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Provably Safe Robot Navigation with Obstacle
Uncertainty

Brian Axelrod, Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract—As drones and autonomous cars become more
widespread it is becoming increasingly important that robots can
operate safely under realistic conditions. The noisy information
fed into real systems means that robots must use estimates of
the environment to plan navigation. Efficiently guaranteeing that
the resulting motion plans are safe under these circumstances
has proved difficult. We examine how to guarantee that a
trajectory or policy is safe with only imperfect observations
of the environment. We examine the implications of various
mathematical formalisms of safety and arrive at a mathematical
notion of safety of a long-term execution, even when conditioned
on observational information. We present efficient algorithms
that can prove that trajectories or policies are safe with much
tighter bounds than in previous work. Notably, the complexity of
the environment does not affect our method’s ability to evaluate
if a trajectory or policy is safe. We then use these safety checking
methods to design a safe variant of the RRT planning algorithm.

I. INTRODUCTION

A. Motivation

Safe and reliable operation of a robot in a cluttered envi-
ronment can be difficult to achieve due to noisy and partial
observations of the state of both the world and the robot. As
autonomous systems leave the factory floor and become more
pervasive in the form of drones and self-driving cars, it is
becoming increasingly important to understand how to design
systems that will not fail under these real-world conditions.
While it is important that these systems be safe, it is also
important they do not operate so conservatively as to be
ineffective. They must have a strong understanding of when
they take risks so they can avoid them, but still operate
efficiently.

While most previous work focuses on robot state uncer-
tainty, this paper focuses on safe navigation when the locations
and geometries of these obstacles are uncertain. We focus
on algorithms that find safety “certificates”—easily verifiable
proofs that the trajectory or policy is safe. We examine
two implications of the algorithms. First, the computational
complexity of reasoning about uncertainty can be quite low.
Second, the mathematics surrounding robot safety can have
surprising behavior. We demonstrate how these tools can be
used to design a motion planner guaranteed to give only safe
plans, and inform the design of more general systems that
make decisions under uncertainty.

B. Problem Formulation

We consider two settings. In the off-line setting we have
a fixed set of information about the environment and are
searching for an open-loop trajectory. In the on-line setting the

Fig. 1: The desired trajectory found by the planner shown with
its specialized shadows that certify the probability of collision
as less than 0.26%.

robot has access to a stream of observations and can change
its trajectory as a function of new information; the problem
is to find a policy, a function from observations to actions,
that allow the robot to adapt to changing circumstances. We
show that different notions of safety are required for the two
cases to ensure that the robot can guarantee a low probability
of collision throughout its entire execution.

Safety in the offline setting amounts to staying out of
regions likely to be contained within obstacles, and can be
analyzed by computing geometric bounds on obstacles for
which we have only partial information. Safety in the online
setting builds on offline safety by requiring that the robot
respect a contract with respect to the aggregate lifetime risk
of operation while always having a guaranteed safe trajectory
available to it.

We develop a general framework for analyzing safety and
provide an example of applying this framework to a specific
model of random geometry. We wish to emphasize that this
framework can be applied to a wide variety of models beyond
the example shown here.

Our framework operates in generality in Rn and assumes



that obstacles are polytopes in Rn. In this paper we focus
on examples of typical robotic domains in R2 and R3. We
ensure safety by verifying that the swept volume of a robot’s
trajectory is unlikely to collide with any obstacles. These swept
volumes can be computed geometrically, or, for dynamical
systems, via SOS programs [10].

We say that a trajectory, a map from time to robot configura-
tions Q, τ : [0,∞)→ Q is ε−safe if the swept volume of the
robot along trajectory τ intersects an obstacle with probability
less than ε. Formally, if A is the event that the swept volume
of τ intersects an obstacle, then τ is ε−safe in the offline sense
if P (A | τ) ≤ ε.

We say that a policy, a map from observation history O, state
history H and time to a trajectory τ , π : O×H×[0,∞)→ τ is
ε−safe if, under all sequences of observations, P (A | π) ≤ ε.
This notion of safety will be referred to as policy safety; it is
a departure from previous models of robot safety, capturing
the notion of a contract that the total risk over the lifetime of
the system always be less than ε.

The requirement that the safety condition hold under all
observations sequences is more conservative than the natural
definition of P (A | π). It crucial to prevent undesirable
behavior that can “cheat” the definition of safety; this is
discussed in detail in section IV.

C. Related Work

Planning under uncertainty has been studied extensively.
Some approaches operate in generality and compute complete
policies [7] while operate online, computing a plausible open-
loop plan and updating it as more information is acquired [13].

