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Abstract
We initiate a general theory for analyzing the complexity of motion planning of a single robot
through a graph of “gadgets”, each with their own state, set of locations, and allowed traversals
between locations that can depend on and change the state. This type of setup is common
to many robot motion planning hardness proofs. We characterize the complexity for a natural
simple case: each gadget connects up to four locations in a perfect matching (but each direction
can be traversable or not in the current state), has one or two states, every gadget traversal is
immediately undoable, and that gadget locations are connected by an always-traversable forest,
possibly restricted to avoid crossings in the plane. Specifically, we show that any single nontrivial
four-location two-state gadget type is enough for motion planning to become PSPACE-complete,
while any set of simpler gadgets (effectively two-location or one-state) has a polynomial-time
motion planning algorithm. As a sample application, our results show that motion planning
games with “spinners” are PSPACE-complete, establishing a new hard aspect of Zelda: Oracle
of Seasons.
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18:2 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

1 Introduction

Many hardness proofs are based on gadgets — local pieces, each often representing corre-
sponding pieces of the input instance, that combine to form the overall reduction. Garey and
Johnson [7] called gadgets “basic units” and the overall technique “local replacement proofs”.
The search for a hardness reduction usually starts by experimenting with small candidate
gadgets, seeing how they behave, and repeating until amassing a sufficient collection of
gadgets to prove hardness.

This approach leads to a natural question: what gadget sets suffice to prove hardness?
There are many possible answers to this question, depending on the precise meaning of
“gadget” and the style of problem considered. Schaefer [11] characterized the complexity of
all “Boolean constraint satisfiability” gadgets, including easy problems (2SAT, Horn SAT,
dual-Horn SAT, XOR SAT) and hard problems (3SAT, 1-in-3SAT, NAE 3SAT). Constraint
Logic [8] proves sufficiency of small sets of gadgets on directed graphs that always satisfy one
local rule (weighted in-degree at least 2), in many game types (1-player, 2-player, 2-team,
polynomially bounded, unbounded), although the exact minimal sets of required gadgets
remain unknown. Both of these general techniques naturally model “global” moves that can
be made anywhere at any time (while satisfying the constraints). Nonetheless, the techniques
have been successful at proving hardness for problems where moves must be made local to
an agent/robot that traverses the instance.

In this paper, we introduce a general model of gadgets that naturally arises from single-
agent motion planning problems, where a single agent/robot traverses a given environment
from a given start location to a given goal location. Our model is motivated by the plethora
of existing hardness proofs for such problems, such as Push-1, Push-∗, PushPush, and
Push-X [3]; Push-2-F [5]; Push-1 Pull-1 [4,9]; as well as several Nintendo video games studied
at recent FUN conferences [1, 6].

1.1 Gadget model
In general, we model a gadget as consisting of one or more locations (entrances/exits) and one
or more states. (In this paper, we will focus on gadgets with at most two states.) Each state
s of the gadget defines a labeled directed graph on the locations, where a directed edge (a, b)
with label s′ means that the robot can enter the gadget at location a and exit at location b,
and that such a traversal forcibly changes the state of the gadget to s′. Equivalently, a gadget
is specified by its state space, a directed graph whose vertices are state/location pairs, where
a directed edge from (s, a) to (s′, b) represents that the robot can traverse the gadget from a

to b if it is in state s, and that such traversal will change the gadget’s state to s′. Gadgets
are local in the sense that traversing a gadget does not change the state of any other gadgets.

A system of gadgets consists of gadgets, their initial states, and connections between
disjoint pairs of locations (forming a matching). If two locations a, b of two gadgets (or the
same gadget) are connected, then the robot can traverse freely between a and b (outside the
gadgets). (Equivalently, we can think of locations a and b as being identified.) These are
all the ways that the robot can move: exterior to gadgets using connections, and traversing
gadgets according to their current states. In a puzzle, we are given a system of gadgets, the
robot starts at a specified start location, and we want to find a sequence of moves that brings
the robot to a specified goal location. The main problem we consider here is the obvious
decision problem: is the given puzzle solvable?

One type of gadget we always allow in this paper is the branching hallway gadget,
which has one state and three locations, and always allows traversal between all pairs of
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Figure 1 Branching hallway gadget.

locations; see Figure 1. In other words, upon reaching such a gadget, the robot is free to
choose and move to any of the three locations. Connecting together multiple branching
hallways allows us to effectively connect the other gadgets’ locations according to an arbitrary
forest (as described in the abstract).

All other gadgets we consider in this paper are “deterministic” and “reversible”. A gadget
is deterministic if its state space has maximum out-degree ≤ 1, i.e., a robot entering the
gadget at some location a in some state s (if possible) can exit at only one location b and
one new state s′. A gadget is reversible if its state space has the reverse of every edge, i.e., it
is the bidirectional version of an undirected graph. Thus a robot can immediately undo any
gadget traversal.3 Together, determinism and reversibility are equivalent to requiring that
the state space is the bidirectional version of a matching.

Other than the (one-state) branching hallway, we further require that the states of a
gadget differ only in their orientations of the possible traversals. More precisely, a k-tunnel
gadget has 2k locations, paired in a perfect matching whose pairs are called tunnels, such
that each state defines which direction or directions each tunnel can be traversed.

We also consider planar systems of gadgets, where the gadgets and connections are drawn
in the plane without crossings. Planar gadgets are drawn as small regions (say, disks) with
their locations as points in a fixed clockwise order along their boundary. A single gadget type
thus corresponds to multiple planar gadget types, depending on the choice of the clockwise
order of locations. Connections are drawn as paths connecting the points corresponding to
the endpoint locations, without crossing gadget interiors or other connections.

1.2 Our results
We characterize the computational complexity of deciding puzzle solvability when the allowed
gadgets consist of the branching hallway and any number of deterministic reversible ≤ 2-state
k-tunnel gadgets, for any k. Specifically, if there is at least one gadget type that is not
equivalent to a 1-state or 1-tunnel gadget, then the problem is PSPACE-complete; and
otherwise, the problem is in P. The same characterization holds for planar systems of gadgets;
thus, in applications, we do not have to worry about building a crossover gadget (which is
often the most difficult).

