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Abstract—Fast Reroute (FRR) and other forms of immediate
failover have long been used to recover from certain classes of
failures without invoking the network control plane. While the
set of such techniques is growing, the level of resiliency to failures
that this approach can provide is not adequately understood. We
embark upon a systematic algorithmic study of the resiliency of
immediate failover in a variety of models (with/without packet
marking/duplication, etc.). We leverage our findings to devise
new schemes for immediate failover and show, both theoretically
and experimentally, that these outperform existing approaches.

I. INTRODUCTION

Routing on the Internet (both within an organizational
network and between such networks) typically involves com-
puting a set of destination-based routing tables (i.e., tables that
map the destination IP address of a packet to an outgoing link).
Whenever a link or node fails, routing tables are recomputed
by invoking the routing protocol to run again (or having it
run periodically, independent of failures). This produces well-
formed routing tables, but results in relatively long outages
after failures as the protocol is recomputing routes.

As critical applications began to rely on the Internet, such
outages became unacceptable. As a result, “fast failover” tech-
niques have been employed to facilitate immediate recovery
from failures.1 The most well-known of these is Fast Reroute
in MPLS where, upon a link failure, packets are sent along
a precomputed alternate path without waiting for the global
recomputation of routes [1]. This, and other similar forms
of fast failover thus enable rapid response to failures but are
limited to the set of precomputed alternate paths.

The fundamental question is, then, how resilient can for-
warding tables be? That is, how many link failures can failover
routing tolerate before connectivity is interrupted (i.e., packets
are trapped in a forwarding loop, or hit a dead end) without
invoking the control plane? The answer to this question

1By “immediately”, we mean that there is no control plane delay, but the
fast failover can only happen after (a) the failure is detected and (b) the router
can update its routing table to use the backup route. These delays depend
on the technology used for failure detection and table management, so the
resulting delays can vary substantially, but typically are much less than the
time it takes for the control plane to reconverge.

depends on (1) the number of failures the forwarding scheme
should withstand (e.g., resiliency to multiple simultaneous link
failures is crucial in overlay networks over optical backbone
networks [2], [3]), (2) the structural properties of the network
graph (e.g., in terms of connectivity), and (3) the limitations
imposed on the routing scheme (e.g., with/without packet
marking).

The goal of this paper is to shed light on the theoretical
guarantees that are achievable by any failover forwarding table
and leverage these insights to devise better, more resilient,
immediate failover schemes. We only consider link failures,
not vertex failures (which are not always detectable by neigh-
boring routers, so such fast resilient routing techniques may
not apply).

We distinguish between static routing tables and dynamic
routing tables. While dynamically and adaptively changing the
forwarding tables at a router in response to link failures can
achieve high resiliency (see, e.g., link reversal [6] and [7],
[8]), current routing protocols and infrastructure do not support
such stateful failover routing. Our focus is hence on static,
OpenFlow-like [9], failover routing, where a router/switch
matches packet headers to forwarding rules.

We first observe that designing static routing tables that are
robust to multiple failures is a relatively simple task when
the forwarding decisions can rely on both the source and
destination of the packet [10]. Unfortunately, the number of
forwarding entries grows quadratically with the size of the
network. We seek “scalable” static failover schemes that rely
on limited, locally-available information, specifically: the des-
tination address, the packet’s incoming link, and the set of non-
failed links incident to the router. We note that per-incoming-
link destination-based forwarding tables are a necessity as
destination-based routing alone is unable to achieve robustness
against even a single link failure [11], (and, moreover, entails
computationally hard challenges [3], [11]–[13]).

We investigate three models of “scalable” static failover
routing: basic routing, routing with packet-header rewriting,
and routing with packet-duplication. We present, for each of
these three models, new immediate failover schemes with



TABLE I: Summary of the resiliency of routing tables for arbitrary topologies.

Per-destination Per-incoming Packet header Packet Resiliencyport rewriting duplication

Static Routing
Tables

X × impossible for
any k ≥ 2

X X ✓for any k ≤ 5

X X X ✓with > k bits [4], [5], k-bits [2],
lg k-bits, and 3-bits

X X X ✓at most 2k − 1 packets

Dynamic
Routing Tables X X X ✓1-bit in the

packet header [6]–[8]

provably improved resiliency over past approaches. Our results
are summarized in Table I. We experimentally compare these
schemes. Our findings show that a high level of resiliency is
achievable even with no/little rewriting of packet headers.

Basic (BSC) failover routing (2nd row): each packet is
matched to an outgoing port only on the destination address,
the incoming link, and the set of non-failed links. Past
work [14], [15] (1) achieved guaranteed robustness against
only a single link/node failure [16]–[21], (2) achieved robust-
ness against ⌊k

2−1⌋ link failures for k-connected networks [2],
and (3) proved that resiliency to any set of link failures [17]
cannot be achieved.

