
MIT Open Access Articles

Guidance for Closed-Loop Transfers using Reinforcement 
Learning with Application to Libration Point Orbits

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: LaFarge, Nicholas B, Miller, Daniel, Howell, Kathleen C and Linares, Richard. 2020. 
"Guidance for Closed-Loop Transfers using Reinforcement Learning with Application to Libration 
Point Orbits." AIAA Scitech 2020 Forum, 1 PartF.

As Published: 10.2514/6.2020-0458

Publisher: American Institute of Aeronautics and Astronautics (AIAA)

Persistent URL: https://hdl.handle.net/1721.1/137731

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137731
http://creativecommons.org/licenses/by-nc-sa/4.0/


Guidance for Closed-Loop Transfers using Reinforcement
Learning with Application to Libration Point Orbits

Nicholas B. LaFarge∗

Purdue University, West Lafayette, IN 47907-2045

Daniel Miller†
Massachusetts Institute of Technology, Cambridge, MA 02138-4301

Kathleen C. Howell‡
Purdue University, West Lafayette, IN 47907-2045

Richard Linares§
Massachusetts Institute of Technology, Cambridge, MA 02138-4301

While human presence in cislunar space continues to expand, so too does the demand for
‘lightweight’ automated on-board processes. In nonlinear dynamical environments, compu-
tationally efficient guidance strategies are challenging. Many traditional approaches rely on
either simplifying assumptions in the dynamical model or abundant computational resources.
The proposed controller employs the use of the nonlinear equations of motion without imposing
a heavyworkload on a flight computer. The guidance framework is nevertheless able to leverage
high-performance computing by separating the training from the resulting controller. Prac-
tical examples demonstrate the flexibility of a reinforcement learning approach, and suggest
extendability to higher-fidelity domains.

I. Nomenclature

atatat = action selected by reinforcement learning agent at time t
alt = nondimensional acceleration of a low-thrust engine
Ât = advantage function estimate at time t
b = reward bonus for reaching arrival condition in a target orbit
B = barycenter between P1 and P2 in the CR3BP
C = Jacobi constant associated with a particular energy level in the CR3BP
d = Kullback–Leibler divergence
δ = maximum allowable Kullback-Leibler divergence
δρδρδρ = relative position and velocity from a spacecraft to its nearest neighbor on a reference trajectory
ε = PPO clipping factor
η = scaling term to increase reward along a given reference path
f = nondimensional spacecraft thrust magnitude
g = gradient of reinforcement learning policy function
γ = discount factor to prioritize immediate vs. future rewards
H = hidden layer of neural network
Isp = Specific impulse of a low-thrust engine
k = L2-norm of the relative position and velocity from a spacecraft to a reference trajectory
λ = scaling factor to adjust the gradient of reward increase near a reference trajectory
l∗ = distance between the primary bodies in the CR3BP
L = loss function for reinforcement learning objectives

∗Graduate Student, School of Aeronautics and Astronautics, nlafarge@purdue.edu, Student Member AIAA.
†Graduate Student, Department of Aeronautics and Astronautics, dmmiller@mit.edu, Student Member AIAA.
‡Hsu Lo Distinguished Professor of Aeronautics and Astronautics, School of Aeronautics and Astronautics, howell@purdue.edu, AIAA Fellow.
§Charles Stark Draper Assistant Professor, Department of Aeronautics and Astronautics, linaresr@mit.edu, Senior Member AIAA

1



m = nondimensional ratio of the mass of the spacecraft to its initial mass
M3 = dimensional mass of the third body in the CR3BP
µ = ratio between the larger and smaller primary body masses in the CR3BP
pi = penalty imposed for impacting the primary or secondary body
pd = penalty imposed for deviating from the reference trajectory
P3 = third body in the CR3BP, frequently used to represent a spacecraft
π = reinforcement learning agent policy
qtqtqt = dynamical state at time t containing position, velocity and mass information
r = reinforcement learning environmental reward
r3r3r3 = vector locating the position of P3 in the CR3BP
Rref = set of discrete states along a reference trajectory
ρρρ = vector containing position and velocity information in a rotating reference frame
ststst = state at time t
t∗ = characteristic time of the CR3BP
θ = parameters for the reinforcement learning policy
û = thrust direction with respect to the CR3BP rotating frame
V = estimation of value function
ξ = scaling term to adjust the rate at which reward increases over a reference

II. Introduction

Establishing a permanent foothold in cislunar space is considered by NASA as pivotal in expanding human
exploration. With the proposed Gateway and Artemis projects, NASA aims to develop the capability for an enduring

human presence beyond Low Earth Orbit (LEO). This development effort involves accessing complex dynamical
structures, e.g., a Near Rectilinear Halo Orbit (NRHO), that only exist in force models that incorporate the gravity
of both the Earth and the Moon simultaneously [1]. Furthermore, increasingly complex spacecraft require more
autonomous on-board computational capability than previous flight systems. Orion, in particular, is required to include
the “capability to automatically execute GN&C functionality during all phases of flight ” [2]. The increased complexity
introduces a unique challenge for trajectory designers. For example, many traditional Keplerian-based guidance
approaches are infeasible due to the nonlinearity in the dynamical model while, in contrast, many modern strategies rely
on abundant computational resources not available on a flight computer. This investigation addresses these challenges
by demonstrating Reinforcement Learning (RL), a subset of machine learning, to be a computationally ‘lightweight’
approach for automated closed-loop guidance in support of multi-body orbit transfers.

In recent years, RL has proven beneficial in achieving state-of-the-art performance in historically challenging
domains despite significant environmental uncertainty [3]. While recent progress has addressed these dynamical
challenges in the Circular Restricted Three-Body Problem (CR3BP), an additional complicating factor is the planned
inclusion of solar electric propulsion options on Orion and Gateway that prohibit instantaneous maneuvers in favor of
gradual velocity and energy changes over longer time intervals. Furthermore, corresponding solutions often rely on the
underlying assumptions in the force model and are not easily extendable to higher-fidelity domains. Yet preliminary
analysis is frequently accomplished in the CR3BP and then transitioned to an ephemeris model for a higher-fidelity
solution. Conversely, using RL as a model-agnostic guidance approach is more adaptable to different domains and
offers direct interaction with complex dynamical models.

While many recent advancements in trajectory design exploit improvements in computer hardware, relatively few are
practical for autonomous on-board implementations given the limited computational resources. In multi-body problems,
trajectory designers often generate low-cost initial guesses for transfers by leveraging dynamical systems theory and
invariant manifolds [4]. Dynamical systems-based approaches have been useful in many previous applications and,
when combined with differential corrections and/or optimization techniques, yield globally optimal solutions for many
applications. However, this approach is computationally intensive and often requires human-in-the-loop interactions.
An alternative strategy bases outcomes on trajectory design and optimization tools, e.g., Copernicus [5] and/or NASA’s
Evolutionary Mission Trajectory Generator (EMTG) [6]. But, these computational tools, while powerful, often involve
lengthy grid search and optimization processes that prohibit rapid trajectory and control history construction. As NASA
expands both a human and robotic presence in cislunar space and beyond, the limitations of these methods suggest that
new approaches are necessary to address the time and computational cost of current procedures.

Typically, in the pre-flight trajectory design process, the goal is the construction of an optimal trajectory and a

2



control history that meets mission criteria for propellant usage and time of flight. However, within the context of flight
software, optimality is considered secondary to feasibility [7]; the capability to rapidly re-compute a reference path
and a feasible control history in-flight is critical for autonomous guidance. By approaching on-board guidance from a
machine learning perspective, a closed-loop neural network controller offers the ability to quickly and autonomously
compute a control history for a spacecraft with basic linear algebra operations and without iteration. In addition, RL
separates the computationally expensive pre-flight learning from the resulting on-board controller and, thus, leverages
modern computer hardware while still producing a controller sufficiently lightweight for use in flight.

III. Reinforcement Learning Formulation
Machine learning, as a spacecraft trajectory design and optimization tool, has only recently been introduced. The

applications are broadly grouped into two categories: supervised learning and reinforcement learning. Supervised
learning typically involves classification or regression tasks by optimizing an artificial Neural Network (NN) to map
selected inputs to known outputs. Recent advancements in the development of deep NNs (NNs with multiple hidden
layers) render such approaches accessible and productive. In trajectory design, Dachwald used a shallow NN for
low-thrust trajectory optimization as early as 2004 [8]. More recently, De Smet and Scheeres employed a NN to identify
heteroclinic connections in the CR3BP [9]; Parrish and Scheeres then explored many nearby optimized trajectories to
train a NN to generate low-thrust trajectory corrections [10]. Furfaro et al. explored supervised learning to model a
fuel-optimal lunar landing control history [11]. In these supervised learning approaches, algorithms rely on a large
amount of accurate training data, generated by the user, and their performance is largely dependent on the quality and
quantity of this data.