Generating plans that provide formal non-collision (safety)
guarantees when the environment is uncertain has proven
difficult. Many methods use heuristic strategies to try to ensure
that the plans they generate are unlikely to collide. One
way of ensuring that a trajectory is safe is simply staying
sufficiently far away from obstacles. If the robot’s pose is
uncertain this can be achieved by planning with a robot whose
shape is grown by an uncertainty bound [2]. Alternatively, if
the obstacle geometry is uncertain, the area around estimated
obstacles can be expanded into a shadow whose size depends
on the magnitude of the uncertainty [6, 9].

Another approach focuses on evaluating the probability that
a trajectory will collide. Monte-Carlo methods can evaluate the
probability of collision by sampling, but can be computation-
ally expensive when the likelihood of failure is very small [5].
When the uncertainty is restricted to Gaussian uncertainty on
the robot’s pose, probabilistic collision checking can yield
notable performance improvements [16][12][11].

Another perspective is finding a plan that is safe by con-
struction. If the system is modeled as a Markov Decision
Process, formal verification methods can be used to construct
a plan that is guaranteed to be safe [3][4]. Recent work
on methods that are based on signal temporal logic (STL)
model have also uncertainty in obstacle geometry. With PrSTL
Sadigh and Kapoor [15] explicitly model uncertainty in the

environment to help generate safe plans but offer weaker
guarantees than our work.

D. Contributions

This paper makes three contributions. the first is a formal
definition of online safety that provides risk bounds on the
entire execution of a policy.

The second contribution is an algorithm for efficiently
verifying offline safety with respect to polytopes with Gaussian
distributed faces (PGDFs) that is then generalized to the online
case. In comparison to previous methods, the quality of the
resulting bound is not dependent on the number of obstacles
in the environment. The presented algorithms produce a cer-
tificate, which allows another system to efficiently verify that
the actions about to be taken are safe. For a maximal collision
probability of ε, the runtime of the algorithm grows as log 1

ε
making it efficient even for very small ε’s.

The third contribution is a modification to the RRT algo-
rithm that generates safe plans. For any fixed ε, the resulting
planner is guaranteed to only return trajectories for which the
probability of failure is less than ε. We note that for n obsta-
cles, the runtime of the RRT is increased only by a log n log 1

ε
factor, which suggests that reasoning about uncertainty can
come at a low computational cost. A result of running this
algorithm is shown in figure 1.

II. MODEL FOR RANDOM GEOMETRY

Previous work on planning under uncertainty has often
relied on the notion of a shadow [6, 9], which is a volume
that represents an uncertain estimate of the pose of an object
and the space that it may occupy. A proper shadow is likely
to contain the true object; and even if the exact location of the
object is not known, it is sufficient to avoid the obstacle’s
shadow in order to avoid the true obstacle. A shadow is
essentially the geometric equivalent of a confidence interval.

In order to provide strong guarantees about the safety of
robot trajectories we first formalize this notion of a shadow.

Definition 1. A set X is said to be an ε−shadow of a random
obstacle O if P (O ⊂ X) ≥ 1− ε.

To be able to generate shadows with desired properties, we
need to place some restrictions on the class of distributions
from which obstacles are drawn.

One way to arrive at a distribution on the shape and position
of obstacles is to imagine that sensor data is obtained in
the form of point clouds in which the points are segmented
according to the face of the obstacle to which they belong.
Then, the points belonging to a particular obstacle face can be
used to perform a Bayesian linear regression on the parameters
of the plane containing the face; given a Gaussian prior on the
face-plane parameters and under reasonable assumptions about
the noise-generation process, the posterior on the face-plane
parameters will also be Gaussian [1, 14].

Recalling that a polytope X is the intersection of halfspaces,
we can define a distribution over the parameters of polytopes
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Fig. 2: An example of the region defined by theorem 1. The
darker region is the ”mean” obstacle and the orange region
contains 95% of the obstacles generated by these parameters.

with a fixed number of faces. For x represented in homoge-
neous coordinates, a polytope X can be represented as

X =
⋂
nTi x ≤ 0 .

When these normal vectors ni are drawn from a Gaussian
distributionN (µi,Σi), we will call this a polytope with Gaus-
sian distributed Faces (PGDF) with parameters µi,Σi. We do
not assume that the normal vectors are drawn independently
and show that an independence assumption would yield little
additional tightness to our bounds.

Using the PGDF model, we will be able to identify shadow
regions that are guaranteed to contain the obstacle with a
probability greater than 1− ε in most cases of interest. There
are degenerate combinations of values of ε, µ, and Σ for
which there is no well-defined shadow (consider the case
in which the means of all the face-planes go through the
origin, for example). In addition, there are some cases in
which the bounds we use for constructing regions are not tight
and so although a shadow region exists, we cannot construct
it. Details of these cases are discussed in the proofs in the
supplementary material.