In Section 3, we sketch our proof from [4] that motion planning with two-toggle-locks
and crossovers is PSPACE-complete. In Section 4, we prove that one particular gadget,
the antiparallel two-toggle, can simulate a variety of other gadgets, eventually including a

3 This notion is different than the sense of “reversible” in reversible computing, which would mean that
we could derive which move to undo from the current state.
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18:4 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

two-toggle-lock and a crossover. As a consequence, motion planning with the antiparallel
two-toggle is PSPACE-complete. In Section 5, we show that all nontrivial deterministic
reversible 2-state, 2-tunnel gadgets can simulate the antiparallel two-toggle. As a consequence,
each corresponding motion planning problem is PSPACE-complete. In Section 7, we extend
these results to give a precise hardness characterization for the motion planning problem
with each deterministic reversible 2-state k-tunnel gadget.

We also partially characterize the computational complexity of deterministic reversible
≤ 2-state gadgets with three locations. In particular, we study spinners and deterministic
forks, as described in Section 6.

We hope that our approach will be useful for establishing hardness of many real-world
motion planning problems and puzzles. As a sample application, our results allow us to
establish a new PSPACE-hard aspect of the Nintendo video game Zelda: Oracle of Seasons
(which features spinners) Section 6.

2 Gadget Basics

To categorize the possible deterministic reversible 2-state 2-tunnel gadget types, we first
categorize the possible tunnel types in such a gadget. A tunnel is trivial if it is either never
traversable or always traversable. A trivial tunnel can always be split into a separate 1-state
1-tunnel gadget, so we can ignore them. What remain are three possible nontrivial tunnel
types:

Tripwire A tunnel that can always be traversed in either direction,
but traversing it switches the gadget’s state.

Lock In the unlocked state (shown above), the tunnel can be
traversed in either direction; in the locked state (shown
below), the tunnel cannot be traversed in either direction.

Toggle A tunnel that can always be traversed in a single direction,
where the direction differs in the two states of the gadget.
The state is switched when the gadget is traversed.

There are six ways to combine these tunnel types into pairs. Two combinations, Lock–Lock
and Tripwire–Tripwire, are trivial combinations equivalent to one-state gadgets in which
each tunnel is either always traversable in both directions or never traversable. Thus we
restrict our attention to the four other combinations, listed below. Because we are interested
in planar systems, we consider the multiple planar gadgets for each nontrivial combination.
(We do, however, treat a gadget and its reflection as equivalent.) As a result, there are nine
different nontrivial two-tunnel two-state gadgets, abbreviated and listed below. The bulk of
our paper focuses on the six gadgets shown in Figure 2, which omits most crossing variants.

1. Tripwire–Lock: Traversing the tripwire makes the other tunnel flip between being
passable and impassable, causing it to ‘lock’ or ‘unlock’. There are crossing and non-
crossing varieties, abbreviated CWL (crossing wire lock) and NWL (non-crossing wire
lock).

2. Toggle–Lock: Traversing the toggle flips the lock tunnel between being passable and
impassable. Crossing the lock tunnel, by definition, does not change the state of the
gadget. Notice that one direction of the toggle corresponds to an open lock and the other
direction to the closed lock. There are crossing and non-crossing varieties, abbreviated
CTL (crossing toggle lock) and NTL (non-crossing toggle lock).
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(a) NWL (b) NTL (c) NWT (d) P2T (e) AP2T (f) C2T

Figure 2 Six of the nine deterministic reversible 2-state gadgets on two tunnels. We leave out
the CWL, CTL, and CWT gadgets as they are not heavily used in the paper.

3. Tripwire–Toggle: Here traversing either the tripwire or the toggle flips the direction of
the toggle. There are crossing and non-crossing varieties, abbreviated CWT (crossing
wire toggle) and NWT (non-crossing wire toggle).

4. Toggle–Toggle: Also known as a 2-toggle [4]. Traversing either toggle flips the direction
of both of them. This is the only case where there are two directed tunnels, leading
to three possibilities: crossing, parallel, and anti-parallel. They are abbreviated C2T
(crossing 2-toggle), P2T (parallel 2-toggle), and AP2T (anti-parallel 2-toggle).

In this paper we will often need to discuss putting gadgets together to create new behavior.
We will do so by creating a system of gadgets that is “equivalent” to some target gadget,
thereby “simulating” that gadget. Two systems of gadgets are equivalent if there is a bijective
correspondence between their locations and a correspondence between their states such
that the allowed transitions for all (locations, state) pairs are the same under these two
correspondences. We will say that a gadget or set of gadgets simulates a target gadget if it is
possible to combine gadgets from the set (possibly using duplicates) such that the resulting
system is equivalent to the target gadget. We will always implicitly allow the use of the
branching hallway gadget in these constructions. In all cases, these constructions will be
planar.

2.1 Closure Properties
I Lemma 2.1. Any system of gadgets composed of two reversible gadgets is reversible.

Proof. Consider any transition through the system formed by composing two reversible
gadgets. This transitions is a walk through the gadgets and connections that form a system.
Since both gadgets are reversible, it is possible for the robot to enact the exact reverse of
this walk after the walk is done. This will exactly reverse the effect of the walk within each
gadget. Thus, it is possible to reverse the entire transition.

Since every transition of the system can be reversed, the system is reversible. J

Since all of the gadgets we consider in this paper are reversible, Lemma 2.1 means our
systems will all be reversible as well.

I Lemma 2.2. Any system of gadgets composed of two deterministic reversible gadgets is
deterministic and reversible.

Proof. The state space of a reversible, deterministic gadget is an undirected matching of
some (state, location) pairs to each other. This a necessary and sufficient characterization of
reversible, deterministic gadgets.

When we compose two such gadgets, we create paths through the pair of gadgets. However,
no (state, location) pair has more than two edges: One connection to the other gadget, and
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one edge through its original gadget. Moreover, any (state, location) pair that forms an
external location has a most one edge, as it does not connect to the other gadget. As a
consequence, the path from any external location through the gadget is either a deterministic
path to another external location, or a dead end. There is no branching, as branching would
require a location with three edges.

