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Reconfiguration of Satisfying Assignments and Subset Sums:

Easy to Find, Hard to Connect

Jean Cardinal∗ Erik D. Demaine† David Eppstein‡ Robert A. Hearn§

Andrew Winslow¶

Abstract

We consider the computational complexity of reconfiguration problems, in which one is given two
combinatorial configurations satisfying some constraints, and is asked to transform one into the other
using elementary transformations, while satisfying the constraints at all times. Such problems appear
naturally in many contexts, such as model checking, motion planning, enumeration and sampling, and
recreational mathematics. We provide hardness results for problems in this family, in which the constraints
and operations are particularly simple.

More precisely, we prove the PSPACE-completeness of the following decision problems:

• Given two satisfying assignments to a planar monotone instance of Not-All-Equal 3-SAT, can one
assignment be transformed into the other by single variable “flips” (assignment changes), preserving
satisfiability at every step?

• Given two subsets of a set S of integers with the same sum, can one subset be transformed into
the other by adding or removing at most three elements of S at a time, such that the intermediate
subsets also have the same sum?

• Given two points in {0, 1}n contained in a polytope P specified by a constant number of linear
inequalities, is there a path in the n-hypercube connecting the two points and contained in P?

These problems can be interpreted as reconfiguration analogues of standard problems in NP. Interestingly,
the instances of the NP problems that appear as input to the reconfiguration problems in our reductions
can be shown to lie in P. In particular, the elements of S and the coefficients of the inequalities defining
P can be restricted to have logarithmic bit-length.

1 Introduction

Many computational problems consist of deciding the existence of a combinatorial object subject to constraints
expressible in algebraic or logical terms. We consider reconfiguration problems, in which one is given two objects
satisfying a set of constraints, and the goal is to transform one into the other using simple reconfiguration moves
such that all the constraints remain satisfied at every intermediate step. Such problems find applications in
dynamic environments or reactive systems, in which solutions are required or designed to evolve, in accessibility
problems in model checking, as well as in enumeration and sampling problems, in which connectivity of the
search space plays a major role.

We focus on reconfiguration problems that are naturally derived from standard NP-complete problems.
This line of inquiry seems to have begun with the Sliding Tokens problem, a reconfiguration version of
Independent Set, by Hearn and Demaine [11], and has gained momentum with publications such as the
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extension of Schaefer’s dichotomy to the connectivity of Boolean satisfiability due to Gopalan et al. [9], and
an overview of the complexity of reconfiguration problems by Ito et al. [16]. In the canonical example of
Boolean satisfiability, one is given two satisfying assignments to connect by a sequence of variable assignment
flips, such that the formula remains satisfied at every step. The study of this type of question also benefits
from the interest of puzzle designers and recreational mathematicians; token-sliding problems, for instance,
are related to the famous 15-puzzle, popular in the late 19th century [30]. Combinatorial reconfiguration now
constitutes a quickly developing field with dedicated research groups and workshops (such as the combinatorial
reconfiguration workshop held in Banff in January 2017). For a more thorough survey and history of this
family of problems, we refer to van den Heuvel [13].

Reconfiguration of independent sets in graphs is among the most studied problem in this vein (see [4, 6, 8, 14]
for recent results) and is relevant to our findings. In these problems, one is given a graph G and two independent
sets of G of the same size k, and the goal is to transform one into the other using elementary operations,
preserving independence at every step. The operations consist either of “token slides”, in which a vertex in the
independent set is replaced by one of its neighbors [11], or of vertex additions and removals such that the size
of the independent set is either k or k − 1 [16]. A third, related, model is that of “token jumping”, in which
a vertex is replaced by another, so that the size remains unchanged [20]. In general, these reconfiguration
problems are known to be PSPACE-complete.

Reconfiguration problems for graph colorings followed, and have a large dedicated body of results as
well [1, 3, 5, 7, 17]. Again, many such problems are known to be PSPACE-complete. Reconfiguration problems
for shortest paths [2, 19], vertex covers [18], dominating sets [10], and Steiner trees [24] have also been
considered.

As discussed by van den Heuvel [13], the question of the relation between the complexity of the existence
problem (of a satisfying assignment, for instance) and that of the reconfiguration problem is intriguing. In
many early examples, reconfiguration problems in P are obtained from existence problems that are in P, and
many PSPACE-hardness proofs follows the lines of the NP-hardness proof of the corresponding satisfiability
problem. In the Schaefer-type dichotomy theorem established by Gopalan et al. [9], all satisfiability problems
in P yield a reconfiguration problem in P as well. In some cases, the satisfiability problem is NP-complete
while the reconfiguration problem is in P. (For example, this is the case for 1-in-3 SAT, whose reconfiguration
problem is trivial.) Examples in which the existence problem is in P, but the reconfiguration problem is
PSPACE-complete can also be found. Prominent examples are reconfiguration of shortest paths [2] and
reconfiguration of 4-colorings of bipartite and planar graphs [3]. Our results provide further examples of such
a situation.

Our results. We give hardness results for reconfiguration problems involving solutions of special families
of Boolean satisfiability problems, subset sum and knapsack problems, and, more generally, 0-1 linear
programming problems.