Reinforcement learning can also train a neural network controller, but the training process is very different. Rather
than demanding a large quantity of known representative training data, an RL agent interacts directly with its environment,
and creates this training knowledge ‘on-the-fly’ based on a reward response. While there is tremendous advantage to
removing the need for a priori system knowledge in training an RL agent, challenges are also inherent in this approach.
In particular, an agent’s performance depends on a Markovian system response and is highly dependent on the choice of
the reward function, which is often unique to any given application [3]. Within RL, algorithms are frequently broadly
classified as value optimization or policy optimization schemes. The former framework involves an agent that learns the
‘value’ of a particular state and action pair, often by a process of iteration using the Bellman equation. The value of a
state is analogous to the cost-to-go function in an optimal control problem. In most modern RL implementations, this
function is approximated using a NN, though it can also be tabular in problems with small and easily discretized state
and action spaces. Having learned the optimal value function, the optimal policy is easily determined by selecting
the action at each state with the highest value. Policy optimization, in contrast, involves learning a policy function
that yields the optimal action for a given state. This alternate approach is iterative such that a policy is leveraged to
compute a corresponding value function, which in turn determines improved policy and value functions. Unfortunately,
value optimization methods, also denoted critic-only schemes, are computationally expensive due to a requirement that
every possible state be visited. Policy optimization approaches do not require such completeness. However, most such
strategies belong to a subcategory labeled policy gradient methods that suffer from slow learning due to high variances
in the estimates of gradients [12].

Due to the limitations of both policy and value optimization schemes, a class of hybrid algorithms, denoted
actor-critic methods, are of particular interest. These approaches combine both value and policy paradigms into one
unified approach. In recent years, actor-critic strategies have proven especially effective in problems involving continuous
control tasks. One such algorithm is Proximal Policy Optimization (PPO). This investigation focuses on PPO as the core
RL algorithm due to its demonstrated performance in continuous domains and its relative simplicity in implementation.

Some recent advancements in RL for astrodynamics applications are notable. For path-finding, in 2017 Das-Stuart
et al. leveraged Q-Learning in conjunction with accessible regions to compute initial guesses for low-thrust transfers in
the CR3BP [13]. Following this effort, in 2019, Das-Stuart et al. furthered the investigation by leveraging supervised
learning to influence the resulting solution geometry [14], and applied the framework to contingency planning [15]. As
applied toward other related tasks, Gaudet et al. used PPO in an optimal control Martian landing guidance problem
[16], Furfaro et al. took a ZEM/ZEV feedback approach to lunar lander guidance [17], Broida and Linares used RL
for rendezvous guidance in a cluttered environment [18], and Guzzetti applied RL to multi-body station-keeping [19].
In 2019, Miller and Linares first employed PPO for low-thrust trajectory optimization in a multi-body regime [20].
The same year, Miller et al. further demonstrated PPO’s decision-making capability for interplanetary low-thrust
transfers [21], Reiter et al. employed PPO for spacecraft detection avoidance [22], and Gaudet et al. proposed an

3



adaptive Guidance, Navigation and Control (GN&C) framework for asteroid proximity operations using PPO [23]. This
investigation builds on these approaches by demonstrating the ability of PPO to control a spacecraft in the nonlinear
planar CR3BP, while also exploring the RL framework, in particular, the impact of the state and reward signals on
learning performance.

A. Neural Networks
Neural networks are employed extensively inmodern RL algorithms due to their demonstrated ability in approximating

policy and value functions. Many traditional tabular RL approaches, such as Q-learning, rely on finely discretizing the
state and action spaces, which quickly becomes impractical as the number of dimensions in the problem grows. This
drawback is known as the “curse of dimensionality” [3]. Leveraging NNs allow modern algorithms to both access the
continuous state and action spaces, and to easily include additional dimensions.

Neural networks employed in this investigation are composed of an input layer, three intermediate layers, whose
outputs are ‘hidden’, and an output layer, summarized in Table 5. Each layer is composed of nodes, called neurons.
In each neuron, the sum of the weighted outputs from the previous layer, combined with a bias term, are processed
through a nonlinear activation function to produce outputs. Hence, the entire neural network is evaluated using a
combination of matrix operations and element-wise nonlinear activation functions. The activation function employed
in this investigation is hyperbolic tangent, or tanh. With this simplicity in evaluation, a neural network controller is
computationally efficient, and can be applicable flight computers.

Despite the relative simplicity in evaluation, implementing a NN on a flight computer presents additional challenges
due to “significant amounts of multiply and accumulation operations” and a “substantial amount of memory to store
data” [24]. Flight hardware to address these difficulties is currently being developed. NASA is actively soliciting
proposals for neuromorphic processors to enable in-space autonomy [24]. These specialized processors, inspired by the
human brain [25], allow for dedicated low-power NN evaluation in space. Adoption of neuromorphic hardware into
flight systems will render machine learning approaches more accessible and productive. In particular, neuromorphic
computing could enable efficient autonomous control, decision making, and onboard adaptive learning [26],

A sample NN used in this investigation is depicted in Fig. 1. The input I to the network contains 11 values and is
mapped to 120 neurons in the first hidden layer H1. To achieve this, a matrix of weightsW1 with dimensions 120 by 11
and a matrix of bias terms B1 with dimensions 120 by 1 are defined. With the activation function, α1, being applied
element-wise to each neuron, the calculation from the input layer to the first hidden layer is,

H1
120×1 = α

1
(
W1

120×11I11×1 + B
1
120×1

)
(1)

An identical process is then repeated between each layer of the network until the output is reached. In the sample
network shown, this final output consists of three scalar values, [ f̃ , ũx, ũy].

Dynamical State (qtqtqt )

Relative State (δρδρδρ)

Additional Observations

...

...
...

... Action (atatat )

I H1
1

H1
120

H2
1

H2
60

H3
1

H3
30

f̃

ũx

ũy

f̃

ũx

ũy

f̃

ũx

ũy

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Output
layer

Size: 11 Size: 120 Size: 60 Size: 30 Size: 3
n/a tanh tanh tanh tanh

Fig. 1 Actor network employed in PPO algorithm

4



B. Foundational RL Concepts
In RL, an agent is a controller that maps observed variables to actions. This mapping is known the agent’s policy

(π). The goal of the agent’s training process is to improve the policy such that the agent learns which actions are
desirable. Training is a repetitive process that is composed of many thousands of episodes, or attempts at solving the
desired problem. These episodes are further subdivided into tens or hundreds of time steps. At each time step, the
agent must take the current observation, and compute an action. Eventually, the agent is able to converge on an optimal
deterministic policy (π∗), which can then be used as a controller for the given problem.

The learning framework is designed as a Markov Decision Process (MDP) and, thus, the state must satisfy the
Markov property, which requires that future states depend only upon the current state, and not on the series of events
that preceded it [3]. In many practical applications, only partial information is available, and the agent instead receives a
subset of all environmental data. This signal is denoted the ‘observation’. The delineation between state and observation
is important in partially observable systems. However, this investigation assumes a fully observable MDP and, thus, for
simplification, the observation ototot can be represented as the state ststst .

The specific mechanics of RL are best understood at the episodic level. Each episode is a cycle of communication
between the agent and the environment. The environment represents the problem to be solved, and contains all the
information about the problem dynamics. To begin an episode, the agent receives an initial observation from the
environment. This observation typically includes variables that define its dynamics, e.g., position and velocity, as well
as problem-specific information that can benefit decision making, e.g., relative position to a target.

The initial state received at the beginning of an episode is denoted s0s0s0. Based on this state, the agent decides on an
action, a0a0a0, according to its policy function, πθ (a0a0a0 |s0s0s0), where θ represents the weights and biases of the actor neural
network. Having communicated this decision to the environment, the agent receives, in response, a reward signal
r0(s0s0s0,a0a0a0) and a new state s1s1s1. The agent records this state, action, and reward set (s0s0s0,a0a0a0, r0), and proceeds to choose
a new action a1a1a1 given s1s1s1. This process repeats itself until the environment either indicates that the agent has met a
user-defined termination criteria, e.g., colliding with the Moon, or the number of time steps reaches a preset maximum
T . At the end of each episode, a trajectory of state-action-reward data is recorded.

During the first episode, the policy is random as the agent explores the available action space. Updating the
weights and biases of the agent’s neural networks is the only way to improve the underlying policy. After collecting a
user-determined amount of data, denoted the ‘batch size’, the agent performs an optimization update based on its saved
state-action-reward trajectory. This update requires calculating an ‘advantage’, Aπ , which is the extent to which the
outcome of an action at a specific state is better or worse than expected. To accomplish this computation, the agent must
have some internal mechanism by which to estimate the value an observation. This assessment takes the form of a
neural network called the ‘critic‘. Assuming the quality of a state-action pair is measured by its associated reward, the
quality of an entire trajectory of state-action pairs, starting from a specific state, is estimated as the sum of discounted
future rewards. Hence, the value of a state, V(ststst ), is computed as,

V(ststst ) = E
[
rt + γrt+1 + γ

2rt+2 + · · · + γ
T−1rt

]
(2)

where γ is the discount factor that determines the extent to which the agent prioritizes immediate vs. future rewards.
Upon completing an episode, the value of each state in the state-action-reward trajectory is calculated starting

with the final state sTsTsT and working backwards. By subtracting the resulting trajectory value, V(ststst ), by the critic NN’s
estimated value of each state, an estimate of the advantage is computed. As detailed by Schulman et al., [27] Aπ(ststst,atatat )
is evaluated as,

Aπ(ststst,atatat ) =

[
T∑
τ=t

γτ−tr(sτsτsτ,aτaτaτ)

]
− V(ststst ) (3)

Through the use of the advantage function, the policy of the actor is updated using a version of gradient descent.
Similarly, the summation term in Eq. (3) is used to update the value estimate of the critic. Following these updates, a
new episode begins with this more accurate pair of NNs. Together, the update strategy is described as a 3 step repeated
process in which (1) data is collected, (2) the agent is updated, and (3) new data is collected that solely reflect the
performance of the newly updated actor. This strategy, employed in this investigation, is specific to an RL category
known as on-policy algorithms.

