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Future missions to the Moon and Mars will require advanced guidance navigation and
control algorithms for the powered descent phase. These algorithm should be capable of
reconstructing the state of the spacecraft using the inputs from an array of sensors and apply
the required command to ensure pinpoint landing accuracy, possibly in an optimal way. This
has historically been solved using off-line architectures that rely on the computation of the
optimal trajectory beforehandwhich is then used to drive the controller. The advent ofmachine
learning and artificial intelligence has opened newpossibilities for closed-loop optimal guidance.
Specifically, the use of reinforcement learning can lead to intelligent systems that learn from a
simulated environment how to perform optimally a certain task. In this paper we present an
adaptive landing algorithm that learns from experience how to derive the optimal thrust in a
lunar pinpoint landing problem using images and altimeter data as input.

I. Introduction

Pinpoint soft landing on planetary bodies is becoming increasingly important for future human exploration. The
task is generally cumbersome and may require a new class of navigation and guidance algorithms. Indeed, when

integrated with sensors and thrusters as part of the on-board lander computing architecture, such algorithms must
bring the spacecraft to the desired location on the lunar surface with zero velocity (soft landing) and very stringent
precision. Within the overall system architecture, the lander Guidance, Navigation and Control (GNC) subsystem is
mainly responsible for safely driving the lander to the surface. The task that GNC must carry out are a) determining
position and velocity of the lander from sensor information (navigation) and b) determine/compute the appropriate level
of thrust and its direction as function of the current state (i.e. lander position and velocity). In particular, guidance
algorithms generally comprise two major segments, i.e. a) a targeting algorithm and b) a trajectory-following, real-time
guidance algorithm. The targeting algorithm computes the reference trajectory that drives the lander to the lunar surface,
generally with minimum fuel and satisfying appropriate thrust and path constraints. The real-time guidance algorithm
computes that acceleration command that must be implemented by the lander thrusters to track the reference trajectory
for a precise and soft landing. In general the first task is computed off-line on the ground. The real-time guidance
algorithm than follows it. The desirable architecture though is an on-line algorithm that can compute on board and
in real time both the target trajectory and the trajectory-following guidance. In this regard, some examples of closed
loop landing guidance are the feedback ZEM/ZEV guidance [1], robust guidance based on time-dependent sliding [2],
feedback linearization [3] as well as guidance algorithms based on hybrid control theory [4]. Recently, the ability to
generate real-time optimal feedback guidance by solving on-board a sequence of open-loop optimal convex problems
has also been explored for landing on planetary bodies[5].

Another important factor when designing a guidance algorithm for these kind of problems is the ability to cope with
uncertain environment (i.e. uncertain gravity field), noisy measurements and actuator or sensor failure. This shows why
it’s important to create adaptive algorithms that are both accurate and able to work in these conditions. In the area
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of adaptive guidance there have been some examples, mainly tackling the problem of external disturbances and fault
identification. Although interesting, these methods rely on simplified models [6] and often require online computations
that may be feasible to be implemented in a real time guidance algorithm [7]. On the other hand, Reiforcement Learning
(RL) has shown good performance in dealing with uncertain and complex dynamics. In general this works by interacting
with an environment with randomized parameters and learning the temporal variation of the states of the system as
function of the changing environment. This results in a deployed policy whose internal states allow it to quickly adapt to
the dynamics of the environment and complete the task optimally. Several works have demonstrated the power of RL
with applications to robotic motion tasks REF. In particular for dynamic environments, meta Reinforcement Learning
(meta-RL) [8, 9] has shown good performance, especially in aerospace application [10–14]. It has been demonstrated
that an agent trained using meta-RL learns how to react to a dynamic environment both in terms of uncertain parameters
(gravitational acceleration, mass of the spacecraft) and failure in the system itself (actuator failure).

In general guidance algorithms must also be integrated with the navigation system which is responsible for
determining lander position and velocity. The most common approach to what is termed Relative Terrain Navigation
(RTN) is based on the extraction of the spacecraft state from sequences of optical images. Estimating relative position
and velocity from on-board cameras generally rely on extracting and correlating/registering landmarks on the planetary
bodies [15] as well as tracking the landmarks during the relative motion (e.g. Natural Feature Tracking,[16]). Over the
past few years, encouraged by advancements in parallel computing technologies and GPUs, there has been an increase
interest in machine learning algorithms that can accurately process images for classification and regression tasks (e.g.,
image and video recognition [17], natural language processing [18], speech recognition [19] etc.). However, in the
space exploration domain these techniques are still struggling to be recognized and there are only a few examples of
machine-learning algorithms for autonomous guidance and navigation tasks. These examples include learning optimal
feedback guidance via supervised learning [20, 21] and reinforcement learning [22] as well as RTN via convolutional
neural networks.

