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Fundamental Limits of Communication with Low
Probability of Detection

Ligong Wang, Gregory W. Wornell, and Lizhong Zheng

Abstract—This paper considers the problem of communication
over a discrete memoryless channel (DMC) or an additive white
Gaussian noise (AWGN) channel subject to the constraint that the
probability that an adversary who observes the channel outputs
can detect the communication is low. Specifically, the relative
entropy between the output distributions when a codeword is
transmitted and when no input is provided to the channel must
be sufficiently small. For a DMC whose output distribution
induced by the “off” input symbol is not a mixture of the output
distributions induced by other input symbols, it is shown that the
maximum amount of information that can be transmitted under
this criterion scales like the square root of the blocklength. The
same is true for the AWGN channel. Exact expressions for the
scaling constant are also derived.

Index Terms—Low probability of detection, covert communi-
cation, information-theoretic security, Fisher information.

I. INTRODUCTION

In many secret-communication applications, it is required
not only that the adversary should not learn the content of
the message being communicated, as in [1], but also that it
should not learn whether the legitimate parties are commu-
nicating at all or not. Such problems are often referred to
as communication with low probability of detection (LPD) or
covert communication. Depending on the application, they can
be formulated in various ways.

In [2] the authors consider a wiretap channel model [3],
and refer to this LPD requirement as stealth. They show that
stealth can be achieved without sacrificing communication rate
or using an additional secret key. In their scheme, when not
sending a message, the transmitter sends some random noise
symbols to simulate the distribution of a codeword. There are
many scenarios, however, where this cannot be done, because
the transmitter must be switched off when not transmitting
a message. Indeed, the criterion is often that the adversary
should not be able to tell whether the transmitter is on or off,
rather than whether it is sending anything meaningful or not.
It is the former criterion that is considered in the current paper.
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Our work is closely related to the recent works [4]–[6].
In [4] the authors consider the problem of communication
over an additive white Gaussian noise (AWGN) channel with
the requirement that a wiretapper should not be able to tell
with high confidence whether the transmitter is sending a
codeword or the all-zero sequence. It is observed that the
maximum amount of information that can be transmitted under
this requirement scales like the square root of the blocklength.1

In [5] the authors consider a similar problem for the binary
symmetric channel and show that the “square-root law” also
holds. One major difference between [4] and [5] is that in
the former the transmitter and the receiver use a secret key to
generate their codebook, whereas in the latter no secret key
is used. More recently, [6] studies the LPD problem from a
resolvability perspective and improves upon [4] in terms of
secret-key length.

In the current paper, we show that the square-root law holds
for a broad class of discrete memoryless channels (DMCs).2

Furthermore, we provide exact characterizations for the scaling
constant of the amount of information with respect to the
square root of the blocklength for DMCs as well as AWGN
channels, which is not done in [4]–[6].

We do not assume that the eavesdropper observes a noisier
channel than the intended receiver; instead, we assume that
they both observe the same channel outputs. Our reason
for dropping the wiretap structure is that, unlike in secret
communication where the assumption that the eavesdropper
observes a noisier channel allows one to obtain information-
theoretic secrecy without using a secret key, in LPD problems
the wiretap assumption does not bring essential new insights.
In particular, the square-root law does not rely on the wiretap
structure.3 Hence, by putting the eavesdropper in the same
position as the intended receiver, we allow ourselves to focus
on the essence of the LPD-communication problem, while at
the same time making our results more relevant in practice,
the latter because in applications the legitimate parties usually
cannot fully determine the statistical behavior of the eaves-
dropper’s channel. We also note that extension of most of the
results in the paper to wiretap channels is straightforward, part
of which can be seen in [6].

1We adopt the usual terminology to use “blocklength” to refer to the total
number of channel uses by a code. However, in the square-root case, the
channel codes are not “block codes” in the traditional sense, because they
cannot be used repeatedly. Indeed, repeated tramsmission would increase the
eavesdropper’s probability of detecting the communication.

2The achievability part of the square-root law, but not the converse, is
independently derived in [6].

3In fact, one can verify that the results in [4] hold without the wiretap
assumption; see Section V of the current paper for stronger results.
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Because we do not assume a wiretap structure, contrary to
[5], in our setting LPD communication is impossible without
a secret key. We assume that such a key is available, and are
not concerned with its length within the scope of this paper.

We assume that the receiver does know when the transmitter
is sending a message. This is a realistic assumption because
the transmitter and the receiver can use part of their secret key
to perform synchronization prior to transmission: They choose
a (large enough) number of input sequences of a certain length
such that each sequence induces an output distribution that is
sufficiently different from the output distribution when there
is no input to the channel, while on average these sequences
induce an output distribution that is sufficiently close to the
output distribution when there is no input. Using part of the
secret key they randomly pick one of these sequences, which
the transmitter sends to the receiver as a synchronization signal
before sending a message.

One technical difference between [4], [5] and the present
work is that the earlier works use total variation distance
to measure probability of detection whereas we use relative
entropy, as [2], [7]. Note that, when the relative entropy is
given, the total variation distance can be upper-bounded using
Pinsker’s inequality [8]. See [2] for further discussions on the
relation between relative entropy and detectability. In practice,
which of the two quantities is more relevant may depend on
the actual application,4 whereas for theoretical analysis relative
entropy is clearly easier to handle.

Summarizing the above discussions, we now briefly describe
our setting:
• We consider a DMC whose input alphabet contains an

“off” symbol. When the transmitter is switched off, it
always sends this symbol.

• The transmitter and the receiver share a secret key that
is sufficiently long.

• We assume that the adversary observes the same channel
outputs as the intended receiver, i.e., there is no wiretap
structure.