5



C. Policy Gradient Methods
Policy gradient methods are a category of RL algorithms that learn a policy function by, using gradient descent,

optimizing the parameters that compose the actor NN with respect to the sum of future rewards. Consider a control
policy in which the action is sampled from a multivariate distribution atatat ∼ πθ (atatat |ststst ). This distribution can easily be
produced by a NN that outputs the mean and variance of the distribution as a function of the input state. Alternatively, a
NN can be used to produce the mean while the variance is directly learned by the agent as a trainable variable. This
latter approach is used in this investigation. Fortunately, these two methods are functionally identical in the context of
policy gradient methods, since both produce the desired policy distribution πθ (atatat |ststst ).

Once defined as a distribution, the policy can be learned by optimizing the actor NN parameters θ with respect to the
objective function J(θ) = E

[∑∞
t=0 rt

]
. It follows that the update gradient used for the actor is given by g := ∇θ

[∑∞
t=0 rt

]
.

In practice, this gradient is not directly computed, but rather estimated using one of many possible methods detailed by
Schulman et al. [27]. One popular form of this estimator is,

ĝ = Êt
[
∇θ log πθ (atatat |ststst )Ât

]
(4)

with the corresponding policy gradient loss function being,

LPG = Êt
[
log πθ (atatat |ststst )Ât

]
(5)

Optimizing the policy using the loss function given by Eq. (5) is the subject of policy gradient methods
Unfortunately, repeatedly optimizing Eq. (5) using the same state-action-reward trajectory frequently results in

destructively large policy updates that prohibit learning an optimal policy [28]. In response to this issue, Schulman
et al. designed Trust Region Policy Optimization (TRPO) as an algorithm with guaranteed monotonic improvement
[29]. In TRPO, episodes are completed according to a policy πθold (atatat |ststst ). Based on the state-action-reward data that is
recorded under this policy, a second policy πθ (atatat |ststst ) is optimized, which, in turn, becomes the new πθold . To achieve the
desired monotonic improvement, the Kullback-Leibler (KL) divergence is introduced as an optimization constraint to
measure the difference between the two policy distributions, πθ and πθold . Together, the optimization scheme under
TRPO becomes,

maximize
θ

Êt
[
Rt (θ)Ât

]
subject to Êt

[
KL

[
πθold (·|ststst ), πθ (·|ststst )

] ]
≤ δ

(6)

where δ is a limit on the change in policy distributions and Rt (θ) =
πθ (atatat |ststst )
πθold (atatat |ststst )

is the probability of an action given a
certain state under a new, optimized policy divided by the probability of that action under the previous policy. This
inequality prevents prohibitively large updates from occurring by ensuring that the change in distribution remains within
a specified bound. While TRPO has been successfully applied to many challenging problems, it is a complex algorithm
and, thus, prone to implementation errors.

D. Proximal Policy Optimization
Proximal Policy Optimization (PPO) was developed as a simpler and more flexible alternative to achieve the same

high performance as TRPO [28]. In its most common formulation, PPO replaces the KL divergence constraint outlined
in Eq. (6) with a simple clipping factor contained within its objective function. In this basic formulation, the objective
function is given by,

LCLIP = Êt

[
min

(
Rt (θ)Ât, clip(Rt (θ), 1 − ε, 1 + ε)Ât

)]
(7)

Here, Rt (θ) is multiplied by the advantage function, Ât , which forms the essential component of PPO, Rt (θ)Ât . To
illustrate this multiplied term, consider the example of an action taken at time step t that resulted in a better than
expected outcome. Under such circumstances, the advantage Ât will be positive, and the algorithm will seek to make
this action more probable under the new policy, i.e., Rt > 1. To avoid overly large policy changes, PPO limits the largest
possible value of the ratio to 1 + ε . For example, if ε = 0.2, then an action will, at most, be able to become 20% more
probable. Similarly, if the action resulted in a poorer than anticipated outcome, Rt (θ) < 1 and a minimum value of 1 − ε
is enforced.

While clipped PPO is the most common form of the algorithm, an alternative loss function is also available that
utilizes the KL divergence in a manner similar to TRPO. This loss is computed as,

6



LKLPEN (θ) = Êt

[
πθ (atatat |ststst )
πθold (atatat |ststst )

Ât − βKL
[
πθold (·|ststst ), πθ (·|ststst )

] ]
(8)

where, rather than using a clipping value, a target KL divergence (dtarg) is maintained by controlling a penalty coefficient
(β). While the precise update rules for updating β are not detailed, the general concept is intuitive. When the KL
divergence d is greater than the target value dtarg, the penalty coefficient β is increased, which implies that the policy
is changing by a greater amount than desired. Hence, increasing β encourages smaller policy updates. Similarly, if
d < dtarg, β is decreased, and larger policy updates are encouraged. This investigation uses the KL divergence approach
to PPO, and the specific implementation employed includes other minor customizations to the algorithm based on
Patrick Coady’s open source work∗.

IV. Dynamical Model
The circular restricted three-body problem (CR3BP) is employed to evaluate the proposed guidance scheme within

the context of a complex dynamical regime. In this model, the motion of an object (P3) is governed by the gravitational
influence of two spherically symmetric gravitational bodies (P1 and P2), as depicted in Fig. 2. These bodies are assumed
to move in circular conic orbits about a common barycenter (B), where the relative size of the primaries is represented
by the mass ratio µ = m2/(m1 + m2), with m1 assumed to be the larger of the two bodies. Furthermore, this model
assumes that the mass of P3 is infinitesimal compared to the masses of the primary bodies and, thus, does not influence
the motion of the primary system. The position and velocity of P3, denoted rrr, vvv, respectively, comprise the vector
ρρρspacial = [x y z Ûx Ûy Ûz] T . The vector components are propagated with respect to the system barycenter, B, in a
rotating reference frame, denoted by dashed lines in Fig. 2.

This investigation assumes that P3 is a spacecraft with a Constant Specific Impulse (CSI) low-thrust engine. The
additional propulsion force augments the natural CR3BP equations of motion with low thrust terms,

Üx − 2 Ûy−x = −
(1 − µ)(x + µ)

r3
13

−
µ(x − 1 + µ)

r3
23

+ altux (9)

Üy + 2 Ûx−y = −
(1 − µ)y

r3
13

−
µy

r3
23

+ altuy (10)

Üz = −
(1 − µ)z

r3
13

−
µz
r3
23

+ altuz (11)

Ûm = 0 +
− f l∗

Ispg0t∗
(12)

where red denotes the additional terms introduced by the low-thrust force, t∗ and l∗ are the system characteristic time and
length, respectively, and g0 = 9.80665×10−3 km/s. The distances between the first and second primary body are defined
as r13 =

√
(x + µ)2 + y2 + z2 and r23 =

√
(x + 1 − µ)2 + y2 + z2, respectively. Motion in the CR3BP is nonlinear in a

notably sensitive dynamical regime, thus, the proposed guidance strategy exploits the impact of the low-thrust terms to
achieve desired behavior. As detailed by Cox et al. [30], thrust direction is defined by the low-thrust acceleration vector,

aaalt =
f
m

û = (altux)x̂ + (altuy)ŷ + (altuz)ẑ (13)

where f is the nondimensional thrust magnitude, m is the nondimensional spacecraft mass ratio M3/M3,0, and û is the
thrust direction unit vector in the rotating frame. The nondimensional thrust magnitude is computed as,

f =
Ft∗

l∗M3,0
(14)

where F is thrust in kilonewtons and M3,0 is the initial mass of the spacecraft. In their formulation, Cox et al. suggest
that a nondimensional value of f ≈ 10−2 in the Earth-Moon system is consistent with existing engine capabilities for
Deep Space 1, Dawn, and Hayabusa, while values less than or equal to f ≈ 7e−2 model a reasonable capability [30].

∗Coady, P., “Proximal Policy Optimization with Generalized Advantage Estimation.” URL https://github.com/pat-coady/trpo

7



X̂

Ŷ

Ẑ = ẑ

x̂

ŷP1(m1)

P2(m2)

φ

φ

P3

B

r1r1r1

r2r2r2

r13r13r13

r23r23r23
r3r3r3

Inertial Frame

Rotating Frame

Primary System

Fig. 2 CR3BP vector definitions where µ = 0.2. The rotating frame (x̂, ŷ, ẑ) is oriented with respect an inertial
reference frame (X̂ , Ŷ , Ẑ) by an angel φ.

