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Abstract

The focus of this paper is to understand storage costs of emulating an atomic shared memory over
an asynchronous, distributed message passing system. Previous literature has developed several shared
memory emulation algorithms based on replication and erasure coding techniques, and analyzed the
storage costs of the proposed algorithms. In this paper, we present information-theoretic lower bounds
on the storage costs incurred by shared memory emulation algorithms. Our storage cost lower bounds are
universally applicable, that is, we make no assumption on the structure of the algorithm or the method
of encoding the data.

We consider an arbitrary algorithm A that implements an atomic multi-writer single-reader (MWSR)
shared memory variable whose values come from a finite set V over a system of N servers connected
by point-to-point asynchronous links. We require that in every fair execution of algorithm A where the
number of server failures is smaller than a parameter f , every operation invoked at a non-failing client
terminates. We define the storage cost of a server in algorithm A as the logarithm (to base 2) of number
of states it can take on; the total-storage cost of algorithm A is the sum of the storage cost of all servers.
We develop three lower bounds on the storage cost of algorithm A.

• In our first lower bound, we show that if algorithm A does not use server gossip, then the total
storage cost is lower bounded by 2 N

N−f+1
log2 |V| − o(log2 |V|).

• In our second lower bound we show that the total storage cost is at least 2 N
N−f+2

log2 |V|−o(log2 |V|)
even if the algorithm uses server gossip.

• In our third lower bound, we consider algorithms where the write protocol sends information about
the value in at most one phase. For such algorithms, we show that the total storage cost is at least
ν
∗ N

N−f+ν
∗
−1

log2(|V|) − o(log2(|V|), where ν
∗

is the minimum of f + 1 and the number of active

write operations of an execution.

Our first and second lower bounds are approximately twice as strong as the previously known bound of
N

N−f
log2 |V|. Furthermore, our first two lower bounds apply even for regular, single-writer single-reader

(SWSR) shared memory emulation algorithms. Our third lower bound is much larger than our first and
second lower bounds, although it is applicable to a smaller class of algorithms where the write protocol
has certain restrictions. In particular, our third bound is comparable to the storage cost achieved by most
shared memory emulation algorithms in the literature, which naturally fall under the class of algorithms
studied. Our proof ideas are inspired by recent results in coding theory.
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1 Introduction

The emulation of a consistent, fault-tolerant read-write shared memory in a distributed, asynchronous,
storage system has been an active area of research in distributed computing theory. In their celebrated
paper [3], Attiya, Bar-Noy, and Dolev devised a fault-tolerant algorithm for emulating a shared memory
that achieves atomic consistency (linearizability) [16, 17]. Consider a distributed system with server nodes,
write client and read client nodes, all of which are connected by point-to-point asynchronous links. The
ideas of [3] can be used to design server, write and read protocols that implement an atomic shared memory
even if the write and read operations are invoked concurrently with the following guarantee: every read or
write operation invoked at a non-failing client terminates so long as the set of servers that fail is restricted
to a minority. The algorithm of [3] used a replication-based storage scheme at the servers to attain fault
tolerance. Following [3], several papers [1, 2, 4, 5, 11, 12, 15, 21] have developed algorithms that use erasure
coding instead of replication for fault tolerance, with the goal of improving upon the storage efficiency of [3].

In erasure coding1 which is studied in classical coding theory, each server stores a function of the value
called a codeword symbol. A decoder that is able to access a sufficient number of codeword symbols recovers
the value. The number of bits used to represent a codeword symbol is typically much smaller than the
number of bits used to represent the value. As a consequence, erasure coding is well known to lead to smaller
storage costs as compared to replication in the classical coding-theoretic set-up (See, for example, [7,10,19]).
Here, we aim to understand storage costs of shared memory emulation, where in contrast with the classical
coding-theoretic setup, multiple versions of the data object are to be stored in a consistent manner.

When erasure coding is used for shared memory emulation, new challenges arise. Since, in erasure coding,
each server stores a codeword symbol and not the entire value, a read operation has to obtain a sufficient
number of codeword symbols to decode the value being stored. When a write operation begins to write a
new version of the data object, the old version cannot be deleted from the servers until a sufficient number of
codeword symbols corresponding to the new version have been propagated to the servers. As a consequence,
servers have to store codeword symbols corresponding to multiple versions of the data object to ensure
that a reader can decode an atomically consistent version. Previous erasure coding based shared memory
emulation algorithms [1,4,5,11,12,15,21] have noted that the number of versions to be stored at a server can
be large if there are a large number of ongoing or failed write operations whose codeword symbols have not
been propagated sufficiently. Because servers store codeword symbols corresponding to multiple versions,
the storage cost of using erasure coding can be large, even if the number of bits in each codeword symbol is
small compared to the number of bits used to represent the value.

Despite the vast amount of literature in the study of storage costs of shared memory emulation, some
compelling and fundamental questions remain unanswered. Since a server can store an arbitrary function
of all the symbols it receives, can we develop a sophisticated storage strategy that somehow compresses
multiple versions at the servers and thereby results in smaller storage costs? If we add multiple phases to
read and write protocols or include other algorithmic novelties, can we reduce the storage cost of shared
memory emulation? In our paper, we obtain insights into these questions by developing novel impossibility
results that lower bound the storage cost of an arbitrary atomic shared memory emulation algorithm.

2 Summary of Results and Comparisons with Related Work
In this section, we first summarize the shared memory emulation and the classical coding theory set-ups.
We then describe our storage cost lower bounds in Theorems 4.1 and 5.1. Then, we describe our storage
cost lower bound related to Theorem 6.5. Finally we compare our results to previously derived storage cost
lower bounds.

2.1 Set up
Shared Memory Emulation Set-up: We consider an arbitrary algorithm A that implements, over a
network of N servers connected by point-to-point asynchronous links, an atomic multi-writer single-reader
(MWSR) shared memory variable whose values come from a finite set V . The algorithm A is required to
ensure that all operations terminate so long as the number of server failures is no larger than a parameter

1
Server failures are modeled as erasures of codeword symbols; hence the term, erasure coding.
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f . The storage cost of a server in algorithm A is measured as the logarithm of the number of possible states
of the server, and the storage cost of algorithm A is the total storage cost over all the servers.

Classical Coding Theory Set-up: Consider a system with N servers, where a single version of a
data object whose values come from a finite set V is to be stored. The value of the data object must be
recoverable, so long as the number of server failures is no larger than a parameter f . The classical Singleton

bound [18,20] in coding theory implies that the total storage cost is at least N log2 |V|
N−f

bits2. The lower bound

of N log2 |V|
N−f

on the storage cost is known to be tight in the classical coding-theoretic set-up for large values

of |V| [18, 20].
The power of erasure coding is transparent when we want to design a storage system that tolerates

failures of f server nodes and the number of server nodes N can be chosen freely. If we use replication, every
server stores log2 |V| bits. Since we need at least f + 1 servers to tolerate f server failures, the total storage
cost of the system is at least (f +1) log2 |V| bits. In contrast, if we use erasure coding, the total storage cost

of the system is
N log2 |V|

N−f
, which approaches log2 |V| as N increases. If N is sufficiently large, the storage

cost of replication is approximately f + 1 times the storage cost of erasure coding.

2.2 Motivation and Summary - Theorems 4.1 and 5.1
Motivation: The classical coding-theoretic model does not model clients or channels, and therefore differs

significantly from the shared memory emulation model. However, the storage cost lower bound of log2 |V|
N−f

described by the Singleton bound is, in fact, applicable in the context of shared memory emulation as well.
We provide the first formal proof of the lower bound in Appendix B; in particular, we show that for any
SWSR regular shared memory emulation algorithm that implements a read write data object whose values

come from a set V , the total storage cost is at least N log2 |V|
N−f

. The natural lower bound of N log2 |V|
N−f

inspires
the following question.

Question 1: Does there exist an atomic shared memory emulation algorithm whose storage cost is
equal to N

N−f
log2 |V|?

Summary of Theorems 4.1 and 5.1: In this paper, we answer the above question in the negative by
proving storage cost lower bounds that are stronger than N

N−f
log2 |V|. In Theorems 4.1 and 5.1 we show

that the total-storage cost of single-writer-single-reader (SWSR) regular shared memory emulation algorithm
is at least 2N

N−f+2 log2 |V| − o(log2 |V|). In particular, if f is fixed and N is chosen freely, the total-storage

cost lower bound of Theorems 4.1 and 5.1 approach 2N
N−f

log2 |V| − o(| log2 |V|) as N increases; therefore
the bounds of Theorems 4.1 and 5.1 are twice as large as the previously known lower bound. Recall that
regularity [17] is a weaker consistency model as compared with atomicity. Since Theorems 4.1 and 5.1 apply
for regular SWSR shared memory emulation algorithm, they automatically apply for atomic MWSR shared
memory emulation algorithms. Theorem 4.1 describe a storage cost lower bound for algorithms which do
not use server gossip. Theorem 5.1 describes a lower bound for any shared memory emulation algorithm,
including algorithms that use server gossip. Our storage cost lower bounds are universal in nature, that is,
we make no assumption on the structure of the protocols or the method of data storage. Because we answer
Question 1 in the negative, an important implication is that there is an unavoidable price, in terms of storage
cost, to ensure regularity in a shared memory emulation system. We next discuss the tightness of Theorems
4.1 and 5.1 in the context of previously derived storage cost upper bounds.

2.3 Motivation and Summary - Theorem 6.5

In the sequel, we define the number of active write operations at point P of an execution as the number
of write operations which have begun before the point P but not yet terminated or failed at point P . The
number of active write operations of an execution is the supremum, over all points of the execution, of the
number of active write operations at the points of the execution.

Motivation: There is a growing body of literature related to erasure coding based shared memory
emulation algorithms [1,2,4–6,11,12,15,21,23]. These algorithms differ in their structure, liveness conditions
on operation termination, and their communication costs. A common insight that applies to all the algorithms

2
For the sake of the discussion here, we assume that |V| is a power of 2. We refer the reader to [6,18] for more details about

erasure coding.
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of [1,2,4–6,11,12,15,21,23] is that, among the class of all executions with at most ν active write operations,
the worst case storage cost of implementing an atomic shared memory object whose values come from a

finite set V is at least νN log2 |V|
N−f

. In fact, references [2, 4, 5, 12] conduct a formal analysis of the incurred

storage cost and show that the storage cost incurred3 is approximately ν N log2 |V|
N−f

. While the prior works
highlight the benefit of erasure coding when the number of active writes is small, the storage cost benefits
of erasure coding vanish as the number of active writes increases. In particular, for a sufficiently large value
of ν, erasure coding based algorithms can even have a higher storage cost as compared to replication based
algorithms [3, 13], which incur a storage cost of Θ(f) log2 |V| irrespective of the number of active writes.

In contrast with the storage cost upper bounds in literature, our lower bounds of Theorem 4.1 and 5.1 do
not depend on the number of active writes. Furthermore, if f is proportional to N, then storage cost lower
bounds of Theorem 4.1 and 5.1 are both o(f) log2 |V|+ o(log2 |V|). Prior literature in conjunction with our
results of Theorems 4.1 and 5.1 motivates the following question:

Question 2: Can we develop an algorithm whose storage cost, when f is proportional to N , is as small
as o(f) log2 |V| and does not grow with the number of active writes?

Summary of Theorem 6.5: We provide partial answer to Question 2 in our lower bound presented in
Theorem 6.5. The lower bound states that the answer to Question 2 is negative, if the write protocol of
the algorithm satisfies certain technical conditions described in Section 6. Informally speaking, the technical
conditions in Section 6 imply that the write operation is executed in phases, and a message containing
information about the value is sent to the servers in at most one phase per write operation. For any atomic
MWSR algorithm that ensures that all operations terminate in every execution where the active number
of write operations is at most ν and the number of server failures is at most f , Theorem 6.5 shows that if
the write protocol satisfies the conditions stated in Section 6, then the storage cost cannot be smaller than

ν∗
log2 |V|

N−f+ν
∗

−1
− o(log |V|), where ν∗ is the minimum of {f + 1, ν}.

Theorem 6.5 is interesting from a conceptual viewpoint since it captures the dependence of the storage
cost on the degree of concurrency that has been noticed in the upper bounds of [2, 4–6, 12]. In particular,
the bound of Theorem 6.5 can be much larger than the bounds of Theorems 4.1 and 5.1, if the parameters
ν and f are sufficiently large. If the number of active write operations exceeds (f + 1), then our storage
cost lower bound of Theorem 6.5, which equals (f + 1) log2 |V| − o(log2 |V|), implies that replication based
algorithms are approximately optimal in the class of algorithms described in the theorem.

The class of algorithms that satisfy the conditions stated in Section 6 include a majority of the algorithms
in literature [1, 4, 5, 11, 12, 21]. We refer the reader to Section 6 for a more detailed justification. Theorem
6.5, in the stated form, does not apply to a few algorithms [2, 15] because these protocols send messages
related to the value of the write operation in two phases; one phase is used to send a hash of the value
for client verification purposes, and a second phase is used to send codeword symbols corresponding to the
value. In related discussions in Section 6, we conjecture that the statement of Theorem 6.5 and the proof
can be modified, without deviating too much from our approach, to apply to a larger class of algorithms
which include [2, 15].

In Figure 1 we compare the proposed total-storage lower bounds with the previous achievable upper
bounds.

2.4 Comparison with Prior Storage Cost Lower Bounds
We compare our work with results of [8, 9, 13, 23–25] which provide some impossibility results in connection
to consistent shared memory emulation. The main reference that directly pertains to our work here is [23],
which describes interesting, non-trivial lower bounds on shared memory emulation algorithms where the
server and client storage schemes satisfy certain restrictions. Reference [23] assumed that every bit stored
in the system is associated uniquely with a write operation, and showed that under such a storage scheme,
the worst case total storage cost of the system is at least Ω(min(f, ν) log |V|). The implication of [23] is that
in the worst case, if the degree of concurrency is infinite and the server storage scheme is restricted in a
particular manner, then the replication based algorithms of [3, 13] are approximately optimal.

3
There are subtle differences in the storage cost incurred by the algorithms of [2, 4–6, 12]. Nonetheless, ν N

N−f
log2 |V| is a

lower bound on the cost incurred by these algorithms in the worst case, among executions where the number of active writes
is bounded by ν.
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Figure 1: Storage cost upper and lower bounds for N = 21 servers and f = 10 server failures. We plot the
total-storage cost normalized by log2 |V| when |V| → ∞. Theorems 5.1, 6.5, B.1 are lower bounds obtained
in this paper, that corresponds to 2 N

N−f+2 , ν
∗ N

N−f+ν
∗

−1
, N
N−f

, respectively, ν∗ = min(f + 1, ν). And ABD

and erasure-coding refer to upper bounds achieved in [3] and [2, 4, 5, 12],respectively, which corresponds to
f + 1 and ν N

N−f
.

The assumption of [23] that every bit stored is associated with a unique write operation is restrictive and
does not apply to all possible storage methods. To see this, consider a scenario where V is a finite field. Let
v1, v2 ∈ V be values corresponding to two different write operations. Suppose in some algorithm A, at some
point of an execution, a server stores v1 + v2, where + denotes the addition operator over the field. Then a
bit stored by the server cannot be uniquely associated with any of the write operations in an unambiguous
way. Therefore, the proof technique and the result of [23] fails to provide any insight on the storage cost of
the algorithm A. Put differently, the storage method of [23] does not allow for server storage techniques that
potentially compress the values of different versions together (See Appendix A for more technical details).
In contrast, the results of Theorems 4.1, 5.1 are universal and would automatically apply to algorithm A.
The result of Theorem 6.5 does not impose any structure on the storage method, and could also apply to
algorithm A if its write protocol satisfies the appropriate restrictions.

References [8,13] describe impossibility results which are peripherally related to our work. In particular,
the results of [8, 13] show that if the readers or writers do not help write another client’s value [13], or if
the servers are modeled as read-write objects [8], the number of servers must be at least linear in the degree
of concurrency in the system. However, the results of [8, 13] do not directly relate to the total-storage cost
incurred by the algorithm. Reference [9] considered algorithms where the readers do not change the state
of the servers, that is, the readers do not write any values or metadata. The reference showed that for the
class of algorithms considered, if the value comes from an infinite set, then there exists no regular shared
memory emulation algorithm that tolerates even a single server failure. The reference nonetheless does not
provide any insight into the storage cost, particularly when the values come from a finite domain.