In Section 2, we prove that the problem of reconfiguring satisfying assignments to a planar monotone
instance of Not-All-Equal 3-SAT by single variable flips is PSPACE-complete. Interestingly, the planar
Not-All-Equal 3-SAT problem is in P. If we further restrict to monotone instances, the reconfiguration
problem is equivalent to reconfiguration of 2-colorings of 3-uniform hypergraphs with planar vertex-edge
incidence graphs.

In Section 3, we consider the Subset Sum reconfiguration problem, that is, reconfiguration of subsets of a
set of integers with the same sum. For this, we need to be able to perform elementary moves involving three
elements of the set. We show that this problem is again PSPACE-complete.

Finally, in Section 4, we prove the PSPACE-completeness of the problem of finding a path between two
points of the hypercube that is constrained to lie within a polytope. We show that the hardness result holds
even if the number of inequalities defining the polytope is O(1), and the coefficients involved are polynomial.

2 Planar NAE 3-SAT Reconfiguration

In this section, we give new results on the reconfiguration problems for a variant of Boolean satisfiability.
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Definition 2.1 (Boolean Satisfiability Reconfiguration Problem). Given an instance of a Boolean satisfiability
problem and two satisfying assignments s and t, does there exist a sequence of satisfying assignments
s1, s2, . . . , sk such that s1 = s, sk = t, and for all i ∈ [k− 1], si+1 can be obtained from si by a single variable
flip?

Such problems (also referred to as the s− t-connectivity problems for Boolean satisfiability) have been
considered extensively before [9, 22, 23, 29, 26, 28]. Here we investigate the complexity of the reconfiguration
versions of Boolean satisfiability problems in which the variable-clause incidence graph is planar. The
variable-clause incidence graph of a CNF formula is a bipartite graph in whose set of vertices is the union of
the set of clauses and the set of variables of the formula, and a variable vertex is adjacent to a clause vertex
if the variable appears in the clause, in either positive or negative form. The planar 3-SAT problem is the
3-SAT problem restricted to instances with a planar variable-clause incidence graph. It has long been known
that planar 3-SAT is NP-complete [21].

In the NAE 3-SAT problem, satifying assignments are forbidden from containing clauses in which all
literals have the same value. Hence in a satisfying assignment, every clause has exactly two literals with the
same value. In an instance of Monotone NAE 3-SAT, all literals appearing in the clauses are positive.

Monotone NAE 3-SAT is equivalent to 2-coloring 3-uniform hypergraphs, and known to be NP-complete
from Schaefer’s dichotomy theorem. We consider instances of Planar NAE 3-SAT, where the variable-clause
incidence graph is planar. In 1988, Moret proved the surprising result that Planar NAE 3-SAT is in P by
reducing the problem to that of finding a maximum cut in a planar graph [25]. We prove:

Theorem 2.2. Planar Monotone NAE 3-SAT Reconfiguration is PSPACE-complete.

It is interesting to observe that the problem is PSPACE-complete despite the satisfiability problem lying
in P. The proof relies on the Nondeterministic Constraint Logic framework of Hearn and Demaine [11, 12].

Nondeterministic Constraint Logic (NCL). In nondeterministic constraint logic, a constraint graph
is an edge- and node-weighted graph. A configuration of such a graph is an orientation of its edges, and an
orientation is legal provided that the sum of the weights of edges pointing to a node is at least the weight of
this node. In what follows, we will further restrict to graphs in which all node weights equal 2, and edges
have weights either 1 or 2. The latter are referred to as red and blue edges, respectively. Furthermore, we
only have two types of nodes: AND nodes with one blue and two red incident edges, and OR nodes with
three blue incident edges. It was proved that the framework retains all of its expressive power, even under
these restrictions [11]. The names of the two node types come from the interpretation of the incoming weight
constraint: a configuration is legal if and only if (i) for all AND nodes, the blue edge is not outgoing unless
both red edges are incoming, (ii) for all OR nodes, at least one edge is incoming.

Definition 2.3 (C2C Problem). Given a constraint graph and two legal configurations C1 and C2, can C2

be obtained from C1 by flipping one edge at a time, so that all intermediate configurations are also legal?

Theorem 2.4 ([11]). The C2C problem is PSPACE-complete, even if the constraint graph is restricted to be
planar.

As a warmup, we first consider the known reduction from the planar C2C problem to planar 3-SAT
reconfiguration. Given a planar constraint graph, we define one Boolean variable per edge. When considering
an edge x incident to a node, we denote by xin the literal corresponding to the orientation of x towards
the node, and the opposite literal by xout. For a given AND node with a blue incident edge x and two red
incident edges y and z, we add the two clauses (xin ∨ yin) and (xin ∨ zin), forcing both yin and zin to be true
whenever xin is false. For a given OR node with three incident blue edges x, y, and z, we add the single
clause (xin ∨ yin ∨ zin). The resulting variable-clause incidence graph is planar whenever the initial constraint
graph is. This reduction is due to Sarah Eisenstat,1 and is also alluded to by Gopalan et al. [9].

1MIT Course 6.890, “Algorithmic Lower Bounds: Fun with Hardness Proofs” (Fall ’14), Lecture 17.
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Figure 1: Monotone NAE clauses implementing the AND (top) and OR (bottom) nodes in a constraint graph.
Only one of the three versions of the gadget is used, depending on the encoding used for the edge orientations.
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Figure 2: A set of monotone NAE clauses together with a satisfying assignment, no variable of which can be
flipped.