In this paper, we propose a new approach based on meta reinforcement learning (meta-RL) that integrates guidance
and navigation functions providing a complete solution to the lunar landing problem that integrates an image-based
navigation to an intelligent guidance. More specifically, we design a simulation environment that is able to integrate the
dynamics of the system and simulate image acquisition from on-board cameras. This is achieved by interfacing the
simulator in Python with a ray tracer (i.e. Blender) that generates accurate images using lunar digital terrain models
(DTM) and a physically based rendering engine. The images are then used to update a policy in real time using
reinforcement learning. We take advantage of the latest discoveries in Convolutional Neural Net (CNN) and Recurrent
Neural Nets (RNN) for image processing and Proximal Policy Optimization (PPO) to design our agent and learn the
optimal policy for soft landing.

II. Problem formulation

A. Environment and sensor specification
The algorithm is being developed for a lunar soft landing scenario. We consider the 3 degrees of freedom (3DOF)

problem. For this reason the lander is consider a point mass with throttable thrusters capable of creating a variable
thrust in all three directions. The problem is described in a ortho-normal reference system centered on the nominal
landing target. The equations of motion governing the dynamics of the problem expressed in the above mentioned
reference frame are:

Ür = g +
T
m

(1)

Ûm = −
‖T‖

Ispg0
(2)

where r = [rx ry rz] is the state in the target centered ortho-normal frame with the z-axis pointing up, g is the gravity
vector and T is the thrust vector:

T =
[
Tx , Ty , Tz

]T
(3)

In this environment, the classical trajectory optimization problem takes the form:

max
t f ,T

mL(t f ) = min
t f ,T

∫ t f

0
‖T‖dt (4)
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Subject to the dynamics constraints in 1, with the following boundary conditions:

r(0) = r0

v(0) = Ûx(0) = v0

r(t f ) = r f
v(t f ) = Ûx(t f ) = v f

(5)

Where r0, v0, rt f and vt f and initial and final position and velocity vectors respectively. The lander is also subject to a
path constraint in the form of a glide slope:

θg = arctan
©­­«
√

r2
y + r2

z

rx

ª®®¬ < θ̂g (6)

and a thrust constraint:
0 < Tmin < ‖T‖ < Tmax (7)

Moreover, since the powered descent on a planetary body like the Moon is initiated at an altitude that is small with
respect to the radius of the body, the gravity g is considered constant during the entire mission.

B. Moon surface simulator
The goal is to train an agent to land on a planetary body autonomously using a radar altimeter and images of the

ground captured by an optical sensor. The radar altimeter is assumed to be able to continuously feed the policy with
altitude and vertical velocity measurements. The optical sensor is mounted on the ground-facing side of the spacecraft
and is assumed to have a bore sight direction perpendicular to the ground at all times. The images are generated
using a renderer based on raytracing technology. In particular we use Cycles within the open source Blender package.
Specifically, Cycles is a physically-based path tracer for production rendering that computes light traces from all the light
sources in the scene and their interactions with the objects. It gives a lot of freedom on how to set up the environment
and since it runs in python its integration with the programming language is straightforward. In this case we used a
Digital Terrain Model (DTM) taken from the Lunar Reconnaissance Orbiter (LROC) database [23]. Figure 1 shows a
reduced contrast version of the DTM and a rendered view of the ground using the raytracer.

(a) DTM (b) Rendered image

Fig. 1 Apollo 16 landing site [23]
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The DTM is a portion of the Apollo 16 landing site. It has a resolution of 1791x1791 pixels and is in 32 bit
gray-scale format. The high bit depth of the image ensures that the ground elevation is computed with high accuracy. It
was used in blender as a texture that cycles interpret as a displacement map. Specifically, the value of each pixel is used
as a parameter that indicates the elevation of that pixel in the terrain model. The renderer than uses that information to
calculate the light bounces of the light emitted by a sun-like source with the ground without actually using a real 3D
shape. This is a technology normally used in games where a high frame rate is crucial for smooth transitions between
images. This is achieved thanks to the reduction of the polygon count that this technique enables. In this case it allows
for a very fast rendering of the observation image without loss of accuracy. Specifically, the rendering of an observation
of size 16x16 pixels takes an average of 0.015 seconds using 5 light bounces and 20 samples. Blender also has a big
advantage over other rendering engines: it is written in python. This means it allows for python scripts to run within the
program itself. This allowed us to run the whole learning algorithm inside the renderer framework itself which also
allowed us to pass the image observations to the learning algorithm directly as pixel data arrays eliminating the need of
saving them on the hard drive. This speeds up the policy rollout phase of the algorithm quite a bit and allowed for
effective and efficient training. The camera’s focal length is fixed and set to 50 mm with a squared sensor of 16x16 pixel.
We are considering increasing the sensor dimension but as of now this configuration has shown good performance.
Increasing the pixel count could potentially increase performance as the policy could distinguish more features within
the images but, in the meantime, the learnable parameters would increase dramatically which would ultimately lead to
an increased learning time.