We show that resiliency to multiple link failures can be
accomplished even through basic failover routing. We show
how to generate static forwarding tables that are resilient to
any k−1 failures for a broad variety of k-connected networks,
including full-meshes, generalized hypercubes (proposed as
datacenter topologies in [22]), and Clos networks (today’s
datacenter topologies). Motivated by these results, we make
the following general conjecture:

Conjecture: For any k-connected graph, basic failover routing
can be resilient to any k − 1 failures.

We take a first step in this direction by proving that for any
network that is k-connected for k ≤ 5, the above statement
holds. We present several negative results, e.g., for natural
forms of basic failover routing.

Failover routing with packet-header rewriting (HDR, 3rd
row): a node has an ability to rewrite any bit in the packet
header. Clearly, if it is possible to store an arbitrary amount
of information in the packet header, perfect resiliency can be
achieved by collecting information about every failed link that
a packet encounters [4], [5]. Such approaches are not feasibly
deployable in modern-day networks as the header of a packet
may be too large for today’s routing tables. More recent results
show that for any k-connected network, k bits are sufficient
to compute forwarding tables that are robust to (k − 1) link
failures [2]. Our focus is thus on failover routing schemes that
involve only minimal rewriting of bits in the packet header,
or even no rewriting whatsoever. We show that the ability to
modify at most three bits suffices to provide the same level of
resiliency.

Failover routing with packet duplication (DPL, 4th row): a
node has an ability to duplicate a packet (without rewriting its
header) and send the copies through deterministically chosen
outgoing links. We show how to compute, for any k-connected
network, resilient routing tables that do not create more than
2f duplicates of a packet, where f is the number of failed
links hit by a packet. (So, in particular, if there is no link
failure, no packet duplication occurs.)

Comparing the three schemes: We experimentally evaluate
the three proposed schemes both in terms of resiliency and in
terms of path lengths (stretch). Our main conclusions are that
(1) our positive results for the basic failover technique (which
does not involve bit rewriting in the packet header) come with
an average stretch of only 10%, and (2) for any k-connected
network, the ability to rewrite only log(k) bits is sufficient
to be resilient against k − 1 link failures with only a small
stretch compared to the technique that uses k bits. Hence, a
high level of resiliency is achievable with little/no bit rewriting
and without the overheads associated with packet duplication.

A. Organization

In Section II, we introduce our routing model and for-
mally state the STATIC-ROUTING-RESILIENCY problem. In
Section III, we summarize routing techniques that will be
leveraged throughout the whole paper. Section IV is devoted
to our main resiliency results for basic routing. Then, in
Section V and Section VI, we show that robustness to (k−1)
link failures, where k is the connectivity of a graph, can be
achieved through the rewriting of 3 bits in the packet header,
or if the packet can be duplicated, respectively. We present the
experimental evaluation of our failover scheme in Section VII.
We present certain impossibility results in Section VIII and
discuss related work in Section IX. We conclude in Section X.
All missing details appear in [10].

II. MODEL

We represent the network as an undirected multigraph
G = (V,E), where each router in the network is modeled by
a vertex in V and each link between two routers is modeled
by an undirected edge in the multiset E. We denote an
(undirected) edge between x and y by {x, y}. Each vertex v
routes packets according to a forwarding function that matches
an incoming packet to a sequence of forwarding actions.



Packet matching is performed according to the set of active
(non-failed) edges incident at v, the incoming edge, and any
information stored in the packet header (e.g., destination label,
extra bits), which are all information that are locally available
at a vertex. Since our focus is on per-destination forwarding
functions, we assume that there exists a unique destination
d ∈ V to which every other vertex wishes to send packets
and, therefore, that the destination label is not included is
the header of a packet. Forwarding actions consist of routing
packets through an outgoing edge, rewriting some bits in the
packet header, and creating duplicates of a packet.

In this paper we consider three different types of forwarding
functions. We first explore a particularly simple forwarding
function, which we call basic routing (BSC). In basic routing
(Section IV) a packet is forwarded to a specific outgoing
edge based only on the incoming port and the set of active
outgoing edges. The other two forwarding functions, which are
generalization of BSC are the following ones: header-rewriting
routing, in which a vertex rewrites the header of a packet,
and duplication routing, in which a vertex creates copies of
a packet. Basic routing is a special case of each of these
forwarding functions. We present the formal definitions of the
header-rewriting and duplication routing models in Section V
and Section VI, respectively.

The STATIC-ROUTING-RESILIENCY problem. Given a
graph G, a forwarding function f is c-resilient if, for each
vertex v ∈ V , a packet originated at v and routed according
to f reaches its destination d as long as at most c edges fail
and there still exists a path between v and d. The input of the
SRR problem is a graph G, a destination d ∈ V , and an integer
c > 0, and the goal is to compute a set of resilient forwarding
functions that is c-resilient. In this paper we investigate the
relationship between the resiliency that can be achieved by
static routing tables and the connectivity of a graph. We say
a graph is k-connected if there exist k edge-disjoint paths
between any pair of vertices in the graph. We now intuitively
introduce our main routing techniques.