Thus, the resultant object is deterministic. By Lemma 2.1 it is reversible as well. J

2.2 PSPACE Membership
I Lemma 2.3. Deciding puzzle solvability is in PSPACE.

Proof. The entire state of the system can be described by the current state of the gadgets
and the location of the agent. The gadgets have a polynomial number of states and there
can only be a polynomial number of gadgets. Since the entire state of the board fits in a
polynomial amount of space, we can non-deterministically search for a solution, showing
containment in NPSPACE. Savich’s Theorem [10] gives PSPACE = NPSPACE. J

3 2-toggle-lock and crossover motion planning is PSPACE-complete

In [4] we showed that motion planning with 4-toggles and crossovers is PSPACE-complete.
In that construction, the crucial gadget turned out to be a 2-toggle-lock, which is a 3-tunnel,
2-state gadget with two locks and a tunnel. The 4-toggle was not used in any way after the
construction of the 2-toggle-lock, showing that 2-toggle-locks and crossovers are PSPACE-
hard. For convenience we sketch the proof, with some refinement. One should refer to the
prior paper for a more detailed and rigorous proof.

I Definition 3.1. 3QSAT is the following decision problem. Given a fully quantified boolean
formula in prenex normal form and in conjunctive normal form with no more than three
variables per clause, decide whether the formula is true.

I Theorem 3.2. Motion planning with 2-toggle-locks and crossovers is PSPACE-hard.

We reduce from 3QSAT to motion-planning with 2-toggle-locks and crossovers. To do so we
need to construct clauses, universal variables, and existential variables. Literals will consist
of a 2-toggle-lock which will be set from the 2-toggle side and checked by passing through the
lock. Clauses are composed of a branching hallway that leads through each of its associated
literals.

Existential variables will be a branching hall with a group of toggle-locks in series. Passing
through in one direction opens the locks of the gadgets representing true literals of that
variable while closing the locks of the false ones. Going through the other way allows this to
be undone, as the system is reversible.

To construct universal quantifiers we connect up the 2-toggle sections as in Figure 3,
where each universal gadget consists of several antiparallel 2-toggles with locks. Each of these
gadgets sends the robot forward in one state or back to the beginning in the other state, and
flips the state. Repeatedly entering from the left iterates through all configurations of the
states, so the robot must check all of the possible values for the universal variables. The goal
state lies at the far end of the eries of universal gadgets.

For both the existentials and the universals, the variables are actually a long series of
2-toggle-locks with one lock for each literal of the variable in the formula.

When putting this all together, as in Figure 3, we need to ensure that the robot cannot
sneak back into the variable gadget and change existential settings it shouldn’t be allowed
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∀y1 ∃x1 ∀y2

y1 =? 0

∃x2 ∀y3

y2 =? 0
formula

∃x3

Figure 3 Structure of the QSAT reduction.

to access, namely those existentials beyond the universal it just emerged from. To do this
we construct a simple system that puts a lock on the return pathway at the end of each
universal variable which only allows passage if the prior variable is set to false. Since the
robot will have just exited from a variable which was set to true, this prevents the robot
from moving forward in the variable chain. In addition, all earlier variables are false allowing
the robot to travel back to the formula, since the universal gadgets take on incrementing
binary values with each loop through the gadget. Since those existential variables are ones
the robot was allowed to set to any value on the prior passage, going back and changing
them now gives no advantage over having set them to that value earlier.

This safeguard is the one difference from the prior construction, which checked the values
of all prior universal variables, requiring a quadratic blow-up in number of gadgets. The need
for crossovers and a 2D layout will still create a quadratic blowup in problem size overall,
but this simplification seemed worth noting and should allow for the 3D result to cause only
a linear blowup in problem size.

With this guard in place, the robot can only reach the goal state by demonstrating a
solution to the 3QSAT instance, after iterating through all settings of the universal gadget. J

4 Antiparallel 2-toggle motion planning is PSPACE-complete

We will show that the question of whether a robot in a system of antiparallel 2-toggle gadgets
can reach a specified goal location is PSPACE-complete. To do so, we will simulate various
other gadgets using AP2T gadgets, eventually simulating 2-toggle-locks and crossovers. Since
motion planning with 2-toggle-locks and crossovers is PSPACE-complete, this implies that
AP2T motion planning is PSPACE-complete.

I Theorem 4.1. Motion Planning with AP2T gadgets is PSPACE-complete.

We will simulate the gadgets needed for the PSPACE-completeness proof, and a wide
variety of other intermediate gadgets to help us get there. The steps are as follows:
1. Simulate a C2T, using AP2Ts. Lemma 4.2.
2. Simulate a P2T, using C2Ts. Lemma 4.3.
3. Simulate a NTL, using AP2Ts, C2Ts and P2Ts. Lemma 4.4.
4. Simulate various types of 2-toggle locks, with “round” and “stacked” internal connections.

The types of internal connections are described in Section 4.1, and the constructions are
given in Lemmas 4.6 and 4.7.

5. Simulate a NWL, using the stacked antiparallel 2-toggle lock. Lemma 4.8.
6. Simulate a stacked tripwire-lock-tripwire, using NWLs. Lemma 4.9
7. Simulate a crossover, using stacked tripwire-lock-tripwires. Lemma 4.10
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Figure 4 Anti-parallel 2-toggles simulate a crossing 2-toggle.

Figure 5 Crossing 2-toggles simulate a parallel 2-toggle.

With a 2-toggle lock and a crossover constructed, we can apply Theorem 3.2 to show
that motion planning with AP2Ts is PSPACE-hard. Adding in Lemma 2.3, we find that it is
PSPACE-complete.

I Lemma 4.2. Antiparallel 2-toggles (AP2Ts) simulate a crossing 2-toggle (C2T).

Proof. The construction is given in Figure 4. In the state of the construction shown in the
figure, there are two possible transitions: the robot can move from the upper left to the
bottom right of the construction, or from the upper right to the bottom left. Either of those
transitions toggles both AP2Ts, leaving the construction mirrored top to bottom. Thus, the
construction has two states. The possible traversals in one state (as shown above) are from
the top left to the bottom right and from the top right to the bottom left, while the possible
traversals in the other state are (by symmetry) from the bottom left to the top right and
from the bottom right to the top left. Following any of these traversals swaps the state of
the construction. Notice that this is exactly the behavior of a C2T.