III. Guidance law
In this section we describe the Reiforcement Learning framework in which we cast the landing problem formalized

in section II to generate a closed-loop guidance policy. The algorithm is capable of driving the spacecraft to a specified
target state with quasi-pin-point accuracy, satisfying the problem constraints (e.g. glide slope and thrust).

A. Meta-Reinforcement Learning
In Reinforcement Learning (RL), an agent learns through repeated interaction with an environment how to complete

a task. In general this environment is described as a Markov Decision Process (MDP) in which the state at a particular
time depends on the previous state only. The MDP can be considered an abstraction of an environment with a continuous
state space S, a continuous action space A, a state transition distribution P(xt+1 |xt,ut ) that describes the probability of
transitioning to the next state given a certain action and a reward function r = R(xt,ut ) where x ∈ S, u ∈ A and r is a
scalar reward signal. In cases when the state cannot be observed directly or the information is affected by noise it is
useful to introduce the definition of a partially observable MDP (POMDP). In this case the state x becomes an hidden
state and what is actually available is its observation o through an observation function O(x). This is the case for example
in image or LIDAR based navigation where the observation embeds the information about the state without it being
explicitly available to the agent. The agent operates in the environment defined by the POMDP using a parametrized
policy πθ , generating an action ut based off the observation ot , receiving a reward rt+1 and observation ot+1. It should
be noted that in this case it is not true that each retains all the possible information about the system. The complete
history of the sequence of states might be needed to predict the following states. The reinforcement algorithm task is to
optimize the policy πθ in order to maximize the sum of the rewards collected along a rollout episode. All the constraints
such as minimum and maximum thrust, glide slope, terrain feature avoidance as well as the task goals can be included in
the reward function and will be accounted for during training.

There are a lot of different kinds of reinforcement learning algorithms that have shown to perform well in a variety
of tasks. What they all have in common is the fact that they need to perform a very large number of trials to be able to
learn even the most trivial task. Task that we human learn after only an handful of repetitions. This is the intuition and
motivation on which Meta-Reinforcement Leanrning (Meta-RL) is based on. The main reason why human learn so
much faster than machine learning algorithms is that we use previous knowledge to learn new tasks. We essentially
learn how to learn through experience. For instance, we use the empirical knowledge of physics of the world to learn
very quickly how to interact with objects in the 3D space (e.g. stacking and moving objects). A machine instead, every
time it has to learn a new task it has to do so from scratch. So in the objects staking example, it not only has to learn to
stack objects on top of each other, it also has to learn how gravity effects the motion of the objects and the contact
interfaces between them. So meta-RL formalizes this idea of "learning to learn" for machine learning algorithms.

The implementation of such concept is not straightforward. In general RL algorthms work by mapping an observation
state to an action using some sort of neural network describing a policy. Learning is then achieved using roll-outs of
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such policy as it interacts with a specific environment: the optimal policy is then the one that maximizes the cumulative
reward:

θ∗ = argmaxθEπθ (τ)[R(τ)] = fRL(M) (8)

where θ∗ are the optimal parameters of the parametrized policy πθ , R(τ) is the cumulative reward andM is the MDP or
POMDP.

In the case of meta-RL, the rollouts come from a distribution of tasks instead of a static single environment. This in
theory allows the agent to learn how to adapt to a changing environment. Using the same formalization as for classical
RL:

θ∗ = argmaxθ
n∑
i=1

Eπφi (τ)[R(τ)] (9)

where φi = fθ (Mi) is a function of the i-th MDP corresponding to the i-th task. Meta-RL is then normally implemented
using the following high level structure:

1. sample task i, collect data Di (10)
2. adapt policy by computing φi = f (θ,Di) (11)
3. collect data D′i with adapted policy πφi (12)
4. update θ according to L(D′i, φi) (13)

