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Abstract—By extending the traditional store-and-forward
mechanism, network coding has the capability to improve a
network’s throughput, robustness, and security. Given the fun-
damentally different packet processing required by this new
paradigm and the inflexibility of hardware, existing solutions are
based on software. As a result, they have limited performance
and scalability, creating a barrier to its wide-spread adoption.
By leveraging the recent advances in programmable networking
hardware, in this paper we propose a random linear network cod-
ing data plane written in P4, as a first step towards a production-
level platform. Our solution includes the ability to combine the
payload of multiple packets and of executing the required Galois
field operations, and shows promise to be practical even under the
strict memory and processing constraints of switching hardware.

Index Terms—Network Coding, Random Linear Network Cod-
ing, Programmable Switches, P4

I. INTRODUCTION

Network Coding [1] is a field in information theory that
breaks with the traditional assumption that information relays
in networks (e.g., routers) separately carry different informa-
tion flows. In Network Coding (NC), to the traditional store-
and-forward mechanism we confer the capability to network
nodes of combining packets. Specifically, intermediate nodes
can mix the information of several packets to generate new
packets that are coded combinations of the input. This prin-
ciple of operation has been demonstrated to introduce several
benefits, including improved throughput [2], robustness against
network losses [3], and security [4].

Network coding requires, however, substantially different
packet processing from the one available on today’s IP-
oriented network equipment. The development of a network
coding data plane is faced with non-trivial challenges related
to the complex processing logic involved. First, the need to
combine the payload of multiple packets. Traditional packet
processing in networking gear is restricted to header manip-
ulation, and payload processing is typically left out of the

critical path and offloaded to specialized equipment (consider
a DPI middlebox, for instance). Second, the complex Galois
field operations involved in network coding, including finite
field multiplication, are challenging to run effectively on a
switch, due to its processing and memory constraints. The
requirement of data plane algorithms to process packets at the
switch’s line rate exacerbate the challenge.

So far, this difficulty was insurmountable: deploying NC
on traditional networking hardware was not possible given
the incapability to change or extend its operation to meet the
requirements of this new paradigm. Existing implementations
are, therefore, based on software, with the inevitable limita-
tions on performance and scalability. Even high-performance
solutions that use specialized hardware, such as FPGA- [5] or
GPU-based solutions [6], achieve throughputs that are many
orders of magnitude slower than a hardware data plane (e.g.,
[7], [8]). In addition, these solutions target specific systems,
making them difficult to port. We argue that the lack of a
network coding data plane with performance and scalability
equivalent to its IP counterpart, and the lack of portability of
existing solutions to be two of the fundamental barriers for
the wide-spread adoption of network coding.

Fortunately, the emergence of production-level pro-
grammable switches [7]–[9], and of a high-level language such
as P4 [10] to program them, creates exciting new opportunities
for architectural innovation in networking. NC can be seen
as a timely example, as per recent proposals for joint efforts
between the COmputing In the Network (COIN) and Network
Coding (NWCRG) IETF/IRTF research groups [11]. The
community now has the opportunity to explore new network
architectures and protocols and to deploy them in their produc-
tion networks. Further, programmability enables architectural
evolution in-situ, by means of data plane reconfiguration in
the field. For our specific purpose, this (r)evolution makes
it possible, for the first time, to build a high-performance,
production-quality network coding data plane. Programmable
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Fig. 1. Illustration of the encoding (a), recoding (b), and decoding (c) operations in Random Linear Network Coding (RLNC). Each block indicates where
(sender/switch/receiver) the respective operation can be performed in our solution. Our data-plane implements a generation-based RLNC, performing coding
and decoding operations over generations, that is, blocks of pre-determined size of the transmitted file (see Sec. 2 of [12]).

switching chips can process several billion packets per second,
which is orders of magnitude higher throughput than existing
NC solutions are capable of. The use of the P4 language and
the increasing number of compilers available also facilitates
portability across different software and hardware targets (with
minor to no modification to the original programs).

In this paper, we leverage the recent advances in pro-
grammable networking hardware and present the design and
implementation of a network coding data plane in P4. Our
solution performs random linear network coding [13] (RLNC).
The choice for this NC approach is based on its practicality: by
decentralizing code generation computation, RLNC avoids the
drawback of other NC approaches. Our preliminary evaluation
sheds light on some of the trade-offs involved in a practical
data plane implementation of NC.