If the robot enters the construction shown from the upper left, upon reaching the center
the robot can only proceed to the bottom right, or come back the way it came. Therefore, the
upper left to bottom right transition is the only possible transition from that location. By
symmetry, the same is true from top left to bottom right. Thus, the one traversal described
for each location in each state is the only one possible. J

I Lemma 4.3. Crossing 2-toggles (C2Ts) simulate a parallel 2-toggle (P2T).

Proof. The construction is given in Figure 5. In the state of the construction shown in
the figure, there are two possible transitions: the robot can move from the top left to the
top right of the construction, or from the bottom left to the bottom right. Either of these
transitions toggles both C2Ts, leaving the construction mirrored left to right. The allowed
traversals in one state (as shown above) are from the top left to the top right and from
the bottom left to the bottom right, while the allowed traversals in the other state are (by
symmetry) from the top right to the top left and from the bottom right to the bottom left.
Following any of these traversals swaps the state of the construction. Notice that this is
exactly the behavior of a P2T.

Since the system is composed entirely of C2Ts (without even branching hallways), which
are both reversible and deterministic, the result is also both reversible and deterministic, by
Lemma 2.2. Thus, the one transition described for each location in each state is the only
transition possible. J
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 1

3 4

2

5 6

Figure 6 2-toggles simulate 1-toggle-lock.

I Lemma 4.4. 2-toggles (AP2Ts, P2Ts and C2Ts) simulate a noncrossing toggle lock (NTL).

Proof. The construction is shown in Figure 6.
In this lemma, we will refer to toggles 1 and 2 in the figure as the “outer toggles”, toggles

3 and 4 as the “middle toggles”, and toggles 5 and 6 as the “bottom toggles”. We will call
the pathway through the lower tunnels of the bottom toggles the “bottom tunnel” of the
overall gadget, and the rest of the gadget the “middle tunnel” of the overall gadget.

An NTL has two externally observable states: locked, and unlocked. The locked state
corresponds to the upper tunnels of the bottom toggles oriented out, and the unlocked state
corresponds to the bottom toggles oriented in. The unlocked state is shown in Figure 6.

In this gadget, there are two internal states corresponding to each external state: with
the horizontal tunnels of the middle toggles both oriented left, and with both oriented right.
The only accessible states of this gadget are the states with the outer toggles oriented in, the
middle toggles oriented both left or both right, and upper pathways of the bottom toggles
oriented both in or both out. We will show that the gadget allows exactly the traversals of
the NTL from these configurations, and cannot be left in any other configuration.

The bottom tunnel traversals are straightforward — the bottom tunnel acts as a toggle,
and a traversal flips both bottom toggles, and hence the externally observable state.

Also clearly, the robot cannot move between the bottom tunnel and the middle tunnel.
Now, we wish to establish that in the unlocked state, the robot can always traverse the

middle tunnel in either direction. In the state shown, the middle tunnel may be traversed
from external location to external location as follows:

The robot can get across, left to right, by traversing the following toggles in the following
order: enter through toggle 1’s lower tunnel, down to toggle 5, up to toggle 4’s vertical
tunnel, through toggle 1’s upper tunnel, around the top to toggle 2’s top tunnel, back
down through toggle 4, back out through toggle 5, across through toggle 3’s horizontal
tunnel, then through toggle 4’s horizontal tunnel, then out through toggle 2’s lower
tunnel.
The robot can get across, right to left, by traversing the following toggles in the following
order: enter through toggle 2’s lower tunnel, down to toggle 6, up to toggle 4’s vertical
tunnel, through toggle 2’s top tunnel, around to toggle 1’s top tunnel, down through
toggle 3’s vertical tunnel, back out through toggle 6, across through toggle 4’s horizontal
tunnel, then through toggle 3’s horizontal tunnel, then out through toggle 1’s lower
tunnel.
If the middle toggles are in the opposite orientation, the system is simply mirrored, left
to right, and the traversals are still possible.
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18:10 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Next, we wish to establish that the robot cannot cross the middle tunnel in the locked
state. After entering from either middle tunnel location, the only traversable toggles are the
middle toggles. After traversing those, the robot can go no further. The bottom toggles
can’t be traversed, so the entire middle region is inaccessible. As a consequence, the opposite
outer toggle’s upper pathway can’t be accessed. Therefore the robot can only leave via its
original location.

We also must establish that if the gadget starts in one of the configurations mentioned,
the robot must leave it in the proper state, and can’t leave it in a configuration that wasn’t
mentioned. This is straightforward for the bottom tunnel, so we will focus on the middle
two locations.

We will show that the accessible configurations of the gadget are exactly as described.
To do so, we will make use of the concept of a cut in a gadget.

I Lemma 4.5. Let A be a connected region of a planar embedding of a gadget system which
does not contain any locations. Then the boundary of A, which we will call a cut, is traversed
an even number of times during any traversal of the construction.

Proof. Whenever the boundary of A is crossed, the robot goes from inside A to outside or
vice versa. Since the robot starts a traversal outside A and ends it outside A, it must cross
the boundary an even number of times. J

The upper pathways of the outer toggles form a cut, and the lower pathways of the outer
toggles form a cut. Thus, the upper pathways of the outer toggles are crossed an even number
of times, and the lower pathways are passed an even number of times, so the outer toggles
must be passed an even number of times in total. Thus, the toggles must either be both
oriented in or both out when leaving. However, when leaving the gadget, the outer toggle
which the robot exited through must end up oriented in, so both outer toggles must end up
oriented in.

The vertical pathways of the middle toggles form a cut. The horizontal pathways form a
cut. Thus, upon leaving, the middle toggles must have been traversed an even number of
times in total, and hence must end up both left or both right.

The upper pathways of the bottom toggles must be passed an even number of times. So
the upper pathways of those toggles must either be both in or both out when leaving the
gadget system.

Thus, the gadget system must be left in a state where the outer toggles are oriented in,
the middle toggles are oriented either both left or both right, and the upper pathways of
the bottom toggles are oriented either both in or both out. Therefore, these are exactly the
accessible configurations, as desired.