Proof of Theorem 2.2. Membership in PSPACE can be proved by exhibiting a nondeterministic polynomial
space algorithm and applying Savitch’s Theorem. To prove PSPACE-hardness, we reduce from the planar
C2C problem by implementing the two types of nodes with Monotone NAE clauses.

We first describe a set of NAE clauses together with a satisfying variable assignment such that no variable
can be flipped. This will allow us to set a variable to a certain Boolean value. We use the following four
monotone NAE clauses:

(t ∨ x ∨ z) ∧ (t ∨ y ∨ z) ∧ (t ∨ x ∨ y) ∧ (x ∨ y ∨ z). (1)

Now we set t ← true, z ← true, x ← false, y ← false. The clauses and the assignment are illustrated in
Figure 2. In this figure and the following, the triangles represent the clauses. It can be checked that every
variable is contained in a clause in which no other variable is set to the same value. Therefore, this assignment
is isolated in the reconfiguration graph, and can be used to set the value of a variable. Recall that an
instance of the Boolean satisfiability reconfiguration problem consists of a formula together with two satisfying
assignments. The satisfying assignments that we will construct will both set the variables x, y, z, t to those
values.

In order to encode the orientation of the edges of the constraint graph, we define one Boolean variable for
each edge x. For a given node of the constraint graph, we will denote by xin the literal that is true whenever
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the edge x is oriented towards the node, and by xout the literal that is true whenever x points outwards.
(Note that this notation is relative to a given node.)

We now consider the AND nodes in the input constraint graph. For each such node, we include a new set
of NAE clauses in the instance of the reconfiguration problem. Since the clauses must be monotone, we have
to allow for different cases, depending which orientation is encoded by each of the edge variables. Let us
consider an AND node with one blue edge x and two red edges y and z.

Let xin be the literal that is true whenever the edge x is oriented towards the node. We can safely assume
that this literal is positive, that is, setting the variable to true means that the edge is directed towards the
node. This is without loss of generality, because in an instance of NAE 3-SAT, all clauses can be safely
replaced by the same clause with all literals negated. Hence in the case where xout is the positive literal, we
can use the same sets of clauses with all literals negated.

Given this, it remains to take into account all situations involving negations of the literals yin and zin

in order to have only monotone clauses. First suppose that the literals yin and zin are positive, that is, the
variables for y and z correspond to the incoming orientation. Then we include the following clauses:

(yin ∨ xin ∨ F ) ∧ (zin ∨ xin ∨ F ), (2)

where F denotes two variables that has been set to false using the previous construction. In the case where
the variable associated with edge y corresponds to the outgoing orientation and z corresponds to the incoming
orientation, we include the following three clauses:

(yout ∨ T ∨ t) ∧ (zin ∨ F ∨ xin) ∧ (t ∨ F ∨ xin), (3)

where T, F denote three distinct variables that have been set to true and false, respectively, using the previous
construction, and t is an additional variable that does not appear anywhere else. Finally, if both variables for
y and z correspond to the outgoing orientation, we include the following four clauses:

(yout ∨ T ∨ t) ∧ (zout ∨ T ∨ t′) ∧ (t ∨ F ∨ xin) ∧ (t′ ∨ F ∨ xin), (4)

where again T and F denote distinct variables that have been set to true and false, respectively, and t, t′ are
new variables. The clauses are illustrated in Figure 1. In all three cases, the set of clauses force both yin

and zin to be true (that is, xout and yout to be false) whenever xin is false. On the other hand, if xin is true,
then the variables associated with the edges y and z can take any value. Hence this properly encodes the
semantics of an AND node in NCL.

We now describe how to implement the OR nodes of the constraint graph as collections of monotone NAE
clauses. We consider an OR node with three incident blue edges denoted by x, y, z. Recall that the only
forbidden orientation is the one in which all three edges are outgoing. For the same reason as before, we can
safely assume that the variable associated with x encodes the incoming orientation, that is, the literal xin is
positive. In the case where the two variables associated with y and z correspond to the outgoing orientation,
that is, the literals yout and zout are positive, then we include the following three clauses:

(yout ∨ T ∨ t) ∧ (zout ∨ T ∨ t′) ∧ (t ∨ t′ ∨ xin). (5)

If the literals yin and zin are both positive, then we include the following four clauses:

(xin ∨ F ∨ t′′) ∧ (yin ∨ F ∨ t′) ∧ (zin ∨ F ∨ t) ∧ (t ∨ t′ ∨ t′′). (6)

Finally, if yin and zout are positive, we include:

(zout ∨ T ∨ t′) ∧ (yin ∨ t′ ∨ xin). (7)

Again, the symbols T, F denote variables whose values have been set to true or false, and t, t′, t′′ are new
variables. The constructions are illustrated in Figure 1. It can be checked that in all three cases, the only
forbidden assignment is the one in which all three edges are outgoing. Hence this correctly encodes the
semantics of an OR node in NCL.
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Finally, we need to provide the two satisfying assignments for the NAE SAT reconfiguration instance.
Those assignments are constructed from the initial configurations C1 and C2 of the input C2C instance. From
this, we directly infer the values of the variables associated with each edge of the constraint graph. There are
also two types of additional variables. Those whose values are fixed by the clauses in (1) have the same value
in both assignments. Those denoted by t, t′, t′′ in the clauses encoding the nodes of the constraint graph get
an arbitrary value such that all clauses are satisfied, which is always possible by construction.