If we consider a single face, theorem 1 identifies a shadow
region likely to contain the corresponding half-space.

Theorem 1. Consider ε ∈ (0, 1), n ∼ N (µ,Σ) such that
the combination of ε,µ,Σ is non-degenerate. There exists a
shadow S s.t. {x | nTx ≥ 0} is contained within S with
probability at least 1− ε.

While a detailed constructive proof is deferred to the supple-
mental materials, we present a sketch here. First, we identify
a sufficiently high probability-mass region of half-spaces n,
which, by construction corresponds to a linear cone C in the
space of half-space parameters. We then take the set of x’s in
homogeneous coordinates that these half-spaces contain. The
set of points not contained by any half-space is the polar cone
of C. Converting back to non-homogeneous coordinates yields
conic sections as seen in figure 2.

In lemma 1 we generalize this notion to polytopes. For an
obstacle with m faces, we can take the intersection of the
resulting ε

m -shadows. A union bound guarantees that the prob-
ability of any face not being contained in its corresponding
region is less than ε. Thus the probability that the polytope

P (A) = 0.5 P (AC) = 0.5

Fig. 3: Both the blue and black squares are valid 0.5-shadows,
while the union of the two yellow areas is the set of points
with probability at least 0.5 of being in the square.

Fig. 4: The blue square represents the “mean” estimated
obstacle. Each outline in the red set represents a different
probability shadow of the obstacle.

is not contained in this region is less than ε. In other words,
lemma 1 constructs an ε shadow.

Lemma 1. Consider a polytope defined by
⋂
i

nTx ≤ 0. Let

Xi be a set that contains the halfspace defined by ni with
probability at least 1− εi (for example as in theorem 1). Then⋂
i

Xi contains the polytope with probability at least 1−
∑
i

εi.

A. Computing Obstacle Shadows

We will use theorem 1 and lemma 1 to construct regions
which we can prove are shadows. Before we continue, how-
ever, we note that obstacle shadows need not be unique, or
correspond to the set of points with probability greater than
ε of being inside the obstacle. Consider the case where a
fair coin flip determines the location of a square as shown
in figure 3. While there have been previous attempts to
derive unsafe regions for normally-distributed faces [15], this
lemma is stronger in that it constructs a set that is likely
contain the obstacle as opposed to identifying points which
are individually likely to be inside the obstacle.

Recall that a PGDF obstacle is a random polytope with m
sides, that is, the intersection of m halfspaces. We can provide
a shadow for each halfspace using theorem 1, and use lemma



1 to combine their intersection into a shadow for the estimated
obstacle. The result is a ε−shadow for a PGDF obstacle. An
sequence of such increasingly tight ε−shadows is shown in
figure 4.

Lemma 2. If an obstacle is PGDF with nondegenerate pa-
rameters and m sides, we can construct an ε-shadow as the
intersection of the ε

m shadows of each of its sides.

B. Shadows as Safety Certificates

Above we showed that for a given ε, we can easily compute
a shadow for an obstacle under our model. Since a shadow is
likely to contain the real object, the non-intersection of an
ε−shadow with the swept volume of a trajectory guarantees
that the probability of colliding with the given obstacle is less
than ε. Theorem 2 generalizes this notion to multiple obstacles
using a union bound.

Theorem 2. Let X be the volume of space that the robot may
visit during its lifetime. If for a given set of obstacles, indexed
by i, and their corresponding εi shadows, X does not intersect
any shadow, then the probability of collision with any obstacle
over the lifetime of the system is at most

∑
εi.

Proof: Please see the supplementary material.
It is important that theorem 2 does not depend on anything

but the intersection of the swept volume with the obstacle
shadows; it is independent of the trajectory’s length and of how
close to the shadow it comes. The guarantees of the theorem
hold regardless of what the robot chooses to do in the space
not occupied by a shadow.

Computing a shadow requires solving a relatively simple
system of equations; then given a set of shadows and their
corresponding ε’s, a collision check between the visited states
and the shadows is sufficient to verify that the proposed
trajectory is safe. This implies that safety is easy to verify
computationally, potentially enabling redundant safety checks
without much computational power. Alternatively, a secondary
system can verify that the robot is fulfilling its safety contract.

One potential concern is the tightness of theorem (2). If
the union bound is loose, it may force us to fail to certify
trajectories that are safe in practice. The union bound used in
the proof of theorem (2) assumes the worst case correlation.
If we assume that the system is to certify that collisions are
rare events, and the events are independent, the union bound
here ends up being almost tight.