III. GENERAL ROUTING TECHNIQUES

As in [2], we leverage a well-known result from graph
theory [23], which allows us to decompose any k-connected
graph in a set of k directed spanning trees (rooted at the
same vertex) such that no pair of spanning trees shares an
edge in the same direction. As an example, consider Fig.1,
in which each pair of vertices is connected by two edges
(ignore the red crosses) and four arc-disjoint arborescences
Blue,Orange,Red, and Green are depicted by colored ar-
rows. Efficient fast algorithms to compute such arborescences
can be found in [24]. We now show the main techniques that
we use to route along these arborescences.
Arborescence-based routing. Throughout the paper, unless
specified otherwise, we let T = {T1, . . . , Tk} denote a set of k
arc-disjoint spanning arborescences of G rooted at a common
destination vertex. All our routing techniques are based on a
decomposition of G into T . We say that a packet is routed

a b

d

Fig. 1: A 4-connected graph with 4 arc-disjoint arborescences.

in canonical mode along an arborescence T if a packet is
routed through the unique directed path of T towards the
destination. If packet hits a failed edge at vertex v along T , it is
processed by v (e.g., duplication, header-rewriting) according
to the capabilities of a specific forwarding function and it is
rerouted along a different arborescence. We call such routing
technique arborescence-based routing. One crucial decision
that must be taken is the next arborescence to be used after a
packet hits a failed edge. In this paper, we propose two natural
choices that represent the building blocks of all our forwarding
functions. When a packet is routed along Ti and it hits a failed
arc (v, u), we consider the following two possible actions:

• Reroute along the next available arborescence, e.g.,
reroute along Tnext = T(i+1) mod k. Observe that, if the
outgoing arc belonging to Tnext failed, we forward along
the next arborescence, i.e. T(i+2) mod k, and so on.

• Bounce on the reversed arborescence, i.e., we reroute
along the arborescence Tnext that contains arc (u, v).

We say that a forwarding function is a circular-arborescence
routing if each vertex can arbitrarily choose the first arbores-
cence to route a packet and, for each Ti ∈ T , we use canonical
routing until a packet hits a failed edge, in which case we
reroute along the next available arborescence. We will show
an example in Section IV-A.

In the next sections, we show how it is possible to achieve
different degrees of resiliency by using our general routing
techniques and different forwarding functions (i.e., basic,
packet-header-rewriting, and packet-duplication).

IV. BASIC ROUTING

In this section we show how to achieve (k − 1)-resiliency
for any arbitrary k-connected graph, with k ≤ 5, using basic
forwarding functions (BSC), which map an incoming edge and
the set of active edges incident at v to an outgoing edge. This
striking result demonstrates that resiliency to multiple failures
can surprisingly be achieved even without invoking the control
plane and without adding any additional information in the
header of a packet. We also show that for several k-connected
graphs (e.g., Clos networks, full-mesh), with arbitrary positive
k, there exist sets of (k − 1)-resilient forwarding functions.

A. Arbitrary Graphs

We first show that circular-arborescence routing is not
sufficient to achieve 3-resiliency. Consider the example in
Fig. 1 with 3 vertices a, b, and c and 6 edges (depicted as
black lines) eAa,b = {a, b}, eFa,b = {a, b}, eAa,d = {a, d},
eFa,d = {a, d}, eAb,d = {b, d}, and eFb,d = {b, d}, where A



stands for “active” edge and F for “failed” edge (depicted
with a red cross over them). Four arc-disjoint arborescences
T = {Blue,Orange,Red,Green} are depicted by colored
arrows. Let < Blue,Orange,Red,Green > be a circular
ordering of the arborescences in T . We now describe how a
packet p originated at a is forwarded throughout the graph
using a circular-arborescence routing. Since eFa,d is failed, p
cannot be routed along the Blue arborescence. It is then
rerouted through Orange, which also contains a failed edge
eFa,b incident at a. As a consequence, p is forwarded to b
through the Red arborescence. At this point, p cannot be
forwarded to d because eFb,d, which belongs to Red, failed. It
is then rerouted through Green, which also contains a failed
edge eFa,b incident at b. Hence, p is rerouted again through
Blue, which leads p to the initial state—a forwarding loop.

An intuitive explanation is the following one. Since an edge
might be shared by two distinct arborescences, a packet may
hit the same failed edge both when it is routed along the
first arborescence and when it is routed along the second
arborescence. As a consequence, even k

2 failed edges may
suffice to let a packet be rerouted along the same initial vertex
and initial arborescence, creating a forwarding loop. Our first
positive result shows that a forwarding loop cannot arise in
2- and 3-connected graphs if circular-arborescence routing is
adopted.

Theorem 1. For any k-connected graph, with k = 2, 3, any
circular-arborescence routing is (k− 1)-resilient. In addition,
the number of switches between trees is at most 4.