Where the adaptation can be done in multiple rounds and the update of the parameters θ of the policy is done over
multiple tasks. In practise there are two approaches to solve this problem. The first approach is to synthesize the policy
as a recurrent neural network. These are particular kinds of networks where connections between nodes form a directed
graph along a temporal sequence. This allows them to exhibit temporal dynamics behaviour. Unlike normal feed-forward
nodes, recurrent nodes have internal states (which are normally referred to as hidden) that retain information about the
temporal variation of the input data. This peculiar behaviour is what makes them suitable for meta-learning. What it’s
done in practice then is not as simple as plugging in a recurrent net as policy. The policy is indeed a recurrent network,
what is different is that the hidden states of the recurrent net are kept constant through a specific task while the weights
are learning across tasks using normal RL algorithms. This allows the net to retain in its hidden states the knowledge
about the tasks it can face. This way it can eventually recognize a task by the temporal evolution of the input states
and act accordingly. The high level algorithm can be seen in Algorithm 1. The second approach is fundamentally

Algorithm 1 Meta-RL - Recurrent network
1: procedure While training
2: for i in tasks do
3: initialize hidden state h0 = 0
4: for t in timesteps do
5: sample 1 transition Di = Di ∪ {(st,at, st+1,rt )} from πht
6: update policy hidden state ht+1 = fθ (ht, st,at, st+1,rt )
7: update policy parameters θ ← θ − ∇θ

∑
i Li(Di, πh)

different as it utilize policy gradient to optimize a policy by moving in the direction that maximizes a particular objective
function dependent on the specific policy used. It is different from the recurrent network method also in the sense that
instead of having the knowledge of the different tasks embedded in the hidden states, it works by training the model on a
distribution of task obtaining a general model and fine-tuning its parameters in the test-phase using a small number of
rollouts. This is the basic idea behind the Model Agnostic Meta Learning [24] method which produces an agent that
is not particularly good at any task at the end of the training phase, but specializes quickly (only a few updates, even
one) to a new task at test phase. A pseudo-code implementation of this algorithm can be seen in Algorithm 2. In our
case we used the first method as the temporal variation of states in a guidance problem clearly capture the nature of the
task to accomplish. In particular we synthesize a policy πθ using a recurrent network that the agent uses to interact
with the POMDP that we introduced before. The action is used as a forcing term in the equations of motion which are
integrated along a time-step and the observation along with the reward signal are recorded and fed back to the agent. In
our case the observation is a combination of a grayscale image generated using a raytracer as explained in Section II.B
and the vertical position and velocity coming from a radar altimeter. The agent uses this observation to produce another
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Algorithm 2 Meta-RL - Policy Gradient Optimization
1: procedure While training
2: for i in tasks do
3: sample k episodes Di = {(s,a, s′,r)}1:k from πθ
4: compute the adapted parameters φi = θ − α∇θLi(πθ,Di)

5: sample k episodes D′i = {(s,a, s′,r)}1:k from πφ

6: update policy parameters θ ← θ − ∇θ
∑

i Li(Di, πφi )

action and the cycle repeats itself. The environment can terminate an episode by passing a done signal to agent. The
termination signal could be either due to the agent completing the task or violating a constraint. Initially the actions
taken by the agent are random, which allows the agent to explore the state and actions spaces and gather information
about the environment and which action is to be preferred given a particular observation. The information about the
goodness of an action is embedded in the reward signal which is similar to the cost-to-go in an optimal control problem.
As the learning progresses, the exploration is reduced in favor of exploitation of the knowkedge of the environment. For
most application (landing guidance is one of them), the policy is deployed in the field as a deterministic law in which
exploration is switched off as this could lead to reduced performances.

Having introduced how the agent interacts with the environment, the learning algorithm follows directly. Considering
the observation xk provided by the environment to the agent at time-step k. Note that xk does not need to satisfy in
general the Markov property. It can in fact come from a POMDP as described above. As long as the agent has a way of
understanding the time evolution of the observations, it will be able to learn. Each episode results in a sequence of
observations which we will call trajectory. A step in each trajectory at time tk can be represented as (xk,uk,rk) where xk
and rk are the observation and the reward returned by the environment and uk is the action taken. The reward can be a
function of both the observation and the action. The reward is then typically discounted the further it is in the future.
This is done to put a finite horizon to the task and facilitate temporal credit assignment. Then the sum of discounted
rewards for a trajectory can be defined as the return:

r(τ) =
T∑
i=0

γirk(xk,uk) (14)

where τ = [x0,u0, . . . , xT ,uT ] denotes the trajectory and γ ∈ [0,1) is the discount factor. The objective function the RL
methods seek to optimize is given by:

J(θ) = Ep(τ)[r(τ)] =
∫
T

r(τ)pθ (τ)dτ (15)

where:

pθ (τ) =

[
T∏
k=0

p(xk+1 |xk,uk)