• The LPD criterion is that the relative entropy between
the output distributions when a codeword is transmitted
and when the all-zero sequence is transmitted must be
sufficiently small.

The square-root law has been observed in various scenarios
in steganography [9]–[11]. The setup in steganography that
is most related to our work is as follows: a data file called
the cover text is generated according to some distribution,
and a message must be concealed in this file subject to the
constraint that the file should look almost unchanged. This
is similar to the LPD setting in the sense that, when no
message is to be conveyed, the encoder should not do anything,
hence, in steganography the output is the original data file,
whereas in LPD communications the output is pure noise.
But steganography and LPD communications are essentially
different: in steganography the data file is generated first and

4The total variation distance would be the right quantity to look at if one
assumes equal probabilities for the transmitter sending and not sending a
message, because it would correspond to the minimum probability of detection
error by the eavesdropper. However, such an assumption is clearly unrealistic
in practice.

shown to the encoder, whereas in LPD communications noise
is added to the codeword after the latter is chosen by the
encoder. Hence the two types of problems require different
analyses.

The rest of this paper is arranged as follows. In Section II
we formulate the problem for DMCs and briefly analyze
the case where the “off” input symbol induces an output
distribution that can be written as a mixture of the other output
distributions; the next two sections focus on the case where
it cannot. In Section III we derive formulas for characterizing
the maximum amount of information that can be transmitted
over any DMC under the LPD constraint. In Section IV we
derive a simpler formula that is applicable to some DMCs.
In Section V we formulate and solve the problem for AWGN
channels. Finally, in Section VI we conclude the paper with
some remarks on future directions.

II. PROBLEM FORMULATION FOR DMCS

Consider a DMC of finite input and output alphabets X
and Y , and of transition law W (·|·). Throughout this paper,
we use the letter P to denote input distributions on X and the
letter Q to denote output distributions on Y . Let 0 ∈ X be the
“off” input symbol; i.e., when the transmitter is not sending a
message, it always transmits 0. Denote

Q0(·) ,W (·|0). (1)

Without loss of generality, we assume that no two input
symbols induce the same output distribution; in particular,
W (·|x) = Q0(·) implies x = 0.

A (deterministic) code of blocklength n for message setM
consists of an encoder M → Xn, m 7→ xn and a decoder
Yn →M, yn 7→ m̂. The transmitter and the receiver choose
a random code of blocklength n for message set M using
a secret key shared between them. The adversary is assumed
to know the distribution according to which the transmitter
and the receiver choose the random code, but not their actual
choice.5

The random code, together with a message M uniformly
drawn from M, induces a distribution Qn(·) on Yn. We
require that, for some constant δ > 0,6

D
(
Qn‖Q×n0

)
≤ δ. (2)

Here Q×n0 denotes the n-fold product distribution of Q0,
i.e., the output distribution over n channel uses when the
transmitter is off.

At this point, we observe that an input symbol x with
supp(W (·|x)) 6⊆ supp(Q0), where supp(·) denotes the support
of a distribution, should never be used by the transmitter.
Indeed, using such an input symbol with nonzero probability
would result in D

(
Qn‖Q×n0

)
being infinity. Hence we can

drop all such input symbols, as well as all output symbols that
do not lie in supp(Q0), reducing the channel to one where

supp(Q0) = Y. (3)

5Note that we assume that the eavesdropper observes the same channel
outputs as the intended receiver, so LPD communication is impossible with
deterministic codes.

6All logarithms in this paper are natural. Accordingly, information is
measured in nats.
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Throughout this paper we assume that (3) is satisfied. Note
that, for channels that cannot be reduced to one that satis-
fies (3), such as the binary erasure channel, nontrivial LPD
communication is not possible.

Our goal is to find the maximum possible value for log |M|
for which a random codebook of length n exists that satisfies
condition (2), and whose average probability of error is at
most ε. (Later we shall require that ε be arbitrarily small.) We
denote this maximum value by Kn(δ, ε).

We call an input symbol x redundant if W (·|x) can be
written as a mixture of the other output distributions, i.e., if

W (·|x) ∈ conv {W (·|x′) : x′ ∈ X , x′ 6= x} , (4)

where conv denotes the convex hull. As we shall show,
Kn(δ, ε) can increase either linearly with the blocklength n
or like

√
n, depending on whether 0 is redundant or not.

A. Case 1: input symbol 0 is redundant

This is the case where there exists some distribution P on
X such that

P (0) = 0 (5a)∑
x∈X

P (x)W (·|x) = Q0(·). (5b)

In this case, a positive communication rate can be achieved:

Proposition 1. If input symbol 0 is redundant, then for any
δ ≥ 0,

lim
ε↓0

lim
n→∞

Kn(δ, ε)

n
= max I(P,W ), (6)

where the maximum is taken over input distribution P that
satisfies (5).

Proof: First note that a random codebook generated IID
according to P that satisfies (5) yields D(Qn‖Q×n0 ) = 0. By
the standard typicality argument [12], when the rate of the code
is below I(P,W ), the probability of a decoding error can be
made arbitrarily small as n goes to infinity. Conversely, for a
codebook whose empirical input distribution does not satisfy
(5b), D(Qn‖Q×n0 ) grows linearly in n and is hence unbounded
as n goes to infinity. Finally, we check that any P that does
not satisfy (5a) is suboptimal. Indeed, for any (nontrivial) P
that satisfies (5b) but not (5a), let P ′ be P conditional on
X \{0}, then P ′ also satisfies (5b) and I(P ′,W ) > I(P,W ).

Example 1. Binary symmetric channel with an additional
“off” symbol.

Consider a binary symmetric channel with an additional
“off” symbol as shown in Fig. 1. Its optimal input distribution
for LPD communication is uniform on {−1, 1}, and its capac-
ity under the LPD constraint (2) is the same as its capacity
without this constraint, and equals 1−Hb(p), where Hb(·) is
the binary entropy function.