In information theory literature, recently developed formulations generalize the classical erasure coding
model with the goal of understanding storage costs in systems where consistency is important [24, 25]. The
models of [24, 25] however, differs from the model considered here. In particular, the models of [24, 25] does
not involve formal notions of write and client protocols, and the decoding requirement is only loosely based
on the notion of atomicity. Our proofs of Theorem 4.1, 5.1 and 6.5 bear resemblance to storage cost lower
bounds of [24].
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In our concluding section, Section 7, we provide a summary of the state of the art based on the main
results of our paper and of [23].

3 Preliminaries

We study the emulation of a shared atomic memory in an asynchronous message passing network. Our setting
consists of a set of N server nodes and a possibly infinite set of client nodes. Without loss of generality, we
let the set of server nodes be {1, 2, . . . , N}. We denote the set of client nodes as C. We assume a multi-writer
single-reader4 setting, that is, we assume that C has a single write client; the remaining clients in C are
read clients. Each client node is connected to all the server nodes, and the servers are connected to each
other via point-to-point reliable, asynchronous, channels. We assume that the readers receive read requests
(invocations) from some external source and respond with object values. We assume that writers receive
write-requests and respond with acknowledgements. Every new invocation at a client waits for a response of
a preceding invocation at the same client. The goal of a shared memory emulation algorithm A studied in
this paper is to design the client and server protocols that implement a read-write register of a data object
which can take values from a finite set V , with the following safety and liveness properties.

Safety Properties: The algorithm must emulate a SWSR regular registers [17]. Informally a regular
shared memory object requires that every read operation returns either the value written by the latest write
operation that terminates before the invocation of the read operation, or the value of a write operation that
overlaps with the read operation. In Section 6 we consider multi-writer single-reader algorithms, and we
require the algorithm to be atomic [17]5. Informally, in an atomic algorithm, the observed external behavior
of every execution looks like the execution of a serial variable type. Recall that SWSR execution of an atomic
shared memory emulation is also regular, so our lower bounds for regular algorithms in Theorems 4.1 and
5.1 also apply to atomic emulation algorithms.

Liveness Properties: An operation of a non-failed client must terminate in a fair execution, so long as
some conditions are satisfied in the execution. Specifically, we require operations to terminate if the number
of server failures in the execution is bounded by a parameter f. We consider algorithms with weaker liveness
properties as well in Section 6, where we ensure termination of operations in executions if the number of
active write operations is bounded. A formal statement of the weaker liveness properties is provided in
Section 6.

We require the above correctness properties to hold irrespective of the number of client failures. The
data object can take values from a finite set V .

Storage Cost Definition

Informally speaking, the storage cost of an algorithm is the total number of bits stored by the servers. In
general, for an algorithm where the state of server node i ∈ {1, 2, . . . , N} can take values from a set Si, we
define the storage cost of the server to be equal to log2 |Si| bits. The max-storage cost of the algorithm A is
defined to be

MaxStorage(A) = max
i∈{1,2,...,N}

log2 |Sn|.

The total-storage cost of the algorithm is defined to be

TotalStorage(A) =

N
∑

i=1

log2 |Si|.

4 Storage Cost Lower Bound for Algorithms Without Gossip

In Appendix B we provide a simple but non-trivial proof of the storage cost lower bound that is analogous
to Singleton bound. Some of the proof techniques there are also applied in this section. The readers can

4
The storage cost lower bounds presented in our paper apply trivially to multi-writer single-reader shared memory emulation

algorithms as well.
5
In fact, we will study weakly regular multi-writer single-reader algorithms [22]. See details in Section 6
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first read Appendix B as an warm-up exercise.
Our main result of this section is a storage cost lower bound, assuming that servers do not gossip.

Specifically, in this section, we assume that every message is sent from a client to a server, or from a server
to a client. The lower bound is an implication of Theorem 4.1, which describes constraints on the cardinalities
of the server states that must be satisfied by any atomic shared memory emulation algorithm where servers
do no gossip. The lower bounds on the max- and total-storage costs are stated in Corollary 4.2. After stating
Theorem 4.1 and Corollary 4.2, we provide an informal description of the proof of Theorem 4.1, followed by
a formal description.

4.1 Statement of Theorem 4.1

Theorem 4.1. Let A be a single-writer-single-reader shared memory emulation algorithm that implements
a regular read-write object whose values come from a finite set V. Suppose that in A, every message is sent
from a server to a client, or from a client to a server. Also, suppose that every server’s state belongs to a
set S in algorithm A.

Suppose that the algorithm A satisfies the following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f , f ≥ 2, then every operation invoked at a non-failing client
terminates.

Then, for every subset N ⊂ {1, 2, . . . , N} where |N | = N − f ,

∑

n∈N

log2 |Si|+max
n∈N

log2 |Si| ≥ log2 |V|+ log2 (|V| − 1))− log2(N − f).

Corollary 4.2. Let A be a single-writer-single-reader shared memory emulation algorithm that implements
a regular read-write object whose values come from a finite set V. Suppose that in A, every message is sent
from a server to a client, or from a client to a server. Also, suppose that every server’s state belongs to a
set S in algorithm A.

Suppose that the algorithm A satisfies the following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f , f ≥ 2, then every operation invoked at a non-failing client
terminates. Then

MaxStorage(A) ≥
log2 |V|+ log2(|V| − 1)− log2(N − f)

N − f + 1
,

and

TotalStorage(A) ≥
N(log2 |V|+ log2(|V| − 1)− log2(N − f))

N − f + 1
.

Proof of Corollary 4.2. We assume, without loss of generality, that |S1| ≤ |S2 ≤ . . . ≤ |SN |. From Theorem
4.1, we have

N−f
∑

n=1

log2 |Sn|+ log2 |SN−f | ≥ log2 |V|+ log2(|V| − 1)− log2(N − f).

As a consequence, we have log2 |SN−f | ≥
log2 |V|+log2(|V|−1)−log2(N−f)

N−f+1 . Therefore, we have max
n∈{1,2,...,N}

log2 |Sn| ≥

log2 |V|+ log2(|V| − 1)− log2(N − f)

N − f + 1
. Furthermore, we have log2 |Sn| ≥

log2 |V|+log2(|V|−1)−log2(N−f)
N−f+1 for ev-

7



ery n ∈ {N − f + 1, . . . , N}. This implies the following chain of relations.

N
∑

n=1

log2 |Sn| ≥ log2 |V|+ log2(|V| − 1)− log2(N − f)− log2 |SN−f |+
N
∑

n=N−f+1

log2 |Sn|

≥ log2 |V|+ log2(|V| − 1)− log2(N − f) +
N
∑

n=N−f+2

log2 |Sn|

≥ (log2 |V|+ log2(|V| − 1)− log2(N − f))

(

1 +
f − 1

N − f + 1

)

= N

(

log2 |V|+ log2(|V| − 1)− log2(N − f)

N − f + 1

)

This completes the proof.

4.2 Informal Proof Sketch of Theorem 4.1

Informally speaking, our lower bound argument is as follows. For every subset N ⊂ {1, 2, . . . , N} where
|N | = N − f , we construct an execution where the servers in {1, 2, . . . , N} − N fail at the beginning of the
execution. The execution has two write operations for values v1 and v2, where v1 6= v2. The second write
operation which writes value v2 begins after the termination of the first write operation, which has value v1.

In this execution, after the point of termination of the first write, a reader can return v1 because of
regularity. Similarly, after the termination of the second write operation, a reader can return v2. Therefore,
the value v1 is returnable from the servers at a point before the invocation of the second write operation and
v2 is returnable from the servers at a point after the completion of second write operation. Furthermore,
at every point in the interval of the second write operation, at least one of v1 or v2 are returnable. This
implies that, in the interval of the second write operation, there are two consecutive points P and P ′ such
that v1 must be returnable from the non-failing servers at point P and v2 must be returnable from the
non-failing servers at point P ′. Since (v1, v2) can be any ordered pair of distinct values from V , there must
be a one-to-one mapping between the set {(v1, v2) : (v1, v2) ∈ V × V , v1 6= v2} and the set of possible
configurations of server states at points P and P ′. This implies that the number of possible server states at
points P and P ′ is at least (|V|)(|V| − 1). Since P and P ′ are consecutive, at most one non-failing server
changes its state between these two points. At least N − f − 1 non-failing servers have the same state
at point P as at point P ′. We use this fact to show that the number of elements in the set of possible
server states at two consecutive points is at most

∏

n∈N |Si| × maxn∈N |Sn| × (N − f). Therefore, we get
∏

n∈N |Si| × maxn∈N |Sn| × (N − f) ≥ (|V|)(|V| − 1), which implies the lower bound. We now present a
formal proof of the lower bound.

4.3 Formal Proof of Theorem 4.1

Consider an arbitrary subset N ⊂ {1, 2, . . . , N} such that |N | = N − f . We construct |V| × (|V| − 1)
executions of the algorithm A. In particular, for every tuple (v1, v2) ∈ V × V where v1 6= v2, we create an

execution α(v1,v2) of algorithm A. In our proof, we first describe execution α(v1,v2) in Section 4.3.1. Then,

we describe some properties of execution α(v1,v2) in Section 4.3.2. We use the results of Section 4.3.2 to
prove Theorem 4.1 in Section 4.3.3.

4.3.1 Execution α(v1,v2)

In execution α(v1,v2) the readers and the channels from and to the readers do not perform any actions.
Among the set of write clients Cw, only one write client takes actions. The f servers in {1, 2, . . . , N}−N fail
at the beginning of the execution. No further server failures occur in the execution. A write π1 is invoked
at a write client with value v1. All the components of the system except the readers, and the channels from
and to the readers, take turns in a fair manner until the completion of π1. Recall that, in a fair execution
where the number of server failures is at most f , any write that begins eventually terminates irrespective
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Figure 2: Pictorial description of executions α(v1,v2) and α
(v1,v2)
i .

of the number of read client failures. From the perspective of the servers, write client and the channels

between them, the execution α(v1,v2) is indistinguishable from a fair execution where all the read clients fail,
we can ensure the execution can be extended until the write operation π1 terminates. Immediately after the
termination of π1, a write operation π2 with value v2 begins. All the components of the system except the
readers and the channels from and to the readers take turns in a fair manner until the completion of π2.

The execution α(v1,v2) ends after the termination of π2.

4.3.2 Properties of Execution α(v1,v2)

Let P
(v1,v2)
0 , P

(v1,v1)
1 , P

(v1,v2)
2 , . . . , P

(v1,v2)
M be the adjacent points (or points after successive steps) of the

constructed execution α(v1,v2), where P
(v1,v2)
0 is an arbitrary point after the termination of π1 and before the

invocation of π2 and P
(v1,v2)
M is an arbitrary point after the point of termination of π2, and M is a positive

integer. For i ∈ {0, 1, 2, . . . ,M}, we denote by α
(v1,v2)
i , the execution between the initial point of α(v1,v2)

and point P
(v1,v2)
i . The executions α(v1,v2) and α

(v1,v2)
i are depicted in Fig. 2.

For an integer i in {0, 1, . . . ,M}, we refer to point P
(v1,v2)
i as a k-valent point if it satisfies certain

properties that are described in Definition 4.3, k = 1, 2. Informally speaking, a point P
(v1,v2)
i is said to be

k-valent if there exists an execution that starts at P
(v1,v2)
i , where a reader returns vk.

Definition 4.3 (k-valent, k ∈ {1, 2}). For i ∈ {0, 1, 2, . . . ,M}, a point P
(v1,v2)
i in the constructed α

(v1,v2)
i is

said to be k-valent if we can extend α
(v1,v2)
i to an execution β as follows: After P

(v1,v2)
i all the messages from

and to the writer are delayed indefinitely. A read operation starts at point P
(v1,v2)
i and all the components,

except the writer and the channels from and to the writer, perform actions until the read operation terminates.
The read operation returns vk.

It should be noted that a point of an execution can be both 1-valent and 2-valent; thus our definition
of valency has a somewhat different structure compared to other definition of valency in other impossibility
arguments (e.g. [14]).

Lemma 4.4. For i ∈ {0, 1, 2, . . . ,M}, a point P
(v1,v2)
i that is not 1-valent is 2-valent.

To show Lemma 4.4, we first prove Lemma 4.5 which informally states that a reader that begins after
the termination of the write π1 should return v1 or v2 because of regularity of the algorithm.

Lemma 4.5. Consider an execution β which is an extension of α
(v1,v2)
i . In β, after point P

(v1,v2)
i , the writer

stops taking steps and all messages from and to the writer are delayed indefinitely. A read operation begins

at some point after point P
(v1,v2)
i and terminates in β.

Then, the read operation returns either v1 or v2.

The lemma is a natural consequence of the regularity of algorithm A. We provide a formal proof next.

Proof. The read operation is invoked after the termination of write operation π1 in execution β. It is possible
that the write operation π2 is invoked before the invocation of the read operation. Because the algorithm is
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regular, we must be able to serialize operations in β. Because π2 is invoked after the completion of π1, the
operation π2 is serialized after operation π1. Regarding the serialization point of the read operation, there
are only two possibilities: (i) read operation is serialized immediately after π1 and before π2, and (ii) the
read operation is serialized after π2. If possibility (i) occurs, that is, if the read operation is serialized after
π1, then it returns v1, which is the value of the write operation π1. If possibility (ii) occurs, then the read
returns v2, which is the value of the write operation π2. Therefore, the read operation returns either v1 or
v2. This completes the proof.

Proof of Lemma 4.4. Consider a point P
(v1,v2)
i that is not 1-valent. We show that it is 2-valent by construct-

ing an execution β that satisfies Definition 4.3 for k = 2. The execution β is an extension of α
(v1,v2)
i . In β,

after point P
(v1,v2)
i all the messages from and to the writer are delayed indefinitely.

A read operation π starts at point P
(v1,v2)
i in β and all the components, except the writer and the channels

from and to the writer, execute their protocols taking turns in a fair manner. From the perspective of the
servers, readers and the channels between the servers and the reader, the execution β is indistinguishable
from a fair execution of the algorithm where the write client fails before sending or receiving the messages
in its channels. Because of the liveness properties satisfied by the algorithm, the read operation terminates.

Because the read operation is invoked at point P
(v1,v2)
i which is after the point of termination of the write

operation π1, Lemma 4.5 implies that the read operation returns v1 or v2. However, because the point

P
(v1,v2)
i is not 1-valent, the read operation cannot return v1. Therefore the read returns v2 at some point Q.

Let β denote the extension of α
(v1,v2)
i to the point Q. The execution β satisfies the conditions of Definition

4.3for k = 2. Therefore, the point P
(v1,v2)
i is 2-valent.

Lemma 4.6. There exists some integer i ∈ {0, 2, . . . ,M − 1} such that P
(v1,v2)
i is 1-valent and P

(v1,v2)
i+1 is

not 1-valent.

Proof. To show the lemma, we argue that the following two statements are true.

(i) Point P
(v1,v2)
0 is 1-valent.

(ii) Point P
(v1,v2)
M is not 1-valent.

Among all the numbers in {0, 1, 2, . . . ,M}, let i denote the largest number such that P
(v1,v2)
i is 1-valent. If

(i) is true, we note that the number i exists. If (ii) is true, then i < M . Since i is the largest number such

that P
(v1,v2)
i is 1-valent, we infer that P

(v1,v2)
i is 1-valent, but P

(v1,v2)
i+1 is not 1-valent. The point P

(v1,v2)
i

therefore satisfies the statement of the lemma. So, to show the statement of the lemma, it suffices to show
(i) and (ii). We show (i) and (ii) formally next.

To show (i) we extend α
(v1,v2)
0 to an execution β as per Definition 4.3 for 1-valency. In β, after point

P
(v1,v2)
0 all the messages from and to the writer are delayed indefinitely.