]
p(x0) (16)

where Ep(τ) denotes the expectation of the reward over the trajectories. Now if we consider the action uk as a stochastic
function of θ, or uk ∼ πθ (uk |xk), then the policy gradient expression becomes:

∇θ J(θ) =
∫
T

T∑
k=0

rk(xk,uk)∇θ logπθ (uk |xk)pθ (τ)dτ ≈
M∑
i=0

T∑
k=0

rk(xik,u
i
k)∇θ logπθ (uik |x

i
k) (17)

Where the integral over the trajectory τ is approximated using the monte-carlo rolluts samples τi pθ (τ), given the
environment’s transition probabilities, p(xk+1 |xk), which in this case are the deterministic equations of motion. The
expression in 17 is the policy gradient equation and is the basic concept on which REINFORCE algorithm is based. In
general this is used as a baseline as this was later improved through the years. In particular it was shown that instead of
using the actual reward rk(xk,uk), one can use the action-value function Qπ(xk,uk) called normally Q-function, which is
known as the Policy Gradient Theorem. Moreover, to reduce the variance of the policy gradient, a state dependent basis
can be subtracted from Qπ(xk,uk). This basis is normally called value function Vπ(xk) and the quantity that is then
used to approximate the policy gradient is the advantange function Aπ(xk,uk) = Qπ(xk,uk) − Vπ(xk). Moreover, this
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function can be approximated using the rollouts by training a second neural net which is normally referred to as critic.
This method is known as Advantage-Actor-Critic (A2C) Method and the policy gradient using this method becomes:

∇θ J(θ) =
M∑
i=0

T∑
k=0
∇θ logπθ (uik |x

i
k)A

π(xik,u
i
k) (18)

Once the gradient is calculated, it is used to update the policy by simply moving in its direction:

θ+ = θ− + βθ∇θ J(θ)|θ=θ− (19)

where βθ > 0 is the learning rate.

B. Proximal Policy Optimization
What we used to optimize the policy in this case is a derivation of the A2C method. The Proximal Policy

Optimization (PPO) approach [25] belongs to the family of policy gradient algorithms and has demonstrated state-of-
the-art performances on many benchmark RL problems. It is developed as a derivation of the Thrust Region Policy
Optimization (TRPO) Method [26]. This method formulates the policy optimization problem in a way such that the size
of the gradient step taken during each iteration is restricted using some sort of dynamically calculated constraint. The
TRPO policy update problem is formulated as:

min
θ
Ep(τ)

[
πθ (uk |xk)
πθold (uk |xk)

Aπw(xk,uk)
]

s.t . Ep(τ)[KL(πθ (uk |xk), πθold (uk |xk))] ≤ δ
(20)

Where KL is the Kullback-Leibler divergence [27] between the present and old policy. The parameter δ is a tuning
parameter that imposes a bound to the update. It is proven that of the update is bounded at each iteration by a parameter
C(KL) that depends on the KL divergence, the policy improves monotonically towards the optimal. This in general
leads to prohibitively small update so Equation 20 with a constant constraint parameter is used in stead. Additionally,
Equation 20 is approximately solved using the conjugate gradient algorithm, which approximates the constrained
optimization problem given by Equation 20 with a linearized objective function and a quadratic approximation for the
constraint. The PPO method approximates the TRPO optimization process by accounting for the policy adjustment
constrain with a clipped objective function. The objective function used with PPO can be expressed in terms of the
probability ratio pk(θ) given by,

pk(θ) =
πθ (uk |xk)
πθold (uk |xk)

(21)

Where the PPO objective function is then:

L(θ) = Ep(τ)
[
min[pk(θ),clip(pk(θ),1 − ε,1 + ε)]Aπw(xk,uk)

]
(22)

This clipped objective has been shown to maintain the KL divergence constrained which aids convergence by ensuring
that the policy does not change drastically between updates.