Fig. 1. A binary symmetric channel on the alphabet {−1, 1} with cross-
over probability p, with an additional “off” input symbol 0 which induces a
uniform output distribution.

Fig. 2. The binary symmetric channel with cross-over probability p.

B. Case 2: input symbol 0 is not redundant

This is the case where no P satisfying (5) can be found. It
is the focus of the next two sections. A simple example for
this case is the binary symmetric channel in Fig. 2.

We shall show that, in this case, Kn grows like
√
n. Let

L , lim
ε↓0

lim
n→∞

Kn(δ, ε)√
nδ

, (7)

where lim denotes the limit inferior. Note that both Kn(δ, ε)
and δ have unit nat, so L has unit

√
nat. We shall characterize

L in the next two sections. Note that, by definition, L can be
infinity, as it is in Case 1.

At this point, we provide some intuition why positive
communication rates cannot be achieved in this case. To
achieve a positive rate, a necessary condition is that a non-
vanishing proportion of input symbols used in the codebook
should be different from the “off” symbol 0. This would
mean that the average marginal distribution P̄ on X has a
positive probability at values other than 0 and, since Q0 cannot
be written as a mixture of output distributions produced by
nonzero input symbols, the average output distribution Q̄ must
be different from Q0 so D(Q̄‖Q0) > 0. This implies that
D(Qn‖Q×n0 ) must grow without bound as n tends to infinity,
violating the LPD constraint (2).

III. GENERAL EXPRESSIONS FOR L FOR ALL DMCS

In this section we derive computable expressions for L.
Our focus is on Case 2 where 0 is not redundant, though
some results also hold (in a trivial way) in Case 1 where 0 is
redundant. We first prove the following natural but nontrivial
single-letter formula.
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Theorem 1. For any DMC,

L = max
{Pn}

lim
n→∞

√
n

δ
I(Pn,W ) (8)

where the maximum is taken over sequences of joint distribu-
tions on X ×Y induced by input distributions Pn and channel
W , whose marginals Qn on Y satisfy

D(Qn‖Q0) ≤ δ

n
. (9)

Remark: Although the proof below does not guarantee that
the limit inferior in (8) can be replaced by the limit, this is
indeed the case, as we show at the end of this section.

Proof of Theorem 1: Proposition 1 shows that, when
input symbol 0 is redundant, L =∞. This is consistent with
Theorem 1. The rest of the proof focuses on Case 2 as in
Section II-B, where 0 is not redundant.

We first prove the converse part. This is done via Fano’s
inequality and manipulation of the information quantities.

Suppose there exists a sequence of random codes satisfying
(2), where, at blocklength n, the size of the codebook is
exp(Kn), and the error probability is εn which tends to zero
as n tends to infinity. By a standard argument using Fano’s
inequality [13],

Kn(1− εn)− 1 ≤ I(Xn;Y n). (10)

Let P̄n denote the average input distribution on X , averaged
over the codebook and over the n channel uses. We upper-
bound I(Xn;Y n) in the usual way:

I(Xn;Y n) =

n∑
i=1

I(Xn;Yi|Y i−1)

=

n∑
i=1

H(Yi|Y i−1)−H(Yi|Xn, Y i−1)

=

n∑
i=1

H(Yi|Y i−1)−H(Yi|Xi)

≤
n∑
i=1

I(Xi;Yi)

≤ nI(P̄n,W ), (11)

where the last step follows because, when the channel law is
fixed, mutual information is concave in the input distribution.
Combining (7), (10), and (11) yields

L ≤ lim
n→∞

√
n

δ
I(P̄n,W ). (12)

Next let Q̄n denote the average output distribution on Y .
Clearly, Q̄n is the output distribution induced by P̄n through
W . Recall that Qn denotes the n-fold output distribution on
Yn. Further let Qn,i denote the marginal of Qn on the ith

output Yi. Let Y n have distribution Qn, then (see also [14])

D
(
Qn‖Q×n0

)
= −H(Y n) + EQn

[
log

1

Q×n0 (Y n)

]
= −

n∑
i=1

H(Yi|Y i−1) + EQn
[
log

1

Q0(Yi)

]
= −

n∑
i=1

H(Yi|Y i−1) + EQn,i

[
log

1

Q0(Yi)

]
≥ −

n∑
i=1

H(Yi) + EQn,i

[
log

1

Q0(Yi)

]
=

n∑
i=1

D(Qn,i‖Q0)

≥ nD(Q̄n‖Q0) (13)

where the last step follows because relative entropy is convex.
This combined with (2) implies that

D(Q̄n‖Q0) ≤ δ

n
. (14)

Combining (12) and (14) proves the converse part of Theo-
rem 1.

We next prove the achievability part. To this end, we
randomly generate a codebook that satisfies (2) and then
show that, as the length of the codewords tends to infinity,
the probability of a decoding error can be made arbitrarily
small provided that the codebook has a size smaller than that
determined by the right-hand side of (8).

Let {Pn} be a sequence of input distributions such that the
induced output distributions {Qn} satisfy (9). For every n,
we randomly generate a codebook by choosing the codewords
IID according to Pn. The decoder performs joint-typicality
decoding.