Finally, we show that the robot leaves the gadget in the same state it was entered in,
if it is entered on the middle tunnel. If the robot passes through one of the upper tunnels
of the bottom toggles, when it leaves the region bounded by the bottom toggles’ upper
tunnels, it must leave one of the bottom toggle’s upper tunnels oriented in. By the parity
constraint, both bottom toggles’ upper tunnels will be oriented in, thus leaving the gadget in
the unlocked state. If the central tunnels are entered in the unlocked state, they will be left
in the unlocked state. In the locked state, the upper tunnels of the bottom toggles cannot be
passed, and so the gadget will be left in the locked state.

Thus, the construction correctly simulates a NTL. J



E.D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:11

Figure 7 Round antiparallel 2-toggle-lock construction.

4.1 2-toggles and non-crossing toggle locks simulate 2-toggle locks
We introduce some new three tunnel objects. There are several distinct planar topologies of
the tunnels in a three tunnel object. We will focus on the two topologies which can be drawn
with no internal crossing tunnels: three tunnels around the perimeter, and three tunnels in
parallel. We will call the former a “round” topology, and the latter a “stacked” topology.
Note that in the stacked topology, the order of the tunnels is relevant. In either topology, if
there are multiple toggles, the relative orientation must still be specified.

I Lemma 4.6. 2-toggles and noncrossing toggle locks simulate a round antiparallel 2-toggle-
lock (RAP2TL) and a round parallel 2-toggle-lock (RP2TL).

Proof. The construction shown in Figure 7 simulates the behavior of a round antiparallel 2-
toggle-lock. It has two externally accessible states: as shown, and with the middle two gadgets
flipped. These correspond to the 2-toggle of the RAP2TL being pointed counterclockwise
and clockwise respectively.

We will demonstrate that this gadget is equivalent to a RAP2TL by examining all possible
traversals. From the two locations that are on the lock tunnel of the NTL, the only possible
traversals are to each other, if the lock tunnel is unlocked. This forms the lock tunnel of the
RAP2TL.

Traversals from the top left location: The robot must go down and to the right, due to
the orientation of the toggle of the NTL. Then, the robot can go through the C2T, at which
point it is blocked by the orientation of the bottom P2T. Thus, no traversal is possible from
this location in this state.

Traversals from the top right location: The robot can go through the C2T, then through
the NTL. At this point, the robot cannot go through the C2T again, because the C2T has
been toggled. Therefore, its only option is to go through the upper P2T and leave at the
top left location. This traversal toggles both of the middle two gadgets, and toggles the
upper P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent of
traversing the upper toggle of the RAP2TL that we are simulating.

Traversals from the bottom left location: The robot must go up and to the left, due to
the orientation of the C2T. Then, the robot can go through the NTL. Due to the orientation
of the upper P2T, the robot must now go through the C2T. Now, the robot can leave at the
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Figure 8 A round parallel 2-toggle lock
is used to construct a stacked antiparallel
2-toggle lock.

Figure 9 A noncrossing tripwire lock con-
structed from an anti-parallel 2-toggle and
lock with the lock on the side.

bottom right location. This traversal toggles both of the middle two gadgets, and toggles
the lower P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent
of traversing the lower toggle of the RAP2TL that we are simulating.

Traversals from the bottom right location: The robot is blocked by the orientation of the
C2T. Thus, no traversal is possible from this location in this state.

The opposite state is equivalent to a top-bottom mirror reversal, except for a change
in the state of the lock, which does not affect which traversals are possible. Thus, in every
state, this system of gadgets is equivalent to a round antiparallel two-toggle-lock (RAP2TL).

Consider the gadget which is the same as the one in Figure 7, except that the bottom P2T
is replaced with a C2T with its toggles allowing traversals from the bottom locations into
the gadget. Clearly, the effect of this change is to swap the roles of the bottom two locations.
As a result, this new construction is a round parallel two-toggle-lock, a RP2TL. J

I Lemma 4.7. RP2TLs and 2Ts simulate a stacked antiparallel 2-toggle-lock (SAP2TL).

Proof. A SAP2TL is a three tunnel gadget where the three tunnels cross the gadget in
parallel, with the two antiparallel toggle tunnels next to each other.

Starting with a RP2TL and two C2Ts, we can simulate a SAP2TL as shown in Figure 8.
The lock tunnel is straightforward. The two other traversals are from the top left to the
bottom left, and from the bottom right to the top right. Both of these traversals pass through
every gadget. In the other state, all three gadgets are flipped, and the same traversals are
possible in the opposite direction.

Since every state-affecting traversal traverses all gadgets, the states of the three gadgets
always switch together, and the behavior is that of an SAP2TL. Equivalently, by Lemma 2.2,
the system of gadgets is deterministic and reversible, so the three traversals mentioned are
the only ones possible, and the construction simulates a SAP2TL. J

4.2 2-toggle locks simulate non-crossing wire locks
I Lemma 4.8. AP2TLS simulates a NWL.

Proof. By connecting the locations of the SAP2TL as shown in Figure 9, we can simulate a
NWL.

Each traversal of either connected toggle tunnel flips the state. The connections between
these two tunnels ensure that travel in either direction is always possible. As a result, the
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Figure 10 A stacked tripwire-lock-tripwire
constructed from non-crossing tripwire locks.

Figure 11 A crossover constructed from
stacked tripwire-lock-tripwires.

combination of these connected pathways acts as a tripwire, always allowing the robot to
pass in either direction and opening or closing the lock with each traversal. J

4.3 Non-crossing wire locks simulate crossovers
On our way to simulating a crossover, we will simulate another three tunnel gadget, a stacked
tripwire-lock-tripwire (SWLW). Note that the lock tunnel is specifically the center tunnel.

I Lemma 4.9. NWLs simulate a stacked tripwire-lock-tripwire (SWLW).

Proof. The construction is shown in Figure 10. There are four accessible states of this
gadget, which are any of the states where there is one locked and one unlocked NWL among
the two top NWLs, and one of each among the two bottom NWLs.

The states can only be changed by traversing the tripwire tunnels, and doing so flips
both NWLs on the side traversed, maintaining the invariant.

If both left NWLs are locked, or both right NWLs are locked, the center tunnel is not
passable. In the other two accessible states, the center tunnel is passable. The two pairs
correspond to the two external states, with the lock locked and unlocked respectively. In any
state, traversing either tripwire moves the gadget to a state with the opposite passability of
the lock tunnel. Thus, this construction simulates a SWLW. J

I Lemma 4.10. SWLWs simulate a crossover.