Lemma 3. Given n obstacles and their shadows, if
• the events that each obstacle is not contained in its

shadow are independent,
• the probability that obstacles are not contained in their

shadows is less than ε, and
• ε = O(

√
δ
n )

then the difference between the true probability of a shadow
not containing the object, and the union bound in theorem 2
is less than δ.

Proof: Please see the supplementary material.
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Fig. 5: This figure overlays several possible instances of the
real obstacles given a single observation. The trajectory is
much more likely to collide with a draw of the bottom left
obstacle than the bottom right one. The two obstacles do not
affect the safety of the trajectory equally.

Another way of interpreting lemma 3 is that if the proba-
bility of failure is small, the union bound is close to tight.

Theorem 2 highlights a problem with systems that do not
search for a set of optimal shadows. If we allocate equal ε’s
for every obstacle, then we are forced to pay as much for
an object far away and irrelevant to the trajectory as we are
for obstacles close to the trajectory. Figure 5 suggests that
it is optimal to have large shadows with very small ε’s for
such irrelevant obstacles, and larger ε’s for obstacles that may
present significant risk. Doing so requires finding a good ε-
shadow pair for every obstacle. We present an algorithm that
finds this optimal certificate in the next section.

III. ALGORITHM FOR FINDING OPTIMAL SHADOWS

We will verify that trajectories are safe by finding a set
of shadows that proves the swept volume of the trajectory
is unlikely to collide with an obstacle. In order to minimize
the number of scenarios in which a trajectory is actually safe,
but our system fails to certify it as such, we will search for
the optimal set of shadows for the given trajectory, allowing
shadows for distant obstacles to be larger than those for
obstacles near the trajectory. In order to understand the search
for shadows of multiple obstacles we first examine the case
of a single obstacle.

A. Single Obstacle

For a single obstacle with index i, we want to find the
smallest εi risk bound, or equivalently, largest shadow that
contains the estimate but not the volume of space that the robot
may visit. That is, we wish to solve the following optimization
problem:

minimize
ε∈(0,1)

ε

subject to shadow(ε) ∩X = ∅

If we restrict ourselves to the shadows obtained by lemma 2,
a shadow with a larger ε is strictly contained in a shadow with
a smaller ε. This implies that the intersection is monotone in
ε, allowing us to solve the above problem with a line search



Iteration 1 Iteration 2
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Fig. 6: A line search for the maximal shadow. The shadow
“grows” and “shrinks” until it contacts the green space visited
by the robot.

as shown in figure 6. While we restrict our attention to the
general case, in certain cases, such as where X is a collection
of points, this optimization can be solved analytically.

Essentially we are growing the size of the shadow until it
almost touches the states that the robot can visit, X .

We define FIND MAXIMAL SHADOW(εp,µi,Σi, V ),
which takes the precision εp, PGDF parameters µi,Σi, and
swept volume V , and uses a standard bisection search to
find and return the largest ε for which the shadows are
non-intersecting with V . This requires O(log 1/εp) calls of
intersection—proportional to the number of digits of precision
required. The runtime grows very slowly as the acceptable
probability of collision goes to zero.

B. Multiple Obstacles

In order to extend the algorithm to multiple obstacles we
imitate the union bound in theorem 2. We run the line search
to determine the largest allowable ε for every obstacle, and
sum the resulting ε’s to get the ultimate bound on the risk.
The psuedocode is presented in algorithm 1.

This algorithm is embarrassingly parallel because every εi
can be computed independently without increasing the total
amount of required computation. To obtain a total accumulated
numerical error less than δ we only need to set εp = δ/n.
If ω is the complexity of a single call of intersection, our
algorithm runs in O(ωn log n log 1/δ) time. However, since
the search for shadows can be done in parallel in a work-
efficient manner, the algorithm can run in O(ω log n log 1/δ)
time on Θ(n) processors.

Algorithm 1 FIND MAXIMAL SHADOW SET

Input: εp,µi,Σi, V
Output: ε, s.t. the path generating volume V is at least ε safe

and each shadow is less than εp away from the minimal
ε for which this class of bound may be obtained.

1: for i = 1...n do
2: εi = FIND MAXIMAL SHADOW(εp,µi,Σi, V )
3: end for
4: return

∑
εi

If the intersection check is implemented with a collision
checker then finding a safety certificate is only log factors
slower than running a collision check–suggesting that systems
robust to uncertainty do not necessarily have to have signifi-
cantly more computational power.

Furthermore, since the algorithm computes a separate ε for
every obstacle, obstacles with little relevance to the robot’s
actions do not significantly affect the resulting risk bound.
This allows for a much tighter bound than algorithms which
allocate the same risk for every obstacle.