It is clear that the output distribution on Y×n for this code
is Qn = Q×nn and that (2) is satisfied. It remains to show
that, provided that the size of the codebook is smaller than
exp

(
nI(Pn,W ) −

√
nεn
)

for some εn tending to zero as
n tends to infinity, the probability of a decoding error can
be made arbitrarily small. This cannot be shown using the
asymptotic equipartition property [12], or the information-
spectrum method [15], [16], because we are in a situation
where communication rate is zero. However, by slightly
varying the methods in [15], [16], or using the one-shot
achievability bounds as in [17], [18], we can obtain that the
sequence {Kn} is achievable provided

lim
n→∞

Kn√
n
≥ P - lim inf

n→∞

1√
n

log
W (Y n|Xn)

Q×nn (Y n)
, (15)

where P -lim inf denotes the limit inferior in probability,
namely, the largest number such that the probability that the
random variable in consideration is greater than this number
tends to one as n tends to infinity. Recalling (7), to prove the
achievability part of Theorem 1, it now suffices to show that
the right-hand side of (15) is lower-bounded by

lim
n→∞

√
nI(Pn,W ).



5

We show a slightly stronger result which is

1√
n

log
W (Y n|Xn)

Q×nn (Y n)
−
√
n I(Pn,W )→ 0 in probability

(16)
as n tends to infinity. To this end, first note

E
[

1√
n

log
W (Y n|Xn)

Q×nn (Y n)

]
=

1√
n
I(Xn;Y n) =

√
n I(Pn,W ).

(17)
It then follows by Chebyshev’s inequality that, for any constant
a > 0,

Pr

[∣∣∣∣ 1√
n

log
W (Y n|Xn)

Q×nn (Y n)
−
√
n I(Pn,W )

∣∣∣∣ ≥ a]
≤ 1

a2
var

(
1√
n

log
W (Y n|Xn)

Q×nn (Y n)

)
. (18)

Thus, to prove (16), it suffices to show

var

(
1√
n

log
W (Y n|Xn)

Q×nn (Y n)

)
→ 0 (19)

as n tends to infinity. To show (19), we first simplify this
variance to

var

(
1√
n

log
W (Y n|Xn)

Q×nn (Y n)

)
=

1

n

n∑
i=1

var

(
log

W (Yi|Xi)

Qn(Yi)

)
= var

(
log

W (Y |X)

Qn(Y )

)
. (20)

The variance on the right-hand side of (20) is upper-bounded
by the second moment:

var

(
log

W (Y |X)

Qn(Y )

)
≤ EPn◦W

[(
log

W (Y |X)

Qn(Y )

)2
]

= Pn(0) EQ0

[(
log

Q0(Y )

Qn(Y )

)2
]

+
∑
x6=0

Pn(x) EW (·|x)

[(
log

W (Y |x)

Qn(Y )

)2
]
. (21)

Here we use Pn ◦W to denote the joint distribution on X ×Y
induced by input distribution Pn through channel W . To prove
(19), it suffices to show that both terms on the right-hand side
of (21) tend to zero as n tends to infinity. For the first term,
note that (9) requires that

Qn → Q0 (22)

as n tends to infinity, so

lim
n→∞

log
Q0(y)

Qn(y)
= 0, ∀y ∈ Y, (23)

which further implies (recall that |Y| is finite so one can switch
the order of limit and expectation)

lim
n→∞

EQ0

[(
log

Q0(Y )

Qn(Y )

)2
]

= 0. (24)

Thus, since Pn(0) is bounded between 0 and 1, the first term
on the right-hand side of (21) tends to zero as n tends to
infinity. To analyze the second term on the right-hand side
of (21), recall our assumption that Q0 cannot be written as a
mixture of the other output distributions. Thus, to have (22)
we need

lim
n→∞

Pn(0) = 1, (25)

so
lim
n→∞

Pn(x) = 0, ∀x 6= 0. (26)

We next use (22) to obtain (recall again that |Y| is finite)

lim
n→∞

EW (·|x)

[(
log

W (Y |x)

Qn(Y )

)2
]

= EW (·|x)

[(
log

W (Y |x)

Q0(Y )

)2
]
, (27)

which is finite for every x ∈ X , x 6= 0, because Q0(y) > 0
for every y ∈ Y; recall (3). This combined with (26) implies
that the second term on the right-hand side of (21) tends to
zero as n tends to infinity.

We have now established that the right-hand side of (21)
tends to zero as n tends to infinity, which further establishes
(19) and, hence, (16). This concludes the achievability part of
Theorem 1.

Using Theorem 1 we derive the following computable
expression for L.

Theorem 2. For any DMC satisfying (3), whose “off” input
symbol 0 is not redundant, and which has at least one input
symbol other than 0,7 L is positive and finite, and is given by

L = max
P̃ : P̃ (0)=0

∑
x∈X P̃ (x)D ( (W (·|x)‖Q0)√√√√1

2

∑
y∈Y

(
Q̃(y)−Q0(y)

)2
Q0(y)

, (28)

where Q̃ is the output distribution induced by P̃ through W .

Before proving Theorem 2 we note that, for some channels,
such as the next example, (28) is very easy to compute.

Example 2. Binary symmetric channel.

Consider the binary symmetric channel in Fig. 2. Clearly,
the only possible choice for P̃ in (28) is P̃ (1) = 1. We
thus obtain the value of L as a function of p, which we
plot in Fig. 3. Not surprisingly, when p approaches 0.5, L
approaches zero, as does the capacity of the channel. It is
however interesting to notice that, when p approaches zero, L
also approaches zero, even though the capacity of the channel
approaches 1 bit per use. This is because, when p is very
small, it is very easy to distinguish the two input symbols 0
and 1 at the receiver end. Hence the LPD criterion requires
that the transmitter must use 1 very sparsely, limiting the
number of information bits it can send. The maximum of L
is approximately 0.94

√
nat, achieved at p = 0.083.

7By our assumption, this input symbol induces an output distribution that
is different from Q0, so the channel is not trivial.
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Fig. 3. The value of L for the binary symmetric channel in Fig. 2 as a
function of p.