It can further be checked that for all sets of clauses encoding the nodes of the constraint graph have, the
variable-clause incidence graph is a tree. The incidence graph of the clauses in (1) is planar. Altogether, the
variable-clause incidence graph of the output NAE SAT instance is also planar.

We now prove the correctness of the construction. First, suppose that there exists a reconfiguration
sequence for the output NAE SAT instance. By projecting each assignment in this sequence on the edge
variables, we obtain a reconfiguration sequence for the constraint graph. From the validity of the construction,
this sequence must be valid for the C2C problem as well.

Suppose now that there exists a reconfiguration sequence for the input C2C instance. We show that this
sequence can be mapped to a reconfiguration sequence for the NAE SAT instance. We only need to check
that any valid flip of an edge in the constraint graph can be mapped to a sequence of flips of the variables
involved in the constructions. The edge flips naturally maps to flips of variables encoding the edge orientation.
However, to maintain a satisfying assignment at every step, we also need to flip some of the new variables of
the form t, t′, t′′ in the clauses of the form (3)-(7).

For the constructions (3) and (4), we observe that t and t′ can always be set to false, except when xin is
false. In the latter case, the only edge variable that we can flip is xin. We can always flip xin to true while
keeping t and t′ set to true. We can then then flip t and t′ to false afterwards. symmetrically, flipping xin

back to false can always be done by first flipping t and t′ to true.
Similarly, for the constructions (5)-(7), one can check that we can flip any edge variable provided the

orientation remains legal, possibly by flipping some of the variables t, t′, t′′ in intermediate steps. Let us detail,
for instance, case (6), in which setting some of xin, yin, or zin to false forces one of t, t′, t′′ to be set to true.
First consider flips involving assignments in which not all three variables xin, yin, zin are true simultaneously.
For these assignments, we take the convention that t, t′, t′′ is set to false unless it is forced to be true. Suppose
without loss of generality that xin flips from false to true. It suffices to first flip xin, then flip t from true
to false. Now when xin, yin, and zin are all true, any assignment of the three variables t, t′, t′′ is satisfying.
Hence flips from or to this situation can be handled as well.

By intertwining, for each edge flip, the sequences of variable flips in all gadgets containing the variable
for this edge, we can map the reconfiguration sequence of the C2C problem to a reconfiguration sequence
between the two given satisfying assignments. This concludes the proof.

3 Subset Sum Reconfiguration

We now consider the reconfiguration problem for the well-known subset sum problem.

Definition 3.1 (Subset Sum Problem). Given an integer x and a set of integers S = {a1, a2, . . . , an}, does
there exist a subset A ⊆ [n] such that

∑
i∈A ai = x?

If we restrict our reconfiguration steps to involve only a single element of S, the reconfiguration problem is
trivial, as no single such move can maintain the same sum. We therefore consider more general reconfiguration
steps. We say that a set of integers A1 can be k-move reconfigured into a second set of integers A2 whenever
the symmetric difference of A1 and A2 has cardinality at most k.

Definition 3.2 (k-move Subset Sum Reconfiguration Problem). Given two solutions A1 and A2 to an
instance of the subset sum problem, can A2 be obtained by repeated k-move reconfiguration, beginning with
A1, so that all intermediate subsets are also solutions?

The problem remains trivial for k = 2, since any removed element must be replaced by itself. For k = 3,
we prove the following theorem.
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Theorem 3.3. The 3-move subset sum reconfiguration problem is strongly PSPACE-complete.

The problem is strongly PSPACE-complete, meaning that it remains PSPACE-complete when the input
integer set is given in unary. The corresponding instances of the subset sum problem can be solved in
polynomial time using dynamic programming. This is another example of a reconfiguration problem that
is PSPACE-complete, despite the underlying decision problem lying in P. We first note that the problem is
contained in PSPACE.

Lemma 3.4. For every k ∈ N, the k-move subset sum reconfiguration problem is in PSPACE.

Proof. The proof is a slight modification of a proof for a variation of the problem due to [15]. For an instance
with |S| = n, there are O(nk) other subsets reachable by a k-move reconfiguration, since each such move can
be specified by the set of items in the symmetric difference of the two subsets. So all adjacent subsets in the
reconfiguration graph can be enumerated in polynomial time.

Then the k-move subset sum reconfiguration problem is in NPSPACE by the following algorithm: in the
reconfiguration graph, repeatedly move between subsets by non-deterministically selecting a neighbor in
polynomial time (and space). Since NPSPACE = PSPACE [27], the problem is also in PSPACE.

As for hardness, the reduction is done in two steps. First, from the Sliding Tokens problem to the
Exact Cover reconfiguration problem (Lemma 3.9), then to the 3-move Subset Sum reconfiguration problem
(Theorem 3.3).