Note that at point P
(v1,v2)
0 the write operation π2 has not yet begun. A read operation π starts at point

P
(v1,v2)
0 in execution β and all the components, except the writer and the channels from and to the writer,

execute their protocols taking turns in a fair manner. Note that the execution is indistinguishable from a
fair execution of the algorithm where the write client fails before sending or receiving the messages in its
channels. Because of the liveness properties satisfied by the algorithm, the read operation terminates. Note
that there is only one write operation π1 in execution β. Because the algorithm is regular, and because the
read operation is invoked after the termination of π1, it is serialized after π1. Therefore the read returns

v1 at some point Q. Let β denote the extension of α
(v1,v2)
0 to the point Q. The execution β satisfies the

conditions of Definition 4.3 for 1-valency.

To show (ii) we show that we cannot extend α
(v1,v2)
M to an execution β̃ as per Definition 4.3. We provide a

proof by contradiction. Suppose we can construct β̃ as per Definition 4.3. Note that in β̃, the read operation

is invoked after point P
(v1,v2)
M , which is after the point of termination of π2. Therefore the read operation

is invoked after the point of termination of the write π2. Furthermore, π2 is invoked after the point of
termination of π1. Because β̃ has regular operations, write operation π2 is serialized after write operation
π1 and the read is serialized after the write π2. Therefore the read should return v2, which is the value of
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write operation π2. However, because β̃ satisfies Definition 4.3, the read returns v1 which is not equal to v2.
Therefore the execution β̃ of algorithm A does not have regular operations. This is a contradiction to the

assumption that the algorithm A is regular. Therefore point P
(v1,v2)
M cannot be 1-valent. This completes the

proof.

Next, we present the definition of a pair of critical points of execution α(v1,v2).

Definition 4.7 (Critical points). Let Q1, Q2 be two points in execution α(v1,v2). The pair of points (Q1, Q2)
is defined to be a pair of critical points if there exists a number i in {0, 2, . . . ,M − 1} such that

• Q1 = P
(v1,v2)
i , Q2 = P

(v1,v2)
i+1 ,

• Q1 is 1-valent,

• Q2 is not 1-valent.

Lemma 4.6 implies that every execution α(v1,v2) has at least one pair of critical points. Lemma 4.4

implies that if (Q1, Q2) is a pair of critical points in α(v1,v2), then point Q2 is 2-valent in α(v1,v2). We need
the following lemma before proceeding to prove Theorem 4.1.

Lemma 4.8. Let (Q1, Q2) be a pair of critical points of execution α(v1,v2). Then,

(a) the readers, and the channels between the readers and the servers, are all in the same state at point Q2

as at point Q1;

(b) there is at most one non-failing server s such that its state at Q1 is different from its state at Q2.

Proof. In execution α(v1,v2), the readers and the channels between readers and servers do not perform any
actions. So these components are in their initial state at every point of the execution, including points Q1

and Q2. This implies that statement (a) is true. We prove (b) next. Note that Q1 and Q2 are adjacent

points of the execution α(v1,v2). There are three possibilities: (I) a channel performed an action between
points Q1 and Q2, (II) a server performed an action between points Q1 and Q2, or (III) a client performed
an action between points Q1 and Q2. We study these three possibilities separately.

Case I: A channel action took place between points Q1 and Q2. Note that the algorithm A
does not send any messages on the channels between servers. The channels between readers and servers do

not perform any actions in α(v1,v2). Therefore, we only need to consider the case where a channel between
a server and the writer takes an action. If a channel from the writer to server s takes an action, then, for
every server in the set N −{s}, there was no input, internal or output action between Q1 and Q2. Therefore
every server in the set N −{s}, has the same state at Q1 as at Q2. Similarly, if a channel from a server s to
the writer takes an action, then, for every server in the set N − {s}, there was no input, internal or output
action between Q1 and Q2. Therefore every server in the set N − {s}, has the same state at Q1 as at Q2.
This completes the proof for Case I.

Case II: A server action took place between points Q1 and Q2. Let s be the server that took an
action between points Q1 and Q2. This implies that for every server in N −{s}, no input, output or internal
action was taken between these points. Therefore every server in N − {s}, has the same state at Q1 as at
Q2. This completes the proof for Case II.

Case III: A client action took place between points Q1 and Q2. If a client action takes place
between Q1 and Q2, then, for every server in the system, no input, internal or external action was taken
between points Q1 and Q2. Therefore, in this case, every server has the same state at point Q1 as at point
Q2. This completes the proof.

We are now ready to prove Theorem 4.1.
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4.3.3 Proof of Theorem 4.1

Proof of Theorem 4.1. Lemma 4.6 implies that we can find a pair of critical points (Q
(v1,v2)
1 , Q

(v1,v2)
2 ) in

execution α(v1,v2). From Lemma 4.8, we note that there is at most one non-failing server that changes state

between Q
(v1,v2)
1 and Q

(v1,v2)
2 . Let s denote the server which changes state between points Q

(v1,v2)
1 and

Q
(v1,v2)
2 , if there is one; if not, let s denote an arbitrary non-failing server. For any s′ ∈ N , if s′ 6= s, the

state of the server s′ is the same at points Q
(v1,v2)
1 and Q

(v1,v2)
2 .

Let ~S(v1,v2) be an element of
∏

n∈N Sn×N ×∪n∈NSn as follows. The first N − f components of ~S(v1,v2)

denote the states of the N −f servers in N at point Q
(v1,v2)
1 . The (N −f +1)st component of ~S(v1,v2) denote

the server index s, and the N − f + 2nd component is the state of server s at point Q
(v1,v2)
2 . Note that the

number of elements in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at most
∏

i∈N |Si| × (N − f)×maxi∈N |Si|.

To prove Theorem 4.1, we show that, if (v1, v2) and (v′1, v
′
2) are two distinct elements of the set {(x, y) :

(x, y) ∈ V × V , x 6= y}, then ~S(v1,v2) 6= ~S(v
′

1,v
′

2). If we show this, then it implies that the number of elements

in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at least equal to the number of elements in the set {(x, y) : (x, y) ∈

V × V , x 6= y}, which is equal to (|V|)× (|V| − 1). This leads to the following chain of inequalities:

∏

n∈N

|Sn| × (N − f)×max
n∈N

|Sn| ≥ (|V|)× (|V| − 1)

max
n∈N

log2 |Si|+
∑

n∈N

log2 |Si| ≥ log2 |V|+ log2 (|V| − 1))− log2(N − f)

which implies the theorem. Therefore, to prove the theorem, it suffices to show that, if (v1, v2) 6= (v′1, v
′
2),

then ~S(v1,v2) 6= ~S(v
′

1,v
′

2). Suppose, for contradiction, there are two distinct tuples (v1, v2) and (v′1, v
′
2) in

{(x, y) : (x, y) ∈ V × V , x 6= y} and ~S(v1,v2) = ~S(v
′

1,v
′

2).

Let i denote an integer such that Q
(v1,v2)
1 is the point P

(v1,v2)
i in α(v1,v2). We now construct executions

β
(v1,v2)
1 and β

(v1,v2)
2 , which are extensions of α

(v1,v2)
i and α

(v1,v2)
i+1 . Because the point Q

(v1,v2)
1 is 1-valent,

we know there an execution β
(v1,v2)
1 that extends α

(v1,v2)
i such that, after point Q

(v1,v2)
1 in β

(v1,v2)
1 , all

the messages from and to the writer are delayed indefinitely, and a read operation begins and returns v1.

Similarly, because the point Q
(v1,v2)
2 is 2-valent, we know there an execution β

(v1,v2)
2 that extends α

(v1,v2)
i+1

such that, after point Q
(v1,v2)
2 , all the messages from and to the writer are delayed indefinitely, and a read

operation begins and returns v2.

The following claim describes a useful property of executions β
(v1,v2)
1 and β

(v1,v2)
2 .

Claim 4.9. Let ~S(v1,v2) = ~S(v
′

1,v
′

2). Consider the composite automaton A formed by the servers, the readers
and the channels between the readers and servers. For k ∈ {1, 2}, every component of the automaton A has

the same state at point Q
(v1,v2)
k in β

(v1,v2)
k as at point Q

(v
′

1,v
′

2)
k in execution β

(v
′

1,v
′

2)
k .

Proof of Claim 4.9. We first consider the case where k = 1. At points Q
(v1,v2)
1 in β

(v1,v2)
1 and Q

(v
′

1,v
′

2)
1 in

β
(v

′

1,v
′

2)
1 , all the channels between the readers and servers are empty, the readers are in their initial state and

the servers in {1, 2, . . . , N} − N have failed. Denoting N = {a1, a2, . . . , aN−f} where a1 < a2 < . . . aN−f ,

the state of every non-failing server aj , j ∈ {1, 2, . . . , N − f} at points Q
(v1,v2)
1 in β

(v1,v2)
1 and Q

(v
′

1,v
′

2)
1 in

β
(v

′

1,v
′

2)
1 is respectively equal to the jth component of ~S(v1,v2) and ~S(v′1, v

′
2). Because ~S(v1,v2) = ~S(v′1, v

′
2),

every non-failing server is at the same state at Q
(v1,v2)
1 in β

(v1,v2)
1 as at Q

(v
′

1,v
′

2)
1 in β

(v
′

1,v
′

2)
1 . This completes

the proof for the case where k = 1.
Consider the case where k = 2. Let s denote the server index determined by the N − f +1st component

of ~S(v1,v2), which is also equal to the server index determined by the N − f + 1st component of ~S(v
′

1,v
′

2).

All the channels, readers and failed servers have the same state at points Q
(v1,v2)
2 in β

(v1,v2)
2 as at Q

(v
′

1,v
′

2)
2
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′
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(v
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′
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β
(v

′
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′
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2
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Q
(v

′
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′
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Q
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′

1,v
′
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Q
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Figure 3: Depiction of the proof of Theorem 4.1. (a) Executions β
(v1,v2)
k , k = 1, 2. (b) Executions β

(v
′

1,v
′

2)
k , k =

1, 2. (c) Constructed execution γ for the case that v′1 /∈ {v1, v2}. (d) Constructed execution γ for the case
that v′2 6= v2.

in β
(v

′

1,v
′

2)
2 . The state of every non-failing server except server s at points Q

(v1,v2)
2 in β

(v1,v2)
2 and Q

(v
′

1,v
′

2)
2 in

β
(v

′

1,v
′

2)
2 is respectively determined by the corresponding component of ~S(v1,v2) and ~S(v′1, v

′
2). The state of

server s at points Q
(v1,v2)
2 in β

(v1,v2)
2 and Q

(v
′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 are respectively determined by the N − f +2nd

component of ~S(v1,v2) and ~S(v′1, v
′
2). Because ~S(v1,v2) is equal to ~S(v′1, v

′
2), every non-failing server is at the

same state at Q
(v1,v2)
2 in β

(v1,v2)
2 as at Q

(v
′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 . This completes the proof of the claim.

Proof of Theorem 4.1 continued. We now use Claim 4.9 to obtain a contradiction. Because (v1, v2) and
(v′1, v

′
2) are distinct ordered pairs, there are only two possibilities: (I) v′1 6= v1, v

′
1 6= v2, (II) v

′
2 6= v1, v

′
2 6= v2,

or v′2 = v1, v
′
1 = v2, both of which imply that v′2 6= v2. We handle these possibilities separately (See Figure

3).
Case (I): v′1 6= v1, v

′
1 6= v2.

We create an execution γ of the algorithm A which contradicts Lemma 4.5. Let i be an integer such

that Q
(v1,v2)
1 = P

(v1,v2)
i in execution α(v1,v2). The execution γ extends execution α

(v1,v2)
i , that is, it follows

execution α(v1,v2) until point Q
(v1,v2)
1 . After point Q

(v1,v2)
1 , the writer, and the channels from and to the

writers do not perform any actions. After point Q
(v1,v2)
1 , the servers, readers and the channels between the

servers and readers in γ follow the same steps as the corresponding components in β
(v

′

1,v
′

2)
1 .

Claim 4.9 implies that γ is an execution of algorithm A. In particular, γ is an extension of α
(v1,v2)
i , where,

after point P
(v1,v2)
i , the writer and channels from and to the writer do not perform any actions. From point

P
(v1,v2)
i onward, since the readers in γ follow the steps of β

(v
′

1,v
′

2)
1 until completion, a read begins in γ after

this point and terminates returning v′1, which is not equal to either v1 or v2. However, according to Lemma
4.5, the read operation in γ should return either v1 or v2,. This is a contradiction. Therefore, if v1 6= v′1 and

v1 6= v′1, then ~S(v1,v2) 6= ~S(v
′

1,v
′

2).
Case (II): v′2 6= v2.
We create an execution γ of the algorithm A which leads to a contradiction. Let i be an integer such

that Q
(v1,v2)
1 = P

(v1,v2)
i in execution α(v1,v2). The execution γ extends execution α

(v1,v2)
i+1 , that is, it follows

execution α(v1,v2) until point Q
(v1,v2)
2 . At point Q

(v1,v2)
2 , the messages from the writers are delayed indefi-

nitely. After point Q
(v1,v2)
2 , the servers, readers and the channels between the servers and readers in γ follow

the same steps as the corresponding components in β
(v

′

1,v
′

2)
2 .

Claim 4.9 implies that γ is an execution of algorithm A. In particular, γ is an extension of α
(v1,v2)
i+1 , where,

after point P
(v1,v2)
i+1 , the writer and channels from and to the writer do not perform any actions. From point

P
(v1,v2)
i+1 onward, since the readers in γ follow the steps of β

(v
′

1,v
′

2)
2 until completion, a read begins in γ after
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this point and terminates returning v′2, which is not equal to v2. However, according to Lemma 4.4 and the

fact that Q
(v1,v2)
2 is not 1-valent, Q

(v1,v2)
2 is 2-valent, and the read operation in γ should return v2. This is

a contradiction. Therefore, ~S(v1,v2) 6= ~S(v
′

1,v
′

2).
This completes the proof.

5 A Universal Storage Cost Lower Bound

Our main result of this section is a storage cost lower bound that is applicable to any regular shared memory
emulation algorithm, even if it uses server gossip. The lower bound is an implication of Theorem 5.1, which
describes constraints on the cardinalities of the server states that must be satisfied by any atomic shared
memory emulation algorithm. The lower bounds on the worst case and total storage costs are stated in
Corollary 5.2. We provide a sketch of the proof of Theorem 5.1, highlighting the main differences from the
proof of Theorem 4.1.

5.1 Statement of Theorem 5.1

Theorem 5.1. Let A be a single-writer-single-reader shared memory emulation algorithm that implements
a regular read-write object whose values come from a finite set V. Suppose that every server’s state belongs
to a set S in algorithm A.

Suppose that the algorithm A satisfies the following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f , then every operation invoked at a non-failing client terminates.
Then,

2max
n∈N

log2 |Si|+
∑

n∈N

log2 |Si| ≥ log2 |V|+ log2 (|V| − 1)− 2 log2(N − f)

Corollary 5.2. Let A be a single-writer-single-reader shared memory emulation algorithm that implements
a regular read-write object whose values come from a finite set V. Suppose that every server’s state belongs
to a set S in algorithm A.

Suppose that the algorithm A satisfies the following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f , then every operation invoked at a non-failing client terminates.
Then,

MaxStorage(A) ≥
log2 |V|+ log2 |V − 1| − 2 log2(N − f)

N − f + 2
,

T otalStorage(A) ≥
N(log2 |V|+ log2 |V − 1| − 2 log2(N − f))

N − f + 2
.

The proof of Corollary 5.2 is similar to the proofs of Corollary 4.2 in Section 4 and Corollary B.2 in
Appendix B, and is omitted.

5.2 Informal Proof Sketch of Theorem 5.1

The proof of Theorem 5.1 shares many common elements with the proof of Theorem 4.1. The main difference
is that now we need to carefully handle the actions performed by the channels between servers. An aspect
that distinguishes the proof of Theorem 5.1 from the proof of Theorem 4.1 is that their definitions of k-valent
points. For ease of readability, we inherit the lemmas and definitions from the proof of Theorem 5.1 into
this section, so that the proofs can be compared easily. We begin with a proof sketch of Theorem 5.1.

As in our proof of Theorem 4.1, for every subset N ⊂ {1, 2, . . . , N} where |N | = N − f , we construct

an execution α(v1,v2) where the servers in {1, 2, . . . , N} − N fail at the beginning of the execution. The
execution has two write operations for values v1 and v2, where v1 6= v2. The second write operation with
value v2 begins after the termination of the first write operation with value v1.