Proof of Theorem 2: For every n, let

P̂n , argmax
Pn

I(Pn,W ) (29)

subject to

D(Qn‖Q0) ≤ δ

n
. (30)

Using the same argument as for (25), we have

lim
n→∞

P̂n(0) = 1, (31)

hence P̂n can be written as

P̂n = (1− µn)P0 + µnP̃n (32)

where P0 is the deterministic distribution with P0(0) = 1, P̃n
is a distribution with P̃n(0) = 0, and µn is positive and tends
to zero as n tends to infinity. Fix P̃n and consider P̂n given
by (32) as a function of µn, then

dI(P̂n,W )

dµn

∣∣∣∣∣
µn=0

=
∑
x∈X

P̃n(x)D(W (·|x)‖Q0), (33)

hence

I(P̂n,W ) = µn
∑
x∈X

P̃n(x)D(W (·|x)‖Q0) + o(µn), (34)

where the term o(µn) tends to zero faster than µn as n tends
to infinity.

The output distribution resulting from feeding P̂n given by
(32) into the channel W is

Q̂n = (1− µn)Q0 + µnQ̃n (35)

where Q̃n is the output distribution induced by input distri-
bution P̃n through W . The relative entropy D(Q̂n‖Q0) is
approximated by the Fisher Information [19] with respect to
parameter µn:

D(Q̂n‖Q0) =
µ2
n

2

∑
y∈Y

(
Q̃n(y)−Q0(y)

)2
Q0(y)

+ o(µ2
n), (36)

where the term o(µ2
n) tends to zero faster than µ2

n as n tends
to infinity. By (30) and (36), µn should have the form

µn =

√
δ

n
· 1√√√√1

2

∑
y∈Y

(
Q̃n(y)−Q0(y)

)2
Q0(y)

+o
(
n−1/2

)
. (37)

Plugging (37) into (34) yields

I(P̂n,W ) =

√
δ

n
·
∑
x∈X P̃n(x)D ( (W (·|x)‖Q0)√√√√1

2

∑
y∈Y

(
Q̃n(y)−Q0(y)

)2
Q0(y)

+ o
(
n−1/2

)
. (38)

When n tends to infinity, I(P̂n,W ) is dominated by the first
term on the right-hand side of (38), hence P̃n should tend
to the (not necessarily unique) distribution that maximizes
this term. Recalling Theorem 1, this completes the proof of
Theorem 2.

From the proof of Theorem 2 it follows that the limit inferior
in (8) can be replaced by the limit, yielding a more convenient
expression for L:

Corollary 1. For any DMC,

L = lim
n→∞

√
n

δ
max
Pn

I(Pn,W ) (39)

where the maxima are subject to (9).

Proof: We only need to show that the limit in (39) exists.
When input symbol 0 is redundant, this limit exists and is
infinity. When 0 is not redundant, the proof of Theorem 2
shows that this limit also exists and equals the right-hand side
of (28).

IV. A SIMPLER BUT LESS GENERAL EXPRESSION FOR L

In this section we consider channels that satisfy the follow-
ing condition.

Condition 1. There exists a capacity-achieving input distri-
bution that uses all the input symbols.

Note that Condition 1 implies that no input symbol is
redundant; in particular, 0 is not redundant.

We next give a simple upper bound on L under Condition 1.
Later we provide an additional condition under which this
bound is tight.

Theorem 3. Consider a DMC that satisfies Condition 1.
Denote its capacity-achieving output distribution by Q∗, then

L ≤

√
2 varQ0

(
log

Q0(Y )

Q∗(Y )

)
, (40)

where varQ0(·) denotes the variance of a function of Y where
Y has distribution Q0.

The proof of Theorem 3 utilizes the following lemma.

Lemma 1. Let Q∗ denote the capacity-achieving output dis-
tribution for a DMC W (·|·) of capacity C. Let P ′ be any input
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distribution, and let Q′ denote the output distribution induced
by P ′ through W . Then

I(P ′,W ) ≤ C −D(Q′‖Q∗), (41)

where equality holds if supp(P ′) ⊆ supp(P ∗) for some
capacity-achieving input distribution P ∗.

Proof: We have the following identity (see [20]):

I(P ′,W ) =
∑
x∈X

P ′(x)D(W (·|x)‖Q′)

=
∑
x∈X

P ′(x)EW (·|x)

[
log

W (Y |x)

Q′(Y )

]
=
∑
x∈X

P ′(x)

(
EW (·|x)

[
log

W (Y |x)

Q∗(Y )

]
− EW (·|x)

[
log

Q′(Y )

Q∗(Y )

])
=
∑
x∈X

P ′(x)D(W (·|x)‖Q∗)−D(Q′‖Q∗). (42)

By the Kuhn-Tucker conditions for channel capacity [8],

D(W (·|x)‖Q∗)) ≤ C (43)

where equality holds if x ∈ supp(P ∗). We hence have

C =
∑
x∈X

P ∗(x)D(W (·|x)‖Q∗)

≥
∑
x∈X

P ′(x)D(W (·|x)‖Q∗), (44)

where equality holds if supp(P ′) ⊆ supp(P ∗). Combining
(42) and (44) proves the lemma.