Finally, to provide a simpler environment for assessing the learning framework, subsequent examples assume all motion
occurs in the x-y plane. In particular, the planar assumption implies that the spacial components (z, Ûz, uz), are all zero.
Hence, the vector ρρρspacial becomes ρρρ = [x y Ûx Ûy] T , where all the spacial terms are eliminated.

Omitting low-thrust terms, the natural CR3BP equations of motion yield a well-known integral, i.e., the Jacobi
constant of integration (C). This single integral of motion is evaluated as,

C = 2
(
1 − µ

r13
+

µ

r23
+

1
2

(
x2 + y2

))
−

(
Ûx2 + Ûy2 + Ûz2

)
(15)

The Jacobi constant is related to orbital energy as observed in the rotating frame, and remains constant throughout any
natural propagation. This integral offers key insight into the limiting bounds for possible motion of P3 and supplies a
useful scalar metric for deviations relative to a reference trajectory where C is preserved.

V. Reinforcement Learning Environment
While both the selection and implementation of an appropriate RL algorithm is critical to learning performance, so

too is proper design of the RL environment. The environment represents the formulations for the state, action, and
reward signals. By definition, the state vector, ststst , communicates relevant information to the agent about the environment
at a particular point in time. Hence, the state must be designed to accurately communicate information about the
environment dynamics and subsequent flow. The action, atatat , defines an agent’s ability to alter that environment and must
offer the agent sufficient control authority to ‘learn’ an effective policy. Lastly, the reward signal, r, is a scalar value
that denotes the immediate positive or negative impact of a particular action. The selection of a reward function is
arguably both the most difficult and most important function to design and is, thus, a critical element of this learning
framework. Proper signal design is critical because even the most robust learning algorithm consistently falls short in
an ill-designed environment. Hence, a proper quantification of positive and negative behavior, given the goals of the
guidance framework, is crucial in achieving desirable outcomes.

A. State Signal
Under a Markov Decision Process (MDP), the environmental state at time t (ststst ) must include all necessary past

environmental information that impacts the future [3]. For the CR3BP, position, velocity, and spacecraft mass are
together sufficient, since future states are predicted by numerically integrating the equations of motion specified in Eqs.
(9) - (12). Hence, at every time step t, the dynamical state qtqtqt is defined as,

qtqtqt =
[
ρρρ agent m

]
=

[
x y Ûx Ûy m

]
(16)

8



While qtqtqt alone is sufficient to satisfy the Markov property, the agent performance is greatly increased by augmenting the
dynamical state, qtqtqt , with additional variables to form the state signal, ststst . In the PPO formulation, the actor and critic
networks receive the complete state signal as inputs, as depicted in Fig. 1. Hence, both the policy and value functions
are dependent on the selection of additional variables. Since this problem involves an agent learning to track a reference
solution, relative position and velocity are essential to the agent performance and the ability to extrapolate to nearby
motion. Including relative state information is similarly useful for RL in a station-keeping environment [31]. The
relative information is computed simply as,

δρδρδρ = ρρρ agent − ρρρ ref =
[
δx δy δ Ûx δ Ûy

]
(17)

where ρρρ agent is the position and velocity of the agent at some time step, and ρρρ ref is the position and velocity of the
nearest neighbor along the given reference trajectory path. Here, “nearest” is defined as the state along the reference
with the lowest L2 norm of relative position and velocity. If the reference path includes a set of n discrete points, Rref,
then the nearest state ρρρ ref is defined as,

ρρρ ref ∈ Rref s.t. k = |δρδρδρ| =
√
δx2 + δy2 + δ Ûx2 + δ Ûy2 is minimal (18)

This relative state information, along with other optional additional observations, form the complete state signal,

ststst =
[
qtqtqt δρδρδρ additional observations

]
(19)

of dimension 9 + j, where j is the number of optional additional observations incorporated. Recall that, for a fully
observable MDP, the state ststst and observation ototot are interchangeable. The elements of the state signal must communicate
sufficient information about the environment to enable the actor and critic networks to accurately characterize the system
dynamics.

The additional observations are problem-dependent and are, thus, included here as optional parameters. Since this
investigation involves the CR3BP dynamical model, including some dynamical information in the reward signal is
advantageous for learning performance. In particular, the Jacobi constant, defined in Eq. (15), communicates energy
deviations to the actor and critic networks. At each time step, the Jacobi constant for ststst , denoted Cst , is computed
for a particular state, and then combined with the Jacobi constant value from the reference trajectory, Cref, to form
the additional observations in Eq. (19). The complete state vector in the CR3BP environment is then defined as
ststst = [qtqtqt δρδρδρ Cst Cref]. Omitting the Jacobi constant from the state signal entirely does not prohibit convergence, but
the resulting policy is less optimal than one that incorporates the constant. The beneficial impact of including the Jacobi
constant indicates that, when applying this approach to other dynamical models where the Jacobi integral may not be
available, additional energy-like observations may prove advantageous.

B. Action Definition
In any MDP, an agent influences the environment by means of actions. For a low-thrust spacecraft, the action

takes the form of a thrust magnitude and direction. While this action does not instantaneously alter the environmental
state, its impact is realized in the numerical propagation that occurs between time steps. In this case, the action is
identified by the actor network, which outputs both a thrust magnitude, f̃ , and the vector components representing
thrust direction, (ũx, ũy), as depicted in the output layer of the actor network in Fig. 1. During the training phase, the
network outputs the mean value of each action parameter, and uses these in conjunction with a derived variance to create
a normal distribution for each value. The mean is essentially the agent’s best guess for the action given a particular
observation, and the variance is included to encourage exploration. Miller et al. employed a similar action definition for
interplanetary trajectory generation [21]. As in all policy optimization RL methods, over the course of training, the
output of the network approaches an optimal policy. Once fully trained, exploration is no longer necessary, so the mean
values are used directly to form a deterministic controller.

For a neural network controller, the raw value of the output action is governed by the selected activation function in
the output layer of the network. The activation function employed in this investigation is tanh and, therefore, actions
values are bounded by [−1, 1] and must be scaled to reflect actual low-thrust values. Let tilde denote raw value output
by the network such that f̃ , ũx, ũy ∈ [−1, 1]. First, the thrust magnitude is re-scaled by the maximum total allowable
nondimensional thrust,

9



f =
f̃ + 1

2
fmax ∈ [0, fmax] (20)

and the thrust directions are combined and normalized to form a unit vector. With this, the action is delivered as,

atatat =
[

f ux uy
]

such that û = [ux uy] =
[ũx ũy]√
ũ2
x + ũ2

y

(21)

While parameterizing thrust as a unit vector and magnitude is straightforward, a potential drawback is an equation of
constraint that is unknown to the controller, i.e., thrust direction is a unit vector. While it seems appealing to reformulate
the low-thrust parameterization to eliminate this constraint, note that including an angle as an output value for any
bounded activation function results in a critical discontinuity in the available action space and, therefore, in the gradient
of the action with respect to the observations. This discontinuity occurs because, once re-scaled to a range [0, 2π], the
agent cannot perform an update step to push the output angle past either end bound. Hence, while parameterizations
that include angles are potentially beneficial for other applications, such as trajectory design [30] and targeting [32], the
bounded action implies that an alternate approach is required for this application.

An alternative low-thrust parameterization that has been applied to PPO by Miller and Linares is empowering the
agent to command the thrust in each direction independently, such that each direction is allowed to employ the maximum
allowable thrust [20]. While this approach avoids the discontinuity issue associated with angles, the drawback is that a
physical engine has an associated total maximum thrust, but does not possess a practical limitation on the thrust direction
of individual vector components. For the action to be more reflective of a physical engine, the magnitude/unit vector
formulation, detailed here, separates thrust magnitude and direction in the action output. While the external equation of
constraint that accompanies this strategy causes repetition in possible actions, it does not prohibit convergence to an
effective policy.

C. Reward Signal
The environmental reward is designed to measure ‘nearness’ to a reference trajectory as a scalar value. This nearness

function is modeled as an exponential so that reward grows rapidly as the agent’s state nears the reference in both
position and velocity. In this formulation, after the nearest neighbor along the reference is determined, the agent is
rewarded for a thrusting plan such that the distance to the nearest state at the next time step is minimized. The reward
function is then multiplied by a scaling term, η, to increase the reward over time for the reference solution. Reward is
computed at each time step when the relative position and velocity are both less than an upper bound, denoted δrmax
and δvmax respectively. If deviation exceeds a maximum threshold, a penalty is applied and the episode is terminated.
Alternatively, if the agent reaches the target orbit within some position and velocity tolerance, the episode is deemed
successful, and an arrival bonus is added to the reward. Together, the reward function is defined as a piecewise function,

r =


ηe −λk

√
δx2 + δy2 < δrmax and

√
δ Ûx2 + δ Ûy2 < δvmax

b arrival condition met
pi impact P1 or P2

pd deviate from reference

(22)

where λ is a scaling factor that increases the gradient of the reward, k is defined in Eq. (18) as the relative distance to
the nearest point along the reference, pd is a penalty for deviating from the reference, and pi is a penalty for impacting
the primary or secondary body. Finally, η is a scaling term evaluated as,

η =
i
n
ξ + 1 (23)

where i is the index of the reference trajectory state, n is the size of the set of states along the reference trajectory, Rref,
and ξ is a tuning variable to adjust the rate at which the reward increases along the reference. If the nearest neighbor is
along the arrival orbit and not the reference trajectory, then η is assumed to be a maximum value ηarrival = ηmax = ξ + 1.
Formulating the reward signal to be at maximum when the agent reaches its target encourages the agent to fully complete
the given transfer. The reward function employed in this investigation differs from that in Miller and Linares [20] by
removing time from the equation. In their formulation, a spacecraft is rewarded for arriving in a periodic orbit at a

10



specific time. While requiring a matching time is important for many applications, such as rendezvous, other scenarios
do not warrant this constraint. With a time-autonomous reward function, the agent returns to a reference trajectory,
without penalty for a slightly longer or shorter transfer time.