Proof sketch. Consider a 2-connected graph G = (V,E), two
arc-disjoint arborescences T1 and T2 of G, and an arbitrary
failed edge e = {u, v} ∈ E. W.l.o.g, T1 is the first arbores-
cence that is used to route a packet p. When p hits e (w.l.o.g,
at u), p cannot hit e in the opposite direction along T2. In
fact, this would mean that there exists a directed path from u
to v that belongs to T2 and that (v, u) is contained in T2—a
directed cycle. A similar, but more involved argument, holds
for the 3-connected case (see [10]).

4-connected graphs. Let us look again at the graph in Fig. 1.
It is not hard to see that a different circular ordering of the
arborescences (i.e., < Blue,Green,Orange,Red >) would
be robust to any three failures. However, our first result shows
that in general circular-arborescence routing is not sufficient
to achieve (k − 1)-resiliency, for any k ≥ 4.

Theorem 2. There exists a 4-connected graph such that, given
a set of k arc-disjoint arborescences, there does not exist any
3-resilient circular-arborescence forwarding function.

In the experimental section we show that a naive choice
of the arc-disjoint arborescences will very likely cause a
forwarding loop.

To overcome this, we first introduce the following key
lemma, in which we show how to construct four arc-disjoint
arborescences such that some of them do not share edges with

each other. Then, we compute a circular-arborescence routing
that is 3-resilient based on these arborescences.

Lemma 3. For any 2k-connected graph G, with k ≥ 1, and
any vertex d ∈ V , there exist 2k arc-disjoint arborescences
T1, . . . , T2k rooted at d such that T1, . . . , Tk do not share
edges with each other and Tk+1, . . . , T2k do not share edges
with each other.

A similar lemma holds also for any (2k + 1)-connected
graph, where k ≥ 0 (see [10]). The following theorem states
that a circular ordering < T1, . . . , T4 > of the arbores-
cences constructed as in Lemma 3 is a 3-resilient circular-
arborescence routing. We will make use of the general case of
Lemma 3 in Sect. VI.

Theorem 4. For any 4-connected graph, there exists a
circular-arborescence routing that is 3-resilient. In addition,
the number of switches between trees is at most 2f , where f
is the number of failed edges.

Constrained topologies and 5-connected graphs. For sev-
eral graph topologies that are common in Internet routing or
datacenter networks, we show that (k−1)-resilient forwarding
functions can be computed in polynomial time. The list
of graphs that admit (k − 1)-resilient forwarding functions
encompasses cliques, complete bipartite graphs, generalized
hypercubes, Clos networks, and grids [22], [25], [26]. We refer
the reader to [10] for further details. We also show how to
compute 4-resilient forwarding functions in polynomial time
for 5-connected graphs (cf. [10]).

V. PACKET HEADER REWRITING

We devote this section to algorithms that rewrite a very
limited number of bits in the packet header in order to achieve
(k−1)-resiliency, and present two such algorithms, approached
in mutually different ways. The first algorithm uses ⌈log k⌉
and the second one uses only 3 bits in the packet header. As
depicted in Table I, concerning the number of bits allocated
in the packet header, both algorithms substantially improve
upon the previous work. Our experiments, that we present in
Section VII, suggest that the algorithm that uses only ⌈log k⌉
bits is of a high practical relevance as well.
The good arborescence property. Before we delve into the
details of how the first algorithm works, we introduce the
notion of good arborescences. This concept might be of an
independent interest as it provides a novel insight into the
structure of failed links and the corresponding set of arc-
disjoint arborescences. Intuitively, given a set of failed edges,
an arborescence T is a good arborescence if for every packet
that is routed along it, either it reaches the destination vertex
along T or, when it is bounced on a failed edge, it will reach
the destination vertex without any further interruption.
More formally, let a = (u, v) be a link such that (u, v) belongs
to arborescences Ti and (v, u) belongs to Tj . We say that a
is a well-bouncing arc if by bouncing from Ti to Tj on the
failed link {u, v} the packet will reach d via routing along
Tj without any further interruption. Having well-bouncing



notion in hands, we say that an arborescence Ti is a good
arborescence if every failed arc of Ti is well-bouncing. Note
that by the definition if Ti does not contain any failed link
then it is still good.

Each non-shared failed link affects only one arborescence.
So, as long as there are at most k − 1 failed links, non-
shared failed links do not fully disrupt the connectivity of
the arborescences. On the other hand, each shared failed
link affects two arborescences, but it allows the packet to
bounce and hence very efficiently cope with failures. A careful
analysis of the both properties allows us to show that there
always exists a good arborescence. For the sake of brevity we
omit the proof of that fact and refer the reader to [10] for more
details.
Circular routing, bouncing and ⌈log k⌉ bits for (k − 1)-
resiliency. Algorithm HDR-LOG-K-BITS is an example of
how the circular routing can be mixed with the properties of
good-arborecences to obtain (k − 1)-resiliency. We make this
bond possible via bouncing and ⌈log k⌉ bits, stored as variable
currcirc, maintained in the packet header.