Proof of Theorem 3: Since the channel satisfies Condi-
tion 1, from Lemma 1 and Corollary 1 we have

L = lim
n→∞

√
n

δ
(C −minD(Qn‖Q∗)) , (45)

where the minimum is over Qn ∈ conv{W (·|x) : x ∈ X} sat-
isfying (9). To determine L, we need to find Qn that minimizes
D(Qn‖Q0) for a fixed D(Qn‖Q∗). To find an upper bound
on L, we drop the condition Qn ∈ conv{W (·|x) : x ∈ X}
to consider all distributions on Y . Then the minimum is well
known to be achieved by a distribution from the exponential
family connecting Q0 and Q∗ [21]:

Qn(y) =
Q0(y)1−λnQ∗(y)λn∑

y′∈Y Q0(y′)1−λnQ∗(y′)λn
, y ∈ Y (46)

for some λn ∈ [0, 1]. Indeed, if a distribution Qn minimizes
D(Qn‖Q∗) for some fixed D(Qn‖Q0), then it must minimize

(1− λn)D(Qn‖Q0) + λnD(Qn‖Q∗)

for some λn ∈ [0, 1]. This sum can be written as

(1− λn)D(Qn‖Q0) + λnD(Qn‖Q∗)
= D(Qn‖Rn)− log

∑
y′∈Y

Q0(y′)1−λnQ∗(y′)λn , (47)

where

Rn(y) ,
Q0(y)1−λnQ∗(y)λn∑

y′∈Y Q0(y′)1−λnQ∗(y′)λn
, y ∈ Y. (48)

Hence the best choice is Qn = Rn.
It remains to compute D(Qn‖Q0) and D(Qn‖Q∗), where

Qn is of the form (46), for large n. When n is large, Qn must
be close to Q0 and hence λn must be close to zero. In this case,
D(Qn‖Q0) is approximated by the Fisher Information [19]
with respect to parameter λn:

D(Qn‖Q0) =
λ2n
2
varQ0

(
log

Q0(Y )

Q∗(Y )

)
+ o(λ2n). (49)

This together with the requirement that Qn must satisfy (9)
implies that

λn ≤
√√√√√ 2δ

n varQ0

(
log

Q0(Y )

Q∗(Y )

) + o(n−1/2). (50)

Next we compute the derivative of D(Qn‖Q∗), with Qn given
in (46), with respect to λn evaluated at λn = 0 to be

dD(Qn‖Q∗)
dλn

∣∣∣∣
λn=0

= −varQ0

(
log

Q0(Y )

Q∗(Y )

)
. (51)

By Condition 1, there exists a capacity-achieving input distri-
bution that uses 0, so

lim
λn↓0

D(Qn‖Q∗) = D(Q0‖Q∗) = C. (52)

Hence

C −D(Rn‖Q∗) = λnvarQ0

(
log

Q0(Y )

Q∗(Y )

)
+ o(λn). (53)

Combining (45), (50), and (53) proves (40).
The bound (40) is tight for many channels, e.g., the binary

symmetric channel of Example 2. We next provide a sufficient
condition for (40) to be tight.

Let s be the |Y|-dimensional vector given by

s(y) = Q0(y)

(
log

Q∗(y)

Q0(y)
+ C

)
, y ∈ Y. (54)

Consider the following system of linear equations with un-
knowns αx, x ∈ X \ {0}:∑

x∈X\{0}

αx (W (·|x)−Q0) = s. (55)

Solving (55) is a simple problem in linear algebra.

Theorem 4. Suppose Condition 1 is satisfied. If (55) has a
nonnegative solution, then (40) holds with equality:

L =

√
2 varQ0

(
log

Q0(Y )

Q∗(Y )

)
. (56)

The intuition behind Theorem 4 is the following: the vector
s represents the tangent of the curve Qn(y) given by (46) as a
function of λn at λn = 0. That (55) has a nonnegative solution
means that s lies in the convex cone generated by {W (·|x)−
Q0 : x ∈ X \{0}}. This further implies that, for small enough
λn, Qn of the form given by (55) is a valid output distribution,
which, as can be seen in the proof of Theorem 3, guarantees
(40) to hold with equality. Along a different direction, we
provide below a proof utilizing Theorem 2.
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Proof of Theorem 4: We use Theorem 2 to prove
Theorem 4. Let {αx : x ∈ X \{0}} be a nonnegative solution
to (55), and let

A ,
∑

x∈X\{0}

αx. (57)

Then the following constitutes a valid choice for P̃ in (28):

P̃ (x) =
αx
A
, x ∈ X \ {0}. (58)

The corresponding Q̃ is given by

Q̃ =
∑

x∈X\{0}

αx
A
W (·|x)

= Q0 +
1

A

∑
x∈X\{0}

αx(W (·|x)−Q0)

= Q0 +
s

A
. (59)

We evaluate (28) for this choice of P̃ to obtain a lower bound
on L. We first compute the denominator, using (59):√√√√1

2

∑
y∈Y

(
Q̃(y)−Q0(y)

)2
Q0(y)

=

√√√√ 1

2A2

∑
y∈Y

s(y)2

Q0(y)

=

√√√√ 1

2A2

∑
y∈Y

Q0(y)

(
log

Q∗(y)

Q0(y)
+ C

)2

=

√
1

2A2
varQ0

(
log

Q∗(Y )

Q0(Y )

)
. (60)

We next compute the numerator:∑
x∈X\{0}

P̃ (x)D ( (W (·|x)‖Q0)

=
∑

x∈X\{0}

P̃ (x)
∑
y∈Y

W (y|x) log
W (y|x)

Q∗(y)

+
∑

x∈X\{0}

P̃ (x)
∑
y∈Y

W (y|x) log
Q∗(y)

Q0(y)

=
∑

x∈X\{0}

P̃ (x) · C +
1

A

∑
x∈X\{0}
y∈Y

αxW (y|x) log
Q∗(y)

Q0(y)

= C +
1

A

∑
y∈Y

log
Q∗(y)

Q0(y)

∑
x∈X\{0}

αxW (y|x)

= C +
1

A

∑
y∈Y

log
Q∗(y)

Q0(y)

(
AQ0(y) + s(y)

)
(61)

= C −D(Q0‖Q∗) +
1

A

∑
y∈Y

s(y) log
Q∗(y)

Q0(y)

= C − C +
1

A

∑
y∈Y

Q0(y) log
Q∗(y)

Q0(y)

(
log

Q∗(y)

Q0(y)
+ C

)
=

1

A
varQ0

(
log

Q∗(y)

Q0(y)

)
, (62)

where (61) follows from (55). Combining Theorem 2, (60),
and (62) yields

L ≥

√
2 varQ0

(
log

Q∗(y)

Q0(y)

)
. (63)

Recalling Theorem 3, both (40) and (63) must hold with
equality.