In this execution, after the point of termination of the first write, if we let the channels between servers
deliver all the gossip messages, and then begin a read operation after the delivery of these messages, a reader
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can return v1 because of regularity. Similarly, after the termination of the second write operation, if we let
the channels between servers deliver all the gossip messages, a reader can return v2. This implies that, in
the interval of the second write operation, there are two consecutive points P and P ′ as follows:

• If at point P we stop the writers and the channels from the writers and let the channels between servers
deliver all the gossip messages to arrive at point Q, then v1 can be returned by a read operation that
begins at point Q.

• If at point P ′ we stop the writers and the channels from the writers and let the channels between servers
deliver all the gossip messages to arrive at point Q′, then v2 can be returned by a read operation that
begins at point Q′.

By constructing the executions such that gossip messages are delivered in the same order, we can ensure
that after the delivery of the messages, at most 2 servers differ in their states between points Q and Q′.
We use this fact to show that the number of elements in the set of possible server states at points Q and
Q′ points is at most

∏

n∈N |Si| ×maxn∈N |Sn| ×maxn∈N |Sn| × (N − f)2. Therefore, we get
∏

n∈N |Si| ×

(maxn∈N |Sn|)
2 × (N − f)2 ≥ (|V|)(|V| − 1), which implies the lower bound.

5.3 Formal Proof of Theorem 5.1

5.3.1 Execution α(v1,v2) and Its Properties

Let N be an arbitrary subset of {1, 2, . . . , N} with N − f elements. Like the proof of Theorem 4.1, we
construct |V| × (|V| − 1) executions of the algorithm A. In particular, for every tuple (v1, v2) ∈ V ×V where

v1 6= v2, we create an execution α(v1,v2) of algorithm A. The execution α(v1,v2) is constructed in a manner
that is essentially the same as Section 4.3.1. The f servers in {1, 2, . . . , N} − N fail at the beginning of

α(v1,v2). The execution α(v1,v2) has two complete write operations π1 and π2 with values v1 and v2, with π2

being invoked after the termination of π1.

Similar to the proof of Theorem 4.1, we let P
(v1,v2)
0 , P

(v1,v1)
1 , P

(v1,v2)
2 , . . . , P

(v1,v2)
M be a sequence of consec-

utive points in execution α(v1,v2), where P
(v1,v2)
0 is an arbitrary point after the termination of π1 and before

the invocation of π2, and P
(v1,v2)
M is an arbitrary point after the point of termination of π2. We denote by

α
(v1,v2)
i , the execution between the initial point of α(v1,v2) and point P

(v1,v2)
i .

The definition of 1-valent and 2-valent points are similar to Definitions 4.3, with the exception that we
allow the channels the servers to deliver their messages before the invocation of the read operation. We
provide a formal definition of 1-valent and 2-valent points next.

Definition 5.3 (k-valent, k ∈ {1, 2}). For i ∈ {0, 1, 2, . . . ,M}, a point P
(v1,v2)
i in the constructed α

(v1,v2)
i is

said to be k-valent if we can extend α
(v1,v2)
i to an execution β as follows: After P

(v1,v2)
i all the messages from

and to the writer are delayed indefinitely. At P
(v1,v2)
i all the channels between the servers act, delivering all

their messages. After the delivery of the messages in the channels between the servers, a read operation starts
and all the components, except the writer and the channels from and to the writer, execute their protocols
until the read operation terminates. The read operation returns vk.

Results analogous to Lemmas 4.4, 4.5 and 4.6 in the Section 4 hold, with the modified definition of
k-valent points. We simply restate these lemmas without proofs here for the sake of completeness. The
proofs are essentially identical to the proofs in Section 4.

Lemma 5.4. For i ∈ {0, 1, 2, . . . ,M}, a point P
(v1,v2)
i that is not 1-valent is 2-valent.

Lemma 5.5. Consider an execution β which is an extension of α
(v1,v2)
i . In β, after point P

(v1,v2)
i , the writer

stops taking steps and all messages from and to the writer are delayed indefinitely. A read operation begins

at some point after point P
(v1,v2)
i and terminates in β.

Then, the read operation returns either v1 or v2.

Lemma 5.6. There exists some integer i ∈ {0, 2, . . . ,M − 1} such that P
(v1,v2)
i is 1-valent and P

(v1,v2)
i+1 is

not 1-valent.
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Lemma 4.8 requires some minor modifications to include the possibility that, between a pair of critical
points, a channel between servers may perform an action. We state and prove the analogous lemma next.

We inherit the definition of critical points from Definition 4.7. The only change is that the terms 1-valent
and 2-valent points use Definition 5.3. We restate the definition here for the sake of completeness.

Definition 5.7 (Critical points). Let Q1, Q2 be two points in execution α(v1,v2). The pair of points (Q1, Q2)
is defined to be a pair of critical points if there exists a number i in {0, 2, . . . ,M − 1} such that

• Q1 = P
(v1,v2)
i , Q2 = P

(v1,v2)
i+1 ,

• Q1 is 1-valent,

• Q2 is not 1-valent.

Lemma 5.8. Let (Q1, Q2) be a pair of critical points of execution α(v1,v2). Then,

(a) the readers, and the channels between the readers and the servers, are all in the same state at point Q2

as at point Q1;

(b) there is at most one non-failing server such that its state at Q1 is different from its state at Q2.

(c) among all the channels between the servers, there is at most one channel whose state at Q1 is different
from its state at Q2.

Proof. In execution α(v1,v2), the readers and the channels between readers and servers do not perform any
actions. So these components are in their initial state at every point of the execution, including points Q1

and Q2. This implies that statement (a) is true. We prove (b) and (c) next. Note that Q1 and Q2 are

adjacent points of the execution α(v1,v2). There are three possibilities: (I) a channel performed an action
between points Q1 and Q2, (II) a server performed an action between points Q1 and Q2, or (III) a client
performed an action between points Q1 and Q2.

Case I: The channels between readers and servers do not perform any actions in α(v1,v2). We consider
two sub-cases: (i) a channel between a server and the writer takes an action, or (ii) a channel between a
server and another server takes an action.

Case I (i): If a channel from the writer to server s takes an action, then, for every server in the set
N − {s}, there was no input, internal or output action between Q1 and Q2. Therefore every server in the
set N − {s}, has the same state at Q1 as at Q2. If a channel from a server s to the writer takes an action,
then, for every server, there was no input, internal or output action between Q1 and Q2. Therefore every
server in the set N −{s}, has the same state at Q1 as at Q2. Furthermore, all channels between the servers
are in the same state at Q1 as at Q2. This completes the proof in Case I (i).

Case I (ii): If a channel from a server, say s′ to a server, say s takes an action, between Q1 and Q2, then,
every server in the set N − {s}, has the same state at Q1 as at Q2. Furthermore, all the channels between
the servers except the channel from s′ to s have the same state at Q2 as at Q1. Therefore (b) and (c) are
satisfied in Case I.

Case II: The proof of statement (b) is the same as the proof of Lemma 5.8. We show statement (c) here.
Suppose server s takes an action between Q1 and Q2. If the action is not an output action, or if the server
outputs a message onto a channel to the writer, then the states of all the channels between servers are the
same at Q1 and Q2. If the action outputs a message on to the channel to another server, say s′, then all the
channels between the servers except the channel from s to s′ have the same state at Q2 as at Q1. Therefore
statement (c) is true for Case II.

Case III: The proof of statement (b) is the same as the proof of Lemma 5.8. Statement (c) holds because
all the channels between the servers have the same state at Q1 as at Q2.

We are now ready to prove Theorem 5.1.
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5.3.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Lemma 5.6 implies that we can find a pair of critical points (Q
(v1,v2)
1 , Q

(v1,v2)
2 ) in

execution α(v1,v2). From Lemma 5.8, we note that there is at most one non-failing server and one channel

that changes its state between Q
(v1,v2)
1 and Q

(v1,v2)
2 . Let s denote the non-failing server which changes state

between points Q
(v1,v2)
1 and Q

(v1,v2)
2 , if there is one; if not, let s denote an arbitrary non-failing server. Let

s′ be a non-failing server such that the channel from s′′ to s′ change its state between Q
(v1,v2)
1 and Q

(v1,v2)
2 ,

for some server s′′, if there is such a server 6; let s′ be an arbitrary non-failing server if there is not.

We know that Q
(v1,v2)
1 is the point P

(v1,v2)
i for some i ∈ {0, 1, . . . ,M − 1}. We create executions β

(v1,v2)
1

and β
(v1,v2)
2 , which are respectively extensions of α

(v1,v2)
i and α

(v1,v2)
i+1 next. The construction of executions

β
(v1,v2)
1 and β

(v1,v2)
2 has subtle, but important differences from corresponding constructions in the proof

of Theorem 4.1 because, here, we carefully handle the actions of the channels between the servers. After

presenting the constructions of β
(v1,v2)
1 and β

(v1,v2)
2 , we state Claim 5.9, which is analogous to Claim 4.9.

Because Q
(v1,v2)
1 is a 1-valent point, there exists an execution β

(v1,v2)
1 which is an extension of α

(v1,v2)
i

such that, at point P
(v1,v2)
i , the writer and channels from the writer stop performing actions, the channels

between the servers deliver all their messages, a read operation begins after the delivery of these messages

and returns v1. We denote by R
(v1,v2)
1 a point in β

(v1,v2)
1 after P

(v1,v2)
i , after the channels between the servers

deliver all their messages, but before the read operation is invoked.

We now create execution β
(v1,v2)
2 . The execution β

(v1,v2)
2 follows α(v1,v2) until point Q

(v1,v2)
2 . At point

Q
(v1,v2)
2 , all the channels between the servers act delivering all their messages. For a server j in {1, 2, . . . , N−

f} − {s, s′}, the channels with destination j are at the same state at Q
(v1,v2)
2 as they are at Q

(v1,v2)
1 ; these

channels act and deliver their messages in the same order as they do after point Q
(v1,v2)
1 in β1(v1, v2). At

point Q
(v1,v2)
2 , server j ∈ N −{s, s′′} is at the same state as it was at point Q

(v1,v2)
1 . Also, at point Q

(v1,v2)
2 ,

server j receives messages in the same order as it does at point Q
(v1,v2)
1 in β

(v1,v2)
1 ; on receiving each message,

server j takes the same action in β
(v1,v2)
2 as it does in β

(v1,v2)
1 . The channels with destinations s or s′ deliver

messages in some arbitrary order, and servers s and s′ perform actions based on the protocol specified by

algorithm A. We denote this point as R
(v1,v2)
2 . It is worth noting that at point R

(v1,v2)
2 , all the channels are

empty, and every server in N − {s, s′} is at the same state as it is at point R
(v1,v2)
1 in β

(v1,v2)
1 . After point

R
(v1,v2)
2 , the writer and the channels from and to the writer do not perform any actions. At R

(v1,v2)
2 , a read

operation begins, all the components except the writer and the channels from and to the writer act in a fair

manner until the read returns. Because the point Q
(v1,v2)
2 is 2-valent but not 1-valent, the read returns v2

in β
(v1,v2)
2 .
We now derive a lower bound on the storage cost by showing some properties on server states at points

R
(v1,v2)
1 and R

(v1,v2)
2 in executions β

(v1,v2)
1 and β

(v1,v2)
2 respectively.

Let ~S(v1,v2) be an element of
∏

n∈N Sn × N × ∪n∈NSn × N × ∪n∈NSn as follows. The first N − f

components of ~S(v1,v2) denote the states of the N − f servers in N at point R
(v1,v2)
1 . The (N − f + 1)st

component of ~S(v1,v2) denotes the server index s and (N − f +2)nd component denotes the state of server s

at point R
(v1,v2)
2 in α(v1,v2). The (N − f +3)nd component denotes the server index s′ and the (N − f +4)th

component denotes the state of server s′ at point R
(v1,v2)
2 in execution β

(v1,v2)
2 . Note that the number of

elements in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at most
∏

i∈N |Si| × (N − f)2 × (maxi∈N |Si|)
2.

To prove Theorem 5.1, we show that, if (v1, v2) and (v′1, v
′
2) are two distinct elements of the set {(x, y) :

(x, y) ∈ V × V , x 6= y}, then ~S(v1,v2) 6= ~S(v
′

1,v
′

2). If we show this, then it implies that the number of elements

in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at least equal to the number of elements in the set {(x, y) : (x, y) ∈

6
Between Q

(v1,v2)
1 , Q

(v1,v2)
2 , if there is a server s that changes its state, and a channel between two servers s

′′

and s
′

that

changes its state, it is easy to show that s ∈ {s
′

, s
′′

}. We nonetheless use distinct notation for servers s, s
′

, s
′′

since it simplifies
presentation.
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V × V , x 6= y}, which is equal to (|V|)× (|V| − 1). This leads to the following chain of inequalities:

∏

n∈N

|Sn| × (N − f)2 × (max
n∈N

|Sn|)
2 ≥ (|V|)× (|V| − 1)

2max
n∈N

log2 |Si|+
∑

n∈N

log2 |Si| ≥ log2 |V|+ log2 (|V| − 1)− 2 log2(N − f)

which implies the theorem. Therefore, to prove the theorem, it suffices to show that, if (v1, v2) 6= (v′1, v
′
2),

then ~S(v1,v2) 6= ~S(v
′

1,v
′

2). The remainder of our proof is similar to Theorem 4.1. We highlight the main
differences.

Suppose, for contradiction, there are two distinct tuples (v1, v2) and (v′1, v
′
2) in {(x, y) : (x, y) ∈ V×V , x 6=

y} and ~S(v1,v2) = ~S(v
′

1,v
′

2). We now state a lemma that is analogous to Claim 4.9.

Claim 5.9. Let ~S(v1,v2) = ~S(v
′

1,v
′

2). Consider the composite automaton formed by the servers, the readers,
the channels between the servers, and the channels between the readers and servers. For k ∈ {1, 2}, every

component of this system at point R
(v1,v2)
k in β

(v1,v2)
k is identical to the state of the corresponding component

at point R
(v

′

1,v
′

2)
k in execution β

(v
′

1,v
′

2)
k .

Proof of Claim 5.9. We first consider the case where k = 1. At points R
(v1,v2)
1 in β

(v1,v2)
1 and R

(v
′

1,v
′

2)
1

in β
(v

′

1,v
′

2)
1 , all the channels between the servers, and the channels between the readers and servers are

empty, the readers are in their initial state and the servers in {1, 2, . . . , N} − N have failed. Denoting

N = {a1, a2, . . . , aN−f}, The state of every non-failing server s at points R
(v1,v2)
1 in β

(v1,v2)
1 and R

(v
′

1,v
′

2)
1 in

β
(v

′

1,v
′

2)
1 is respectively equal to the sth component of ~S(v1,v2) and ~S(v′1, v

′
2). Because ~S(v1,v2) = ~S(v′1, v

′
2),

every non-failing server is at the same state at R
(v1,v2)
1 in β

(v1,v2)
1 as at Q

(v
′

1,v
′

2)
1 in β

(v
′

1,v
′

2)
1 . This completes

the proof for the case where k = 1.
Now consider the case where k = 2. Let s and s′ respectively denote server indices determined by the

N − f + 1st and N − f + 3rd components of ~S(v1,v2). All the channels, readers and failed servers have the

same state at points R
(v1,v2)
2 in β

(v1,v2)
2 as at R

(v
′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 . Denoting N = {a1, a2, . . . , aN−f}, where

a1 < a2, . . . < aN−f , the state of a non-failing server aj ∈ {1, 2, . . . , N − f} − {s, s′} at points Q
(v1,v2)
2 in

β
(v1,v2)
2 and Q

(v
′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 is respectively equal to the jth component of ~S(v1,v2) and ~S(v′1, v

′
2). The

states of servers s and s′ at point Q
(v1,v2)
2 in β

(v1,v2)
2 are respectively determined by the N − f + 2nd and

N − f + 4th components of ~S(v1,v2); the states of s and s′ at Q
(v

′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 are respectively determined

by the N − f + 2nd and N − f + 4th components of ~S(v
′

1,v
′

2). Because ~S(v1,v2) is equal to ~S(v′1, v
′
2), every

non-failing server has the same state at R
(v1,v2)
2 in β

(v1,v2)
2 as at R

(v
′

1,v
′

2)
2 in β

(v
′

1,v
′

2)
2 . This completes the proof

of the claim.
Proof of Theorem 5.1 continued. We now use Claim 5.9 to obtain a contradiction. Because (v1, v2)

and (v′1, v
′
2) are distinct, there are only two possibilities: (I) v′1 6= v1, v

′
1 6= v2, (II) v′2 6= v1, v

′
2 6= v2, or

v′2 = v1, v
′
1 = v2, both of which imply that v′2 6= v2. We handle these possibilities separately.