II. A PRIMER ON NETWORK CODING

Network coding allows a network node to combine several
input packets into one coded packet. In Linear Network
Coding, encoding consists of linear operations performed over
a finite field. The process is as follows.

Data carried in packets’ payload are interpreted as elements,
called symbols, over a finite field GF (2m) of size m. The
encoding process (Figure 1(a)) consists in combining the
packets’ symbols from incoming packets by using a vector
of coefficients ĉ, called the encoding vector, chosen from
GF (2m). A linear combination is then performed for every
symbol position i through the following operation: Yk =∑n

i=1 ci ∗ Xi
k. The decoding process (Figure 1(c)) allows

reconstruction of the original packets from the coded ones. To
recover the transmitted symbols, a receiver node waits until
it has enough independent linear combinations (i.e. degrees
of freedom) and then performs Gaussian elimination to solve
the resulting linear system. Specifically, assuming a node has

a sufficient number of coding vectors and coded symbols
(ĉm, Ym), it can invert the matrix of the coefficients and
resolve the system of linear equations X = C−1∗Y to recover
the original symbols Xk. Finally, recoding (Figure 1(b)) is
the process where coded (or partially decoded) symbols are
re-encoded without first being fully decoded.

A. Generation-Based, Random Linear Network Coding

Linear network coding assumes centralized computation of
the coding coefficients, limiting its applicability. However, it
is possible to perform network coding in a fully distributed
way with Random Linear Network Coding (RLNC) [13],
by allowing the nodes to choose their linear coefficients
independently and uniformly at random over all elements of
the finite field. The encoding vector is then transmitted as
an additional header with the coded symbols in the payload.
By choosing coefficients randomly from a sufficiently large
finite field it is possible to guarantee coded symbols to be
linearly independent with a very high probability (GF (28)
is usually enough in practice [12]). Recoding increases the
probability for different nodes in the network to transmit
different combinations towards a receiver. The size of the
Galois field and the number of packets to combine affect
the computational complexity of the decoding process, the
decoding delay and the packet overhead (to transport the
coding vectors). A practical technique to bound these effects
consists in grouping packets into blocks, called generations,
over which coding and decoding are performed. The gener-
ation size defines the number of symbols over which coding
is performed. A large generation size improves throughput by
increasing the probability of generating independent combi-
nations, while increasing decoding complexity and network
overheads. Generally, the optimal trade-off between through-



put and complexity/overhead depends on the network topology
and on the specific application [12].

III. NETWORK CODING IN THE DATA PLANE

The design of a network coding solution requires i) a
protocol for end-hosts and relay nodes in the network to carry
and exchange coding parameters, and ii) specific modules in
the switches to implement the coding operations. With regard
to the former, we define a packet format enabling the im-
plementation of a generation-based RLNC protocol exchange.
With respect to the latter, we design software modules for
the data-plane of a P4-programmable switch implementing the
coding and recoding functions. The design of the switch’s
modules copes with the limited expressiveness of the P4
language [14].

A. Packet Format

The packet format used by our generation-based RLNC
protocol contains two headers, an inner and an outer header,
carried over Ethernet frames. The inner header carries
a wire representation of the symbols according to the
encoding proposed in [15]. This header contains symbols
(and coding vectors when present) prepended, among others,
by information about the number of symbols encoded in the
packet and the type of packet (either coded or uncoded).
The outer header contains coding parameters set by an
exchange between sender and receiver nodes, according to the
guidelines in [16], which are then used by switches for NC
operation. The proposed outer header specifies the generation
identifier, and the generation, finite field and symbol sizes.

B. Buffering and Packet Replication

In real networks, packets of the same generation are not
carried synchronously over the same links. They experience
different propagation and queuing delays, can traverse differ-
ent paths, and are thus received by each node at different
times, and in potentially different order. Therefore, symbols
and coding vectors from a certain generation need to be stored
by a switch until a sufficient number of symbols is received,
to trigger coding of packet(s) from that generation.