Proof. The gadget shown in Figure 11 implements a crossover. The robot may always cross
from left to right, right to left, top to bottom and bottom to top, but in no other directions.
There is a single accessible state, the one with all four SWLWs in the unlocked state.

When the robot enters from any of the four external locations it has only a single option
up until the point where it reaches the four-way intersection at the center. Upon reaching
this point, the robot has traversed the tripwire tunnels of two of the SWLWs, locking them.
In particular, the SWLWs whose lock tunnels are on the two orthogonal pathways are locked.
For instance, if the robot entered from the top, the left and right pathway’s SWLWs would
be locked at this point. As a result, the only way for the robot to continue is to go straight,
passing through the other tripwires of the same two SWLWs, and emerging from the other
side. The robot has completed a crossover traversal, with no other options.

Because the robot passed through the tripwires of two SWLWs twice, and only the lock
tunnels of the other two SWLWs, the object is left in its original state, making the state shown
in Figure 11 the only accessible state. This construction correctly simulates a crossover. J

For the PSPACE-completeness result, we make use of 2-toggle locks and crossovers.
Combining the lemmas in Section 4, we have the result we will make use of:
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I Theorem 4.11. AP2Ts simulate crossovers and all 2-toggle-locks.

Proof. By composing the lemmas in Section 4, we see that AP2Ts simulate crossovers and
RAP2TLs. By using the crossover to effectively rearrange locations, we can simulate an
arbitrary 2-toggle-lock. J

5 Everything simulates everything else

The remaining gadgets of interest are each individually (when combined with branching
hallways) sufficient to make motion planning problems PSPACE-complete. Moreover, each
gadget can be simulated by a constant number of each other gadget. To prove this, we give
simple gadgets to show how to construct noncrossing-tripwire-toggles from anti-parallel-2-
toggles, and anti-parallel 2-toggles from each of noncrossing-toggle-locks, noncrossing-wire-
locks, noncrossing-wire-toggles and parallel-2-toggles. We then show that a crossing version
of a gadget can very simply make a non-crossing version of the same gadget.

I Theorem 5.1. The 2-toggles, toggle-locks, tripwire-locks and tripwire-toggles, in all orien-
tations, can each simulate each other.

Proof. We have already established that AP2Ts can simulate P2Ts, C2Ts, NTLs and NWLs
and crossovers. We will establish that:

AP2Ts can simulate NWTs. Lemma 5.3.
P2Ts, NTLs, NWTs and NWLs can each simulate AP2Ts. Lemmas 5.4, 5.5, 5.6, 5.7,
respectively.
C2Ts can simulate P2Ts by Lemma 4.3, and hence AP2Ts as well.
CTLs can simulate NTLs, CWLs can simulate NWLs, and CWTs can simulate NWTs.
Lemma 5.8.

Thus, every gadget can simulate AP2Ts, and AP2Ts can simulate every non-crossing gadget,
as well as crossovers. By combining non-crossing gadgets with crossovers, AP2Ts can simulate
every gadget. This gives a simulation of every gadget by every other gadget, via AP2Ts as
an intermediate step. J

I Corollary 5.2. Motion planning with any one of the gadgets in Theorem 5.1 (and branching
hallways) is PSPACE-complete.

Proof. Corollary 5.2 follows from Theorem 5.1, which establishes that each gadget can
simulate a AP2T, and Theorem 4.1, which establishes that motion planning with AP2Ts is
PSPACE-complete. J

I Lemma 5.3. AP2Ts simulate an NWT.

Proof. We will construct a NWT as shown in Figure 12. This requires NWLs, crossovers,
and 1-toggles. We already have existing constructions of NWLs and crossovers with AP2Ts.
We can also build a 1-toggle with an AP2T simply by ignoring one of the two tunnels. Thus,
all that’s left is to show that the construction successfully simulates a NWT.

There are four accessible states: As shown in Figure 12, with all of the NWLs flipped, with
the toggle flipped, and with everything flipped. The first and last correspond to the external
state where the toggle is pointed right, while the other two correspond to the external state
where the toggle is pointed right. The horizontal tunnel corresponds to the toggle, while the
U-shaped tunnel corresponds to the tripwire in the composed gadget. In the state shown in
the figure, the toggle is oriented to the right from the external perspective.
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Figure 12 A noncrossing wire toggle constructed from a toggle, four noncrossing tripwire locks,
and two crossovers.

Figure 13 Parallel 2-toggles simulate anti-parallel 2-toggles.

Clearly, traversing the U-shaped tunnel will flip all of the tripwires of the NWL, resulting
in a state which corresponds to the opposite external state, as desired.

In the state shown in the figure, the horizontal tunnel may be traversed from left to right
along a unique pathway due to the placement of the locks, flipping the toggle along the way.
The orientation of the toggle blocks the right to left traversal. Thus, in this state, the upper
tunnel may be traversed in one direction resulting in an allowed state which corresponds to
the opposite external state, as desired.

Placing the toggle in the opposite state is equivalent to a rotation by π of the upper
tunnel, showing this state also correctly simulates an NWT.

Flipping the states of all of the NWLs is equivalent to a vertical reflection of the upper
tunnel, showing this state also correctly simulates an NWT. J

I Lemma 5.4. P2Ts simulate an AP2T.

Proof. Figure 13 gives a construction of an antiparallel-2-toggle out of parallel-2-toggles.
There are two accessible states: As shown, and with the four inner P2Ts flipped. The

former corresponds to the AP2T having a tunnel connecting the left two locations with its
toggle oriented upward, and a tunnel connecting the right locations with its toggle oriented
downward, while the latter corresponds to the two toggles flipped.
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Figure 14 Noncrossing-toggle-lock simulates anti-parallel-2-toggle.

First, let us examine the bottom right location in the state shown in the figure. After
passing the rightmost P2T, the robot is blocked. No transitions or state changes are possible.
This matches the desired behavior, because the right toggle in the AP2T being simulated is
oriented down.