C. Experiments

We can illustrate the advantages of a geometric approach by
certifying a trajectory with a probability of failure very close
to zero. For an allowable chance of failure of ε, the runtime
of sample-based, Monte-Carlo methods tends to depend on
1
ε as opposed to log 1/ε. Monte-Carlo based techniques rely
on counting failed samples requiring them to run enough
simulations to observe many failed samples. This means that
they have trouble scaling to situations where ε approaches
zero and failed samples are very rare. For example, Janson
et al.’s method takes seconds to evaluate a simple trajectory
with ε = 0.01, even with variance reduction techniques [5].

We demonstrate our algorithm on a simple domain with
ε = 2.2 × 10−5. Our algorithm required just 6 calls to a
collision checker for each obstacle. We also demonstrate that
our algorithm can certify trajectories which cannot be certified
as safe with shadows of equal sizes. Figures 7 and 8 show the
problem domain. Figure 7 shows that the trajectory cannot be
certified as safe with a uniform risk assigned to each obstacle.
Figure 8 shows the shadows found by our algorithm that prove
the trajectory is safe.

IV. ONLINE SAFETY

The bounds in the previous section do not immediately gen-
eralize to a setting where the robot acquires more information
over time and can be allowed to change its desired trajectory.
Additional care must be taken to ensure that the system cannot
“trick” the notion of safety used, and not honor the desired
contract on aggregate lifetime risk of the execution instance.
Consider the case where, if a fair coin turns up as heads the
robot takes a path with a 1.5ε probability of failure and it
takes a trajectory with a 0.5ε probability of failure otherwise.
This policy takes an action that is unsafe, but the probability of
failure of the policy is still less than ε. Furthermore, the history
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Fig. 7: Computing the optimal equal allocation of probabilities
fails to certify the safety of the path.
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Fig. 8: Computing the optimal probability for each shadow
allows us to successfully verify that the trajectory is safe.

of actions is also important in ensuring aggregate lifetime
safety. In figure 9 we illustrate a example of how the robot
can always be committed to some trajectory that is ε-safe but
have more than an ε probability of collision over the lifetime
of the execution.

Figure 9 highlights the need to ensure low probability of
failure under all sets of observations. If this scenario is run
multiple times the failure rate will be much greater than
acceptable. In order to propose an algorithm that allows the
robot to change the desired trajectory as a function of a stream
of information, we develop an alternative criteria for safety
that accounts for risks as they are about to be incurred. We
let pt denote the probability of collision at time t, given
the information available at time t, given that we follow the
trajectory currently predicted by the policy π. We note that
since the information itself is random, pt is a random variable
for future times. We say that a policy π is absolutely safe if
for all times t, equation (1) is satisfied. The expectation in
the integral is with respect to the information available at the
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(a) At first the robot chooses the thin black trajectory which is has a
probability of collision of only 0.3. It is more likely to collide with
the first obstacle than the remaining obstacles.
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(b) After observing that it had not collided with the first obstacle, it
readjusts the plan to follow the bold trajectory so that the probability
of collision is still less than 0.3. However, a system that follows this
policy will collide with probability 0.51 even though at every point
it was following a trajectory with probability of collision less than
0.3. In other words, for this set of observations O, P (A|π,O) > 0.3.
A system that is allowed to change its action after seeing additional
information (in this case the fact that it did not collide) must properly
account for the risk already taken.

Fig. 9: Tricking ”safety” by changing paths once more infor-
mation is acquired. Note that even knowing that the system
did not collide can serve as information.

current time t.
∞∫
0

E[pt | π]dt =

t∫
0

ptdt+

∞∫
t

E[pt | π] dt ≤ ε (1)

We note that the
t∫
0

ptdt can be evaluated as an accumulation

with standard numerical techniques for evaluating integrals.

The second term,
∞∫
t

E[pt | π] dt, is exactly the probability

that the remaining part of the trajectory will collide and can
be evaluated with the method for solving the offline safety
problem.

A. Absolute Safety vs Policy Safety

Algorithm 2 provides a method for performing safe online
planning in the case that the PGDF parameters are updated
during execution. While it shows that absolute safety can be
verified efficiently, it is not clear how to efficiently verify
policy safety. However, unlike absolute safety, policy safety
(introduced in section I-B) is a very direct condition on
aggregate lifetime probability of collision and can be easier to
interpret. In this section we compare policy safety to absolute
safety in order to identify when they are equivalent.