Definition 3.5 (Token Slide Reconfiguration). Given two independent sets I1, I2 of a graph G = (V,E), I1

can be reconfigured into I2 via a token slide provided (I1 − I2) ∪ (I2 − I1) = {v1, v2} and {v1, v2} ∈ E.

Observe that a token slide corresponds to changing the selection of a vertex v1 ∈ I1 to a neighboring
vertex v2 ∈ I2, possible exactly when v1 is the only vertex in I1 among v1, v2, and their neighbors.

Definition 3.6 (Sliding Tokens Problem). Given two independent sets I1, I2, can I1 be reconfigured into I2

via repeated token slides?

An exact cover is a set cover that covers every element exactly once.

Definition 3.7 (Exact Cover Split and Merge Reconfiguration). Given a set S of subsets of a set U , and
two exact covers C1, C2 ⊆ S, C1 can be reconfigured into C2 via a split (and C2 can be reconfigured into C1

via a merge) provided that there exist S1, S2, S3 ⊆ S with C1 − C2 = S1 and C2 − C1 = {S2, S3}.
Since C1, C2 are exact covers, S1 = S2 ∪ S3 and S2 ∩ S3 = ∅.

Definition 3.8 (Exact Cover Reconfiguration Problem). Given a set S of subsets of a set U , can C1 be
reconfigured into C2 via repeated splits and merges?

Recall that a set S of subsets of a set U can be considered as a hypergraph G = (U,S), where each element
of U is a vertex and each element of S is a hyperedge. We say that a hypergraph is k-colorable whenever we
can assign one of k colors to each vertex such that no two vertices in a hyperedge have the same color.

Lemma 3.9. The exact cover reconfiguration problem is PSPACE-hard for instances that are 23-colorable
hypergraphs.

Proof. The proof of Theorem 23 of [11] establishes that the sliding tokens problem is PSPACE-hard on
3-regular graphs (see Section 3.2 of [3] for further discussion). A trivial modification of the proof suffices
to prove that a labeled variant of the sliding tokens problem, where each token has a unique label, is also
PSPACE-hard. The reduction is from this variant. The following describes an input instance of the labeled
sliding tokens problem:

• G = (V,E), a 3-regular graph.

• T , a set of labeled tokens.

• p1 : T → V , a function mapping each labeled token to a vertex placement in the starting configuration.

• p2 : T → V , a function mapping each labeled token to a vertex placement in the ending configuration.

Also, I1 = {p1(t) : t ∈ T} and I2 = {p2(t) : t ∈ T} are independent sets of size |T | ≤ |V |.

7



Output U and S. The output exact cover instance has a set U consisting of two types of elements: vertices
v1, v2, . . . , v|V | and tokens t1, t2, . . . , t|T |. That is, U = {v1, v2, . . . , v|V |} ∪ {t1, t2, . . . , t|T |}.

For each pair of adjacent vertices vi, vj ∈ V , the set consisting of these two vertices and their neighbors is
called a slide set, denoted Si,j . The output set S of subsets of U contains the following subsets for every pair
of adjacent vertices vi, vj and token tk:

• All subsets of Si,j − {vi} and Si,j − {vj}.
• {vi, tk} and {vj , tk}.
• Si,j ∪ {tk}.

Output C1 and C2. The starting configuration C1 is the union of {{vi} : vi ∈ V −I1} and, for every vi ∈ I1,
a set {vi, tk} with a distinct tk. Similarly, the ending configuration C2 is the union of {{vi} : vi ∈ V − I2}
and, for every vi ∈ I2, a set {vi, tk} with a distinct tk.

23-colorability of (U,S). Since G is 3-regular, G3 has degree at most 21. So G can be 22-colored such
that no two vertices of distance at most 3 (i.e. in a common slide set) have the same color. Such a coloring
ensures that no pair of vertices in a common set in S share a color. Coloring the tokens in T a distinct (23rd)
color then gives a coloring of U such that no pair of elements of a common set share the same color.

High-level idea. The subsets containing exactly one vertex and token (e.g., {vi, tk}) represent the presence
of the token tk on vertex vi. Subsets consisting of a slide set and token (e.g., Si,j ∪ {tk}) represent the
presence of a “mid-slide” token between vi and vj .

Sliding a token tk from vi to vj is simulated by first merging {vi, tk} and Si,j − {vi} into Si,j ∪ {tk}, and
then splitting this set into Si,j −{vj} and {vj , tk}. This sequence enforces the absence of tokens on neighbors
of vi and vj , and the presence of a token on vi or vj , but not both. Before a merge-split sequence, additional
splits and merges of token-less sets may be needed to obtain Si,j − {vi}.

Bijection between configurations. Call a configuration C of the output Exact Cover Reconfiguration
instance maximally split if every C in C contains exactly one vertex and up to one token. The following
defines a function fred from token arrangements to maximally split covers:

• Each token-less vertex corresponds to a set {vi} in the cover.

• Each token tk placed at vi corresponds to a set {vj , tk} in the cover.

Notice that fred is a bijection and fred(p1) = C1, fred(p2) = C2.

Reduction structure. The remainder of the proof is devoted to proving the following claim: a token
arrangement p′ is reachable from a token arrangement p if and only if fred(p′) is reachable from fred(p) via
splits and merges.