In our design, this is achieved by a buffering module shared
across different generations, and indexed by the generation
identifier. By limiting the maximum number of generations
concurrently stored and the generation size, we bound the
memory resources required by this component. Moreover, a
generation is flushed from a switch’s buffer upon the reception
of an acknowledgement issued by a receiver to signal the
successful decoding of that generation.

When this buffer contains a number of symbols that is
greater or equal to the generation size, linear combinations of
the symbols of the current generation can be produced by the
switch. The reception of the last packet of a generation thus
triggers the creation of one or more linearly coded packets
from the current generation. The process produces coded
symbols (and coefficients, if recoding is performed) which are

inserted into the inner header of one or more coded packets.
The outer header is kept the same as the original input packets.

In our design, the number of linear combination to be
generated and transmitted is a parameter which can be re-
configured at run-time, in the field, through the control plane.
This flexibility is important, as the number of packets required
for a receiver to successfully decode a generation may vary
with network conditions.

Algorithm 1 Russian Peasant Multiplication
Input α, β ∈ GF (2m), s is bit-length of the factors α

and β, δ is an irreducible polynomial for GF (2m)

1: procedure MULTIPLYGFELEMENTS(α, β)
2: product← 0
3: for i = 0 to m− 1 do . unrolled in m action calls
4: product← product⊕ (−(β ∧ 1) ∧ α)
5: mask ← ((α >> (m− 1)) ∧ 1)
6: α← (α << 1)⊕ (δ ∧mask)
7: β ← β >> 1
8: end for
9: return product

10: end procedure

C. Finite Field Arithmetic

Computing a linear combination of the symbols of a gen-
eration requires i) selecting uniformly at random coefficients
in the finite field, ii) multiplying the symbols by the selected
coefficients, and iii) summing the resulting factors (Section II).
Hence, RLNC requires the generation of random numbers
and arithmetic operations to be performed in a Galois field
GF (2m).

The selection of coefficients can be achieved by leveraging
hardware random number generators, which are widely present
across commercial switching chips. Finite field addition is a
regular polynomial addition that can be performed by standard
bitwise-xor. Multiplication in GF (2m) is, however, more
challenging to implement, since it requires reducing, through
a modulo operation, the product of the two factors by an
irreducible polynomial over the finite field.
Due to its relevance for several applications, including cryp-
tography and error detection/correction, efficient software
techniques [17] for finite field multiplication have been pro-
posed. In our finite field arithmetic module we feature two
multiplication techniques with different characteristics: one
compute-intensive, and one memory-intensive. The first is a
Standard Field Multiplication algorithm [18], shown in Alg.
1, which can be implemented with simple shift and add
operations. This is an iterative algorithm which operates on
the two factors bit by bit. The second technique is based on
pre-computed lookup tables. It exploits the property that every
element x 6= 0 ∈ GF (2m) can be represented uniquely by
power to a primitive element δ, so x ≡ δi, where i is the dis-
crete logarithm of x with respect to δ. Because of this property,
the multiplication of two elements α, β ∈ GF (2m) can be
rewritten like mul(α, β) ≡ antilog((log(α)+ log(β))modQ)



where Q is the size of the finite field. The log/antilog values
can be pre-computed based on the primitive element δ, and
be stored in tables for lookup at packet processing time (e.g.,
512B are required to store these tables for the case under
analysis GF (28)). With this technique, a multiplication in
GF (2m) involves 3 table look-ups, 1 addition and 1 modulo
operation. As the modulo operation is computationally expen-
sive and may not be supported by some targets, we avoid it
by employing an optimization based on [19]. The end result
is presented in Alg. 2.