Algorithm 2 FIND MAXIMAL SHADOWS ONLINE

Input: intersectsi, εp, t, {pt′ |∀t′ ∈ [0, t]}
Output: ε, s.t. ε is greater than the sum cumulate risk taken

before the current time t and the future risk. ε is at most
εp away from the minimal ε for which a bound of this
class may be obtained.

1: ε1 =
t∫
0

ptdt

2: ε2 = FIND MAXIMAL SHADOW SET(εp,µ1...n,Σ1...n)
3: return ε1 + ε2

First we show that absolute safety is a strictly stronger
condition than policy safety in theorem 3. This comes by
integrating the probability of failure over time to get the
total probability of failure. Since the absolute safety condition
in equation (1) must always be satisfied, regardless of the
observation set, the probability of failure for that information
set will always be sufficiently small.

Theorem 3. If a policy is absolutely safe, then it is also safe
in the policy safety sense.

Proof: Please see the supplementary material.
Absolute safety, however, is not always equivalent to policy

safety. The key difference lies in how the two conditions allow
future information to be used. Absolute safety requires that the
system always designate a safe trajectory under the current
information while policy safety allows the robot to postpone
specifying a complete, safe trajectory if it is certain it will
acquire critical information in the future.

In order to formalize when policy safety and absolute safety
are equivalent, we introduce the notion of an information
adversary. An information adversary is allowed to (1) see the
observations at the same time as the agent, (2) access the
policy used by the agent, and (3) terminate the agent’s infor-
mation stream at any point. Policy safety under an information
adversary is guaranteed by the policy safety conditions if the
information stream can stop naturally at any point. Theorem
4 shows that policy safety with an information adversary is
equivalent to absolute safety.

Theorem 4. A policy that is safe at all times under an
information adversary is also absolutely safe.

Proof: Please see the supplementary material.

B. Experiments

We demonstrate a simple replanning example based on the
domain presented in figure 8. Once the robot gets halfway
through, it will receive a new observation that helps it refine
its estimate of the larger, second obstacle. This allows it to
shrink the volume of the shadow corresponding to the same
probability and certify a new, shorter path as safe. This new
path is shown in figure 10. It takes this new trajectory without
taking an unacceptable amount of risk.
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Fig. 10: Once the robot reached the top of the old trajectory
it got a new observation regarding the second obstacle. This
allows it to shrink the shadow around the second obstacle and
take the less conservative path that is shown above.

Algorithm 3 SAFE RRT

Input: εsafe, εp, t, qs, qf ,µ1...n,Σ1...n

Output: A sequence of waypoints from qs to qf , such that the
trajectory going through these waypoints has a probability
of less than εsafety of collision.

1: tree = new TREE(qs)
2: for iteration = 1...n do
3: xrand = RANDOM STATE
4: xnear = NEAREST NEIGHBOR(TREE)
5: xnew = EXTEND(xnear, xrand)
6: X = GET TRAJECTORY(tree, xnear, xnew)
7: risk =
8: FIND MAXIMAL SHADOW SET(X, εp,µ1...n,Σ1...n)
9: if risk ≤ εsafe then

10: ADD CHILD(tree, xnear, xnew)
11: end if
12: end for
13: return tree

V. ENABLING SAFE PLANNING USING SAFETY
CERTIFICATES

The safety certification algorithms we presented above can
be used for more than just checking safety. It can enable
safe planning as well. We present a modification to the RRT
algorithm that restricts output to only safe plans [8]. Every
time the tree is about to be expanded, the risk of the trajectory
to the node is computed. The tree is only grown if the risk of
the resulting trajectory is acceptable.



Fig. 11: A tree of safe trajectories branching from the red dot
in interior of the box. Equally sized shadows are shown for
reference.

We note that it is not necessary to check the safety of the
entire trajectory every time the tree is extended. Since the
bounds for each obstacle are determined by a single point
in the trajectory, it is sufficient to consider the following
two risks: the trajectory from the root of the tree to xnear
and the trajectory from xnear to xnew. Finally we note that
analyzing probabilistic completeness is quite different in the
risk constrained case from the original case. We do not
believe this method is probabilistically complete. Unlike the
deterministic planning problem, the trajectory taken to reach a
point affects the ability to reach future states—breaking down
a crucial assumption required for RRTs to be probabilistically
complete.

We demonstrate the safe-RRT algorithm on a point robot
trying to escape a box. The box has two exits. While the robot
can safely pass through the larger exit, it cannot safely pass
through the smaller exit. The planner is run to only return
paths with a probability of failure less than 0.5%. Figure 11
shows a safe tree from the red dot inside the box to the red
dot above the box. Figure 1 shows just the ultimate trajectory
with its corresponding shadows that certify the probability of
failure as less than 0.26%. Note that some shadows did not
extend all the way to the trajectory as their risk was already
below the numerical threshold.