Algorithm 1 Definition of HDR-LOG-K-BITS.
HDR-LOG-K-BITS: Given T = {T1, . . . , Tk} and d

1. Let Ti be the first tree that is used to route a packet.
2. Set currcirc := i.
3. Repeat until the packet is delivered to d

a. Route along Ti until d is reached or the routing hits a
failed edge.

b. If the routing hits a failed edge a and a is shared with
arborescence Tj .

(i) If currcirc ̸= i, let currcirc := (currcirc + 1)
mod k + 1 and i := currcirc.

(ii) Otherwise, let i := j.

Recall that a handy property of a good arborescence is
that by bouncing on it the packet will be delivered to the
destination without any further interruption. As before, when
the delivery encounter a failed link our main goal is to
discover whether the arborescence it is routed along is a good
one or not. As a reminder, as long as there is at least one
and at most k − 1 failed links it can be shown that there is
at least one good arborescence. But, how to find such one?
We employ the circular routing (the loop starting at line 3
along with the condition at line 3b(i)) to keep on looking
for a good arborescence. So, once the algorithm encounter a
failed link on the currently considered arborescence Ti in the
circular ordering (at line 3b) there are two actions it performs.
First, it checks whether the current arborescence is good, i.e.
it bounces (expressed by the assignment at line 3b(ii)) and
routes along the new arborescence. If Ti is good, then the
bouncing will deliver the packet. Otherwise, the algorithm
performs the second action – it routes along the arborescence
following Ti in the circular order (as done at line 3b(i) if
the corresponding condition is satisfied). Which of the two
actions is taken, and the information on how to retreat back

to the circular ordering after a bouncing is performed, is
kept in variable currcirc. Name currcirc stands for ”current
circular” and represents the index of the arborescence which
in the circular ordering is currently considered. Observe that
since the number of arborescences is k, we need only ⌈log k⌉
bits to store currcirc.

Employing even fewer bits in the packet header. Next, we
show how to construct a set of (k − 1)-resilient forwarding
functions that requires only three extra bits in the packet
header.

Consider the circular routing algorithm with the following
twist, which we call HDR-3-BITS. If in the circular routing
the packet hits a failed edge a of an arborescence Ti, then
the packet bounces to arborescence Tj , if there is any, and
continues routing along Tj . Now, if the packet hits a failed
edge of Tj , then the packet is routed back to the edge a and
the circular routing continues. The corresponding algorithm
follows. We stress the fact that variable i is not stored in the
packet header but is inferred from the incoming arc on which
the packet is received.

Algorithm 2 Definition of HDR-3-BITS.
HDR-3-BITS: Given T = {T1, . . . , Tk} and d

1. Set i := 1.
2. Repeat until the packet is delivered to d

1. Route along Ti until d is reached or the routing hits a
failed edge.

2. If the routing hits a failed edge a and a is shared with
arborescence Tj , i ̸= j.
(a) Bounce and route along Tj . (As we discuss in the

sequel, the routing scheme employed after bouncing
deviates from the one used before the bouncing.)

(b) If the routing hits a failed edge in Tj , route back to
the edge a.

3. Set i := (i+ 1) mod k + 1

As we show in the sequel, in case there are at most k − 1
failed edges then the described routing scheme delivers the
packet to d. However, there are a few questions that we should
resolve in order to implement this scheme in our routing
model: first, after bouncing on a failed edge a and hitting a
new failed edge, how one can route the packet back to a; and,
second, how we keep track of whether the circular routing or
the one after bouncing is in use. Now, both questions could be
easily answered if the packet stores the path it is routed over,
which in the worst case could require “many” extra bits. On
the other hand, as we have been discussing in the introduction,
our aim is to provide a routing scheme that uses a very few
bits, which we do in this section.
Backtracking: A routing and its inverse. Essentially, the
first question can be cast as a task of devising a routing scheme
R(T ), for a given arborescence T , which has its inverse. Let
our hypothetical scheme R(T ) route the packet along edges
a1, a2, . . . , at, at+1 in that order. Then, the inverse routing



scheme R−1(T ) would route a packet received along at+1

through edges at, at−1, . . . , a1 in that order. We choose R(T )
to be a DFS traversal of T starting at d. For the sake of the
traversal, we disregard the orientation of the edges of T , as
shown in Fig. 2.

Note that we use canonical mode (which does not have an
inverse) for routing packets along the arborescences that are
chosen in the circular order. Only once the packet bounces to
arborescence T , we route the packet following scheme R(T ),
and then follow its inverse R−1(T ) if a new failed edge is hit,
as explained above.
Three extra bits suffices for (k−1)-resiliency. So, to put into
action our routing algorithm, we use three different routing
schemes. In order to distinguish which one is currently used,
we store extra bits in the packet header. Those bits are used to
keep the information needed to decide which routing scheme
should be used. To keep track of which routing scheme is being
used, out of the three aforementioned, we need two bits. Let
RM be a two-bit word with the following meaning: RM = 0
for canonical mode; RM = 1 for scheme R(T ); and RM = 2
for scheme R−1(T ).