PPO uses an approximation of the advantage function that is the difference between the empirical return (discounted
reward) and a state value function baseline and gives information about how much better an action is with respect to the
average action:

Aπw(xk,uk) =

[
T∑
l=k

γl−kr(ul, xl)

]
− Vπ

w (xk) (23)

Where γ ∈ [0,1) is the discount factor and is closer to one the more the algorithm should care about rewards collected
far into the future. The Value function Vπ

w (xk) here is approximated by the critic and is learned using the cost function:

L(w) =
M∑
i=1
= Vπ

w (x
i
k) −

[
T∑
l=k

γl−kr(ul, xl)

]
(24)

where M is the number of rollout trajectories. In practice, policy gradient algorithms update the policy using a batch of
trajectories (roll-outs) collected by interaction with the environment. Each trajectory is associated with a single episode,
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with a sample from a trajectory collected at step k consisting of observation xk , action uk , and reward rk(xk,uk). Finally,
gradient ascent is performed on θ and gradient decent on w. The update equations are:

w+ = w− − βw∇wL(w)|w=w− (25)
θ+ = θ− + βθ∇θ J(θ)|θ=θ− (26)

where βw and βθ are the learning rates for the value function, Vπ
w , and policy, πθ (uk |xk), respectively. In our case,

we adjust the clipping parameter ε to target a KL divergence between policy updates of 0.008. This gives a good
compromise between quick learning and targeting performances. The policy and value function are learned concurrently.
The exploratory action distribution is a Gaussian distribution with mean πθ (xk) and a diagonal covariance matrix.
Because the log probabilities are calculated using the exploration variance, the degree of exploration automatically
adapts during learning such that the objective function is maximized.

C. Guidance law optimization method
The environment in this case contains the model of the lander, the equations of motion and all the physical constraints

of the problem. At each time-step, it samples the action from the exploratory policy, integrate the equations of motion,
calls the renderer to generate the observation and return the observation along with the state and the reward. It should be
noted that when using a policy gradient method, there is no need to deploy the value function approximator (critic), only
the policy is need to provide a control action. For this reason, we give the critic access to more information with respect
to the policy network. In particular we pass the velocity error between the true velocity and the target velocity verror, the
time-to-go tgo and the lander estimated altitude rz . The policy instead has access to the optical images observations, the
altitude rz and the vertical component of the velocity Ûrz . So the value function observations are:

obsVF = [verr tgo rz] (27)

while the observations available to the policy πθ are:

obsπθ = [I rz Ûrz] (28)

where I is a 16x16 array representing the raw grayscale pixel data from the raytracer. The action space is continuous
and corresponds to R3 as we are considering motion in a 3DOF environment. A schematic representation of the whole
sytem can be seen in Figure 2.

Fig. 2 Overall framework

The value function is implemented as a four layer fully connected neural network as the information about the
motion are completely encoded within the full state observation and there is no need for a recurrent network. The layers
specification and activation functions can be seen in Table 1: The policy instead has a mixed input, images and vector
observations. In this case we process the two inputs separately. The images go through a series of two convolutional
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Table 1 Value function network

Layer Units Activation function
FC1 60 tanh
FC2 17 tanh
FC3 5 tanh
FC4 1 linear

Table 2 Policy network

Layer Units stride Activation function
CNN1 4 1 tanh
CNN2 4 2 tanh
CNN3 8 1 tanh
CNN4 8 2 tanh
GRU 73 - -
FC1 30 - tanh
FC2 30 - tanh
FC3 3 - linear

layer (CNN) that filter the image input and extract high level features. In particular each one of them is composed by
two convolutional sublayers: the first is a normal convolutional layer with stride 1 that increases the number of channels
by applying a combination of convolutional filters without changing the size of the output image, the second is another
convolutional layer with stride 2 that substitute the pooling layer in classical convolutional nets. This has been shown to
perform better in this kind of regression tasks as the image is still reduced in size thanks to the stride equal to 2 but
the additional filters extract more information than a simple max-pooling. The vector observation data goes through a
simple fully connected layer. The image input is then flatten and the two observations are concatenated. As explained
in Section III.A, a recurrent layer is needed to capture the different tasks to meta-learn. Given these premises, the
flattened observation is passed through a recurrent cell (GRU) that, es explained above, encodes the knowledge about
the temporal evolution of the observations as a sequence is fed to the network. The network is then completed with 2
fully connected layers. Table 2 summarizes the architecture.

It is worth spending some more words on why using a recurrent network in this case allows to solve the meta-learning
problem. As explained in Sectio III.A, the network has a recurrent cell whose internal states are kept constant for each
single task while the weights are updated through gradient descent. This allows the network to distinguish the temporal
evolution of each particular task and effectively adapt to the specific environment. During learning, this operatively
works by unrolling the recurrent layer in time across different timesteps of a single sample trajectory. In our case we
unroll the layer for 60 steps as suggested by [10, 13, 14]. Following the procedure in [13], the unrolling must be done
in a manner consistent with processing a large number of episodes in parallel. This is somewhat cumbersome in the
case of reinforcement learning as, for example, if we want to unroll the net for 60 steps for the forward pass through
the network, the hidden state of the recurrent cell at step 61 is not available until the agent have completed the first 60
steps. To cope with this situation, we have to use the actual hidden state of the GRU cell as observation and add it to the
rollouts. So the step of interaction with the environment not only returns the observation-action-reward tuple but also
the hidden state of the policy. The forward pass through the policy then works by unrolling the batch of inputs prior to
the recurrent layer, reshaping it according to the layer dimension and recurrent steps (in this case we consider 60 steps).
More implementation details are given in the references [13].