Both directions are proved inductively. That is, we consider only “adjacent” configurations. We also
assume that the starting token arrangement p : T → V has {p(t) : t ∈ T} independent.

Sliding tokens reachability ⇒ exact cover reachability. Let p be a token arrangement that can be
reconfigured into p′ via a token slide from vi to vj . Then fred(p′) can be reached from fred(p) via the following
sequence of merges and splits:

1. Repeatedly merge token-less vertex sets to form Si,j − {vi}.
2. Merge Si,j − {vi} and {vi, tk} into Si,j ∪ {tk}.
3. Split Si,j ∪ {tk} into Si,j − {vj} and {vj , tk}.
4. Repeatedly split the token-less vertex set Si,j − {vj} into single vertex sets.
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Exact cover reachability ⇒ sliding tokens reachability. For each exact cover configuration C in the
output instance, at least one maximally split configuration is reachable from C via a sequence of splits. Call
the set of all such configurations the sploot set of C, denoted sploot(C).

Let C, C ′ be maximally split configurations such that C can be reconfigured into C ′ and Cinter is the first
configuration reached such that sploot(Cinter) 6= {C}. By induction, assume C ′ ∈ sploot(Cinter).

Since splits and token-less merges do not add elements to a sploot set, Cinter is obtained by merging two
sets, one of which contains a token. Since the only token-containing sets that can be merged are those of the
form {vi, tk}, Cinter is obtained by merging {vi, tk} and Si,j − {vi, tk} to obtain Si,j ∪ {tk} for some vi, vj ,
and tk. Notice that it may be the case that Si,j = Si′,j′ for other pairs i′, j′.

Such a merge allows two kinds of splits:

• Splitting Si,j into Si,j − {vi, tk} (to obtain the previous configuration, with sploot set {C}).

• Splitting Si,j into Si′,j′ − {v′j , tk}, where Si,j = Si′,j′ (to obtain a new configuration with sploot set
{C ′}, where C ′ is identical to C, except that C ′ contains {v′j , tk}, {v′i} instead of {vi, tk}, {vj}).

Since Si,j − {vi}, {vj , tk} ∈ C, the token arrangement p with fred(p) = C has no tokens on vertices in
Si,j except for token tk on vi. Since Si,j ∪ Si′,j′ = Si,j contains all neighbors of vi, vj , v

′
i, v
′
j , the token

arrangement obtained by moving the location of tk in p from vi to vj , v
′
i, or v′j is an independent set.

So all that remains is to prove that there are a sequence of slides moving tk from vi to v′j via vertices
in {vi, vj , v′i, v′j}. Since Si,j = Si′,j′ , v

′
i, v
′
j ∈ Si,j and so either vi ∈ {v′i, v′j}, or there is an edge {vi, v′i} or

{vi, v′j} ∈ E. So tk can slide from vi to either v′i or v′j (via 0 or 1 slides), and then from v′i or v′j to v′j (via 0
or 1 slides).

We are now ready to prove the main result of this section.

Theorem 3.3. The 3-move subset sum reconfiguration problem is strongly PSPACE-complete.

Proof. The reduction is from the Exact Cover reconfiguration problem for instances that are 23-colorable
induced hypergraphs, proved PSPACE-hard by Lemma 3.9. Observe that every 3-move subset sum reconfigu-
ration is either a merge, where ai and aj are replaced by ai +aj , or a split, where ai +aj is replaced by ai and
aj . Each set split or merge will correspond to a 3-move split or merge, respectively, in the output instance.

Output numbers and sum. A function f : U → N maps each element of the universe U of the input
exact cover reconfiguration problem to a positive integer, and the numbers in the output 3-move subset sum
reconfiguration instance are {∑a∈S f(a) : S ∈ S} and the output target sum is

∑
a∈U f(a).

Elements of U are partitioned according to their colors 1, 2, . . . , 23 and (arbitrarily) labeled a1, a2, . . . , a|U |.

The function f maps a color-j element ai to i · 2100jdlog2(|U |)e. In binary, this mapping consists of the binary
encoding of i followed by by 100jdlog2(|U |)e zeros.

Output size. The output instance consists of |S| numbers, each between 0 and |U | · 2100·23dlog2(|U |)e =
O(|U |2). So the output sum is O(|U |3). Thus the output instance, encoded in unary, has length O(|S||U |2 +
|U |3), i.e. polynomial in the input instance.

Correctness. A reconfiguration in both the exact cover and 3-move subset sum problems involves splitting
or merging elements. Thus it suffices to prove that the function f yields a one-to-one mapping g : S → N
given by g(S) =

∑
a∈S f(a).

Recall that the function f maps each element ai ∈ U to a value based upon the color of ai. The sums of
the outputs of f for all elements of all colors 1 to j−1 is at most 2100(j−1)dlog2(|U |)e · |U |2 ≤ 2(100j−98)dlog2(|U |)e

while the output of f for any element of any color j or larger is at least 2100jdlog2(|U |)e ≥ 298 ·2(100j−98)dlog2(|U |)e.
Thus if a pair of sets S1, S2 ⊆ S have S1 6= S2, then their color-j elements differ, this difference cannot be

made up by adding or removing elements of colors 1 to j − 1 (values too small) or colors j + 1 to 23 (values
too large). Thus if S1 6= S2, then g(S1) 6= g(S2).
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4 Reconfiguration Problems and Paths in Hypercubes

The n-hypercube is the graph with vertex set {0, 1}n such that two vertices are adjacent whenever their
coordinates differ by exactly one component. In this section, we consider the following abstraction of
reconfiguration problems involving subsets.