Case (I): v′1 6= v1, v
′
1 6= v2. We create an execution γ as follows. The execution γ follows β

(v1,v2)
1 until

point R
(v1,v2)
1 . From point R

(v1,v2)
1 in γ, every component except the writer and the channels from and to

the writer follows the same steps of the corresponding component in β
(v

′

1,v
′

2)
1 from point R

(v
′

1,v
′

2)
1 . Claim

5.9 implies that γ is an execution of algorithm A. In particular γ extends α
(v1,v2)
i such that, the writer

stops performing actions, messages from and to the writer are delayed indefinitely and a reader returns v′1,
which is not equal to v2 or v1. Therefore γ violates Lemma 5.5 and results in a contradiction. Therefore, if

v′1 6= v1, v
′
1 6= v2, then ~S(v1,v2) 6= ~S(v

′

1,v
′

2).

Case (II): v′2 6= v2. We show that the point Q
(v1,v2)
2 is not 2-valent by constructing an execution γ that

satisfies Definition 6.8 for k = 2. The execution γ follows β
(v1,v2)
2 until point R

(v1,v2)
2 . From point R

(v1,v2)
2

in γ, every component except the writer and the channels from and to the writer follows the same steps of

the corresponding component in β
(v

′

1,v
′

2)
2 from point R

(v
′

1,v
′

2)
2 . Claim 5.9 implies that γ is an execution of
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algorithm A. In particular, γ extends α
(v1,v2)
i+1 such that, after point Q

(v1,v2)
2 , the messages from and to the

writer are delayed indefinitely, the channels between the servers deliver all their messages, and then, a reader

begins returning v′2, which is not v2. However, by Lemma 5.4 and that Q
(v1,v2)
2 is not 1-valent, Q

(v1,v2)
2 is

2-valent, and the read of γ should return v2, which is a contradiction.
This completes the proof.

6 Storage Cost Lower Bound for a Restricted Class of Algorithms
In this section, we study a restricted class of algorithms where the write protocols have specific structure.
In our restricted class, the write protocols consist of a fixed number of phases. In the protocols that we
study, there is only one phase where a message containing information about the actual value is sent to
the servers. The formal statement of our assumptions on the write protocol in Section 6.1 is somewhat
technically involved. However the write protocols of most previous algorithms [1, 4–6, 11, 12, 21] satisfy our
assumptions. After stating our assumptions, we state in Theorem 6.5 in Section 6.2, a storage cost lower
bound that applies to the class of algorithms that we study. The lower bound of Theorem 6.5 is much larger
than the bound of Theorems 4.1 and 5.1, and is close to the costs of previously developed algorithms.

6.1 Protocol Assumptions
We now state three assumptions on the write protocol, Assumptions 1, 2 and 3.

Assumption 1: The state of a write client during a write operation is of the form (v,m, h(v,m)) where
v ∈ V is the value of the write operation, m is an element of a set M, and h(m, v) is the value of function
h whose domain is V ×M and range is a finite set.

The set M is referred to as the metadata set of the write protocol of the algorithm. The function h(m, v)
can contain components of the send buffers that depend on the value, and hashed values used for verification
to handle Byzantine adversaries [2,11,15]. To describe Assumption 2, we first define the notion of a quorum
system and a phase. A quorum system Q is a collection of subsets of {1, 2, . . . , N}.

Definition 6.1 (Phase). For an arbitrary subset N ⊆ {1, 2, . . . , N} and a quorum system Q, a (N ,Q)-phase
consists of a sequence of actions at a write client as follows: (i) Send message mn to server node n for every
n ∈ N . (ii) Wait for responses from least one subset of servers in the collection Q. (iii) Perform internal
actions, and finish the phase.

Definition 6.2 (Decomposable into phases). A write protocol is said to be decomposable into phases if, on
the invocation of a write operation, it invokes a phase, and on the termination of a phase, it either invokes
another phase, or terminates the write operation.

We are now ready to state Assumption 2.
Assumption 2: The write protocol is decomposable into phases.
Before we state Assumption 3, we state the notion of the black-box action. Informally, a write client

action is said to be a black-box action if every internal and output action of the client handles the data
values as a black box, that is, actions treat the data object obliviously without regard to the actual value of
the object. We state our assumption more formally next. Recall that the write protocol is specified as a set
of transitions (old-state, action, new-state).

Definition 6.3 (Black-box Action). An internal or output action σ performed by a write client is said to
be a black-box action if the following holds: if, for some value v ∈ V,

• the action σ is enabled when the client’s state is (m, v, h(m, v)) for some m ∈ M, and

• the action σ can result in the transition of the client’s state from (m, v, h(m, v)) to (m′, v, h(m, v)) for
some m′ ∈ M,

then, for every value v′ ∈ V,

• the action σ is enabled when the client’s state is (m, v′, h(m, v′)), and

• the action σ can result in the transition of the client’s state from (m, v′, h(m, v′)) to (m′, v′, h(m′, v′)).
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For example, in the ABD algorithm [3], all actions are black-box actions. In particular, if the action of
sending of a value is enabled when the metadata is m for particular value v, then the send action is enabled
for every value v′ ∈ V . Similarly, in erasure coding based algorithms, if the action of sending a codeword
symbol is enabled in at one state, it is enabled at every state.

Note that a write client’s output actions are send and return. Send actions of a write client are categorized
as value-dependent and value-independent actions.

Definition 6.4 (Value-dependent and value-independent send actions). A black-box send action σ that is
enabled during a write operation is said to be value-independent if the message sent does not depend on
the value of the operation. A send action that is not a value-independent send action is referred to as a
value-dependent send action.

For example, in the ABD algorithm, value-independent send actions involve sending query messages to
the servers. Messages sent by value-dependent and value-independent send actions are respectively referred
to as value-dependent and value-independent messages. We are now ready to state Assumption 3.

Assumption 3: (a) All write client actions are black-box actions, and (b) in a write operation π in an
execution α, if there is a phase where at least one value-dependent send action is performed, then every send
action in every subsequent phase of the write operation π is a value-independent send action.

In particular, Assumption 3(b) implies that there is at most one phase where the writer sends value-
dependent messages on behalf of a write operation in any execution. We next state our main result.

6.2 Statement of Theorem 6.5

We state our theorem for weakly regular MWMR registers [22]. Informally a weakly regular shared mem-
ory object is one that supports concurrent write and read operations where, in every execution, for every
terminating read operation πr, there is a subset Φ of the non-terminating write operations such that the
operations in {πr} ∪ Φ ∪ Π look like the execution of a serial variable, where Π is the set of all terminating
write operations in the execution.

An atomic register is also a weakly regular register. Therefore, the storage cost of Theorem 6.5 applies
for atomic registers as well.

In an execution α, a write operation π is said to be active at point P if the point P is after the point of
invocation but before the point of termination of π.

Theorem 6.5. Let A be a multi-writer-single-reader shared memory emulation algorithm that implements
a weakly regular read-write object whose values come from a finite set V. Suppose algorithm A satisfies
Assumptions 1, 2 and 3 stated in Section 6.1, and following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f and the number of active write operations is no bigger than ν,
then every operation invoked at a non-failing client terminates.

Then, for every subset N ⊆ {1, 2, . . . , N}, |N | = min(N − f + ν − 1, N)

∑

n∈N

log2 |Sn| ≥ log2

(

|V| − 1

ν∗

)

− ν∗ log2(N − f + ν∗ − 1)− log2(ν
∗!)

where ν∗ = min(ν, f + 1).

Corollary 6.6. Let A be a multi-writer-single-reader shared memory emulation algorithm that implements
a weakly regular read-write object whose values come from a finite set V. Suppose algorithm A satisfies
Assumptions 1, 2 and 3 stated in Section 6.1, and following liveness property: In a fair execution of A, if the
number of server failures is no bigger than f and the number of write operations is no bigger than ν, then
every operation invoked at a non-failing client terminates. Then

MaxStorage(A) ≥
ν∗

N − f + ν∗ − 1
log |V| − o(log |V|),

T otalStorage(A) ≥
ν∗N

N − f + ν∗ − 1
log |V| − o(log |V|),

where ν∗ = min(ν, f + 1)
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Figure 4: Pictorial description of the execution for ν = 3. b1 = 2, b2 = 1, b3 = 3.

The proof of Corollary 6.6 is similar to the proofs of Corollary 4.2 in Section 4 and Corollary B.2 in
Appendix B, and is omitted.

6.3 Informal, Intuitive Proof Sketch for Theorem 6.5

For simplicity of exposition, assume N = {1, 2, . . . , N − f + 2}. For our informal description, we set the
parameter ν = 3, and f ≥ ν − 1 = 2. Our proof of Theorem 6.5 constructs an execution α where the servers
in {N − f + 3, N − f + 4, . . . , N} fail at the beginning of the execution. The execution has ν = 3 write
operations π1, π2, π3 with distinct values v1, v2, v3 respectively invoked at distinct clients C1, C2, C3. We
assume that at the beginning of the execution before the invocation of any write operation, a default initial
value v0 can be returned by any read operation, and that values v1, v2, v3 are distinct from the default initial
value v0.

Writes π1, π2, π3 are invoked respectively at clients C1, C2, C3. Recall that, as per Assumption 3, there
is at most one phase where the clients send value-dependent messages. Operations π1, π2, π3 execute their
protocols in a fair manner until they reach their respective phases where they send the value-dependent mes-
sages. The clients send the value-dependent messages onto the channels, but the channels do not yet deliver
these value-dependent messages. Consider the point P after all three clients send there value-dependent
messages. At point P , the channels from the clients to the servers carry all the value-dependent messages
that can be sent in the execution α, and none of them are delivered to any of the servers.

Now we construct an execution α′ which extends the execution α beyond point P to a point P ′ by
allowing the channels from the clients to the servers act to deliver all the value-dependent messages to the
first N − f servers at point P . After the delivery of the messages, it must be the case that the first N − f
servers store “sufficient information” to return at least one of the values v1, v2 or v3. This is because there are
no additional phases where value-dependent messages are sent in α′, and so, even if we extend the execution
beyond point P ′, the servers cannot receive any additional information related to v1, v2 or v3. Furthermore,
if we extend the execution α′ beyond P ′ by letting at least one of the operations π1, π2, π3 complete by
performing the remaining phases, then, because of weak regularity, at least one of the values v1, v2 or v3
must be returnable from the first N − f servers after the completion of the operation. So it must be the
case that at point P ′ in α′, the servers store sufficient information to return one of v1, v2 or v3. Let a1 be
the smallest number such that, if the channels between the clients and the first a1 servers act after point P
by delivering all their messages, then the first a1 servers store sufficient information of value vb1 for some
b1 ∈ {1, 2, 3}. Note that 1 ≤ a1 ≤ N − f . In our execution α, at point P , we let all the channels deliver all
their value-dependent messages to the first a1 servers. Denote the point after the delivery of the messages as
P1. Since we chose a1 to be the smallest number of servers that contain sufficient information of any one of
v1, v2, v3, sufficient information of any one of v1, v2 or v3 is not contained from any of the first a1− 1 servers
at point P1.

Now we construct an execution α′′ as an extension of execution α beyond P1 by allowing the channels from
clients {C1, C2, C3}−{Cb1

} deliver their value-dependent messages to servers in {a1+1, a1+2, . . . , N−f+1}.
After the delivery of the messages, sufficient information of one of the values vb2 must be available in the
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first N − f + 1 servers for some b2 ∈ {1, 2, 3} − {b1}. This is because, if, after the delivery of the value-
dependent messages in α′′, server a1 stops taking actions, and clients {C1, C2, C3} − {Cb1

}, and the first
N − f + 1 servers apart from server a1 take actions in a fair manner, then one of the operations π1, π2, π3

completes; weak regularity implies that one of the values v1, v2, v3 is returnable from the first N − f + 1
servers. However, note that sufficient information related to vb1 is not contained in the first a1 − 1 servers.

As a consequence, vb1 cannot be returnable from the first N − f + 1 servers in α′′ if server a1 does not
take actions and we do not allow the value-dependent messages from client Cb1

to be delivered to any one
of the servers {a1 + 1, a1 + 2, . . . , N − f + 1}; therefore a value vb2 6= vb1 must be returnable from the first
N − f + 1 servers. Let a2 be a number with a1 < a2 ≤ N − f + 1 such that, if all the channels deliver their
value-dependent messages to the first a1 servers and the channels from clients in {C1, C2, C3}−{Cb1

} deliver
their value-dependent messages to the servers in {a1 + 1, a1 + 2, . . . , a2}, then sufficient information about
value vb2 is contained in the first a2 servers for some b2 6= b1, b2 ∈ {1, 2, 3}. In α, at point P1, we let clients in
{C1, C2, C3}−{Cb1

} deliver their value-dependent messages to the servers in {a1+1, a1+2, . . . , a2}. Denote
the point after the delivery of the messages as P2.

Similarly, if we let the channels from remaining client in {C1, C2, C3} − {Cb1
, Cb2

} deliver their value-
dependent messages at point P2 in α to the servers in {a2+1, a2+2, . . . , N−f+2}, then sufficient information
about the value in {v1, v2, v3}−{vb1 , vb2} is contained from the first N−f+2 servers after the delivery of the
messages. At this point, sufficient information about all 3 values is contained in the first N − f + 2 servers.
We can show that this implies that there is a one-to-one mapping from the states of the first N − f + 2
servers to the values in (V − {v0})

3, where v0 is the initial value. This implies that the storage cost must be
at least 3

N−f+2 log2 |V|+ o(log2 |V|).
Our proof involves developing an appropriate notion of sufficient information of a value that is applicable

even when each server stores some arbitrary function of the values of the different versions it receives. In
particular, we cannot directly borrow from other work [23], whose notion of sufficient information of a value is
tied to the storage scheme imposed by the model studied. Our notion of sufficient information is crystallized
in a notion of valency that is more general as compared with Section 4.

6.4 Proof

To avoid cumbersome notation, we assume that ν ≤ f +1 and we prove Theorem 6.5 for N = {1, 2, . . . , N −
f + ν − 1}. The proof for the general case readily follows from the proof provided here.

To prove the lower bound, we construct a set of executions as follows. Every element of the set is
parametrized by:

• an arbitrary permutation σ : {1, 2, . . . , ν} → {1, 2, . . . , ν},

• an arbitrary collection of numbers a1, a2, . . . , aν ∈ {0, 1, . . . , N − f + ν− 1}, where a1 ≤ a2 ≤ . . . ≤ aν ,
and

• an arbitrary collection of distinct values v0, v1, v2, . . . vν ∈ V .

An execution parametrized by permutation σ, numbers a1, . . . , aν and values v0, v1 . . . , vν is denoted by

α(v0,v1,...,vν) (σ, a1, . . . , aν). We assume that v0 indicates the default initial value that should be returned by
a read operation in an execution where there is no write operation.

The proof is split into four parts. In the first part, we describe our construction of execution α(v0,v1,...,vν)(σ, a1, . . . , aν)
in Section 6.4.1. We also prove a property, Lemma 6.9, regarding the states of the components in execution

α(v0,v1,...,vν)(σ, a1, . . . , aν). In the second part, we define the notion of valency tailored to our class of exe-
cutions in Section 6.4.2. In the third part, we prove a key property in Lemma 6.10 in Section 6.4.3. In the
fourth and final part, we use Lemma 6.10 to prove Theorem 6.5.