Next, let us examine the top right location in the state shown in Figure 13. After passing
the rightmost P2T, then the upper right P2T, the robot may now either proceed along the
top tunnel, or down to the central loop. In the former case, the robot may pass through the
upper left P2T, but then is blocked. In the later case, the robot may either proceed around
the loop to the left or to the right. If the robot goes to the right, it can pass through the
lower tunnel of the upper right P2T, but then is stuck. If the robot goes to the left, it can
pass through the lower tunnel of the upper left P2T, then the upper tunnel of the lower left
P2T.

At this point, the robot may either continue around the loop, or exit the loop downward.
If the robot continues around the loop, it can pass through the upper tunnel of the lower
right P2T, but then is stuck. If it exits the loop, it can either go left or right on the bottom
tunnel. If it goes left, it can pass through the lower tunnel of the lower left P2T, but then is
stuck. If it goes right, it can pass through the lower tunnel of the lower right P2T, then the
lower tunnel of the rightmost P2T, and exit the gadget.

Overall, we observe that the robot can make exactly one transition, from top right to
bottom right. The right toggle is traversed twice, and the inner toggles are all traversed
once, leaving the gadget in the other accessible state. No other transition or state change is
possible, from that entrance.

Since the gadget is rotationally symmetric about its center, the possible transitions from
the right mirror the possible transitions from the left. Since the other state is simply the state
shown in the figure mirrored top-to-bottom, the transitions described mirror the transitions
in the other state as well. J

I Lemma 5.5. NTLs simulate an AP2T.

Proof. The construction is shown in Figure 14. The two accessible states are the state shown
in the figure and the state with all of the NTLs flipped, but the one-toggles still oriented
inward. These correspond to an AP2T with the top tunnel directed left and bottom tunnel
directed right, and the left-right mirror image.

If the robot enters from the top right, after passing the lock of the top right NTL, it
must pass the upper one-toggle and proceed into the central loop. Since the lower toggle is
directed upward, the robot must eventually leave the central loop via the upper toggle. The
robot may now proceed around the loop. The loop may only be traversed counterclockwise,
and it may only be traversed once. The robot may of course backtrack at any point, but
when it leaves via the upper toggle, it must have either traversed the loop zero or one times.
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Figure 15 Noncrossing-wire-toggle simulates anti-parallel-2-toggle.

In the former case, the robot must leave via the top right location, leaving the system in
its original state. In the latter case, the robot must leave via the top left location, as all of
the locks have flipped. Thus, the top tunnel may be traversed via a right to left traversal,
flipping the state, and that is the only traversal in that direction.

If the robot enters from the top left, it is immediately blocked by the lock, and no traversal
is possible. Thus, the top tunnel works as desired.

Since the gadget possesses rotational symmetry around its center, the bottom tunnel is
exactly the same, allowing only a left to right traversal, flipping the state.

The opposite state is the same as the original state except for a left-right right mirror
reversal, so it also functions exactly as desired from the AP2T. J

I Lemma 5.6. NWTs simulate an AP2T.

Proof. A noncrossing wire toggle can simulate an anti-parallel 2-toggle with the simple
construction shown in Figure 15. The direction of each tunnel is dictated by the toggle on
the tunnel, and the wire ensures both toggles are synchronized. Thus when either tunnel is
traversed, both NWTs flip and the direction each tunnel can be traversed flips. J

I Lemma 5.7. NWLs simulate an AP2T.

Proof. The construction of an anti-parallel 2-toggle from non-crossing tripwire locks can
be seen in Figure 16. Note that a 1-toggle can be constructed from an NWL by simply
connecting one location of the wire to one location of the lock. A closed lock will prevent
travel in one direction, but crossing the tripwire in the other direction will open the lock
and allow the robot to proceed. An open lock will allow travel in the other direction. In
the direction starting from the tripwire, the tripwire will close the lock in front of the robot
preventing traversal. In either traversal, the tripwire is crossed, flipping the state.

There are two main parts to this gadget, the top and bottom tunnels, and the inner
loop. As with the NTL construction from Lemma 5.5, the 1-toggles ensure that the loop
must be exited from the same place it was entered, which ensures all gadgets on the loop are
traversed the same number of times. Since all wires are on this loop, in a given traversal of
this gadget system, all of the NWLs will change state the same number of times, keeping
them in sync. The upper and lower paths each contain a locked and unlocked tunnel. The
locked portion prevents entry and interaction with the gadget. From the unlocked side, the
robot is able to enter the gadget and flip its state an arbitrary number of times. If the state
is flipped an even number of times, the robot’s only path out is the way it came. If an odd
number of flips have occurred, the robot can now exit through the opposite side of its path,
leaving the gadget in the opposite state.

Therefore, the gadget may traversed right to left along the top tunnel, flipping the state,
and left to right along the bottom tunnel, flipping the state. We have built an AP2T. J

I Lemma 5.8. CWTs simulate an NWT, CWLs simulate an NWL, CTLs simulate an NTL.
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Figure 16 Noncrossing-wire-lock simulates anti-parallel-2-toggle.

Figure 17 Crossing 2-toggles simulate parallel 2-toggle.

In general, one can very easily simulate a non-crossing version of a 2-tunnel gadget from
the crossing version. Figure 17 shows a parallel-2-toggle being constructed from a crossing-
2-toggle. The same construction works for uncrossing the other gadgets we have analyzed,
namely tripwire-toggles, tripwire-locks and toggle-locks. Going from non-crossing to crossing
versions is significantly more complicated (except in the case of anti-parallel-2-toggle to
crossing-2-toggle) but we are rescued from the need of such constructions by being able to
simulate a general crossover in Lemma 4.10.

6 More reasons Zelda is hard

In this section we use this framework to give an alternate proof that The Legend of Zelda:
Oracle of Seasons is PSPACE-complete. Along the way, we will show that motion planning
with reversible deterministic gadgets we call ‘spinners’ is also PSPACE-complete.

A k-spinner is a two state deterministic reversible gadget on k locations. In one state,
each location is connected to its neighbor by a directed edge in a clockwise direction. In the
other state, all locations are likewise connected in a counterclockwise direction. A 4-spinner
is shown in Figure 18. The study of 4-spinners was posed by Jeffrey Bosboom due to
their appearance in The Legend of Zelda: Oracle of Seasons. We show that for any k ≥ 4,
path-planning problems with k-spinners and branching hallways is PSPACE-complete.