We now motivate the usage of the third bit. Let a be the
last arc the packet is routed over. Then in canonical mode,
i.e. if RM = 0, a uniquely determines the arborescence along
which the packet is routed. However, if Ti and Tj , for i < j,
share an edge {x, y}, then the arcs (x, y) and (y, x) are in
both R(Ti) and in R(Tj). Therefore, if RM ̸= 0 then the
information stored in RM along with a is not sufficient to
determine whether the arborescence the packet is routed along
is Ti or Tj . So, to keep track of whether the packet is routed
along Ti or Tj we use another extra bit H . We set H = 1 if
the packet is routed along the arborescence with higher index,
i.e. along Tj , and set H = 0 otherwise.

Therefore, in total we need three additional bits (two for
RM and one for H) to keep track of which routing scheme
and which arborescence is currently in the use.

Putting good arborescences into the setting we have just
developed, we can show that indeed HDR-3-BITS computes
a (k − 1)-resilient routing.

Theorem 5. For any k-connected graph, HDR-3-BITS com-
putes a set of (k − 1)-resilient forwarding functions.

VI. PACKET DUPLICATION

In this section we show that, for any k-connected graph G, it
is always possible to compute duplication forwarding functions
(DPL) that are (k− 1)-resilient. DPL maps an incoming edge
and the set of active edges incident at v to a subset of the
outgoing edges at v. A packet is duplicated at v and one copy
is sent to each of the edges in that set.

A naive approach would flood the whole network with
copies of the same packets, i.e., each vertex creates a copy of
a packet for each outgoing edge and forwards it through that
edge. There are two drawbacks to this approach. First, marking
packets is necessary to avoid forwarding loops. Second, at least
a copy of the packet will be routed through each edge, wasting

Algorithm 3 Definition of DPL-ALGO.

1) p is first routed along T1.
2) p is routed along the same arborescence towards the

destination, unless a failed edge is hit.
3) if p hits a failed edge (x, y) along Ti, then:

a) if i < s: one copy of p is created; the original packet is
forwarded along Ti+1; the copy is forwarded along Tl,
where Tl is the arborescence that contains arc (y, x).

b) if i = s: s − 1 copies of p are created; the original
packet is forwarded along Ts+1; the j’th copy, with
1 ≤ j ≤ s− 1, is routed along Ts+j+1.

c) if i > s: p is destroyed.

routing resources. In the following, we present an algorithm
that creates a very limited number of copies of a packet and
guarantees robustness against any k − 1 edge failures.

b

b

b b

b

bb

d

v1

v2 v3 v4 v6

v5

Fig. 2: Let T denote the arborescence on the fig-
ure. A DFS traversal is illustrated by the dashed line,
i.e. R(T ) = dv1v2v1v3v1v4v1dv5v6v5d and R−1(T ) =
dv5v6v5dv1v4v1v3v1v2v1d.

The general idea is to carefully combine the benefits of
both circular-arborescence and bounce routing (as for HDR
routing in Sect. V). Circular-arborescence routing allows us
to visit each arborescence, while bouncing a packet allows us
to discover well-bouncing arcs (see Sect. V for the definition
of well-bouncing arcs). Bouncing packets comes at the risk
of easily introducing forwarding loops as packets may be
bounced between just two arborescences. Hence, we leverage
our construction of arborescences from Lemma 3, which helps
us to eventually hit k − 1 distinct failed edges, and we
forbid any bouncing that may create a forwarding loop. For
simplicity, we assume that k = 2s is even.

Let G be a 2s-connected graph and T1, . . . , T2s be 2s arc-
disjoint arborescences such that T1, . . . , Ts (Ts+1, . . . , T2s) do
not share edges with each other (as in Lemma 3). We define
the DPL-ALGO in Alg. 3 and in the following show that it
provides a set of (2s− 1)-resilient forwarding functions.

We start by observing that each failed edge hit along the
first s arborescences cannot be a well-bouncing arc, otherwise
this would mean that at least a copy of a packet will reach d.

Lemma 6. Let Ti be a good arborescence. If DPL-ALGO
fails to deliver a packet to d, then i > s.



By a counting argument (see [10]), we can leverage
Lemma 6 to prove the resiliency of DPL-ALGO to (2s − 1)
link failures and bound the amount of duplicated packets that
are created.

Theorem 7. For any 2s-connected graph and s ≥ 1, DPL-
ALGO computes (2s − 1)-resilient forwarding functions. In
addition, the number of copies of a packet created by the
algorithm is f , if f < s, and 2s − 1 otherwise, where f
is the number of failed edges.

