑓 and bid price 𝜋𝑓  (left panel) and mean ancillary WTP 𝜇𝑎 and ancillary cost 𝑚𝑎  (right panel) 

 

Figure 6: Expected net revenue of the a la carte and bundled offer sets in the single-flight, single-ancillary 

case as a function of mean flight WTP 𝜇𝑓 and bid price 𝜋𝑓  (left panel) and mean ancillary WTP 𝜇𝑎 and 

ancillary cost 𝑚𝑎  (right panel) 
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Figure 7: Illustration of the unbounded price 𝑝1

∗ and the resulting bounded price 𝑝1  within the shaded 

bounded price range. 

 

 

Figure 8: Change in net revenue when either only Airline 1 or all airlines shift from Traditional RMS to 

DOG (left panel) or Dynamic A La Carte (right panel) 
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Figure 9: Offer purchases for Airline 1 when zero, one, or all airlines shift from Traditional RMS to DOG 

 

Figure 10: Change in Airline 1’s average net revenue per passenger (business or leisure) by days before 

departure when one or all airlines shift from Traditional RMS to DOG 

 

Figure 11: Airline 1’s change in net revenue from traditional RM under different business Q-multipliers (𝜃 

estimates) and constant leisure Q multiplier of 1.1 (all DOG airlines use the same Q-multipliers) 
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Figure 12: Airline 1’s change in net revenue from traditional RM under different leisure Q-multipliers (𝜃 

estimates) and constant business Q multiplier of 2.7 (all DOG airlines use the same Q-multipliers) 

 

Figure 13: Airline 1’s change in net revenue from traditional RM when only Airline 1 shifts from 

traditional RM to either Dynamic A La Carte pricing or DOG under different simulated ancillary choice 

behaviors 

Strategy 
Price Optimization Bundled 

Offers? Flight Itinerary Ancillary Services 

Traditional RMS Filed fares, not segmented Static, not segmented No 

Dynamic A La Carte Continuous, segmented Continuous, segmented No 

Dynamic Offer Generation Continuous, segmented Continuous, segmented Yes 

Table 1: Comparison of Dynamic Offer Generation to Traditional RMS and Dynamic A La Carte pricing 
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Airline 1 No DOG AL1 Only DOG All ALs DOG 

Net Revenue $2,858,341 
 $2,990,873 $2,905,600 

+4.6% +1.7% 

Net Yield $0.1218 
$0.1266 $0.1235 

+3.9% +1.4% 

Load Factor 82.06% 
82.63% 82.29% 

+0.6 pts +0.2 pts 

Table 2: Net revenue, net yield and load factor when one or all airlines shift from Traditional RMS to DOG 
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