Algorithm 2 Log/Antilog Tables Multiplication
Input α, β ∈ GF (2m), Q ≡ 2m is the field size,

log/antilog values are stored in registers
1: procedure MULTIPLYGFELEMENTS(α, β)
2: if α == 0||β == 0 then
3: return 0
4: end if
5: sum← log[α] + log[β]
6: if sum ≥ Q− 1 then
7: sum← sum− (Q− 1)
8: end if
9: return antilog[sum]

10: end procedure

IV. THE RLNC.P4 PROGRAM

This section presents the main modules of our network
coding switch, implemented in P4-161. Figure 2 illustrates
how the different modules are mapped to the processing
pipelines of a PISA-like switch architecture. Packets are first
buffered in the ingress pipeline. For each incoming packet
the (coded or uncoded) symbols in the packet payload, as
well as the coefficients (only carried with coded and recoded
symbols), are buffered into the switch’s stateful memories. If
the buffer that maintains that packet’s generation is not yet
filled, i.e., if it does not contain enough symbols to start coding
the current generation, the packet is dropped. Otherwise, the
ingress pipeline sets the necessary metadata for the Packet
Replication Engine (PRE) to produce the necessary packet
copies (the exact number is configured by the control plane),
through the use of a multicast primitive.

Each packet replica goes through the egress pipeline where
different coefficients are selected through a random number
generator primitive. Then, the egress pipeline executes the
arithmetic module to create the coded symbols. The coding
process is different whether or not the buffered symbols are
coded or uncoded. As illustrated in Fig. 1, while encoding
involves computing only linear combinations of the symbols,
recoding linearly combines also the encoding vector. Two
different modules are available to perform the necessary
arithmetic over finite fields, implementing the two multipli-
cation algorithms presented in Sec. III. This module can be
configured at code generation time. Packets carrying linear

1Available open-source at https://github.com/netx-ulx/NC.

Fig. 2. Packet processing of our network coding switch on a PISA-like
architecture.

combinations for a generation are generated and forwarded
by the switch until an acknowledgement packet is received.
This acknowledgement is generated by the receiver once it has
received a sufficient number of linearly independent symbols
that allows decoding that generation. Once the switch receives
an acknowledgment packet, it stops producing linear combina-
tions for this generation, and frees up the corresponding buffer
space.

A. Discussion and lessons learned

Our program fully captures the targeted coding behavior.
Yet, there are target-specific factors that may limit its appli-
cability and/or affect its functionality. We discuss these here,
with the aim to potentially identify design patterns useful to
the evolution of the language and/or the related targets.

Target-specific. Parsing Payload. The exact number of
symbols and coefficients in each packet is unknown at
compile-time. These fields are extracted by the program into
P4 headers at run-time, in order to be buffered in the ingress
pipeline. Moreover, although the maximum number of sym-
bols in each packet is defined by the packet format, the length
of the coding vector for each encoded symbol varies with
the generation size. This typically results in a large header
vector, which contrasts with the limited size of the headers’
bus on P4-programmable targets, that is usually much smaller
than the typical packet payload (e.g., a few kbits in PISA
architectures [9]). For protocols with small payloads, it is
possible to treat the symbols as headers, as in our solution.
However, when the payload is large, either the target needs to
have a wider header vector bus, or it becomes necessary to pre-
process packets to split them into smaller fragments. This is
something we plan to investigate as future work. Any potential
application must therefore consider packet sizes accordingly
to the target’s ability to extract the necessary information into
the header vector.

Packet Replication. Several packet copies may be generated
by the PRE and edited by the egress pipeline to encode
a buffered generation. To avoid the throughput penalty of
recirculating packets, our program leverages the multicast
primitive available in several targets for this purpose. One
issue in some targets is that the so-generated packet copies
may need to be forwarded through different output ports.



Fig. 3. CPU usage (in %) for the two algorithms with generation size 8 and
4 1-byte symbols per packet.

Language-specific. We developed a code-generating tem-
plate to tailor the program with respect to the various coding
parameters, namely the maximum number of concurrently sup-
ported generations, the generation size, etc. This dependency
on coding parameters primarily affects the size of the program,
yet it has also influenced its software design.

Buffering is implemented through target’s externs for state-
ful memory, namely registers, which are supported by several
P4-programmable targets. This requires memory indexed by
generation identifiers to be dynamically-allocated for storing
symbols and coefficients. However, registers’ length and cell
size must be specified at compile-time. Besides, read/write
operations on registers are methods invoked on the register
itself rather than calls to a generic method with a register’s
name as parameter. Given these constraints, we implemented
buffering with a single register partitioned among generations.
This approach enables a dynamic allocation of the buffer
space to different generations (and results in a less verbose
and more modular program). Yet, this design choice requires
complementary registers to store base and offset pointers
per generation. This poses the question of whether or not
P4-programmable architectures should expose anything more
specific than a general purpose register.