Routing from any arbitrary initial arborescence. In
contrast to the BSC and HDR forwarding techniques, in DPL-
ALGO each vertex is forced to start routing packets on the
same initial arborescence T1. This approach has one main
drawback: even in the absence of link failures, routing is
constrained along an arborescence, which may not even be
a shortest path arborescence. This leads to unacceptable high
path lengths. We solve this issue by adding a counter with
⌈log(s)⌉ bits in the packet header. We initially set the counter
to 0 and we increase it every time a packet hits a failed edge.
If the counter is smaller than s, we apply step 3a from Alg. 3,
otherwise, if the counter is equal to s, we apply step 3b. We
do not use the counter when we route along any arborescence
Ti, with i > s. Evaluating this version of the algorithm in
Section VII, we show that it achieves high resiliency with very
limited stretch. We call this algorithm DPL-LOG-K-BITS.

VII. EXPERIMENTS

We experimentally evaluate the four proposed schemes both
in terms of resiliency and in terms of path lengths (stretch).
Our main conclusions are that (1) our positive results for basic
failover technique (which does not involve marking packets)
come with an average stretch of only 10%, and (2) for any
k-connected network, we show that the ability to rewrite only
⌈log k⌉ bits is sufficient to be resilient against k − 1 link
failures with only small stretch compared to the technique
that uses k bits. Hence, a high level of resiliency is achievable
with little/no packet rewriting of bits in the packet header and
without the overheads associated with packet duplication.

First, we assess the effectiveness of the BSC-ALGO, which
is based on a circular-arborescence forwarding function. Recall
that BSC-ALGO is based on a special construction of a set
of arc-disjoint arborescences. We show that an arbitrary set of
arbitrary arc-disjoint arborescences would very likely be prone
to forwarding loops.
Arbitrary arc-disjoint arborescences are not 3-resilient.
We experimentally quantify the amount of routers that are
no longer able to send packets to a destination vertex when
circular-arborescence is used on an arbitrary set of arc-disjoint
arborescences, Fig. 3. We generate 1000 different 4-connected
random networks with sizes ranging from 10 to 40 vertices.
For each network with N routers, we consider 320 ·N random
3-link failures scenarios. We then count the number of routers
that are no longer able to reach the destination router (i.e.,
are trapped in a forwarding loop) in at least one failure
scenario. As shown in Fig. 3, roughly 65% of the routers

lost connectivity to the destination vertex in at least one
failure scenario. We point out that we are only providing a
lower bound as an exploration of all possible 3-link failures
in large networks is computationally unfeasible. In contrast,
our construction of arc-disjoint arborescences described in
Lemma 3 guarantees that no pair of vertices is disconnected
in any 4-connected network for any 3-link failures.
Path stretch in the absence of failures. In [2] it was
shown that arc-disjoint arborescences have limited stretch with
respect to shortest paths in the absence of link failures. The
authors also observe that, if packet header marking is allowed
by the forwarding function, a single extra bit can be used to
switch to failover routing only when a packet hits a failed link.
Otherwise, a packet is forwarded according to any arbitrary
scheme defined by a network operator (e.g., shortest paths).
We omit the results for the path stretch in the absence of
failures as they are similar to the ones already obtained in [2].
Little/no bit rewriting in packet header is sufficient for
high resiliency and low stretches. We use as a point of
reference for our evaluation the algorithm presented in [2],
which uses k bits in the packet header. We define the stretch of
a routing function R as the ratio between the number of links
traversed by algorithm and the number of links traversed by
the algorithm in [2]. We generated 1000 different 4-connected
random networks with 100 routers. For each network we look
at 3200 random 3-link failures scenarios. In Fig. 4, Fig. 5, and
Fig. 6, we show the cumulative distribution function of the
path stretch from each source vertex to a specific destination
using our four 3-resilient algorithms, i.e., BSC-ALGO, which
routes packets based on a circular-arborescence forwarding
function, HDR-LOG-K-BITS, which rewrites log(k) bits in
the packet header, HDR-3-BITS, which rewrites only 3 bits
in the packet header, and DPL-LOG-K-BITS, which rewrites
log(k) bits in the packet header and possibly creates duplicates
of a packet. We stress the fact that in all the depicted graphs,
we only compute the stretch for those packets that actually hit
at least one failed link. We first observe no rewriting of bits
in the packet header (i.e., BSC-ALGO) leads to surprisingly
limited average stretch, i.e., 90% of the packets have stretch
smaller than 1.2. HDR-LOG-K-BITS reduces the average
stretch to roughly 1.1. Not surprisingly, DPL-LOG-K-BITS
can reduce stretch further as it can explore different paths in
the network at the same time2. Finally, we observe that the
path stretch in HDR-3-BITS is unacceptable when compared
to the other approaches. The main reason is that packets are
not directly routed through the destination vertex along an
arborescence (see Sect. VI). We finally compare in Fig. 7 and
Fig. 8 the performance of the three other (k − 1)-resilient
algorithms on 8-connected networks. We observe a similar
trend to the one observed for 4-connected networks.