The reward function is one of the most important things to set up in a reinforcement learning algorithm. The intuitive
way to reward the agent in a soft landing task is to give a positive reward if the agent performs a successful landing
(e.g. arrives close to the target with low speed) and penalize it if it violates a constraint (e.g. falls below ground or
violates the glideslope constraint). These kind of rewards are considered sparse in the sense that the agent is rewarded or
penalized only at specific time-steps during a rollout. It is know that sparse rewards are a tough problem to solve for
reinforcement learning because given the randomization of exploratory actions, it is very unlikely that the agent will see
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(a) Policy Network (b) Value Function Network

Fig. 3 Policy and value function network architecture

a successful landing more than an handful of times during a policy rollout batch. For this reason, we implemented the
reward following a shaping function. This techniques allow to give a per-timestep reward to the agent and has been
shown to work well in pinpoint landing tasks [11]. We summarize here the procedure. It works by giving the agent hints
about a good trajectory to follow for a successful landing. Specifically we use the error with respect to a gaze heuristic
potential function to drive the agent towards the target. It works by trying to keep the velocity aligned with the line of
sight vector. This ensure pinpoint but not necessarily soft landing. To ensure that the final velocity is minimized, the
agent agent estimates time-to-go as the ratio of the range and the magnitude of the lander’s velocity and reduces the
targeted velocity as time-to-go decreases. To achieve this according to [11], the reward function has the following form:

r = α‖v − vtarg‖ + β‖FB ‖ + η + κ(rz < 0 and ‖r‖ < rlim and ‖v‖ < vlim) (29)

Where:

vtarg = −v0

(
r̂
‖r̂‖

) [
1 − exp

(
−

tgo
τ

)]
tgo =

‖r̂‖
‖v̂‖

‖r̂‖ =

{
r − [0 0 5] if rz > 5
[0 0 rz] otherwise

‖v̂‖ =

{
v − [0 0 − 2] if rz > 5
v − [0 0 − 1] otherwise

τ =

{
τ1 if rz > 5
τ2 otherwise

(30)

and:
• α is a term that penalizes the error with respect to the target velocity
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Table 3 Hyperparamenters

v0 (m/s) τ1 (s) τ2 (s) α β η κ

100 20 100 -0.01 -0.05 0.01 10

Table 4 Initial conditions

Position Velocity
min (m) max (m) min (m/s) max (m/s)

Downrange 1500 2000 -100 -80
Crossrange -250 250 -30 30
Elevation 3200 3500 -30 -20

• β is a term that penalizes the control effort
• η is a positive constant that encourages the agent to perform more steps avoiding collisions with the constraints
• κ is a bonus given for a successful landing (i.e. the final position and velocity are within a certain threshold)

This reward function allows the agent to trade off between tracking the target velocity, conserving fuel, and maximizing
the reward bonus given for a successful landing.

IV. Experiments results
We show here the performances of the algorithm on a pinpoint lunar landing task with engine failure and uncertain

gravity field and initial spacecraft mass. The gravitational acceleration is selected randomly from a uniform distribution
+/−5% of the nominal value and kept constant along a single episode. The lander initial mass is also set randomly over
a uniform distribution +/−5% of the nominal value (1500 [kg]). The engine failure is simulated by reducing the
thrust available in one of the three directions at random for the entire duration of the mission. The policy is optimized
using PPO described in Section III.B. The observations that feed into the policy network are images that come directly
as raw grey-scale pixel data from Blender plus vertical position and velocity. Note that they are the only information
passed to the actor as explained in Section III.C. The critic instead has access to the velocity error with respect to
the target velocity, the tgo and the altitude. The initial condition for each episode is sampled from the distribution
described in Table 4. The target state is a position 1000 meter above the origin of the axis with a −1 m/s velocity in
the vertical direction. We used this scenario instead of a trying to reach the ground because the DTM does not have a
high enough resolution to be able to distinguish features at lower altitude. The images at lower altitudes would become
almost identical to each other which would degrade the quality of the learning. We believe this is not a limitation of the
algorithm, it is in fact a problem related the quality of the DTM. It should also be noted that the states that are used by
the learning algorithm are instead shifted down by 1000 meters so that the target position is in fact the origin of the
reference frame. The initial conditions seen by the learning algorithm are shown in 5. An example of the images passed
to the policy during training can be seen in Figure 4 along with an higher resolution version of the same area created
afterward..