Coding and Recoding operations depend on the generation
size, which defines the number of operands in each linear com-
bination to be computed. Every multiplication and addition
requires similar action calls. The code-generating template we
developed automates this process, but this has an impact on
code readability and re-usability. Would a set of primitives or
annotations for loops, e.g., to be unrolled by a preprocessor
[20], produce a less error-prone and easier-to-read code?

V. EVALUATION

We ran a preliminary evaluation of our RLNC P4 program
on the reference P4 software switch [21]. The experiments
were run on a bare-metal Dell PowerEdge R440 server with
2x Intel Xeon Silver 4114, 2.2GHz, and 32GB of memory.
For all the reported results, ten independent experiments have

Fig. 4. Packet Loss in (%) for coding (-cod) and recording (-recod) with
different configurations of generation size Gx and symbols per packet Sy.

been executed and average values are plotted. Through this
first evaluation, we have tried to assess i) differences in the
performance between the two multiplication algorithms we
implemented, ii) the impact of coding parameters on network
throughput, and iii) the throughput penalty of performing
recoding.

A. Program Size

Coding parameters, including the generation size and the
number of symbols in the coded packets, affect the size of the
code in the buffering and arithmetic modules of the program.
Therefore, we have explored different configurations of these
parameters and measured the size of the corresponding P4
programs. Both multiplication algorithms, presented in Sec.
III, have been tested, as they have different requirements (Alg.
1 is compute-intensive whereas Alg. 2 is memory-intensive).
Overall, Alg. 1 produces more compact programs. Yet, we
have found the compiled version of programs featuring Alg.
1 to be up to 3x orders of magnitude larger than the Alg.
2 counterpart. We are still investigating the root cause of
this difference. We are trying to understand if a different
programming style would reduce it, and are also looking
deeper at the target compiler. One possibility is the fact that
this algorithm performs bit-by-bit operations that may be a
poor fit to the target architecture. Given this issue and the fact
that this algorithm consumes 20% higher CPU (see Fig. 3),
we have focused the rest of our performance analysis on Alg.
2.

B. NC Switch Performance

Across all the tested coding configurations, we stressed the
RLNC program to data-rates that start introducing packet loss.
In particular, Fig. 4 illustrates that either dealing with a larger
generation size (e.g., 16 or 32) or recoding start generating
high packet loss rates. This was expected since an increase x of
the generation size determines an increase of the coding vector
per each symbol and, by consequence, an increase of a factor



of x∗n on the number of required arithmetic operations, where
n is the number of symbols per packet. Recoding also suffers
from larger generation sizes, since it requires parsing and
storing more elements and performing additional arithmetic
over the coding vectors.
Overall, these preliminary results show that generation size
and recoding affect the performance of our switch’s data-plane.
In practice, however, large generation sizes are not common
across network coding applications, as they increase the com-
putation complexity of the decoding process and introduce
large packet overheads, as we also observed. Furthermore, the
impact of both factors can be considerably reduced by leverag-
ing both sparse coding techniques and coding over overlapping
generations, optimizations which we aim to investigate in our
future work.

VI. FINAL REMARKS

The networking research community has for a long time
struggled with the ossification of the Internet [22], a result
of the interplay of its original design and the vested interests
of competing stakeholders. Addressing its various problems
was limited to incremental changes, stifling innovation and
precluding disruptive architectural advances. Several research
projects proposed clean-slate redesigns of the Internet ar-
chitecture, but they have been restricted to software-based
implementations and small research testbeds. As a result, so
far these radical designs have all shared the same fate: as there
was no clear way to migrate from the research testbed to a
large-scale, high-performance production network, they have
not left the research lab. We believe programmable ASICs and
P4 to allow, for the first time, the implementation of radical
architectural approaches in high-speed hardware, improving
their prospect for Internet-wide deployment (e.g., through
backwards-compatible frameworks such as Trotsky [23]). We
made a first attempt in [24], [25], targeting NDN. The work
we presented here is inserted in this same line but targets a
different paradigm – network coding – with fundamentally
diverse challenges.
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