The measurement of nearness, as detailed in Eq. (22), is visualized in Fig. 3. To illustrate the region of high reward
surrounding the reference, perturbations are introduced in y0 at the point where the trajectory crosses the x = 1 − µ
plane. As each of these perturbed states is propagated forward in time, their deviation off the reference is visualized
by the reward colormap. Once deviation beyond the threshold has occurred, the trajectory is colored light gray to
denote areas where a penalty is imposed. Due the exponential term in Eq. (22), high reward exists solely in the region
immediately surrounding the reference. Hence, to continue accruing reward, the agent is encouraged to maintain close
proximity to the reference path.

A notable limitation of this time-autonomous approach is a reference trajectory that includes a departure periodic
orbit. In this case, the reward function, as defined here, causes an agent to learn to maximize future reward by
stationkeeping about the departure orbit rather than proceeding along the reference. To combat this behavior, the
variable η is used in Eq. (22) to encourage the agent to continue along the reference, and discourage the initial periodic
behavior. While η discourages initial stationkeeping behavior, it does not entirely eliminate the tendency. Like other
optimization methods, abundant local minima encourage an agent to converge to sub-optimal behavior. Including η
discourages this behavior, but does nor entirely eliminate the possibility of sub-optimal convergence and return to the
stationkeeping local minimum.

D. Nearest Neighbor Searching
The computation of the relative state for the reward and state signals presents some practical challenges in

implementation. First, the nearest reference state must be selected from a discrete set of states along the reference path,
Rref. For an accurate assessment of nearness, the trajectory must include a large number of states. However, since the
reward is computed at every time step, a brute force search through Rref is computationally infeasible. To ease this
computational burden, the nearest neighbor search is instead conducted by traversing through a K-dimensional tree
(KD-Tree). A KD-Tree is a data structure frequently used for data clustering in unsupervised learning applications. This
specialized type of binary search tree reduces the algorithmic complexity of the nearest neighbor problem from O(n) to
O(log n), a significant improvement when n is large. In this investigation, Scikit-learn’s sklearn.neighbors.KDTree
implementation is employed to facilitate the nearest neighbor search process [33]. A similar approach is successful for
autonomously locating neighbors in higher dimensional Poincaré maps [34, 35]. This application differs in that the
neighbor search is conducted for only a single state, rather than intersections from two discrete sets.

Moon

Penalty

Penalty

Reference
Trajectory

Fig. 3 Motion nearby a reference trajectory originating at the x = 1 − µ plane. Perturbations are introduced
in y0, and then propagated without thrust. Each state is colored based on the reward function defined by Eq.
(22), where λ = −100, η = 1, and the maximum deviations in position and velocity are 8000 km and 30 m/s,
respectively.

11



In addition to time complexity improvements, approaching the nearness function from an unsupervised learning
perspective allows for the inclusion of additional dimensions at no cost to algorithmic complexity. This functional
extendability allows for a simpler transition of this guidance framework to higher-dimensional dynamical models.
However, when including multiple variables in the nearness metric, the KD-Tree approach dictates that all variables are
condensed into a single norm function. Thus, the process is more complicated if the variables are scaled differently,
since the norm is then biased toward the results with larger absolute values. This drawback is addressed by scaling all
variables to, approximately, the same order of magnitude. This investigation demonstrates that nondimensional position
and velocity in the CR3BP are close in magnitude and do not demand re-scaling, however, if units are dimensional, or if
additional variables such as time or an angle are included, the individual variable scaling issue requires re-assessment.

VI. Libration Point Transfer Examples
To illustrate the performance for the PPO-generated controller, several sample scenarios are considered. Due to

the recent increased interest in cislunar space, the Earth-Moon CR3BP system serves as the basis for example cases.
The specific characteristic quantities for this system are listed in Table 1. The low-thrust propulsion model assumes a
Constant Specific Impulse (CSI) engine with Isp = 3000 s, and a propulsion limit fmax = 4 × 10−2 nondim. This thrust
level corresponds to a spacecraft with more propulsive capability than Hayabusa, Dawn, and Lunar IceCube, but with
less than Deep Space 1 [30]. Hence, the sample spacecraft is consistent with current low-thrust capabilities.

For sample scenarios, planar transfers between the L1 and L2 libration points, with various geometries, are used as
an illustrative test problem for the proposed guidance framework. In particular, Lyapunov orbits at the same Jacobi
constant, plotted in Fig. 4(a), are considered. With energy constrained, motion in the lunar vicinity is bounded in
configuration space by a forbidden region, frequently denoted the Zero Velocity Curves (ZVCs) [36]. Furthermore,
the shared Jacobi constant value between orbits indicates that heteroclinic transfers may be available. Heteroclinic
transfers occur when manifold intersections create continuous ∆v-free paths between two periodic orbits. Two such
transfers appear in Fig. 4(b). These continuous trajectories are constructed by selecting an initial guess from manifold
intersections on a Poincaré map, and corrected using the methodology detailed by Haapala and Howell [4]. Heteroclinic
transfers are one of the few cases in the CR3BP where globally optimal geometries exist, and provide a useful test
framework for the controller since no maneuvers are required.

Table 1 Characteristic quantities in the Earth-Moon System

µ, nondim l∗, km t∗, s

0.012004715741012 384747.962856037 375727.551633535

While the agent is trained using only one reference trajectory, the controller’s ability to generalize control histories
to other geometries in the lunar region are investigated. In reality, a variety of factors cause a planned path to change
in-flight. For example, on-board targeting yields trajectory corrections and a nearby solution is generated. However, in
generating nearby transfers, it is often difficult to produce any initial guess for the control history. In particular, for
Orion, Trajectory Correction Maneuvers (TCMs) are nominally zero [7]. However, as perturbations cause a spacecraft
to deviate and these maneuvers become necessary, zero thrust is a poor initial guess, and likely negatively impacts
the performance of the targeter. To address this limitation, despite no training with other reference geometries, the
ability for the proposed controller to generalize past experience is demonstrated. If a controller is only applicable to the
particular reference it has seen, and the training process requires significant time and computational resources, then the
practical uses of such a controller are limited in an on-board application. To test the controller performance for this
generalization, other references and other transfers are examined.

A. Episode Description
Episodes begin by selecting a random initial state along the departure periodic orbit from a uniform distribution, and

introducing a perturbation in position and velocity. The nondimensional mass for the initial state is assumed to be one.
The perturbation is sampled from two normal distributions (position and velocity), where each component of ρρρ0 is
perturbed individually. The averages across the perturbation distributions are all zero, and σ is varied depending on
desired disturbance for a particular simulation. Once the initial state is selected, the departure orbit is no longer used
in the simulation. Hence, to accrue reward over an episode, the agent must follow a particular reference trajectory as

12



0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2
ŷ
,n

on
di
m Moon

L1 L2

Forbidden region

(a) L1 and L2 Lyapunov orbits.

0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

Reference 1 Reference 2

Moon

L1 L2

Forbidden region

(b) Corrected heteroclinic transfers.

Fig. 4 Periodic orbits and heteroclinic transfers used in the sample scenario. All motion at C = 3.124102, with
the corresponding forbidden regions in gray.

defined in the environment.
Once an initial state with some disturbance is introduced into the environment, the agent computes an action, i.e., a

thrust direction and magnitude. The equations of motion are then propagated within the environment for a particular
time horizon (∆t). The specified ∆t between the actions is an important selection for the agent performance. If ∆t is too
large, then the nonlinearities become more pronounced, and the agent is offered fewer opportunities for sufficient actions
over an episode. However, if ∆t is too small, there is not time for the thrust direction to demonstrate a discernible impact
on the system. For the examples included in this investigation, t = 0.2 nondim ≈ 20.87 hrs strikes a balance between
the extrema of being too large or too small. After propagating for ∆t again, the agent again selects a new action. Actions
are introduced sequentially, after each time interval, until the agent deviates from the reference, impacts a planetary
body, arrives at the target orbit, or reaches a maximum number of time steps.