The experiment shown in figure 11 demonstrates offline-
safety. If the robot were given additional information during
execution, we could use the equations for online-safety to
re-run the RRT with the new estimates of obstacles while
preserving the safety guarantee.

VI. CONCLUSION

We presented a framework to compute shadows, the geo-
metric equivalent of a confidence interval, around observed
geometric objects. Our bounds are tighter than those of previ-
ous methods and, crucially, the tightness of the bounds does
not depend on the number of obstacles. In order to achieve this
tightness we rely on computing a bound specific to a trajectory
instead of trying to identify a generic “safe” set.

We present offline and online variants of algorithms that can
verify safety with respect to the shadows identified above for
both trajectories and policies. The online method highlights
nuances and potential issues with a mathematical definition
of safety, and presents a strong, but still computationally
verifiable notion of safety. These algorithms do not have a
computational complexity much larger than a collision check,
and are only a O

(
log n log 1

ε

)
factor slower than a collision

check for n obstacles and an ε−safety guarantee. Finally the
output of these algorithms is easy to verify, allowing the output
to serve as a safety certificate.

These safety certification algorithms are an important not
only in ensuring that a given action is safe, but also in enabling
the search for safe plans. We demonstrate an extension to the
RRT algorithm that only outputs safe plans.

Future work includes using other models of random geom-
etry. A model for occupancy would match the information of
interest to a motion planner more closely, and may be easier
to apply to real world data sets. The presented algorithms are
compatible with mixture models—a potentially interesting and
useful direction that should be evaluated empirically. Another
direction of interest is the development of safe planning al-
gorithms with strong theoretical guarantees such as optimality
and probabilistic completeness.
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Provably Safe Robot Navigation with Obstacle
Uncertainty: Proofs

Brian Axelrod, Leslie Pack Kaelbling and Tomás Lozano-Pérez

Theorem 1. Consider ε ∈ (0, 1), n ∼ N (µ,Σ) such that
the combination of ε,µ,Σ is non-degenerate. There exists X
s.t. nTx ≥ 0 is contained within X with probability at least
1− ε.

Proof: Preliminaries: In order to avoid a constant term in
the definition of halfspaces we use homogeneous coordinates,
and thus our shadow will be defined asinvariant under positive
scaling. x will always refer to these coordinates. Likewise,
parameterizations of hyperplanes that go through the origin
are postive scale invariant α will always refer to a hyperplane
parametrization.

It is important to note that α’s act on the x’s. They belong
to different spaces, even though they may share geometric
properties and dimensionality.

We will for the convenience of applying standard theorems
from geometry, sometimes treat these spaces by looking at the
representation as a subset of Rn, where the sets will be closed
under positive scaling. This will also prove convenient when
working with the gaussian distribution, as it is not typically
defined on such spaces.

After the proof, we will provide an interpretation of the
theorem in standard coordinates (Rn−1) in order to provide
intuition for the shape of the generated shadows.

Proof Sketch:
1) Identify a set of parameters, as a scaled covariance

ellipsoid around the mean, that has probability mass of
1− ε.

2) Consider the set of hyperplanes they form. This will be
a linear cone.

3) Take any x ∈ Rn that is contained in by any α in the
previous set of hyperplanes. This will be the shadow. Its
complement will also be a linear cone.

4) Converting back to non-homogeneous coordinates will
reveal that the shape of the complement of a shadow is
a conic section.

First we note that the squared radius values of the n − d
standard multivariate Gaussian distribution is distributed as
a chi-squared distribution with n degrees of freedom. Let
φ(k) be the corresponding cumulative distribution function.
Then it follows that the probability mass of A = {α|(α −
µ)TΣ−1(α− µ ≤ φ−1(1− ε)} is 1− ε.

We note, however, that since α’s are invariant under positive
scaling, the resulting hyperplanes form a linear cone, C. This
is the minimal cone with axis µ that contains the above
ellipsoid.

We consider the polar of this cone, C0. A polar cone C0

of C is {x|xT y ≤ 0∀y ∈ C}. Since every element of C0 has
a positive negative dot product with every element of C, C0C

is the set of points which have a positive dot product with at
least one element of C. C0C is the set that is contained by
at least a single α ∈ A and an ε−shadow. We note that C0,
the complement of the shadow, is also a linear cone since the
polar cone of a linear cone is also a linear cone.

In order to understand the geometry this induces on non-
homogeneous coordinates we take a slice where the last
coordinate is equal to 1. Since our set has an equivalence
class of positive scaling, this slice will contain exactly one
representative of every point. This set is a standard conic
section—giving us the familiar curves we see throughout the
paper.