VIII. IMPOSSIBILITY RESULTS FOR BASIC ROUTING

We now show that simplified forms of failover forwarding
functions are not sufficiently powerful. It is well-known that

2The stretch of DPL-LOG-K-BITS is computed on the first copy of a packet
that reaches the destination.
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without matching the incoming-edge it is not even possible to
construct 1-resilient static forwarding functions [11]. To over-
come this, [15] suggests to route packets based on a circular
ordering of the edges incident at each vertex. Namely, a set
of forwarding functions is link-circular if each vertex v routes
packets based on an ordered circular sequence < e1, . . . , el >
of its incident edges as follows. If a packet p is received from
an edge ei, then v forwards it along ei+1. If the outgoing edge
ei+1 failed, v forwards p through ei+2, and so on. We prove in
[10] that this simplified forwarding functions cannot provably
guarantee (k − 1)-resiliency even for 3-connected graphs.

Theorem 8. There is a 3-connected graph G for which no
2-resilient link-circular forwarding function exists.

We now exploit the previous theorem to state another impos-
sibility result, which shows that the connectivity between two
vertices, i.e., the maximum amount of disjoint paths between
the two vertices, does not match the resiliency guarantee for
these two vertices. In other words, even if a vertex v is k-
connected to the destination (but not the entire graph), it is not
possible to guarantee that a packet originated at v will reach
d when k−1 edges fail. Clearly, if we want to protect against
k− 1 failures a single vertex that is k-connected to d, we can
safely route along its k edge-disjoint paths one after the other
until the packet reaches its destination. However, if there are
more vertices to be protected, it may be not possible to protect
all of them. We say that a forwarding function is strong-
connectivity-resilient if each packet that is originated by a
vertex v that is k-connected to the destination d, can be routed
towards the destination as long as less than k edges fail. By

leveraging Theorem 8 and using a simple graph transformation
(see [10]) we can show that strong-connectivity-resilient is not
achievable.

Theorem 9. There are a graph G and a destination d
for which no set of strong-connectivity-resilient forwarding
functions exists.

We show that there exists a limit on the resiliency that
can be attained in a k-connected graph, in which each vertex
is k-connected to the destination. It was proved in [17] that
resiliency against any failures that do not disconnect a sender
from d, cannot be guaranteed. We claim a stronger bound.

Theorem 10. There is a 2-connected graph for which no set
of 2-resilient forwarding functions exists.

IX. RELATED WORK

There is a huge body of literature on related topics, and
here we give only a high-level overview. We make several
distinctions among the studies satisfying these requirements;
the first is whether the routing algorithm can rewrite packet
headers (inserting/modifying additional state). This category
includes [2], [4], [27]–[37] and the general thrust of these
results (with some variation) is that adding one or a few
additional bits (or tunnels) can achieve 1- or 2-resiliency,
whereas one can achieve k − 1 resiliency with k bits. When
one allows an unlimited list of failed node/links in the packet
header, [4] and [5] deliver packets as long as the network
remains connected. The next category involves solutions that
do not modify the packet header, and here we can further
distinguish between solutions that modify the forwarding



tables based on packet arrivals, and those that have static
tables. The dynamic approaches can deliver packets whenever
the network remains connected [7], [8]. Among the static
approaches, some depend only on the destination address,
and some also depend on the incoming port. The former
are guaranteed to deliver packets under any arbitrary non-
disconnecting set of failures only if the routing tables are
not deterministic, otherwise, for deterministic static routing
tables, not only the problem of protecting against one single
failure may not admit a solution, but it is even hard to compute
routing tables that maximize the number of vertices that are
protected [3], [11]–[13]. The latter (i.e., per-incoming port
static deterministic routing tables) exploit the incoming port of
a packet to infer what links have failed. Our work belongs to
this category. Previous works are limited in several aspects: the
proposed heuristics have no provable failover guarantees [14],
[15]; failover mechanisms have limited guaranteed resilience
against only one single link/node failure [16]–[21] or ⌊k

2 −1⌋-
resiliency for k-connected graphs [2]; routing focus limited
to shortest-path-IP [14], [34], [35]; impossibility of achieving
∞-resiliency [17]. For specific topologies, works [38], [39]
achieve k − 1 resiliency but no general methodology is
described. In contrast, we show how to compute (k − 1)-
resilient routing tables for arbitrary k-connected graphs, with
k ≤ 5 and we show that k-resiliency cannot be guaranteed for
any k-connected graph with static routing tables.

X. CONCLUSIONS

We presented the STATIC-ROUTING-RESILIENCY problem
and explored the power of static fast failover routing in a
variety of models: deterministic routing, routing with packet-
duplication, and routing with packet-header-rewriting. Our re-
sults suggest that even under severe restrictions on forwarding
(no/little rewriting of bits in the packet header) a high-level of
resiliency is achievable with negligible stretch.
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