B. Sample Simulation
To illustrate the resulting PPO-generated controller, a single representative example case is described. An initial

state along the L1 Lyapunov departure orbit is selected, and perturbations of 1106 km and 6.9 m/s are introduced in
position and velocity, respectively. In reality, error is computed relative to the reference trajectory rather than the starting
orbit, which can add a small amount of additional perturbation. For this sample case, the error relative to the reference is
computed as 1108 km and 6.7 m/s. Without control, the resulting trajectory, as plotted in Fig. 5, immediately deviates
from the reference and impacts the Moon in less than a week.

With the goal of returning to the original reference trajectory, a delay in response time renders the original geometry
inaccessible. However, the trained neural network controller is able to immediately output a control history that returns
the spacecraft to its original path and successfully accesses the target L2 Lyapunov orbit. The new transfer and control
history appear in Fig. 6. As expected, the majority of the thrusting for the episode occurs during the initial time intervals
as the agent recovers from the introduced perturbation, and subsequent time intervals use much less propellant. Upon
arrival in the destination L2 Lyapunov orbit, the controller maintains the arrival geometry. The orbit maintenance is
apparent in configuration space, i.e., in Fig. 6(a), as well in the periodic sinusoidal thrust magnitude behavior, depicted
in Fig. 6(b). For clarity, thrust magnitudes below a user-defined threshold cause the thrust direction magnitude indicator
arrows to be omitted from visualization in Fig. 6(a). In this case, 35% is arbitrarily defined. For practical applications,
depending on the specific engine characteristics, this threshold possesses physical significance since low-thrust engines
only deliver a thrust level within particular bounds. To eliminate the segments where f is small, a differential corrections
algorithm could be applied with thrust and coast arcs delineated by the user-defined threshold, as detailed by Das-Stuart
et al. [14].

13



0.00 0.02 0.04 0.06
k, nondim

0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.1

0.0

0.1

ŷ
,n

on
di
m

Reference Perturbed

Moon
L1

L2

δrδrδr

Nearest neighbor ( ρρρ ref )

Fig. 5 Sample perturbed initial state that impacts the Moon in 6.4 days. Position perturbation is plotted in
configuration space (δrδrδr), with magnitude 1106 km. States along the reference trajectory Rref appear in the
zoomed portion with the shade of red denoting the magnitude of the nearest neighbor distance to the perturbed
state, k, defined in Eq. (18).

C. Generalization to Other References
If a spacecraft has deviated significantly from its reference path, it is not always reasonable to return to the original

trajectory. The process of generating a new transfer arc is accomplished with a variety of options, including leveraging
dynamical systems theory, applying a numerical strategy, and/or employing differential corrections. The methodology
for generating new transfers is not considered in this investigation. However, assuming a new trajectory has been
constructed, an important test of the proposed controller is its ability to perform despite training with only one original
path. While neural networks in general provide a demonstrated ability to generalize, their performance is always tied to
the training data set. Hence, if the new geometry is vastly different, a NN-based approach is limited by its training
experience.

To test the extendability of the PPO-generated controller, several new transfers are examined. First, the case of
a new path between the original L1 and L2 Lyapunov orbits is demonstrated via the second heteroclinic reference in
Fig. 4(b). Next, the reverse of the previous example is also included, in which the agent starts in the L2 Lyapunov orbit
and attempts to track heteroclinic transfers to the L1 Lyapunov orbit. These two new paths are plotted in Fig. 8(a).

1. New Reference Scenario
To evaluate the case where a new reference is generated in-flight, an alternate transfer between the original orbits is

introduced. In particular, without being included in the training process, the controller must now return to Reference 2
in Fig. 4(b). The new path is notably different from the original one; the nearest distance to the Moon along Reference 1
and Reference 2 are 34,546 km and 6,725 km, respectively. Not only is this a large deviation in geometry, significant
nonlinearity is added due to the close proximity with the Moon. Hence, this example adds difficulty for the controller,
not only in extrapolating to new locations in space, but also demanding that the controller overcome more nonlinearity
than was present in training. Returning to the previous example, the perturbation in Fig. 5 is applied to the new reference
geometry. The error from the perturbed state to its nearest neighbor along the new reference path is 860 km and 5.1
m/s. The resulting control history and transfer are plotted in Fig. 7. The agent is clearly able to extrapolate to the new
reference by generalizing its experience given the relative state information.

14



0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

0.00

0.01

0.02

0.03

0.04

f,nondim

Moon

L1 L2

(a) Trajectory and control history.

0 10 20 30 40 50 60
Time, days

0.00

0.01

0.02

0.03

0.04

f,
no

nd
im

35% Thrust Boundary

(b) Thrust magnitude history.

Fig. 6 Sample case where controller successfully overcomes an initial perturbation and follows a given reference
trajectory. Thrust direction and magnitude are plotted in configuration space and colored based on thrust
magnitude. For thrust values below an arbitrary threshold (35%), thrust direction indicators are omitted from
the control history in (a).

0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

0.00

0.01

0.02

0.03

0.04

f,nondim

Moon

L1 L2

(a) Trajectory and control history.

0 10 20 30 40 50 60
Time, days

0.00

0.01

0.02

0.03

0.04

f,
no

nd
im

35% Thrust Boundary

(b) Thrust magnitude history.

Fig. 7 Resulting control history for previous sample deviation, plotted in Fig. 5, but using Reference 2 from
Fig. 4(b). Without additional training, the agent is able to successfully track a new reference trajectory.

15



2. Reverse Transfer Scenario
For realistic scenarios, since the agent’s performance is dependent on training data, it is generally inadvisable to

reuse an old agent for a drastically different scenario without training on the new geometry. However, examples where
no additional training is conducted are included to illustrate the agent’s ability to perform well in regions of space that
were not originally explored. In particular, the environment is reversed from the previous example, that is, the agent is
required to transfer from the L2 Lyapunov orbit to the L1 Lyapunov orbit along one of the heteroclinic paths plotted in
Fig. 8(a).

A single sample case is again examined. For a perturbation illustrated in Fig. 8(b), the uncontrolled path departs the
vicinity of the Moon. Again, the agent is tasked to return to one of the new references, without the benefit of previous
training. The controller completes these new transfers, with the resulting control histories plotted in Fig. 9. These
examples demonstrate the RL controller’s ability to perform well in challenging scenarios.

D. Monte Carlo Results
To analyze the performance of a particular controller, many initial conditions with various perturbations are generated

and the agent is evaluated based on its output control history. The arrival threshold, characterized in the reward function,
offers a means of comparison. ‘Arrival’ is defined as the relative position and velocity to a state along the arrival orbit
with values less than 30 km and 50 cm/s, respectively. For this analysis, three levels of error are investigated. Assuming
that orbit determination navigation errors are on the order of 3σ = 1 km and 1 cm/s [31], the proposed controller is
tested with errors at 10, 100, and 1000 times the expected navigation error. The 1000× case roughly corresponds to the
situation where a 1 km and 1 cm/s perturbation is introduced, and the error is propagated for an orbital period, or about
12.9 days.

The result from the Monte Carlo analysis is summarized in Table 2. For Reference 1, each error level yields success
in more than 99% of cases. However, as error is increased, trials emerge where the controller is unable to recover. In
the 1000× case, 0.77% of perturbations are not successfully recovered. For some of these examples, where the error
bounds are 3σ = 1000 km and 10 m/s, it is unreasonable for return to the original motion, and these may correspond to
conditions where alternate options should be considered. Four common causes of failure are listed in Table 3. While
failure typically indicates deviation, there are also examples where the agent does not meet the arrival criteria within the
specified maximum number of time steps. This case does not correspond to deviation and, thus, the arrival percentages
listed in 2 are conservative.

To illustrate the failure characteristics that occur for the 1000× case, deviations over time for 100 sample episodes
are represented in Fig. 10. The red trajectories correspond to failures where the episode is terminated when either
maximum deviation threshold is violated, or if arrival conditions are not met within the maximum number of time steps.
Episodes that reach the arrival criteria, in green, clearly maintain a small amount of error upon arrival to the target
orbit. However, during the transfer phase, more variance is observed in the deviations. This variation is likely caused by
selection of a sub-optimal action which forces the agent to recover from additional error. Failure cases that maintain
small amounts of error after 200 days reach arrival criteria if the maximum number of time steps is increased.

The arrival percentages further demonstrate the agent’s ability to generalize experience from Reference 1 to the
other three geometries. For Reference 2, as the error increases, there is a slight performance degradation compared
to Reference 1. However, given the large amount of error, the agent is still able to arrive 98.57% of the time in the
1000× case. This high performance level demonstrates the neural network controller’s ability to perform well despite
significant uncertainty. For Reference 3, where the spacecraft does not approach the Moon, the agent is able to perform
exceedingly well, reaching the arrival criteria more that 99% of the time for all three error levels. Performance decreases
slightly when the agent is required to fly nearby the Moon along Reference 4, but is still successful in more than 79% of
the scenarios for the three error levels. In consistently satisfying the arrival criteria for this new scenario, the agent
demonstrates a remarkable ability to extrapolate to new geometries. These results could potentially be improved by
training the existing agent with the new transfers, i.e., employing transfer learning with the controller, but this possibility
was not investigated.