Notation: In the sequel, we denote ~v = (v0, v1, . . . , vν), where v0, v1, v2, . . . vν ∈ V . We use the term
value-vector to refer to the ~v. We assume that the components of a value vector are distinct, and v0 is the
default initial value.
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6.4.1 Description of Execution α~v(σ, a1, . . . , aν)

We next describe the execution α~v(σ, a1, . . . , aν) for an arbitrary value vector ~v . In the execution, only
ν distinct write clients C1, . . . , Cν ∈ Cw act. In particular, for i ∈ {1, 2, . . . , ν}, one write operation πi is
invoked at client Ci with value vi. For every collection of integers a1, a2, . . . , aν ∈ {0, 1, . . . , N − f + ν − 1},

where a1 ≤ a2 ≤ . . . ≤ aν , and for every permutation σ, the execution α~v(σ, a1, . . . , aν) is an extension of an

execution α~v
0 . The final point of α

~v
0 is denoted as P~v

0 . We first describe α~v
0 and later describe α~v(σ, a1, . . . , aν).

We choose arbitrarily a reference value vector ~vref ∈ {v0} × Vν . The components of ~vref are denoted as

v0, v1,ref, v2,ref, . . . , vν,ref. Next, we construct execution α
~vref
0 . After that, we use our construction of α

~vref
0 to

describe the execution α~v
0 for an arbitrary value vector ~v.

Execution α~vref
0

1: Initial point: all components are at their initial states.
2: The last f + 1− ν servers fail
3: for i = 1 to ν do
4: Operation πi is invoked at client Ci with value vi,ref.
5: Client Ci, the non-failed servers and the channels take steps in a fair manner until the beginning of

a phase Ri, where at least one value-dependent send action is enabled, or until operation πi terminates
without sending any value-dependent message.

6: If operation πi is not terminated, client Ci performs the send actions corresponding to phase Ri,
sending all value-dependent message to the channels. (The channels from the client to the servers do
not yet deliver the value-dependent messages. The client Ci does not perform any more actions.)

7: end for
8: The channels between the servers deliver all their messages.
9: The channels from the clients to the servers deliver all the value-independent messages.

Note that in execution α
~vref
0 , until the beginning of phase Ri at client Ci for any i ∈ {1, 2, . . . , ν}, every

action is a value-independent action. The only value-dependent send actions in the execution are the send
actions performed by clients Ci in their corresponding phases Ri, for i ∈ {1, 2, . . . , ν}. Note that these value-

dependent messages are not delivered in the execution α~v
0 . Therefore, from the perspective of the servers,

all the received messages by the final point P~vref
0 are value-independent messages.

We now describe execution α~v
0 for an arbitrary value vector ~v. In execution α~v

0 , the behavior of the

environment, servers, clients, and is the same as in execution α. That is, for every point P ref in α
~vref
0 , there

is a corresponding point P in α~v
0 . If at P ref there is a write invoked at client Ci with value vi,ref for some

i ∈ {1, 2, . . . ν}, then at point P in α~v, there is write invoked at client Ci with value vi. If at P
ref a channel

or a server performs an action, then at point P , the same channel or server performs the same action. If at
P ref a client performs a black-box action σ, then at point P , the same client performs the action σ such that
it takes the corresponding internal transition as in Definition 6.3. We next argue that α~v

0 is a valid execution
of the algorithm. Since read clients do not act in execution α~v, we only argue that servers and write clients
conform to their protocol specifications in the execution.

Lemma 6.7. The execution α~v
0 is a valid execution of the algorithm for every value vector ~v.

Proof. The servers, channels and clients in the system are I/O automata. Let As denote the automaton
formed from the composition of all the servers and the channels between servers. Let Ac denote the automa-
ton formed by the composition of all the write clients.

The input to the automaton As are the messages delivered in the channels from the clients to the servers.

Since only value-independent messages are delivered to the servers in executions α
~vref
0 and α~v

0 , the inputs to
As in the two executions are the same. Since the components of As follow their protocol specifications in

execution α
~vref
0 , and the steps of the components in α~v

0, are the same as in execution α
~vref
0 the components

of As follow their protocol specification in execution α~v
0 as well.
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The inputs to components of Ac are the messages sent from the servers to the write clients, and the
write invocations. Because the write invocations and the server actions in execution α~v

0 , are the same as in

execution α
~vref
0 , the inputs to the automaton Ac are the same. Since all write client actions are black-box

actions, and since write client steps follow their protocol specifications in α
~vref
0 , the clients follow their protocol

specifications in execution α~v
0 as well. Therefore, execution α~v

0 is a valid execution of the algorithm.

It is useful to note that, at the final point P~v
0 of α~v

0 , the states of the servers, the channels amongst the
servers, the channels from the servers to the clients, and the metadata components of the client states are
all independent of the value vector. The only components whose state may depend on the value vector are
the write clients, and the channels from the write clients to the servers. The following lemma describes this
property more formally.

Lemma 6.8. For any two value vectors ~v,~v′, the state of every server, every channel from a server to a
server or client, and the metadata components of the state of any writer C ∈ {C1, C2, . . . , Cν} at the final

point P~v
0 of execution α~v

0 is the same as at the final point P~v
′

0 of α~v
′

0 .

Proof. Consider a component automaton c the system, which is a server, or a channel from a servers to a
server or a client. We consider four possibilities separately.

c is channel from a server to another server : At point P~v
0 in α~v

0 , as at point P
~v
′

0 in α~v
0 the channel c is

empty. Therefore, for a component that is a channel between two servers, the lemma statement holds.

c is a server: Server c takes the same steps in α~v
0 , as in α~v

′

0 . Therefore the state of c at point P~v
0 in α~v

0 is

the same as its state P~v
′

0 in α~v
′

0 .
c is channel from a server to a client : If c is a channel from a server s to a client, note that the server s

takes the same steps in α~v
0, as in α~v

′

0 . Therefore, the inputs to channel c in the two executions are the same.
The steps of the channel are the same in the two executions as well. Therefore, for a component that is a
channel from a server to a client, the lemma statement holds.

c is a client Ci for some i ∈ {1, 2, . . . , ν}: The client Ci takes the same steps in α~v
0 as in α~v

′

0 , except for
its final action in the execution. The final action of the execution is either a value-dependent send action, or
an operation termination action. In either case, because all actions of client Ci are black-box actions, and

the client Ci performs the same action that is performed in α
~vref
0 , the metadata component of the client Ci

after the final action is the same at point P~v
0 in α~v

0 , as at point P
~v
′

0 in α~v
′

0 .

We describe α~v(σ, a1, . . . , aν) as an extension of α~v
0 . If a1 ≥ 1, then at point P~v

0 of execution α~v(σ, a1, . . . , aν),
for every server node n in {1, 2, . . . , a1}, the channels from all the writers to server n deliver their messages.

We denote the point after the delivery of all messages as P~v
1 (σ, a1, a2, . . . , aν). After the delivery of the

messages, the following actions take place:

for i = 1 to i = ν − 1 do
if ai+1 > ai then For every server node n in {ai + 1, ai + 2, . . . , ai+1} the channels from every writer

in {C1, C2, . . . , Cν} − {Cσ(1), Cσ(2), . . . , Cσ(i)} to server n deliver all their messages. We denote the point

after the delivery of all the messages as P~v
i+1(σ, a1, a2, . . . , aν).

end if
end for

Based on the above procedure, note that a server n that belongs to {ai + 1, ai + 2, . . . ai+1} receives value-
dependent messages from all clients except the clients in Cσ(1), Cσ(2), . . . , Cσ(i). For i ∈ {0, 1, 2, . . . , ν}, the

portion of the execution α~v(σ, a1, a2, . . . , aν) from the initial point until point P~v
i (σ, a1, a2, . . . , aν) is denoted

as α~v
i (σ, a1, a2, . . . , aν).
The following property is due to Lemma 6.8 and the fact that the only client-to-server channels act after

point P~v
0 .

Lemma 6.9. For two value vectors ~v,~v′, for any two permutations σ, σ and integers 0 ≤ a1 ≤ a2 ≤ . . . aν ≤
N − f + ν − 1 and 0 ≤ a1 ≤ a2 ≤ . . . aν ≤ N − f + ν − 1 and integers 0 ≤ i0, j0 ≤ ν, the state of every
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channel from a server to a server or a client, and the metadata components of the state of every writer in
{C1, C2, . . . , Cν} is the same at point

P~v
i0
(σ, a1, a2, . . . , aν)

in execution α~v(σ, a1, a2, . . . , aν), as at point

P~v
′

j0
(σ, a1, a2, . . . , aν)

in execution α~v
′

(σ, a1, a2, . . . , aν).

Proof. Consider a component c which is a channel between two servers, or a channel from a server to a client,
or a write client. The component c has the same state at point

P~v
i0
(σ, a1, a2, . . . , aν)

in execution α~v(σ, a1, a2, . . . , aν) as at point P~v
0 of the execution, since it does not take any steps between

P~v
0 and P~v

i0
(σ, a1, a2, . . . , aν). Similarly, the component c has the same state at point

P~v
′

j0
(σ, a1, a2, . . . , aν)

as at point P~v
′

0 in execution α~v
′

(σ, a1, a2, . . . , aν).
Lemma 6.8 implies that if c is a channel between servers, or a channel from a server to a client, then it has

the same state at point P~v
0 in execution α~v(σ, a1, a2, . . . , aν) as at point P

~v
′

0 in execution α~v
′

(σ, a1, a2, . . . , aν).
This implies that c has the same state at point

P~v
i0
(σ, a1, a2, . . . , aν)

in execution α~v(σ, a1, a2, . . . , aν), as at point

P~v
′

j0
(σ, a1, a2, . . . , aν)

in execution α~v
′

(σ, a1, a2, . . . , aν).
Similarly, Lemma 6.8 implies that if c is a client, then its metadata component is the same at point

P~v
i0
(σ, a1, a2, . . . , aν)

in execution α~v(σ, a1, a2, . . . , aν), as at point

P~v
′

j0
(σ, a1, a2, . . . , aν)

in execution α~v
′

(σ, a1, a2, . . . , aν). This completes the proof.

6.4.2 Definition of Valency

Consider a collection of distinct values v0, v1, . . . , vν ∈ V , a permutation σ and a collection of numbers
a1, a2, . . . , aν ∈ {0, 1, 2, . . . , N − f + ν − 1}, where 0 ≤ a1 ≤ a2 . . . ≤ aν ≤ N − f + ν − 1. For a subset

of write clients C0 ⊆ {C1, C2, . . . , Cν}, and 1 ≤ j ≤ ν, the point P in execution α~v(σ, a1, a2, . . . , aν) is said

to be (j, C0)-valent if there exists some execution β which is an extension of α~v
i (σ, a1, a2, . . . , aν) such that,

after P in β,

• the writers in Cw − C0 do not send any value-dependent messages, the channels from the writers in
Cw − C0 do not deliver any value-dependent messages, and

• there is a read operation that begins at a reader and completes returning value vj .
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A (j, {})-valent point is simply referred to as a j-valent point. It is instructive to note that a point that
is j-valent is also (j, C0)-valent for any subset C0 ⊆ {C1, C2, . . . , Cν}.

Intuition for the definition of valency: Before proceeding, we provide an intuitive explanation of the
notion of valency. Consider a point P~v

i (σ, a1, a2, . . . , aν) which is (1, C2)-valent. Intuitively, at such a point,
the servers already have “sufficient information” to retrieve value v1. However, to recover v1, value-dependent
actions from client C2 or the channels from C2 could be necessary. To see this, consider the following scenario:
in the execution some algorithm, at point P , every server stores v1 + v2, where the set V is interpreted to be
some finite field, and + indicates the addition operator over the field. In this case, in general, neither value
v1 nor value v2 is retrievable from the system. However, given value v2, it can be subtracted off and the
value v1 would be retrievable. A clever protocol could ensure that the value-dependent messages of client C2

will be used to subtract v2 from a sufficient number of servers to ensure that v1 is returnable, even if client
C1 did not take any value-dependent actions. In this case the point P~v

i (σ, a1, a2, . . . , aν) would be considered
(1, C2)-valent.

6.4.3 A Key Lemma

The following lemma is a key component of our proof of Theorem 6.5.

Lemma 6.10. Let ≺ be a total ordering on V. Given a collection of distinct values v1, v2, . . . vν ∈ V,
there is a permutation σ : {1, 2, . . . , ν} → {1, 2, . . . , ν}, and a collection of distinct numbers a1, a2, . . . , aν ∈
{1, 2, . . . , N − f + ν − 1}, where 0 < a1 < a2 . . . < aν ≤ N − f + ν − 1, such that for every i ∈ {1, 2, . . . , ν},

(i) P~v
i (σ, a1 − 1, a2 − 1, . . . , ai−1 − 1, ai, ai+1, . . . , aν) is (σ(i), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i)})-valent;

(ii) P~v
i (σ, a1−1, a2−1, . . . , ai−1−1, ai, ai+1, . . . , aν) is not (σ(j), Cw−{Cσ(1), Cσ(2), . . . , Cσ(i)})-valent, for

any 1 ≤ j < i;

(iii) if P~v
i (σ, a1−1, a2−1, . . . , ai−1−1, ai, ai+1, . . . , aν) is (σ(j), Cw−{Cσ(1), Cσ(2), . . . , Cσ(i−1), Cσ(j)})-valent

for some i < j ≤ ν, then vσ(i) ≺ vσ(j).

In our proof of Lemma 6.10, we use Lemmas 6.11, 6.12, 6.13 and 6.14 which are stated and proved below.
The next two lemmas state properties of the point P~v

1 (σ, a1, a2, . . . , aν).

Lemma 6.11. If a1 = N − f , then, for every permutation σ and integers a2, a3, . . . , aν ∈ {N − f,N − f +

1, . . .N − f + ν − 1} where a1 ≤ a2 ≤ . . . aν , the point P~v
1 (σ, a1, a2, . . . , aν) is (i, Cw − {Ci})-valent for some

i ∈ {1, 2, . . . , ν}.

Proof. Let a1 = N − f . Consider an execution β that extends α~v
1(σ, a1, a2, . . . , aν) as follows. Note that

at point P~v
1 (σ, a1, a2, . . . , aν), all the value-dependent messages from the clients have been delivered to the

first N − f servers. Therefore, for every client Ci, i ∈ {1, 2, . . . , ν}, its write operation πi has sent its
value-dependent messages, and the channels from the client to the servers have delivered all the value-
dependent messages in the execution; all the send actions enabled on behalf of operation πi are value-
independent actions. In the remainder of the execution β, the last f servers do not take any steps. The
clients C1, C2, . . . , Cν , their channels and the first N−f servers perform their actions in a fair manner. Since
algorithm A ensures that every write operation terminates in a fair execution so long as the number of server
failures is no bigger than f and the number of active write clients is no bigger than ν, we know that a write
operation πj completes in β for some j ∈ {1, 2, . . . , ν}. After the completion of a write operation πj , the
write clients and the channels from the write clients stop performing actions. A read operation πr begins
at a reader. The reader and the first N − f servers perform actions in a fair manner until read operation
πr terminates. Because read operation πr begins after the termination of πj , and because the algorithm
satisfies weak regularity, the operation returns vi for some i ∈ {1, 2, . . . , ν}. The execution β finishes after

the termination of read πr. Thus we have created an execution β, which is an extension of α~v
1(σ, a1, a2, . . . , aν)

such that all the clients and their channels only take value-independent output actions, and a read operation
returns vi. Therefore the point P~v

1 (σ, a1, a2, . . . , aν) is i-valent, and thus is also (i, Cw − {Ci})-valent.