First, we can take a k spinner and have all but three consecutive locations lead to dead
ends. The remaining three locations form a gadget that we call a deterministic fork. A
deterministic fork is a reversible, deterministic gadget on three locations. In one state, it
allows the robot to go from the center to the right location and return from the left to
the center location. In the other state these directions are reversed. Figure 19 shows the
construction of a crossing 2-toggle from two 4-spinners or equivalently two deterministic
forks.

I Theorem 6.1. For any k ≥ 4, the path-planning problem with k-spinners and branching
hallways is PSPACE-complete.

Proof. We construct a deterministic fork by ignoring k − 3 of the edges in the spinner.
Two deterministic forks together simulate a crossing 2-toggle as shown in Figure 19. By
Corollary 5.2, the motion planning problem with crossing 2-toggles is PSPACE-complete. J
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Figure 18 Example of a 4-spinner in The
Legend of Zelda: Oracle of Seasons.

Figure 19 4-spinners simulate deterministic
forks which simulate crossing 2-toggles.

I Corollary 6.2. Determining if a player can beat a level in generalized The Legend of Zelda:
Oracle of Seasons is PSPACE-hard.

Proof. The Legend of Zelda: Oracle of Seasons contains 4-spinners and requires the player
to navigate from one location to a target location in a grid. Since planar graphs can be laid
out in a grid with only quadratic blowup [2], we can reduce from motion planning problems
with 4-spinners which are PSPACE-complete by Theorem 6.1. J

The complexity of motion planning with 3-spinners, as well as the two other reversible,
deterministic, 2 state, 3 location gadgets, remains open. Since 2-spinners are the same as an
edge in a graph, this would give a tight characterization for the spinner gadget. The authors
would also be interested to know what other games and puzzles use spinners.

7 General hardness characterization

Here, we tightly characterize the hardness of the motion planning problem with all determin-
istic, reversible, 2-state, k-tunnel gadgets.

I Theorem 7.1. Motion planning with any deterministic, reversible, 2-state, k-tunnel planar
gadget (with branching hallways) is PSPACE-complete if and only if the gadget has two toggle
tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel and a lock tunnel or a tripwire
tunnel and a lock tunnel. Motion planning with all other such gadgets is in P.

First, we provide upper bounds for some classes of simpler gadgets. This shows that, for
their category, our hardness results are minimal in the sense that path planning with simpler
gadgets in the same class can be solved in P.

I Theorem 7.2. Gadgets with only one state are in NL.

Proof. One state gadgets cannot change in any way. Thus they must all be comprised of
static descriptions of allowed traversals from one location to another. This can be modeled
as a mixed graph. Path planning in mixed graphs is in NL [10]. J

The only nontrivial gadget on 1 tunnel with two states which is reversible and deterministic
is the 1-toggle.

I Theorem 7.3. Motion planning with 1-toggles is in NL.
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Proof. We reduce this problem to ST connectivity in mixed graphs. To solve this problem
we simply treat every 1-toggle as a directed edge pointed in the direction the 1-toggle is
initially oriented and then run the standard algorithm. It is obvious that if a solution here
exists then a path in the 1-toggle planning problem also exists. What is less clear is that
this is sufficient to find any such path.

Consider a path which traverses at least one toggle more than once. Consider the last
toggle on the path which is traversed more than once. After this toggle is traversed, only
toggles which are traversed at most once are on the path. Call this toggle t, and let its final
traversal be from u to v. Since t was traversed repeatedly, there was some previous point
in the path where the robot was at v, before it traversed t the second-to-last time. Let us
create a new path where the robot skips the cycle in the original path from v through t to u,
then eventually back to u through t to v. This path must successfully reach the end, as every
toggle after t is traversed at most once, and so is in the same state regardless of whether the
cycle is omitted.

Thus, under the assumption that there is a path which traverses toggle more than once,
there is another, shorter path. Thus, the shortest path must not traverse toggles more than
once, and so such a path must exist if any path exists. J

The remaining two-state two-tunnel deterministic reversible gadgets are also in P. We note
that a wire-wire never changes its connectivity and is thus no different then two undirected
edges. A lock-lock can never change its state and thus is reducible to a one state gadget,
simply zero, one, or two undirected edges. A gadget with a tunnel which does not change
and is not changed by the state of the gadget is reducible to two gadgets on one tunnel each,
which are in P by Theorem 7.3. This exhausts the 2-state 2-tunnel reversible undirected
gadgets.

Proof of Theorem 7.1. Now, we can characterize all two state, deterministic, reversible
gadgets on any number of tunnels.

Any gadget with two toggle tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel
and a lock tunnel or a tripwire and a lock tunnel is sufficient to make motion planning hard,
by ignoring all other tunnels and using one of the constructions from this paper.

We can divide all other gadgets into three categories: those with tripwires and trivial
tunnels, those with locks and trivial tunnels, and those with a single toggle and trivial
tunnels. The passability of a tunnel in a gadget with only tripwires and trivial tunnels never
changes, making motion planning equivalent to st-connectivity. A gadget with only locks
and trivial tunnels can never have its state change, allowing us to apply Theorem 7.2. A
gadget with a single toggle and some number of trivial tunnels can be treated as a one-toggle
together with some number of undirected edges. Thus, any system of gadgets of these types
is equivalent to a system of 1-toggles and undirected edges. After that, the same argument
as in Theorem 7.3 can be used to solve the motion planning problem in that system. J

8 Open Problems / Conclusion

This framework for abstract motion planning problems leaves open the question of the
computational complexity of motion planning with many other types of gadgets. One can
examine gadgets with more states, without the tunnel restriction, or without the deterministic
and reversible restrictions. Since this is a vast undertaking with many of the gadgets and
their combinations likely to be uninteresting, we suggest some of the following categories to
be of particular interest.
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3 spinners are the only size of spinner for which motion planning remains open.
Three location, 2-state, deterministic, reversible gadgets seem like the obvious ‘simplest’
category of gadgets.
Are there any sets of purely deterministic and reversible gadgets for which motion planning
is PSPACE-complete (e.g. without branching hallways, which are non-deterministic)?
What about reversible but nondeterministic gadgets on two tunnels or three locations?

There is currently significant partial progress on all of the listed topics. Please contact us
before spending significant time working on the open problems listed to prevent duplication
of effort.
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