Table 2 also demonstrates the controller’s robustness to perturbation levels. Despite the two orders of magnitude
difference between error distributions, results remain within 2% for each reference. During training, the agent experiences
1000× error levels and, hence, learns to overcome them. When error is further increased, performance degrades.
However, within the demonstrated perturbation magnitudes, there is no consistent correlation between error amount and
success percentage across the four references.

16



0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

Reference 3 Reference 4

Moon

L1 L2

Forbidden region

(a) Heteroclinic transfers for L2 to L1 transfer scenario.

−1.0 −0.5 0.0 0.5 1.0
x̂, nondim

−1.5

−1.0

−0.5

0.0

ŷ
,n

on
di
m

Reference 3 Perturbed

Moon

EarthL3

L5

(b) Sample perturbation from L2 Lyapunov orbit without controller.

Fig. 8 Additional heteroclinic reference trajectories (a) and sample perturbation (b) for evaluating agent’s
ability to control a reference trajectory in a different direction.

0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

0.00

0.01

0.02

0.03

0.04

f,nondimMoonL1 L2

(a) Control history for Reference 3

0.8 0.9 1.0 1.1 1.2
x̂, nondim

−0.2

−0.1

0.0

0.1

0.2

ŷ
,n

on
di
m

0.00

0.01

0.02

0.03

0.04

f,nondimMoon
L1 L2

(b) Control history for Reference 4

Fig. 9 Computed control histories for the L2 to L1 reference trajectories plotted in Fig. 8(a), given the pertur-
bation depicted in Fig. 8(b).

Table 2 Monte Carlo results for various reference trajectories with 50,000 episodes each. The agent was only
trained using Reference 1, and extrapolates that training to the other reference trajectories.

L1 to L2 L2 to L1

Error Amount Reference 1 Reference 2 Reference 3 Reference 4
10× 99.79% 99.65% 99.93% 79.35%
100× 99.81% 99.53% 99.92% 79.76%
1000× 99.23% 98.57% 99.78% 79.65%

17



0

5000

10000

r e
rro

r, 
km

0 50 100 150 200
Time, days

0

20

40

v 
er
ro
r, 
m
/s Max. velocity deviation

Max. position deviation

Fig. 10 Deviation over time for 1000 sample episodes using Reference 1. The initial perturbation variance
3σ is 1000 times greater than the expected navigation error. Green denotes episodes that reach the success
criteria, whereas red signifies trajectories that cross the maximum deviation threshold in position or velocity, or
do not reach arrival conditions within the maximum number of time steps (217.43 days). In the trials, 993/1000
episodes are deemed successful for this sample batch of initial conditions.

E. Algorithm Limitations
Utilizing PPO to generate a controller for path guidance offers many attractive benefits, but with several notable

limitations. In particular, the stochasticity of the training process produces a nonzero probability of the agent getting
stuck in a local basin of attraction and failing to converge to a better policy. Hence, multiple identically configured agents
can converge to drastically different policies depending on their exploration of the action space. This inconsistency in
training causes difficulty with reproducibility because many agents must be simulated to discover one that achieves the
desired result. The training process is computationally demanding, thus, a large number of simulations are challenging.
This investigation focused on this limitation by leveraging super-computing resources, via MIT Supercloud [37], to
train many agents simultaneously. Once trained, each agent is tested in a set of deterministic episodes, and the accrued
reward and arrival percentages from these trials allow the extraction of desirable agents. In one sample run, 60 identical
agents running in parallel produced only two desirable controllers.

For the trained agent used as the controller in the sample scenarios, several sources of failure are present with
increased noise. First, for cases where the agent failed to arrive along Reference 1, there are regions of ambiguity that
cause a sub-optimal action to produce an unrecoverable trajectory. An example of this behavior is plotted in the first row
of Table 3. Here, the agent attempts to prematurely depart the L1 Lyapunov orbit, which results in an unrecoverable
scenario. This ambiguity in thrust direction occurs in regions where two different segments of the reference path are
nearby. In these regions, the agent is more likely to implement a poor action since, frequently, only one of the nearby
segments is actually accessible. This incorrect thrust direction also demonstrates the importance of the initial action.
Due to the introduced perturbation, the first action is critical to performance. An example of a poor initial action
yielding an unrecoverable error is depicted in the second row of Table 3. In this case, thrust is needed to recover from
the perturbation, but the agent incorrectly implements a nearly-coasting arc that ensures the spacecraft departs the lunar
vicinity. The explicit error cause in such examples is challenging to diagnose due to the ‘black box’ nature of neural
networks.

18



Table 3 Noted sources of failure. In the sample control histories, green denotes the uncontrolled perturbation
propagated forward in time.

Failure type Sample control history (x̂-ŷ, nondim) Notes

Ambiguous thrust
direction

0.8 0.9 1.0 1.1 1.2

−0.1

0.0

0.1

Agent attempts to prematurely depart
the L1 vicinity instead of completing
one more revolution around the orbit.
For sample case, episode is successful
if no initial action is taken.

Poor initial action

0.8 1.0 1.2

−0.1

0.0

0.1

After a poor initial action, the
deviation becomes unrecoverable with
the given maximum thrust level.

Unrecoverable
perturbation

0.8 1.0 1.2

−0.1

0.0

0.1

Perturbation is such that the agent
departs the vicinity of the moon
regardless of action choice.

Arrival condition
not triggered

0.8 0.9 1.0 1.1 1.2

−0.1

0.0

0.1

Agent completes the transfer, but does
not reach the defined arrival criteria of
30 km and 50 cm/s within the
maximum number of time steps. For
the sample case, in 150 time steps
(≈ 130 days), the agent is within 2 km
and 2 cm/s of arrival. Given more time
steps, arrival criteria is eventually met.

19



VII. Concluding Remarks
Computationally efficient on-board guidance is challenging in nonlinear dynamical regimes. The proposed guidance

framework addresses the challenges associated with automation given limited computational resources by recasting
the problem from a machine learning perspective. The demonstrated controller offers computationally efficient
on-board guidance in a multi-body regime. By decoupling training from the controller output, this approach utilizes
high-performance computers while still producing an algorithm suited to the closed-loop flight environment. The
resulting neural network controller is robust to changes in reference geometry, and is able to generalize past experience
to new problems. Furthermore, the proposed approach separates the learning agent from the dynamical environment,
enabling model-agnostic guidance that is extendable to higher-fidelity domains.

Appendix

A. Parameter selection
Parameter selection and tuning is an important aspect in both PPO learning and RL environment design. Well-

performing agents may be produced with different combinations of parameters. Values used in this investigation are
summarized in Table 4, with additional suggested values included to indicate cases where desirable behavior was
observed given different parameter values. Furthermore, the specific configurations of the employed neural networks
are listed in Table 5. These networks were implemented using TensorFlow [38].

Table 4 Suggested parameter values for PPO training and CR3BP RL environment configuration

Variable name Symbol Value used Additional suggested values
Discount factor γ 0.86 0.85 – 0.9
Number of optimizations on each batch 5 5 – 10
Batch Size 64 32 – 64
Reward steepness λ -3600 -1300 – -4000
Reward arrival bonus b 25
Reward scaling gradient ξ 1
Reward divergence penalty pd -4
Reward impact penalty pi -10
Actor Learning Rate 0.0001
Critic Learning Rate 0.0020
KL Divergence Target dtarg 0.003
Number of Training Episodes 100,000 >75,000

Table 5 Configuration of actor and critic neural networks employed in this investigation.

Actor Critic
Layer name Symbol Size Activation function Size Activation function
Input layer I 11 tanh 11 tanh

Hidden 1 H1 120 tanh 120 tanh

Hidden 2 H2 60 tanh 24 tanh

Hidden 3 H3 30 tanh 5 tanh

Output O 3 tanh 1 linear

20



Acknowledgments
The authors thank the Purdue University School of Aeronautics and Astronautics and the Massachusetts Institute

of Technology Department of Aeronautics and Astronautics for facilities and support in conducting this research.
Additionally, the authors wish to thank members of the Multibody Dynamics Research Group at Purdue, as well as
members of the Space Systems Lab at MIT for invaluable discussions. Special thank you to Rolfe Power for assistance
with Python/C++ interfacing. The authors acknowledge the MIT Supercloud and Lincoln Laboratory Supercomputing
Center for providing HPC resources that have contributed to the research results reported within this paper. This work
was supported by NASA Space Technology Research Fellowships, NASA Grant 80NSSC19K1175 and NASA Grant
80NSSC18K1141.

References
[1] Whitley, R., and Martinez, R., “Options for staging orbits in cislunar space,” 2016 IEEE Aerospace Conference, IEEE, Big Sky,

Montana, 2016, pp. 1–9.

[2] Hart, J., King, E., Miotto, P., and Lim, S., “Orion GN&C Architecture for Increased Spacecraft Automation and Autonomy
Capabilities,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA, Honolulu, Hawaii, 2008, pp. 1–26.

[3] Sutton, R. S., and Barto, A. G., Reinfrocement Learning: An Introduction, 2nd ed., The MIT Press, 2018.