Definition 4.1 (Constrained Hypercube Path). Given two vertices s, t of the n-hypercube, both contained in
a polytope P := {x ∈ Rn : Ax ≤ b} for some A = (aij) ∈ Zd×n and b ∈ Zd, does there exist a path from s to t
in the hypercube, all vertices of which lie in P?

The constrained hypercube path problem can be seen as a reconfiguration analogue of the 0-1 integer
linear programming (0-1 ILP) satisfiability problem, which simply asks for the existence of a 0-1 point in the
inside P, and is a standard NP-complete problem from Karp’s list. (Note that this problem is distinct from
the 0-1 ILP Reconfiguration problem defined in Ito et al. [16]: in the latter, a solution must optimize some
objective function, while we are only concerned with satisfiability.)

The subset sum problem is the question of the existence of a 0-1 point in a polytope consisting of a
subspace of dimension n− 1, hence defined by two linear constraints with the same coefficients. Similarly,
the knapsack (decision) problem involves exactly two linear constraints, and the Knapsack reconfiguration
problem can be cast as a special case of the constrained hypercube path problem where d = 2. The definitions
are as follows.

Definition 4.2 (Knapsack Problem). Given integers ` and u and two sets of integers S = {a1, a2, . . . , an}
and W = {w1, w2, . . . , wn}, does there exist a subset A ⊆ [n] such that

∑
i∈A ai ≥ ` and

∑
i∈A wi ≤ u?

Definition 4.3 (Knapsack Reconfiguration Problem). Given two solutions A1 and A2 to an instance of
the knapsack problem, can A2 be obtained by repeated 1-move reconfiguration, beginning with A1, so that all
intermediate subsets are also solutions?

Demaine and Ito considered the knapsack reconfiguration problem in the case where S = W [15]. They
proved that the problem was NP-hard, and gave an approximation algorithm for finding a reconfiguration
sequence in which the intermediate steps satisfy one of the constraints only up to some multiplicative
factor. Whether the knapsack reconfiguration problem is PSPACE-complete is a tantalizing open question.
Characterizing the complexity of the knapsack reconfiguration problem implies understanding the complexity
of the constrained hypercube path problem for bounded values of d. We do not settle the former question,
but provide an answer to the latter. The proof of Theorem 4.7 uses a reduction from a variant of the exact
cover reconfiguration problem from the proof of Theorem 3.3 where more-than-2-way merges and splits are
also permitted:

Definition 4.4 (Partition and Union Reconfiguration). Given a set S of subsets of a set U , and two exact
covers C1, C2 ⊆ S, C1 can be reconfigured into C2 via a partition (and C2 can be reconfigured into C1 via a
union) provided that there exist S1, S2, S3, . . . , Sk ⊆ S with C1 − C2 = S1 and C2 − C1 = {S2, S3, . . . , Sk}.
Definition 4.5 (Exact Cover Many-Way Reconfiguration Problem). Given a set S of subsets of a set U ,
can C1 be reconfigured into C2 via repeated partitions and unions?

The reduction given in the proof of Lemma 3.9 also proves that this variant is hard. This can be seen
by observing that any set that can be formed “repeatedly merging” or set of sets that can be formed by
“repeatedly splitting” can also be formed by a single union or partition.

Corollary 4.6. The exact cover many-way reconfiguration problem is PSPACE-hard for instances that are
23-colorable hypergraphs.

Theorem 4.7. The Constrained Hypercube Path problem is PSPACE-complete, even when d = O(1).

Proof. The constrained hypercube path problem is equivalent to the generalization of the knapsack reconfigu-
ration problem, where each integer is instead a multi-dimensional tuple, and the sum of the elements in each
dimension must lie in a specified range.
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The reduction is from the exact cover many-way reconfiguration problem, and is a modification of the
reduction given in the proof of Theorem 3.3. Instead of mapping color-j elements to values in the range
2100jdlog2(|U |)e to |U | · 2100jdlog2(|U |)e, a magnitude unique to j, color-j elements are mapped to a set of three
dimensions unique to j.

The reconfigurations permitted in the Exact Cover Many-Way Reconfiguration Problem are simulated
by sequences of “1-move” reconfigurations (adding or removing an element) permitted in the Knapsack
Reconfiguration Problem. An additional dimension limits the use of “key” elements that “unlock” small
portions of the cover, enabling reconfiguration.

Dimensions. There are 23 · 3 + 1 = d dimensions:

• Three color dimensions for each color j: positive and negative value dimensions denoted dimval+
j and

dimval−
j , respectively, and a count dimension denoted dimcnt

j .

• A key dimension denoted dimkey.

Mapping colors and elements. The reduction uses two functions. The first, fcol : U → [23], maps the
elements of U to their respective colors in a 23-coloring of U according to the hypergraph S.