Lemma 6.12. If point P~v
1 (σ, a1, a2, . . . , aν) is (j, Cw − {Cj})-valent for some permutation σ and positive

integers j, a1, a2, . . . , aν where 0 ≤ a1 ≤ a2 ≤ . . . ≤ aν ≤ N − f + ν − 1, then a1 ≥ 1.
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Proof. To show that a1 ≥ 1, assume to the contrary that a1 = 0. Because the point P~v
1 (σ, a1, a2, . . . , aν) is

(j, Cw −−{Cj})-valent, there is an execution β which extends α~v
1(σ, a1, a2, . . . , aν) such that, client Cj stops

acting at point P~v
1 (σ, a1, a2, . . . , aν), and a read operation πr begins and returns vj . Now, because a1 = 0,

we note that point P~v
1 (σ, a1, a2, . . . , aν) is the same as point P~v

0 .
Consider the value vector ~u = (u0, u1, u2, . . . , uν), where for i ∈ {0, 1, . . . , ν} − {j}, we have ui = vi, and

vj /∈ {u0, u1, . . . , uν}. Note that at point P~v
0 , the state of every server, channel from a server to a server

or a client, and client in Cw − {Cj} is the same as its state at point P ~u
0 . Consider an execution β′ which

extends α~u
0 as follows. Starting from point P ~u

0 , every component takes the same steps as the component
takes starting from point P~v

0 in β. Note that client Cj takes only value-independent actions after P~v
0 in β.

Because Lemma 6.9 implies that the state of every component except client Cj , and the metadata component

of Cj is the at point P
~u
0 in β′ as at point P~v

0 in β, execution β′ is an execution of the algorithm. In execution

β′, read operation πr returns vj which does not belong to {u0, u1, . . . , uν}. Therefore execution β′ violates
weak regularity. Therefore a1 ≥ 1.

The next lemma shows that, informally, the valency of the point P~v
i (σ, a1, a2, . . . , aν) does not depend

on value ai+1, . . . , aν , σ(i + 1), . . . , σ(ν).

Lemma 6.13. Suppose that a point P~v
i (σ, a1, a2, . . . , aν) is (j, Cw−{Cσ(1), Cσ(2), . . . , Cσ(i)})-valent for some

permutation σ and integers j, a1, . . . , aν such that 0 ≤ a1 ≤ a2 . . . ≤ aν ≤ N − f + ν − 1. Then the point
P~v
i (σ, a1, a2, . . . , ai, ai+1, ai+2, . . . , aν) is (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(i)})-valent for every set of integers

ai+1, ai+2, . . . aν where ai ≤ ai+1 ≤ ai+2 ≤ . . . ≤ aν ≤ N−f+ν−1, and every σ where σ(l) = σ(l), 1 ≤ l ≤ i.

Proof of Lemma 6.13. Let P~v
i (σ, a1, a2, . . . , aν) be (j, Cw−{Cσ(1), Cσ(2), . . . , Cσ(i)})-valent. Therefore, there

exists an execution β that extends α~v
i (σ, a1, a2, . . . , aν) such that, after point P~v

i (σ, a1, a2, . . . , aν) the clients
and the channels from the clients in Cσ(1), Cσ(2), . . . , Cσ(i) do not take any value-dependent actions, and

there is a read operation πr that begins and returns value vj . Now we construct execution β′ which extends

α~v
i (σ, a1, a2, . . . , ai, ai+1, ai+2, . . . , aν)

as follows. Note that at point P~v
i (σ, a1, a2, . . . , ai, ai+1, ai+2, . . . , aν) every server, channel and client is at

the same state as it is at point P~v
i (σ, a1, a2, . . . , aν) in α~v

i (σ, a1, a2, . . . , aν). In execution β′, every com-

ponent performs the same actions as the component does in β starting from point P~v
i (σ, a1, a2, . . . , aν).

Therefore, after point P~v
i (σ, a1, a2, . . . , ai, ai+1, ai+2, . . . , aν) the clients and the channels from the clients in

Cσ(1), Cσ(2), . . . , Cσ(i) do not take any value-dependent actions, and there is a read operation πr that begins
and returns value vj . Therefore the point

P~v
i (σ, a1, a2, . . . , ai, ai+1, ai+2, . . . , aν)

is (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(i)})-valent.

The next lemma, informally, shows that if a point P~v
i (σ, a1, a2, . . . , aν) has sufficient information of a

value vj , then an earlier point P~v
k (σ, a1, a2, . . . , aν), k ≤ i, already has sufficient information of vj if we allow

some extra clients to take value-dependent actions.

Lemma 6.14. Let 1 ≤ k ≤ l ≤ i ≤ ν. If a point P~v
i (σ, a1, a2, . . . , aν) is (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(l)})-

valent for some permutation σ and integers j, a1, . . . , aν such that 0 ≤ a1 ≤ a2 . . . ≤ aν ≤ N − f + ν − 1,
then for every k ≤ i, the point P~v

k (σ, a1, a2, . . . , aν) is (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(k)})-valent.

Proof. Let P~v
i (σ, a1, a2, . . . , aν) be (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(l)})-valent. Therefore, there exists an ex-

ecution β that extends α~v
i (σ, a1, a2, . . . , aν) such that, after point P~v

i (σ, a1, a2, . . . , aν) the clients and the
channels from the clients in Cσ(1), Cσ(2), . . . , Cσ(l) do not take any value-dependent actions, and there is
a read operation πr that begins and returns value vj . Note that for k ≤ i, execution β is an extension

of α~v
k(σ, a1, a2, . . . , aν), where, after point P

~v
k (σ, a1, a2, . . . , aν), the clients in {Cσ(1), Cσ(2), . . . , Cσ(k)} and

the channels from these clients do not perform value-dependent actions, read operation πr that begins and
returns value vj . Therefore the point P~v

k (σ, a1, a2, . . . , aν) is (j, Cw − {Cσ(1), Cσ(2), . . . , Cσ(k)})-valent.
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We are now ready to prove our key lemma, Lemma 6.10.

Proof of Lemma 6.10. We begin by choosing a1, σ(1). From Lemma 6.11, we know that the set

A1 =















(a1, i) :

there exists an integer i ∈ {1, 2, . . . , ν}, a permutation σ, and
integers a1, . . . aν where 0 ≤ a1 ≤ a2 ≤ . . . ≤ aν ≤ N − f + ν − 1

such that P~v
1 (σ, a1, a2, . . . , aν)

is (i, Cw − {Ci})-valent















(1)

is non-empty. In particular, Lemma 6.11 implies that tuple (N − f, i) belongs to A1 for some integer
i ∈ {1, 2, . . . , ν}. We choose a1 to be the smallest integer such that (a1, i) belongs to the set A1 for some i7,
that is

a1 = min{a : there exists j such that (a, j) ∈ A1}.

Note that Lemma 6.12 implies that a1 ≥ 1. We let

σ(1) = arg min
{j:(a1,j)∈A1}

vj ,

where the minimum is according to the ordering ≺.
Next, we provide a procedure that recursively chooses ai0+1 and σ(i0 + 1) given a1, a2, . . . , ai0 , and

σ(1), σ(2), . . . , σ(i0), for any i0 ∈ {1, 2, . . . , ν−1}. Our choice of ai0+1 will satisfy ai0 < ai0+1 ≤ N−f+i0−1.
Let

Ai0+1 =























(ai0+1, i) :

there exists a permutation σ,where σ(j) = σ(j) for j ≤ i0, and
integers ai0+1, ai0+2, . . . aν where ai0 ≤ ai0+1 ≤ ai0+2 ≤ . . . ≤ aν ≤ N − f + ν − 1

and an integer i ∈ {1, 2 . . . , ν} − {σ(1), σ(2), . . . , σ(i0)}

such that P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν)

is (i, Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)
, Ci})-valent























(2)
We show that Ai0+1 is non-empty. We choose ai0+1 to be the smallest integer such that (ai0+1, i) belongs

to the set Ai0+1 for some i. We let

σ(i0 + 1) = arg min
{j:(ai0+1,j)∈Ai0+1}

vj ,

where the minimum above is taken according to the ordering ≺.
To complete the proof of Lemma 6.10, we show that

(a) Ai0+1 is non-empty, and ai0+1 > ai0 , 1 ≤ i0 ≤ ν − 1;

(b) P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is (σ(i0 + 1), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0+1)})-

valent, 0 ≤ i0 ≤ ν − 1;

(c) P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is not (σ(j), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0+1)})-

valent, for any j < i0 + 1, 1 ≤ i0 ≤ ν − 1;

(d) if P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is

(σ(j), Cw − {Cσ(1), . . . , Cσ(i0)
, Cσ(j)})-valent

for some j > i0 + 1, then vσ(i0+1) ≺ vσ(j), 0 ≤ i0 ≤ ν − 2.

Proof of (a):
We show (a) by showing that there is some integer i such that (N − f + i0, i) belongs to Ai0+1. More

specifically, we will show that for any arbitrary permutation σ which satisfies σ(j) = σ(j) for 1 ≤ j ≤ i0,

the point P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, N − f + i0, N − f + i0 + 1, . . . , N − f + ν − 1) is (i, Cw −

7
Informally, a1 may be viewed as the smallest number such that the first a1 servers contains “sufficient information” of some

value vi, given the information of all other values.
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{Cσ(1), Cσ(2), . . . , Cσ(i0)
, Ci})-valent for some i ∈ {1, 2, . . . , ν} − {σ(1), σ(2), . . . , σ(i0)}. To show this, we

construct an execution β, which is an extension of α~v
i0+1(σ, a1− 1, a2− 1, . . . , ai0 − 1, N− f + i0, N − f + i0+

1, . . . , N−f+ν−1) as follows. After point P~v
i0+1(σ, a1−1, a2−1, . . . , ai0−1, N−f+i0, N−f+i0+1, . . . , N−f+

ν−1) in β, the write clients in {Cσ(1), Cσ(2), . . . , Cσ(i0)
}, and the channels from these write clients to the non-

failed servers do not send or deliver value-dependent messages. The clients in Cw−{Cσ(1), Cσ(2), . . . , Cσ(i0)
},

the channels from these clients, the non-failed servers, and the channels between the servers continue taking
actions in a fair manner. Note that algorithm A guarantees that in a fair execution where the number of
server failures is no bigger than f and the number of active write clients is no bigger than ν, every write
operation terminates. From the perspective of clients in Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)

}, the execution β is
indistinguishable from a fair execution. Therefore some operation in {πσ(i0+1), πσ(i0+2), . . . , πσ(ν)} terminates
in β. After the termination of an operation πj , j ∈ {σ(i0 + 1), σ(i0 + 2), . . . , σ(ν)}, all the write operations
and their channels stop taking actions. A read operation πr begins at a read client. The reader, the channels
from and to the reader, and the non-failed servers perform actions in a fair manner until the read operation πr

terminates. After the termination of πr the execution β ends. Because the algorithm satisfies regularity and
because write operation πj has terminated, the read operation πr returns value vi for some i ∈ {1, 2, . . . , ν}.

We show that, in fact, πr returns vi for some i ∈ {1, 2, . . . , ν} − {σ(1), σ(2), . . . , σ(i0)}. Assume the
contrary, that is, assume that the read operation πr returns vσ(k) for k ∈ {1, 2, . . . , i0}. The existence of

execution β implies that the point P~v
i0+1(σ, a1−1, a2−1, . . . , ai0−1, N−f+i0, N−f+i0+1, . . . , N−f+ν−1)

is (σ(k), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)
})-valent. Lemma 6.14 implies that P~v

k (σ, a1 − 1, a2 − 1, . . . , ai0 −
1, N − f + i0, N − f + i0 + 1, . . . , N − f + ν − 1) is (σ(k), Cw − {Cσ(1), Cσ(2), . . . , Cσ(k)})-valent. Therefore
(ak − 1, σ(k)) ∈ Ak. This however contradicts the fact that we choose ak to be the smallest element such
that (ak, j) is Ak for some j ∈ {1, 2, . . . , ν} − {σ(1), σ(2), . . . , σ(k − 1)}. Therefore, it cannot be that πr

returns vσ(k) for some k ∈ {1, 2, . . . , i0}. Therefore, Ai0+1 is non-empty.
We now show that ai0+1 > ai0 . We know ai0+1 ≥ ai0 . To show that ai0+1 > ai0 , assume to the contrary

that ai0+1 = ai0 . Because ai0+1 ∈ Ai0+1 and because we assume ai0+1 = ai0 , point P
~v
i0+1(σ, a1− 1, . . . , ai0 −

1, ai0 , ai0+1, . . . , aν) is (σ(i0+1), Cw−{Cσ(1), Cσ(2), . . . , Cσ(i0)
, Cσ(i0+1)})-valent. By Lemma 6.14 this implies

that point P~v
i0
(σ, a1 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν) is (σ(i0 + 1), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)

})-valent.
Therefore, (ai0 − 1, σ(i0 + 1)) ∈ Ai0

, and contradicts the fact that we choose ai0 to be the smallest element
such that (ai0 , j) is in Ai0

for some j ∈ {1, 2, . . . , ν} − {σ(1), σ(2), . . . , σ(i0 − 1)}.
Proof of (b):
Because (ai0 , σ(i0)) ∈ Ai0

, 1 ≤ i0 ≤ ν there are distinct integers ai0+1, ai0+2, . . . , aν , and a permutation
σ such that

• σ(j) = σ(j) for 1 ≤ j ≤ i0

• ai0 ≤ ai0+1 ≤ ai0+2 ≤ . . . aν ≤ N − f + ν − 1

such that the point
P~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0−1 − 1, ai0 , ai0+1, ai0+2, . . . , aν)

is (σ(i0), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)
})-valent. Using Lemma 6.13, we conclude that the point

P~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0−1 − 1, ai0 , ai0+1, . . . , aν)

is (σ(i0), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)
})-valent.

Proof of (c):

If point P~v
i0+1(σ, a1−1, a2−1, . . . , ai0 −1, ai0+1, ai0+2, . . . , aν) is (σ(j), Cw−{Cσ(1), Cσ(2), . . . , Cσ(i0+1)})-

valent for j < i0 + 1, then by Lemma 6.14, the point P~v
j (σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is

(σ(j), Cw−{Cσ(1), Cσ(2), . . . , Cσ(j)})-valent. However, this implies that (aj−1, σ(j)) ∈ Aj , which contradicts

the fact that aj is the smallest integer among all the integers such that (aj , k) ∈ Aj . Therefore P
~v
i0+1(σ, a1 −

1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is not (σ(j), Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)
})-valent, for any j < i0.

Proof of (d): If P~v
i0+1(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0+1, ai0+2, . . . , aν) is

(σ(j), Cw − {Cσ(1), . . . , Cσ(i0)
, Cσ(j)})-valent
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for some j > i0 + 1, then (ai0+1, σ(j)) belongs to Ai0+1. Because (ai0+1, σ(i0 + 1)) also belongs to Ai0+1

and because we chose
σ(i0 + 1) = arg min

{(ai0+1,k)∈Ai0+1}
vk,

we have vσ(i0+1) ≺ vσ(j).

6.4.4 Proof of Theorem 6.5

Recall that Sn represents the set of possible server states of the nth server. Let ~S~v
i (σ, a1, a2, . . . , aν) denote

the N − f + ν − 1 dimensional vector in the set
∏N−f+ν−1

n=1 Sn, whose jth component denotes the state of
server j at point

P~v
i (σ, a1, a2, . . . , aν)

in execution
α~v
i (σ, a1, a2, . . . , aν).

For a given vector ~v = (v0, v1, . . . , vν) ∈ Vν , let permutation σ~v and distinct integers a~v1, . . . , a
~v
ν satisfy

the conditions of Lemma 6.10 as per a total order ≺ on the set V .
Let v0 ∈ V be the initial value , and

V0 = {(v0, v1, . . . , vν) : v1, v2, . . . , vν ∈ V − {v0} are distinct}.

We show that there is a one-to-one mapping from tuples of the form

(σ~v , a~v1, a
~v
2, . . . , a

~v
ν , ~S

~v
ν (σ

~v, a~v1, a
~v
2, . . . , a

~v
ν))

to the vectors in V0. Specifically, if ~u,~v ∈ V0 and ~u 6= ~v, we show that

(σ~u, a~u1 , a
~u
2 , . . . , a

~u
ν , ~S

~u
ν (σ

~u, a~u1 , a
~u
2 , . . . , a

~u
ν ))

6= (σ~v, a~v1 , a
~v
2, . . . , a

~v
ν , ~S

~v
ν (σ

~v, a~v1, a
~v
2, . . . , a

~v
ν)). (3)

The one-to-one mapping implies that the cardinality of P ×{1, 2, . . . , N − f + ν− 1}ν ×
∏N−f+ν−1

n=1 Sn must
be no smaller than |V0|, where P represents the set of all permutations on {1, 2, . . . , ν}. This implies that

(ν!) · (N − f + ν − 1)ν ·

N−f+ν−1
∏

n=1

|Sn| ≥ |V0| =

(

|V| − 1

ν

)

which implies the statement of the theorem.
To complete the theorem, we show the relation stated in (3). We provide a proof by contradiction.