The results relative to a trajectory using the policy in test mode (with exploration switched off) are shown in Figure 5
and Table 6. Table 6 shows the performance of the algorithm on a test trajectory using the learned policy. In particular
it shows mean, standard deviation and maximum value of the norm of the terminal position and velocity errors. The

Table 5 Initial conditions for RL algorithm

Position Velocity
min (m) max (m) min (m/s) max (m/s)

Downrange 1500 2000 -100 -80
Crossrange -250 250 -30 30
Elevation 2200 2500 -30 -20
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(a) t = 0 s (b) t = 9.79 s (c) t = 19.79 s (d) t = 29.79 s (e) t = 39.80 s (f) t = 49.80 s (g) t = 59.80 s

(h) t = 0 s (i) t = 9.79 s (j) t = 19.79 s (k) t = 29.79 s (l) t = 39.80 s (m) t = 49.80 s (n) t = 59.80 s

Fig. 4 Example image sequence. Top: normalized grayscale images used for training. Bottom: high resolution
images

Fig. 5 Validation trajectory

lander achieves fairly good performance given the size of the problem, managing to bring the lander close to the target
with a contained velocity error even though at this stage the performance are still not suitable for true pinpoint landing.
The learning curves are shown in Figures 6 which plot statistics for terminal position (rf ) and terminal velocity (v f ) as a
function of episode, with the statistics calculated over the 10 episodes used to generate rollouts for updating the policy
and value function. We also see from Figure 7, that the learning algorithm using the reward shaping function and PPO
learns smoothly without ever diverging across consecutive iterations. It should be noted that the results shown here
comes from a work in progress. There is still some experiments to be conducted, especially relatively to the networks
architectures and the hyper-parameters.

V. Conclusion
In this paper we demonstrate how image-based navigation and real time guidance can be implemented using a single

system based on convolutional-recurrent neural net. Using a meta-RL framework was in fact possible to design a closed
look guidance algorithm that takes observations in the form of raw pixel data values taken by an optical down-facing
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(a) Position error

(b) Velocity error

Fig. 6 Learning curves for final position and velocity error

Fig. 7 Reward profile for 30000 episodes (45.7 hours)

camera and readouts from a radar altimeter as input and outputs thrust values that ensure targeting capabilities with
quasi-pinpoint accuracy in a lunar landing task. Moreover, meta-learning allows the agent to adapt to an environment
with uncertainty in the gravitational field and the initial mass of the lander. The agent also manages to adapt to a
reduce thrust scenario that simulates an actuator failure. In this simulated scenario, the agent manages to reach the
target with quasi-pinpoint accuracy across multiple trials. There is still an open question on how this algorithm would
perform with a higher resolution DTM to perform real pinpoint landing. It is important to note in this regard, that the
performance in terms of accuracy are remarkable. It is safe to assume that, provided a good enough DTM, it should
perform at a comparable level in the full landing scenario. It should also be noted that this work demonstrates the high
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Table 6 Performance statistics

Terminal position norm (m) Terminal velocity norm (m/s) Fuel (kg)
µ σ max µ σ max µ

GRU-RNN 4.5 1.2 6.4 9.19 0.7 10.1 141.1

level capabilities of an agent trained using meta-RL in a lunar landing task but the full potential is still to be unlocked.
These results are to be taken as preliminary as we investigate more on how to obtain better performance. The results in
this paper show that indeed the agent learns and could probably learn a more accurate solution just by training for more
episodes. Moreover, there are endless possibilities as on how to build the actor and critic networks and some more
experiments should be made in that regard, as well as trying different hyper-parameters such as KL divergence target,
reward weights and number of policy rollouts per iteration.

This all in all demonstrates that RL has a lot of potential in the field of guidance and navigation in aerospace
applications where data is limited and the ability to learn from simulated environment is pivotal. The ability to adapt to
uncertain environments is key in this sense. Moreover, neural networks are inherently closed loop as the feed-forward
pass through a net is extremely fast so they are suitable for real time implementation. There is still a lot to be done in
this field. We are just starting to understand what RL and meta-RL can do for autonomous spacecraft guidance and
control in complex environments. Being able to use images alongside other sensors data in real time as input is a great
feature that is worth exploring on the path towards intelligent autonomous systems, as well as perhaps implement more
knowledge within the network about hazardous area of the environment and its relevant features in general.
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