[4] Haapala, A. F., and Howell, K. C., “A Framework for Constructing Transfers Linking Periodic Libration Point Orbits in the
Spatial Circular Restricted Three-Body Problem,” International Journal of Bifurcations and Chaos, Vol. 26, No. 5, 2016.

[5] McGuire, M., Burke, L., McCarty, S., J Hack, K., Whitley, R., C Davis, D., and Ocampo, C., “Low Thrust Cis-Lunar Transfers
Using a 40 kW-Class Solar Electric Propulsion Spacecraft,” AAS/AIAA Astrodynamics Specialist Conference, American
Astronautical Society, Stevenson, Washington, 2017, pp. 1–21.

[6] Vavrina, M. A., Englander, J. A., Phillips, S. M., and Hughes, K. M., “Global, Multi-Objective Trajectory Optimization
With Parametric Spreading,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Stevenson,
Washington, 2017, pp. 1–20.

[7] Marchand, B. G., Weeks, M. W., Smith, C. W., and Scarritt, S., “Onboard Autonomous Targeting for the Trans-Earth Phase of
Orion,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 3, 2010, pp. 943–956. https://doi.org/10.2514/1.42384.

[8] Dachwald, B., “Evolutionary Neurocontrol: A Smart Method for Global Optimization of Low-Thrust Trajectories,” AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 2004, pp. 1–16.

[9] De Smet, S., and Scheeres, D. J., “Identifying heteroclinic connections using artificial neural networks,” Acta Astronautica, Vol.
161, 2019, pp. 192–199.

[10] Parrish, N. L., and Scheeres, D. J., “Optimal Low-Thrust Trajectory Correction with Neural Networks,” AAS/AIAA Astrodynamics
Specialist Conference, American Astronautical Society, Snowbird, Utah, 2018, pp. 1–20.

[11] Furfaro, R., Boise, I., Orlandelli, M., Di Lizia, P., Tupputo, F., and Linares, R., “Deep Learning for Autonomous Lunar Landing,”
AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Snowbird, Utah, 2018, pp. 1–22.

[12] Grondman, I., Busoniu, L., Lopes, G. A. D., and Babuska, R., “A Survey of Actor-Critic Reinforcement Learning: Standard and
Natural Policy Gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 42,
No. 6, 2012, pp. 1291–1307. https://doi.org/10.1109/TSMCC.2012.2218595.

[13] Das-Stuart, A., Howell, K. C., and Folta, D. C., “A Rapid Trajectory Design Strategy for Complex Environments Leveraging
Attainable Regions and Low-Thrust Capabilities,” 68th International Astronautical Congress, Adelaide, Australia, 2017, pp.
1–19.

[14] Das-Stuart, A., Howell, K. C., and Folta, D. C., “Rapid Trajectory Design in Complex Environments Enabled by Reinforcement
Learning and Graph Search Strategies,” Acta Astronautica, Available Online April 25, 2019. https://doi.org/https://dx.doi.org/
10.1016/j.actaastro.2019.04.037.

[15] Das-Stuart, A., and Howell, K., “Contingency Planning in Complex Dynamical Environments via Heuristically Accelerated
Reinforcement Learning,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Portland, Maine,
2019, pp. 1–21.

21

https://doi.org/10.2514/1.42384
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/https://dx.doi.org/10.1016/j.actaastro.2019.04.037
https://doi.org/https://dx.doi.org/10.1016/j.actaastro.2019.04.037


[16] Gaudet, B., and Linares, R., “Integrated Guidance and Control for Pinpoint Mars Landing Using Reinforcement Learning,”
AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Snowbird, Utah, 2018, pp. 1–20.

[17] Furfaro, R., and Linares, R., “Waypoint-Based generalized ZEM/ZEV feedback guidance for planetary landing via a
reinforcement learning approach,” 3rd International Academy of Astronautics Conference on Dynamics and Control of Space
Systems, DyCoSS, Univelt Inc., Moscow, Russia, 2017, pp. 401–416.

[18] Broida, J., and Linares, R., “Spacecraft Rendezvous Guidance in Cluttered Environments via Reinforcement Learning,” 29th
AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, Ka’anapali, Hawaii, 2019, pp. 1–15.

[19] Guzzetti, D., “Reinforcement Learning And Topology Of Orbit Manifolds For Station-keeping Of Unstable Symmetric Periodic
Orbits,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Portland, Maine, 2019, pp. 1–20.

[20] Miller, D., and Linares, R., “Low-Thrust Optimal Control via Reinforcement Learning,” 29th AAS/AIAA Space Flight Mechanics
Meeting, American Astronautical Society, Ka’anapali, Hawaii, 2019, pp. 1–18.

[21] Miller, D., Englander, J. A., and Linares, R., “Interplanetary Low-Thrust Design Using Proximal Policy Optimization,”
AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Portland, Maine, 2019, pp. 1–16.

[22] Reiter, J. A., Spencer, D. B., and Linares, R., “Spacecraft Maneuver Strategy Optimization for Detection Avoidance Using
Reinforcement Learning,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society, Portland, Maine,
2019, pp. 1–19.

[23] Gaudet, B., Linares, R., and Furfaro, R., “Seeker-based Adaptive Guidance via Reinforcement Meta-learning Applied to
Asteroid Close Proximity Operations,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society,
Portland, Maine, 2019, pp. 1–19.

[24] “NASA SBIR 2019 Phase I Solicitation: Deep Neural Net and Neuromorphic Processors for In-Space Autonomy and Cognition,”
, 2019. URL https://sbir.nasa.gov/printpdf/61636.

[25] Schuman, C. D., Potok, T. E., Patton, R.M., Birdwell, J. D., Dean, M. E., Rose, G. S., and Plank, J. S., “A Survey of Neuromorphic
Computing and Neural Networks in Hardware,” CoRR, Vol. abs/1705.06963, 2017. URL http://arxiv.org/abs/1705.06963.

[26] Bersuker, G., Mason, M., and Jones, K. L., “Neuromorphic Computing: The Potential for High-performance Processing in
Space,” Tech. rep., The Aerospace Corporation, 2018.

[27] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P., “High-dimensional continuous control using generalized
advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[28] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal Policy Optimization Algorithms,” CoRR, Vol.
abs/1707.06347, 2017.

[29] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P., “Trust Region Policy Optimization,” CoRR, Vol.
abs/1502.05477, 2015.

[30] Cox, A., Howell, K., and Folta, D., “Dynamical structures in a low-thrust, multi-body model with applications to trajectory
design,” Celestial Mechanics and Dynamical Astronomy, Vol. 131, No. 3, 2019, pp. 1–34.

[31] Guzzetti, D., Zimovan, E. M., Howell, K. C., and Davis, D. C., “Stationkeeping Analysis for Spacecraft in Lunar Near Rectilinear
Halo Orbits,” 27th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, San Antonio, Texas, 2017, pp.
1–24.

[32] York, C. E., and Howell, K. C., “A Two-level Differential Corrections Algorithm for Low-thrust Spacecraft Trajectory Targeting,”
29th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, Ka’anapali, Hawaii, 2019, pp. 1–20.

[33] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

[34] Vaquero, M., and Senent, J., “Poincare : A MultiBody, Multi-System Trajectory Design Tool,” 7th International Conference on
Astrodynamics Tools and Techniques, Oberpfaffenhofen, Germany, 2018, pp. 1–12.

[35] Pritchett, R., Howell, K. C., and Folta, D. C., “Low-Thrust Trajectory Design for a Cislunar CubeSat Leveraging Structures
from the Bicircular Restricted Four-Body Problem,” 70th International Astronautical Congress, Washington D.C., USA, 2019,
pp. 1–18.

22

https://sbir.nasa.gov/printpdf/61636
http://arxiv.org/abs/1705.06963


[36] Bozis, G., “Zero velocity surfaces for the general planar three-body problem,” Astrophysics and Space Science, Vol. 43, No. 2,
1976, pp. 355–368.

[37] Reuther, A., Kepner, J., Byun, C., Samsi, S., Arcand, W., Bestor, D., Bergeron, B., Gadepally, V., Houle, M., Hubbell, M.,
Jones, M., Klein, A., Milechin, L., Mullen, J., Prout, A., Rosa, A., Yee, C., and Michaleas, P., “Interactive Supercomputing
on 40,000 Cores for Machine Learning and Data Analysis,” 2018 IEEE High Performance Extreme Computing Conference
(HPEC), 2018, pp. 1–6.

[38] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems,” , 2015. URL https://www.tensorflow.org/, software available from
tensorflow.org.

23

https://www.tensorflow.org/

	Nomenclature
	Introduction
	Reinforcement Learning Formulation
	Neural Networks
	Foundational RL Concepts
	Policy Gradient Methods
	Proximal Policy Optimization

	Dynamical Model
	Reinforcement Learning Environment
	State Signal
	Action Definition
	Reward Signal
	Nearest Neighbor Searching

	Libration Point Transfer Examples
	Episode Description
	Sample Simulation
	Generalization to Other References
	New Reference Scenario
	Reverse Transfer Scenario

	Monte Carlo Results
	Algorithm Limitations

	Concluding Remarks
	Parameter selection