The second, funi : U → Nd maps elements of the universe U of the input exact cover reconfiguration
problem to a d-dimensional tuple. The function funi maps a color-j element ai to a d-dimensional vector ~v
that is 0-valued in all dimensions except three:

• dimval+
j , where ~v has value i.

• dimval−
j , where ~v has value |U |+ 1− i.

• dimcnt
j , where ~v has value 1.

Output tuples and sum range. There are two kinds of output tuples: set tuples and key tuples. For
each set S ∈ S, there is one output set tuple ftup(S) =

∑
a∈S funi(a).

For each set S ∈ S, there is also a key tuple with the same values as ftup(S) in all dimensions dimval+
j

and dimval−
j , 0-valued in all color count dimensions, and value 1 in dimension dimkey.

For each color j, let Aj = {a ∈ U : fcol(a) = j}. For each dimval+
j and dimval−

j , the output target sum

has minimum values
∑

ai∈Aj
i and

∑
ai∈Aj

|U | − i + 1, respectively. For each dimcnt
j , the sum has maximum

value |Aj |. For dimkey, the sum has maximum value 1.

Output size. The output instance consists of 2|S| tuples, with the value in each dimension of each tuple
between 0 and |U |. Also, the sum range in each dimension consists of two values between 0 and |U |2. So the
output instance, encoded in unary, has length O(|S||U |+ |U |2), i.e. polynomial in the input instance.

Bijection between configurations. Let T be the set of set tuples in the output generalized Knapsack
Reconfiguration Problem instance. Recall that each set S ∈ S defines an output set tuple via the function
ftup. Define the function ffig : P(S) → P(T ) from subsets of S to subsets of T to be the mapping
ffig(C) = {ftup(S) : S ∈ C}.

Since ftup is a bijection between elements of S and T , and ffig maps each subset of S to the corresponding
subset of T via ftup, ffig is a bijection between P(S) and P(T ).
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Reduction structure. The remainder of the proof is devoted to proving the following claim: an exact
cover C2 is reachable from C1 via partitions and unions if and only if ffig(C2) is reachable from ffig(C1) via
1-move reconfigurations.

Both directions of the claim are proved inductively. That is, we consider only “adjacent” configurations:
exact covers that differ by one partition or union, and key-tuple-less tuple sets that can be reconfigured into
one another without visiting intermediate key-tuple-less tuple sets. Before proving each direction, we make a
few observations about the output instance.

Observation 1: at most one key tuple. Since the maximum value in dimkey is 1, each key tuple has
value 1 in dimkey, and set tuples have value 0 in dimkey, at most one key tuple is present in any valid
configuration.

Observation 2: sums of key-tuple-less configurations are tight. For any exact set cover C ⊆ S of
U , the sum of the elements in ffig(C) has the minimum value in dimval+

j , dimval−
j and maximum value in

dimcnt
j for all j.

Exact cover reachability ⇒ knapsack reachability. We consider the case of reconfiguring an exact
cover into another via a partition; the case of a union is symmetric. Suppose there exist two exact covers C1

and C2 with C1 − C2 = S1 and C2 − C1 = {S2, . . . , Sk}. Then ffig(C1) can be reconfigured into ffig(C2) via
the following moves:

1. Add the key tuple fkey(S1).

2. Remove the set tuple ftup(S1).

3. Add the set tuples ftup(S2), . . . , ftup(Sk).

4. Remove the key tuple fkey(S1).

Knapsack reachability ⇒ exact cover reachability. Since ffig is a bijection, any pair of key-tuple-less
subsets of T can be written as ffig(C1), ffig(C2) where C1, C2 ⊆ S.

Suppose ffig(C1) can be reconfigured into ffig(C2). By previous observations, reconfiguring ffig(C1) is
only possible via adding a key tuple, and only one key tuple can ever be present. So the move sequence must
have the following form:

1. Add a key tuple fkey(S1) for some S1 ∈ S.

2. Add and remove set tuples.

3. Remove fkey(S1).

Upon adding a key tuple fkey(S1) with ai ∈ S1 and fcol(ai) = j, the sum values in dimensions dimval+
j

and dimval−
j are increased above the minimum values by i and |U | − i + 1, respectively. For each such ai,

removing a set tuple whose set contains any other element a′i with fcol(a
′
i) = j is not possible, since then:

• i > i′ and the dimension dimval+
j sum falls below the minimum, or

• i < i′ and thus |U | − 1− i > |U | − 1− i′, and the dimension dimval−
j sum falls below the minimum.

That is, the addition of fkey(S1) creates an “ai-shaped j-colored surplus” that can be utilized by removing a
set containing ai (but no other j-colored element). Thus a set tuple ftup(S2) may only be removed if S2 ⊆ S1.
Futhermore, since C1 was an exact cover, only one set covers any given element.

After removing set tuples, set tuples may also be added. The maximum value of dimcnt
j for each j ∈ [23]

(and aforementioned prevention of removing any elements not in S1) prevents covering any element in U by
more than one set (tuple).
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Since the sum value in each color value dimension was the minimum value when fkey(S1) was added,
removing fkey(S1) is only possible if the configuration has these sums again. This only occurs if the
reconfiguration has restored the exact covering. Any exact cover obtained by replacing a partition of S1 with
another partition of S1 is reachable from C1 via a union (into S1) followed by a partition.
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