Consider two distinct vectors ~u = (v0, u1, . . . , uν) and ~v = (v0, v1, . . . , vν) which violate (3). Let σ = σ~u = σ~v

and ai = a~ui = a~vi for i ∈ {1, 2, . . . , ν}.
Since ~u 6= ~v, we know that there exists an index i ∈ {1, 2 . . . , ν} such that ui 6= vi. Let i0 be the largest

element of {j : uσ(j) 6= vσ(j)}. Note that if j > i0, we have uσ(j) = vσ(j). Also, uσ(i0)
6= vσ(i0). This implies

that either uσ(i0)
≺ vσ(i0) or vσ(i0) ≺ uσ(i0)

. Without loss of generality, we assume that vσ(i0) ≺ uσ(i0)
. We

next use Lemma 6.10 to show that uσ(i0)
= vσ(i0) which is a contradiction.

Because the point P~v
i0
(σ, a1−1, a2−1, . . . , ai0−1, ai0 , ai0+1, . . . , aν) is (σ(i0), Cw−{Cσ(1), Cσ(1), . . . , Cσ(i0)

})-

valent, there exists an execution β′ which extends

α~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0−1 − 1, ai0 , ai0+1, . . . , aν),

such that after P~v
i0
(σ, a1 − 1, a2− 1, . . . , ai0 − 1, ai0, ai0+1, . . . , aν) the clients in {Cσ(1), Cσ(2), . . . , Cσ(i0)

} and
the channels from these clients do not take value-dependent actions and there is a read operation that begins
and returns vσ(i0).

We compare the component states at two points: point P~v
i0
(σ, a1−1, a2−1, . . . , ai0 −1, ai0 , ai0+1, . . . , aν)

in execution β′ and point P ~u
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν) in execution α~u

i0
(σ, a1 − 1, a2 −
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1, . . . , ai0−1− 1, ai0, ai0+1, . . . , aν). Because ~S~u
ν = ~S~v

ν , the state of a server at the first point is the same as its
state at the second point. From Lemma 6.9, the metadata components of the state of any write client and
the state of every channel from a server to a server or client are the same at both points. Finally, because
uσ(j) = vσ(j) for all j > i0, and the clients in Cw − {Cσ(1), Cσ(2), . . . , Cσ(i0)

} have the same state at both
points.

We now create an execution β that extends α~u
i0
(σ, a1, a2, . . . , aν) as follows. Starting at point P ~u

i0
(σ, a1 −

1, a2− 1, . . . , ai0 − 1, ai0, ai0+1, . . . , aν), every client, server, and channel takes the same steps in β as it takes

starting from point P~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν) in β′. Note that every component

except the clients in {Cσ(1), Cσ(2), . . . , Cσ(i0)
} and the channels from these clients have the same state at

point P ~u
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν) in β as at point P~v

i0
(σ, a1 − 1, a2 − 1, . . . , ai0 −

1, ai0 , ai0+1, . . . , aν) in β′. The metadata components of the states of the clients in {Cσ(1), Cσ(2), . . . , Cσ(i0)
}

and the metadata messages in the channels from these clients are the same at the two points. Because
clients in {Cσ(1), Cσ(2), . . . , Cσ(i0)

} and the channels from these clients only take value-independent output

actions after point P~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν) in β′, β is a valid execution of the

algorithm A. Thus, we have created an execution β which is an extension of α~u
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 −

1, ai0 , ai0+1, . . . , aν), where, after point P~v
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν), the clients in

{Cσ(1), Cσ(2), . . . , Cσ(i0)
} and the channels from these clients do not take any value-dependent actions, and

a read operation begins and returns vσ(i0). Because the algorithm is weakly regular, we must have vσ(i0) ∈
{v0, u1, u2, . . . , uν}. Furthermore, vσ(i0) 6= v0 since we assume that the components of ~v are distinct. So,
there exists an integer j0 in {1, 2, . . . , ν} such that vσ(i0) = uσ(j0)

.

The existence of execution β implies that the point P ~u
i0
(σ, a1 − 1, a2 − 1, . . . , ai0 − 1, ai0 , ai0+1, . . . , aν), is

(σ(j0), {Cσ(1), Cσ(2), . . . , Cσ(i0)
})-valent. Statement (ii) of Lemma 6.10 implies that j0 ≥ i0. Statement (iii)

of Lemma 6.10 implies that if j0 > i0, then uσ(i0)
≺ uσ(j0)

. However, we started with the assumption that
uσ(j0)

= vσ(i0) ≺ uσ(i0)
. Therefore, it cannot happen that j0 > i0, and we conclude that j0 = i0, vσ(i0) =

uσ(i0)
. This contradicts our assumption that vσ(i0) 6= uσ(i0)

. Therefore, (3) must be true. This completes the
proof.

6.5 Conjecture related to Theorem 6.5

The assumptions of Theorem 6.5 do not apply to some algorithms [2, 15]. These algorithms send value-
dependent messages in two phases. In one of the two phases, the algorithms send erasure coded elements
corresponding to the value. In the other phase where value-dependent messages are sent, a hash of the value
is sent. The hashes are used for verification of the client’s integrity, which is important in [2, 15] as the
algorithms in these references handle Byzantine failures. We believe that it may be possible to generalize
our result of Theorem 6.5 with Assumption 3 (b) modified as follows:

• the algorithm has a bounded number of phases, and

• there is at most one phase where a value-dependent message of size Θ(|V|) is sent.

The above restrictions imply that, even if there is more than one phase where value dependent messages are
sent, the value-dependent messages in the additional phases do not carry much information about the value.
The above restrictions would cover algorithms of [2,15], and we conjecture that the lower bound of Corollary
6.6 bound still applies.

7 Concluding Remarks

This paper was motivated by the following open question (see Section 2): Does there exist an atomic
shared memory emulation algorithm whose storage cost is smaller than ν N

N−f
log2 |V|, where ν represents

the number of active write operations? This question remains open. The insight obtained by our bounds
in conjunction with the result of [23] is summarized here. If there is an algorithm whose storage cost is
g(ν,N, f) log2 |V|+ o(log2 |V|), where g(ν,N, f) is some real-valued function of parameters ν,N, f then

• g(ν,N, f) ≥ 2N
N−f+2 ;
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• If g(ν,N, f) < νN
N−f+ν−1 , then

– the writer sends its value in multiple phases to the servers, or

– the writer’s state may not separate the value and the metadata, or

– during a write operation, the writer can take non-black box actions;

• If, for a given values of parameters N, f , we have g(ν,N, f) < f + 1 for all values of ν, then, in certain
executions, the servers store symbols which jointly encode values across different versions.
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A Discussion on the Storage Scheme Assumption of [23]

For the sake of technical clarity and completeness, we provide a discussion on the storage scheme assumption
of [23]. Reference [23] assumes that every stored bit is associated uniquely with a value of a write operation.
However, this assumption is restrictive, and the storage cost lower bound proof of [23] may not be applicable
for arbitrary storage schemes.

In fact, a critical idea in the proof of [23] is the following. If at a point P in an execution of an algorithm
A,

• no value from {v1, v2, . . . , vm} ⊂ V is returnable from a set of servers,

• if there is a value vi ∈ {v1, v2, . . . , vm} such that no server stores a single bit of the value, and

• after a single step of the execution, some value which is not necessarily {v1, v2, . . . , vm} ⊂ V is return-
able,

then the number of bits stored in a server must increase by log2 |V| bits in the step. However, this is true
only for specific storage schemes, but may not be true for arbitrary storage schemes. We show this via a
counter-example.

Let V be a finite field of 2m elements for some integer m. Note that every element of V is an m-bit vector
over the binary base field. Let v1, v2, v3 ∈ V be three versions of the data object associated with three write
operations in an execution of an algorithm. Suppose that, in some algorithm A, because of structure of the
server protocol, there are two servers which both store v1 + v2 + v3 at some point P of an execution. It is
impossible to associate a bit stored at the servers with a single value. Note that a reader which accesses only
the two servers cannot recover even a single bit of v1, v2, v3.

For argument’s sake, suppose that the bits stored are associated with none of the values. Note that none
of {v1, v2, v3} are returnable from both servers. Now, imagine a single step, where the first server receives
a message that contains v2 and, after the receipt of the message, stores v1 + v3 at point P ′. Then a reader
which can access the bits stored in both servers can recover v2 by simply subtracting the contents of the
two servers. However, the number of bits stored in the servers did not change in the step! Thus the proof
method of [23] would not be generally applicable to algorithm A.

The proof technique of [23], in fact, applies when versions are encoded separately. For instance, if a server
that receives information from three values v1, v2, v3, and stores information of the form (f1(v1), f2(v2), f3(v3)),
where f1, f2, f3 are three arbitrary functions. In this instance, every stored bit can be uniquely associated
with a write operation.
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It must be noted that the algorithm A considered in this section is hypothetical. We do not know whether
we can construct meaningful algorithms that can encode across different versions. Our storage cost lower
bound of Theorem 6.5 suggests that even if such an algorithm can be constructed, there would be little
benefit from a storage cost perspective if the writers send values in a single phase.

B A Simple Information-theoretic Lower Bound

In this section, we provide a simple information-theoretic lower bound on the storage cost incurred by any
distributed shared memory emulation algorithm. We describe the lower bound in Theorem B.1. The theorem
leads to lower bounds on the max- and total-storage costs, which are stated in Corollary B.2. After stating
Theorem B.1 and Corollary B.2, we provide an informal description of the proof of Theorem B.1, followed
by a formal description.

B.1 Statement of Theorem B.1

Theorem B.1. Let A be a single-writer single-reader shared memory emulation algorithm that implements a
regular read-write object whose values come from a finite set V. Suppose that, in algorithm A, every server’s
state belongs to a set S. Suppose that the algorithm A satisfies the following liveness property:

In a fair execution of A, if the number of server failures is no bigger than f , f ≥ 1, then every operation
invoked at a non-failing client terminates.

Then, for every subset N ⊂ {1, 2, . . . , N} where |N | = N − f ,
∑

n∈N

log2 |Sn| ≥ log2 |V|.

The above theorem naturally implies a bound on the total- and max-storage costs as demonstrated in
the following corollary.

Corollary B.2. Let A be a single-writer-single-reader shared memory emulation algorithm that implements
a regular read-write object whose values come from a finite set V. Suppose that every server’s state belongs
to a set S in algorithm A. Suppose that the algorithm A satisfies the following liveness property:

In a fair execution of A, if the number of server failures is no bigger than f , f ≥ 1, then every operation
invoked at a non-failing client terminates.

Then

MaxStorage(A) ≥
log2 |V|

N − f
, and

TotalStorage(A) ≥
N log2 |V|

N − f
.

Proof of Corollary B.2. We assume, without loss of generality, that |S1| ≤ |S2 ≤ . . . ≤ |SN |. From Theorem
B.1, we have

N−f
∑

n=1

log2 |Sn| ≥ log2 |V|.

As a consequence, we have log2 |SN−f | ≥
log2 |V|
N−f

. Therefore, we have max
n∈{1,2,...,N}

log2 |Sn| ≥ log2 |SN−f | ≥

log2 |V|

N − f
. Furthermore, we have log2 |Sn| ≥

log2 |V|
N−f

for every n ∈ {N−f+1, . . . , N}. This implies the following

chain of relations.

N
∑

n=1

log2 |Sn| ≥ log2 |V|+
N
∑

n=N−f+1

log2 |Sn|

≥ log2 |V|+ f
log2 |V|

N − f
=

N log2 |V|

N − f
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This completes the proof.

We now prove Theorem B.1.

B.2 Informal Proof Sketch for Theorem B.1

Intuitively, the above theorem can be understood as follows. Consider any subset N ⊆ {1, 2, . . . , N} where
|N | = N−f . Consider an execution of the algorithm A where servers {1, 2, . . . , N}−N fail at the beginning
of the execution. After the servers fail, a writer writes value v in the system and terminates. Because the
algorithm is regular, any reader that begins after the termination of the write must recover the last written
value v from the N − f servers in N . Since the state of server i belongs to Si, the total number of possible
configurations of the states of the N − f servers in N is

∏N−f
i=1 |Si|. Since the value v can be any element of

the set V and the reader must recover the value through messages exchanged with the servers, there must be
a one-to-one mapping from the set of values to the set of server states. Therefore, we need

∏

n∈N |Sn| ≥ |V|,
which implies the result of Theorem B.1. We provide a formal proof below.

B.3 Formal Proof of Theorem B.1

Proof of Theorem B.1. Consider any subset N ⊆ {1, 2, . . . , N} where |N | = N − f . We construct |V|

executions of the algorithm. In particular, for every value v in V , we construct an execution α(v) of the

algorithm as follows. In α(v), the f servers in {1, 2, . . . , N} − N fail at the beginning of the execution.

The servers in N do not fail in α(v). After the f servers fail, a write operation with value v begins and all
components take turns in a fair manner until the write operation terminates. Since, in a fair execution of
algorithm A where the number of server failures is at most f , any operation invoked at a non-failing client
eventually terminates, we can ensure that the execution can be extended until the write terminates. Let

P̃ (v) be some point after the termination of the write. At P̃ (v), all the channels in the system act, delivering

all their messages. Let P (v) be some point in α(v) after the channels deliver their messages. At P (v), the

write client fails. At some point after P (v), a read operation begins and all the components in the system
take turns in a fair manner until the read terminates. Because the read client does not fail, and because

the number of server failures is f , the read operation terminates in α(v). The execution α(v) ends after the
completion of the read operation.

For j ∈ N denote the state of server j at point P (v). We denote by ~S(v), the tuple (S
(v)
j1

, S
(v)
j2

, . . . , S
(v)
jN−f

)

of server states, where N = {j1, j2, . . . , jN−f}, and j1 < j2 < . . . jN−f . Note that ~S(v) is an element from

the set
∏

n∈N Sn. To complete the proof of the lemma, it suffices to show that for two distinct values v, v′ in

V , we have ~S(v) 6= ~S(v
′

). This is because ~S(v) 6= ~S(v
′

) implies that there are at least |V| elements in
∏

n∈N Sn,
which implies the theorem statement owing to the following chain of relations:

∏

n∈N

|Sn| ≥ |V|

⇒
∑

n∈N

log2 |Sn| ≥ log2 |V|

So, to complete the proof, it is enough to show that for distinct values v 6= v′, we have ~S(v) 6= ~S(v
′

).

Assume for contradiction that there exist two different values v 6= v′ such that ~S(v) = ~S(v
′

). We create an
execution β of the algorithm where the operations are not regular, which would contradict the assumption
that the algorithm is regular and complete the proof. The steps of β are identical to the steps of execution

α(v) until the point P (v) in α(v). Consider the composite automaton that includes the servers, the readers,
the channels amongst the servers, and the channels between the readers and the servers. The state of every

component of this composite automaton at point P (v) in α(v) is the same as the state of the corresponding

component at point P (v
′

) in α(v
′

). This is because at both P (v) and P (v
′

), all the channels are empty, the
servers in {1, 2, . . . , N}−N have failed, and the state of any server from N is the corresponding element of

~S(v), which is equal to ~S(v
′

). In β, after the point P (v), all the components follow the steps of the execution
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α(v
′

). Clearly β is an execution of the algorithm A. Because P (v) is after the termination of the write

operation that wrote value v in α(v), and because β is identical to α(v) until the point P (v), we infer that a

write operation wrote value v in β. Because a read operation begins after P (v
′

) and returns v′ in α(v
′

), and

because every component follows the same steps in execution β as in execution α(v
′

) after point P (v
′

), we
infer that a read operation begins in β after the termination of the write and returns value v′. If β is regular,
this read operation is serialized after the write operation in β. Therefore, the read operation should return v.
However it returns v′ which is not equal to v. Therefore β is not regular, which contradicts the assumption

that the algorithm is regular. Therefore, for any two different values v 6= v′, we have ~S(v) 6= ~S(v
′

). This
completes the proof.
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