If this slice has finite (ex. 0) measure in Rn−1 we say
that the shadow is degenerate—it did not provide us with a
useful shadow. One example of a degenerate case is when
the set A contained the origin. A neighborhood of the origin
in parameter space produces halfspaces that contain all of
Rn. The distribution being close to centered about the origin
represents having little to no information about the points
contained within the half-space.

Lemma 1. Consider an polytope defined by
⋂
i

nTx ≤ 0. Let

Xi be a set that contains the halfspace defined by ni with
probability at least 1− εi (for example as in theorem 1). Then⋂
i

Xi contains the polytope with probability at least 1−
∑
i

εi.

Proof: We note that
⋂
i

Xi contains the polytope if every

Xi contains its corresponding halfspace. Since the probability
that Xi does not contain its corresponding halfspace is εi, a
union bound gives us that the probability that any Xi does
not contain its corresponding halfspace is bounded by

∑
i

εi.⋂
i

Xi containing the polytope is the complement of this event,

thus the probability that
⋂
i

Xi contains the polytope is at least

1−
∑
i

εo

Lemma 2. If an obstacle is PGDF with nondegenerate pa-
rameters and m sides, we can construct an ε-shadow as the
intersection of the ε/m shadows of each of its sides.

Proof: Let Xi be the shadow constructed by Lemma 1
with parameter ε/m for side i. Then the shadow X =

⋂
i

Xi

contains the PGDF with probability at least 1 −
∑
i

εi/m =

1− ε.



Theorem 2. Let X be the set of states that the system may
visit during its lifetime. If for a given set of obstacles, indexed
by i, and their corresponding εi shadows, X does not intersect
any shadow, then the probability of collision with any obstacle
over the lifetime of the system is at most

∑
εi.

Proof: Let Ai be the event that the intersection of X
and obstacle i is nonempty. Since the shado w of obstacle i
did not intersect X , this means that obstacle i must not be
contained by it s shadow. The probability of this is less than
εi by definition of ε−shadow. T hus the probability of Ai must
be at most εi.

Applying a union bound gives us that P (
⋃
Ai) ≤

∑
εi.

Lemma 3. Given n obstacles and their shadows, if
• the events that each obstacle is not contained in its

shadow are independent,
• the probability that obstacles are not contained in their

shadows is less than ε, and
• ε = O

(√
δ
n

)
then the difference between the true probability of a shadow
not containing the object, and the union bound in theorem 2
is less than δ.

Proof: We note that the union bound is only loose when
at least two events happen at the same time, so it is sufficient
to bound the probability that two shadows fail to contain their
corresponding PGDF.

The probability of this happening for two given obstacles
is at most ε2, and there are

(
n
2

)
such combinations. Thus by a

union bound, the probability of two shadows failing to contain
their obstacle is at most

(
n
2

)
ε2. If ε ≤ k

√
δ
n for k ≥ 1√

2
, then

the probability of this happening is at most δ.
Since the probability of more than one event happening at

the same time is bounded by δ, the probability given by the
union bound is within δ of the true probability.

Theorem 3. If a policy is absolutely safe, then it is also safe
in the policy safety sense.

Proof: Assume for the sake of contradiction that a policy
is absolutely safe, but not policy safe. That means there exists
a set of observations O and time t for which policy safety
does not hold, but absolute safety does not.

The probability of collision conditioned on these observa-

tions is
t∫
0

pt|Odt+
∞∫
t

E[pt|O]dt. Since the integral is less than

ε so must the probability of collision. However, this implies
that the system is policy safe for this set of observations O
and time t, yielding a contradiction.

Thus if a policy is absolutely safe it must also be policy
safe.

Theorem 4. A policy that is safe at all times under an
information adversar y is also absolutely safe.

Proof: Assume for the sake of contradiction that there
exists set of observations O and a time t for which absolute
safety does not hold. That is to say that conditioned on these

observations
t∫

0

ptdt+

∞∫
t

E[pt|π]dt > ε

Let the information adversary stop the flow of information to
the robot at time t. Let A1 de note the event that the system
fails during times (0, t] and A2 denote the event that the sy
stems fails during times (t,∞). We note that a system can fail
at most once, so A1, A2 are exclusive.

Utilizing the fact that
∞∫
t

E[pt|O]dt = P (A2|O) and

t∫
0

pt|Odt = P (A1|O), we get that the probability of failure

P (A1 ∪A2) = P (A1) +P (A2) ≥ ε violating our assumption
that the system is policy safe under the set of observatio ns
O.

Thus if a system is policy safe under an information
adversary, it is also absolutely safe.