Example 3. A k-ary uniform-error channel.

Consider a channel with X = Y = {0, 1, . . . , k − 1} and

W (y|x) =

{
1− p, y = x
p

k − 1
, y 6= x

(64)

where p ∈ (0, 1). Clearly, its capacity-achieving output distri-
bution Q∗ is uniform. It is easy to check that (55) has solution

αx =
p(1− p)

(
log((k − 1)(1− p)− log p)

)
(k − 1)(1− p)− p

, x ∈ X \ {0}
(65)

which is nonnegative. We can hence use Theorem 4 to obtain

L =
√

2v(k, p) (66)

where

v(k, p) = (1− p)
(

log
1

1− p

)2

+ p

(
log

k − 1

p

)2

−
(

(1− p) log
1

1− p
+ p log

k − 1

p

)2

. (67)

While one might speculate that (56) holds, for example, for
all symmetric channels, this is, perhaps surprisingly, not the
case. The following example demonstrates this.

Example 4. A ternary symmetric channel.

Consider a ternary symmetric channel where X = Y =
{0, 1, 2} and

W (·|0) = [0.37 0.01 0.62] (68a)
W (·|1) = [0.62 0.37 0.01] (68b)
W (·|2) = [0.01 0.62 0.37]. (68c)

The right-hand side of (56) yields 0.66 for this channel, but
one can check that, in fact, L = 0.62. This is because, as Fig. 4
shows, the exponential family connecting Q0 and Q∗ in the
neighborhood of Q0 does not lie in the set of possible output
distributions conv{W (·|x) : x ∈ X}, or, roughly equivalently,
s does not lie in the convex cone generated by {W (·|x) −
Q0 : x ∈ X \ {0}}.

V. AWGN CHANNELS

Consider an AWGN channel described by

Y = X + Z, (69)

where X ∈ R is the channel input, Y ∈ R is the channel
output, and Z ∈ R has the zero-mean Gaussian distribution
of variance σ2, denoted N

(
0, σ2

)
, and is independent of X .

Let the “off” input symbol be 0, so Q0 is also N
(
0, σ2

)
. The

encoder and decoder generate a random code as in Section II
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Fig. 4. The ternary symmetric channel in Example 4. The black triangle
depicts the set of possible output distributions. The blue curves are the
exponential families connecting the conditional output distributions and the
capacity-achieving output distribution Q∗. The exponential family connecting
Q0 and Q∗ (as the other two exponential families) has a part that lies outside
the black triangle, which is why (56) does not hold for this channel.

subject to the LPD constraint (2), and L is again defined as in
(7). Note that we do not impose any average- or peak-power
constraint on the input, but imposing such constraints will not
affect the value of L due to the stronger LPD constraint (2).8

Theorem 5. For an AWGN channel,

L = 1
√

nat (70)

irrespectively of the noise power σ2.

The proof of Theorem 5 is divided into the converse part
and the achievability part, and is given below.

A. Converse for Theorem 5

Examining the proof of Theorem 1, we see that its converse
part is valid for the AWGN channel. Hence

L ≤ max
{Pn}

lim
n→∞

√
n

δ
I(Pn,W ) (71)

where the maximum is taken over sequences of joint distribu-
tions on (X,Y ) ∈ R×R induced by input distribution Pn via
the channel law W resulting from the relation (69), such that
the marginal distributions Qn for Y satisfy

D(Qn‖Q0) ≤ δ

n
. (72)

Let the second moment of the distribution Pn be denoted
ρn. It is well known that the zero-mean Gaussian maximizes

8The LPD constraint requires that the average input power tend to zero as
n tends to infinity, hence rendering any additional average-power constraint
inactive. As for peak-power constraints, our choice of input distribution to
achieve L is zero-mean Gaussian with vanishing variance. The influence of
cutting the tail of such a distribution to meet any peak-power constraint will
vanish as n tends to infinity.

I(Pn,W ) among all distributions of the same second moment
(see, e.g., [13]), so

I(Pn,W ) ≤ 1

2
log
(

1 +
ρn
σ2

)
. (73)

Because X and Z are independent, the second moment of the
distribution Qn is ρn + σ2, yielding

D(Qn‖Q0) = −h(Qn) + EQn

[
log

1

Q0(Y )

]
= −h(Qn) + EQn

[
log
(√

2πσ2 e
Y 2

2σ2

)]
= −h(Qn) +

1

2
log
(
2πσ2

)
+ EQn

[
Y 2

2σ2

]
= −h(Qn) +

1

2
log
(
2πσ2

)
+
ρn + σ2

2σ2
·

≥ −1

2
log
(
2πe(ρn + σ2)

)
+

1

2
log
(
2πσ2

)
+
ρn + σ2

2σ2

=
ρn
2σ2
− 1

2
log

ρn + σ2

σ2
, (74)

where h(·) denotes the differential entropy, and where the
inequality follows because the zero-mean Gaussian distribu-
tion maximizes differential entropy among all distributions
of the same second moment. It follows from (74) that, for
D(Qn‖Q0) to approach zero as n tends to infinity, ρn must
tend to zero and

D(Qn‖Q0) ≥ ρ2n
4σ4

+ o(ρ2n). (75)

Combined with (72), this implies

ρn ≤ 2σ2

√
δ

n
+ o(n−1/2). (76)

Plugging this into (73) we obtain

I(Pn,W ) ≤ 1

2
log
(

1 +
ρn
σ2

)
≤ ρn

2σ2

≤
√
δ

n
+ o(n−1/2). (77)

Combining (71) and (77) yields

L ≤ 1. (78)

This concludes the proof of the converse part of Theorem 5.

B. Achievability for Theorem 5

The achievability proof of Theorem 1 relies on the finiteness
of the input and output alphabets, therefore it is not applicable
to the AWGN channel. Indeed, Theorem 1 may not hold
for a general continuous-alphabet channel. However, for the
AWGN channel, we only need to prove an achievability result
for Gaussian input distributions, which is much simpler than
proving it for arbitrary input distributions.
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For blocklength n, we randomly generate a codebook such
that every codeword is independent of every other codeword,
and is IID N (0, ρn) with

ρn , 2σ2

√
δ

n
. (79)

We first check that the LPD condition is met. Indeed, the
output sequence is IID N

(
0, ρn + σ2

)
, so

D
(
Qn
∥∥Q×n0

)
= nD

(
N
(
0, ρn + σ2

)
‖N
(
0, σ2

))
= n

(
ρn
2σ2
− 1

2
log

ρn + σ2

σ2

)
≤ n

(
ρn
2σ2
− 1

2

(
ρn
σ2
− ρ2n

2σ4

))
=
nρ2n
4σ4

=
n

4σ4
·

(
2σ2

√
δ

n

)2

= δ, (80)

where for the inequality we use the fact

log(1 + a) ≥ a− a2

2
, a ≥ 0. (81)

We next look at the maximum number of nats that can be
reliably transmitted with this code. Similar to the DMC case,
we can show that the sequence {Kn} is achievable if (15)
holds, except that now Qn and W are density and conditional
density, respectively. The ratio between W and Q×nn in (15)
can be evaluated as

W (yn|xn)

Q×nn (yn)

=

n∏
i=1

1√
2πσ2

e−
(yi−xi)

2

2σ2

n∏
i=1

1√
2π(ρn + σ2)

e
− y2i

2(ρn+σ2)

=

(
ρn + σ2

σ2

)n
2

exp

( ∑n
i=1 y

2
i

2(ρn + σ2)
−
∑n
i=1 z

2
i

2σ2

)
. (82)

Hence

1√
n

log
W (Y n|Xn)

Q×nn (Y n)
=

√
n

2
log

(
ρn + σ2

σ2

)
+

1√
n

( ∑n
i=1 Y

2
i

2(ρn + σ2)
−
∑n
i=1 Z

2
i

2σ2

)
.

(83)

The mean of (83) satisfies

E
[

1√
n

log
W (Y n|Xn)

Q×nn (Y n)

]
=

√
n

2
log

(
ρn + σ2

σ2

)
+

1√
n

(∑n
i=1 E

[
Y 2
i

]
2(ρn + σ2)

−
∑n
i=1 E

[
Z2
i

]
2σ2

)

=

√
n

2
log

(
ρn + σ2

σ2

)
+ 0

≥
√
n

2

(
ρn
σ2
− ρ2n

2σ4

)
=
√
δ − δ√

n
, (84)

where we again use (81). By (84) we know that

lim
n→∞

E
[

1√
n

log
W (Y n|Xn)

Q×nn (Y n)

]
≥
√
δ. (85)

It remains to show that

lim
n→∞

var

(
1√
n

log
W (Y n|Xn)

Q×nn (Y n)

)
= 0. (86)

Then, by Chebyshev’s inequality, we can establish

P − lim inf
n→∞

1√
n

log
W (Y n|Xn)

Q×nn (Y n)
≥
√
δ (87)

and hence
L ≥ 1. (88)

Using (83), the variance in (86) can be computed as:

var

(
1√
n

log
W (Y n|Xn)

Q×nn (Y n)

)
= var

(
1√
n

( ∑n
i=1 Y

2
i

2(ρn + σ2)
−
∑n
i=1 Z

2
i

2σ2

))
=

1

n

n∑
i=1

var

(
Y 2
i

2(ρn + σ2)
− Z2

i

2σ2

)
= var

(
Y 2

2(ρn + σ2)
− Z2

2σ2

)
= E

[(
Y 2

2(ρn + σ2)
− Z2

2σ2

)2
]

=
1

4(ρn + σ2)2
E
[(
X2 + 2XZ − ρn

σ2
Z2
)2]

≤ 1

4σ4
E
[(
X2 + 2XZ − ρn

σ2
Z2
)2]

. (89)

After expanding the square inside the expectation in (89), one
can verify that the expectation of every summand tends to zero
as n tends to infinity, establishing (86), and hence (87) and
(88), proving the achievability part of Theorem 5.

VI. CONCLUDING REMARKS

A DMC in practice often represents discretization of a
continuous-alphabet channel. For example, Figs. 1 and 2 can
result from two different discretizations of the same AWGN
channel. In this sense, our results suggest that the optimal
discretization may depend heavily on whether there is an LPD
requirement or not.

In practice, LPD communication systems of positive data
rates often can be implemented even when the channel model
does not seem to allow positive rates. Indeed, in such appli-
cations, the concern is often not that the transmitted signal
should be sufficiently weak, but rather that it should have
a wide spectrum and resemble white noise [22]. We believe
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that one of the reasons why such systems may work is that
realistic channels often have memory. For example, on a
channel whose noise level varies with a coherence time that
is longer than the length of a codeword, the transmitter and
the receiver can use the adversary’s ignorance of the actual
noise level to communicate without being detected. One way
to formulate this scenario is to assume that the channel has
an unknown parameter that is fixed. This is discussed for
the binary symmetric channel in [23]. Further addressing this
scenario is part of ongoing research.
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